MATH 382 - Real Analysis (1) First Semester - 1447 H Solution of the First Exam

Dr Tariq A. Alfadhel

Question (1): [2+2+3 = 7 marks]

1. (a). State the Completeness Axiom.

Solution:

Every non-empty upper bounded subset of \mathbb{R} has a least upper bound in

Every non-empty lower bounded subset of \mathbb{R} has a greatest lower bound

(b). If $A = \left\{q \in \mathbb{Q}: \ \sqrt{2} \leq q < \sqrt{3}\right\}$, Find $\sup A$ and $\inf A$.

Solution:

 $\sup A = \sqrt{3}$ and $\inf A = \sqrt{2}$.

2. If $A \subseteq \mathbb{R}$ is a non-empty set which is bounded above, and k > 0:

Show that $\sup(kA) = k \sup(A)$.

Solution:

 $\forall a \in A : a \le \sup A \implies ka \le k \sup A$.

 $k \sup A$ is an upper bound of the set kA, therefore, $\sup(kA) \leq k \sup A$.

 $\forall n \in \mathbb{N} : \exists a_n \in A \text{ such that } \sup A - \frac{1}{kn} < a_n \le \sup A$

 $\implies k \sup A - \frac{1}{n} < k \ a_n \le \sup(kA) \implies k \sup A - \sup(kA) < \frac{1}{n}, \ \forall n \in \mathbb{N}$

 $\implies k \sup A - \sup(kA) \le 0 \implies k \sup A \le \sup(kA).$

Therefore, $\sup(kA) = k \sup(A)$.

3. If $x,y\in\mathbb{R}$ and y>x>0. Prove that there exists $r\in\mathbb{Q}$ such that x < r < y.

Solution:

$$y > x > 0 \implies y - x > 0 \implies \exists n \in \mathbb{N} \text{ such that } \frac{1}{n} < y - x$$

$$\implies 1 < ny - nx \implies 1 + nx < ny$$
.

Also, $x > 0 \implies nx > 0 \implies \exists m \in \mathbb{N} \text{ such that } m-1 \leq nx < m$

$$\implies m < 1 + nx < m + 1.$$

Now,
$$nx < m \le 1 + nx < ny \implies nx < m < ny \implies x < \frac{m}{n} < y$$
.

Let
$$r = \frac{m}{n}$$
 then $r \in \mathbb{Q}$ and $x < r < y$.

Question (2): [17 marks]

- 1. Give an example of the following:
 - (a). A bounded sequence which is not convergent.

Solution:

The sequence $(x_n) = ((-1)^n)$

(b). A convergent sequence which is not monotonic.

Solution:

The sequence
$$\left(\frac{(-1)^n}{n}\right)$$
 or $\left(\frac{(-1)^n}{2^n}\right)$.

2. (a). If (x_n) converges to 0 and (y_n) is bounded. Prove that (x_ny_n) is convergent.

Solution:

First Proof : Since (y_n) is bounded, then $\exists K > 0$ such that $|y_n| \leq K$, $\forall n \in \mathbb{N}$.

Let $\epsilon > 0$, since (x_n) converges to 0 then $\exists N \in \mathbb{N}$ such that

$$\forall n \ge N : |x_n - 0| < \frac{\epsilon}{K}.$$

Now,
$$\forall n \geq N : |x_n y_n - 0| = |x_n| |y_n| < \frac{\epsilon}{K} K = \epsilon.$$

Therefore, $\lim_{n\to\infty} x_n y_n = 0$.

Second Proof : Since (y_n) is bounded, then $\exists K > 0$ such that $|y_n| \leq K$, $\forall n \in \mathbb{N}$.

$$0 \le |x_n y_n| \le K |x_n|.$$

Since $x_n \longrightarrow 0$, then $|x_n| \longrightarrow 0$, therefore, $K |x_n| \longrightarrow 0$.

Hence $|x_ny_n| \longrightarrow 0$, therefore, $x_ny_n \longrightarrow 0$.

(b). Use (a) to calculate $\lim_{n\to\infty} \frac{1+\sin n}{n^3+2}$ (Justify your answer).

Solution:

Let
$$x_n = \frac{1}{n^3 + 2}$$
 and $y_n = 1 + \sin n, \forall n \in \mathbb{N}$.

$$x_n = \frac{1}{n^3 + 2} \longrightarrow 0$$
 and $|y_n| = |1 + \sin n| \le 2$, so (y_n) is bounded.

Using (a):
$$\lim_{n \to \infty} \frac{1 + \sin n}{n^3 + 2} = \lim_{n \to \infty} \left(\frac{1}{n^3 + 2} (1 + \sin n) \right) = 0.$$

3. State the squeeze (sandwich) theorem for sequences and prove it.

Solution:

Squeeze (sandwich) Theorem : If $x_n \leq y_n \leq z_n$, $\forall n \geq N_0$, where $N_0 \in \mathbb{N}$, and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = l$, then $\lim_{n \to \infty} y_n = l$.

Proof: Let $\epsilon > 0$, since $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = l$, then $\exists N_1, N_2 \in \mathbb{N}$ such that $\forall n \geq N_1 : |x_n - l| < \epsilon \implies l - \epsilon < x_n < l + \epsilon$

and $\forall n \geq N_2 : |z_n - l| < \epsilon \implies l - \epsilon < z_n < l + \epsilon$.

Let $N = \max\{N_0, N_1, N_2\}$, then $\forall n \ge N$:

 $l - \epsilon < x_n \le y_n \le z_n < l + \epsilon \implies l - \epsilon < y_n < l + \epsilon \implies |y_n - l| < \epsilon.$

Therefore, $\lim_{n\to\infty} y_n = l$.

4. Calculate $\lim_{n\to\infty} \sqrt[n]{2^n + 3^n}$.

Solution: $\forall n \in \mathbb{N},$

$$3^n < 2^n + 3^n < 3^n + 3^n = 2 (3)^n \implies \sqrt[n]{3^n} < \sqrt[n]{2^n + 3^n} < \sqrt[n]{2 (3)^n}$$

$$\implies 3 < \sqrt[n]{2^n + 3^n} < 3 \sqrt[n]{2}.$$

Since $\lim_{n\to\infty} \sqrt[n]{2} = 1$, using squeeze theorem, $\lim_{n\to\infty} \sqrt[n]{2^n + 3^n} = 3$.

5. If (x_n) is strictly increasing and bounded above, Prove that it is convergent.

Solution:

Let
$$A = \{x_n : n \in \mathbb{N}\}.$$

Since (x_n) is strictly increasing, then A is an infinite set, so $A \neq \phi$.

Since (x_n) is bounded above, then the set A is bounded above. By Completeness Axiom sup A exists, let $x_0 = \sup A$.

To show that $x_n \longrightarrow x_0$:

Let $\epsilon > 0$, then $x_0 - \epsilon$ is not an upper bound of A, then $\exists x_N \in A$ such that $x_0 - \epsilon < x_N \le x_0 = \sup A$.

 $\forall n \geq N : x_N < x_n \text{ since } (x_n) \text{ is strictly increasing, and } x_n \leq x_0 \text{ since } x_0 = \sup A.$

Therefore, $\forall n \geq N : x_N < x_n : x_0 - \epsilon < x_N < x_n < x_0$ $\implies \forall n \geq N : |x_n - x_0| < \epsilon \text{ Hence } \lim_{n \to \infty} x_n = x_0.$

6. If
$$x_1 = 1$$
 and $x_{n+1} = \frac{1}{3}(x_n + 5)$, $\forall n \in \mathbb{N}$,

Show that (x_n) is monotonic and bounded, then compute its limit.

Solution:

First - Showing that (x_n) is an increasing sequence :

(i).
$$x_1 = 1 \le \frac{1}{3}(1+5) = 2 = x_2$$
.

- (ii). Suppose $x_{n-1} \le x_n$.
- (iii) Proving that $x_n \leq x_{n+1}$:

$$x_{n-1} \le x_n \implies x_{n-1} + 5 \le x_n + 5 \implies \frac{1}{3} (x_{n-1} + 5) \le \frac{1}{3} (x_n + 5)$$

Second - Showing that (x_n) is bounded above by $\frac{5}{2}$:

(i).
$$x_1 = 1 \le \frac{5}{2}$$
.

- (ii). Suppose $x_n \leq \frac{5}{2}$.
- (iii) Proving that $x_{n+1} \leq \frac{5}{2}$:

$$x_{n+1} = \frac{1}{3}(x_n + 5) \le \frac{1}{3}(\frac{5}{2} + 5) = \frac{1}{3}(\frac{15}{2}) = \frac{5}{2}$$
.

Since (x_n) is an increasing and bounded above, then it converges to l.

Third - Finding the value of l:

$$x_{n+1} = \frac{1}{3}(x_n + 5) \implies l = \frac{1}{3}(l+5) \implies 3l = l+5$$

$$\implies 2l = 5 \implies l = \frac{5}{2}.$$

Therefore, $x_n \longrightarrow \frac{5}{2}$.