
MATH 382 - Real Analysis (1)
Second Semester - 1446 H
Solution of the First Exam

Dr Tariq A. Alfadhel

Question (1): [8 marks]

1. Give an example of the following:

(i) A non-empty set A ⊂ R such that inf A = minA and supA /∈ A. [1]

Solution :

A = [a, b) where a, b ∈ R and a < b .

A = [a,∞) where a ∈ R .

(ii) Two infinite subsets A ⊂ B and A ∼ B . [1]

Solution :

A = N1 or N2, and B = N .

A = N and B = Z .

A = (0, 1) and B = (0, b), where b ∈ R and b > 1 .

2. If A and B are two any non-empty upper bounded subsets of R,

Prove that : sup (A ∪B) = max {supA, supB} . [3]

Solution :

A ⊂ A ∪B =⇒ supA ≤ sup (A ∪B) .

B ⊂ A ∪B =⇒ supB ≤ sup (A ∪B) .

Hence, max {supA, supB} ≤ sup (A ∪B) −→ (1).

If x ∈ A ∪B =⇒ x ∈ A or x ∈ B

=⇒ x ≤ supA or x ≤ supB =⇒ x ≤ max {supA, supB}

which means that max {supA, supB} is an upper bound of the set A∪B

Hence, sup (A ∪B) ≤ max {supA, supB} −→ (2)

From (1) and (2) : sup (A ∪B) = max {supA, supB} .

3. If A and B are denumerable subsets of R, Prove that A×B is a denumer-
able set. [3]

Solution :
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Since A is denumerable then there exists a bijection f : A −→ N .

also, since B is denumerable then there exists a bijection g : B −→ N .

Define h : A×B −→ N as : h(a, b) = 2f(a)3g(b), ∀ a ∈ A, b ∈ B.

Suppose (a1, b1) , (a2, b2) ∈ A×B :

h (a1, b1) = h (a2, b2) =⇒ 2f(a1)3g(b1) = 2f(a2)3g(b2)

=⇒ 2f(a1) = 2f(a2) and 3g(b1) = 3g(b2)

=⇒ f (a1) = f (a2) and g (b1) = g (b2)

=⇒ a1 = a2 and b1 = b2 (since f and g are both injective).

=⇒ (a1, b1) = (a2, b2).

Therefore, h is an injection.

Hence, A×B ∼ Rh ⊂ N.

Since Rh is countable, then A × B is countable, and being infinite it is
denumerable.

Question (2): [17 marks]

1. Give an example of the following:

(i) A convergent sequence which is not monotonic. [1]

Solution :

The sequence

(
(−1)n

n

)
.

(ii) A divergent sequence which has a Cauchy subsequence. [1]

Solution :

The sequence (xn) = ((−1)n) is divergent,

the subsequence (x2n) =
(
(−1)2n

)
is convergent, so it is a Cauchy subse-

quence .

(iii) An infinite set A such that Â = φ. [1]

Solution :

A = N or A = Z.

2. Prove that any convergent sequence is bounded. [2]

Solution :

Suppose the sequence (xn) converges to x,
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Let ε = 1, then there exists N ∈ N such that :

For n ≥ N : |xn − x| < 1

=⇒ ||xn| − |x|| < |xn − x| < 1

=⇒ − 1 < |xn| − |x| < 1

=⇒ |xn| < 1 + |x|

Take K = {|x1| , |x2| . · · · , |xN−1| , 1 + |x|}

Then K > 0 and |xn| < K , ∀n ∈ N.

Therefore, the sequence (xn) is bounded .

3. Discuss the convergence of the sequence (cos(nπ)) . [2]

Solution : Let (xn) = (cos(nπ)), consider the subsequences

x2n = cos(2nπ) = 1 −→ 1 .

x2n+1 = cos((2n+ 1)π) = −1 −→ − 1 .

Therefore, the sequence (cos(nπ)) is divergent.

4. Find lim
n→∞

2 + sinn

n3 + 1
. (Justify your answer) [2]

Solution : Let xn =
2 + sinn

n3 + 1
= (2 + sinn)

1

n3 + 1
= an bn , ∀n ∈ N.

|an| = |2 + sinn| ≤ 2 + |sinn| ≤ 2 + 1 = 3, ∀n ∈ N, so (an) is bounded.

Also, bn −→ 0, Therefore xn = an.bn −→ 0.

5. If (xn) and (yn) are Cauchy sequences, prove that (xnyn) is a Cauchy
sequence. [3]

Solution :

Since (xn) is Cauchy then it is bounded, so |xn| < K1, where K1 > 0 .

Since (yn) is Cauchy then it is bounded, so |yn| < K2, where K2 > 0 .

Let ε > 0 be given :

Since (xn) is Cauchy then there exists N1 ∈ N such that :

∀n,m ≥ N1 : |xn − xm| < ε .

Since (yn) is Cauchy then there exists N2 ∈ N such that :

∀n,m ≥ N2 : |yn − ym| < ε .
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Take N = max {N1, N2}, then ∀n,m ≥ N :

|xnyn − xmym| = |xnyn − xmyn + xmyn − xmym|

= |yn (xn − xm) + xm (yn − ym)|

≤ |yn| |xny − xm|+ |xm| |yn − ym|

≤ K2 ε+K1 ε = (K1 +K2) ε = c ε , where c = K1 +K2 > 0 .

Therefore, (xnyn) is a Cauchy sequence .

6. If 0 < a < b, find lim
n→∞

n
√
a+ b . [2]

Solution :

0 < a < b =⇒ a+ b > 0 , Therefore, lim
n→∞

n
√
a+ b = lim

n→∞
(a+ b)

1
n = 1 .

Note that, if c > 0, then lim
n→∞

c
1
n = 1. (see Example 3.8, page 78).

7. If x1 = 1 and xn+1 =
√

4xn + 5 ,∀n ∈ N, show that (xn) is monotonic and
bounded, then find its limit. [3]

Solution :

First - Showing that (xn) is an increasing sequence :

(i). x1 = 1 ≤ 3 = x2 .

(ii). Suppose xn−1 ≤ xn .

(iii) Proving that xn ≤ xn+1 :

xn−1 ≤ xn =⇒ 4xn−1 ≤ 4xn =⇒ 4xn−1 + 5 ≤ 4xn + 5

=⇒
√

4xn−1 + 5 ≤
√

4xn + 5 =⇒ xn ≤ xn+1 .

Second - Showing that (xn) is bounded above by 5 :

(i). x1 = 1 ≤ 5 .

(ii). Suppose xn ≤ 5 .

(iii) Proving that xn+1 ≤ 5 :

xn+1 =
√

4xn + 5 ≤
√

4(5) + 5 =
√

25 = 5 .

Since (xn) is an increasing and bounded above, then it converges to l .

Third - Finding the value of l :

xn+1 =
√

4xn + 5 =⇒ l =
√

4l + 5 =⇒ l2 = 4l + 5

=⇒ l2 − 4l − 5 = 0 =⇒ (l − 5)(l + 1) = 0 =⇒ l = 5 , l = −1.
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Note that xn ≥ 1 , ∀n ∈ N, so l = −1 is excluded.

Therefore, xn −→ 5 .

Bonus Question: If (xn) is an increasing sequence of positive terms which has
a convergent subsequence, Prove that (xn) is convergent.
Solution :
Since (xn) is an increasing sequence, then it is enough to show that it is bounded
above.
Suppose that (xnk

) is the convergent subequence, then (xnk
) is bounded,

|xnk
| = xnk

≤M , ∀ nk ∈ N, where M > 0 .
∀ k ∈ N : k ≤ nk =⇒ xk < xnk

(since (xn) is increasing) .
=⇒ xk < xnk

≤M , ∀ k ∈ N .
Therefore, the sequence (xn) is bounded above, Hence, it is convergent.
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MATH 382 - Real Analysis (1)
Second Semester - 1446 H

Solution of the Second Exam
Dr Tariq A. Alfadhel

Question (1): [(1+1)+3+2+3 = 10 marks]

1. Give an example of the following:

(i) A function f : R −→ R such that the limit does not exist at any point.

Solution:

f(x) =

{
a , x ∈ Q
−a , x ∈ Qc , where a ∈ R∗ .

(ii) Two different increasing functions such that their product is not in-
creasing.

Solution:

f(x) = x and g(x) = x3 on [−1, 0] .

Both f, g are increasing, but (fg)(x) = x4 is decreasing on [−1, 0].

2. Let f : D −→ R and c ∈ D̂, if lim
x→c

f(x) = l , Prove that for every sequence

(xn) in D such that xn 6= c for any n ∈ N and xn −→ c , the sequence
(f (xn)) converges to l.

Solution:

Let ε > 0 be given, since lim
x→c

f(x) = l , then there exists δ > 0 such that :

x ∈ D , 0 < |x− c| < δ =⇒ |f(x)− l| < ε .

Let (xn) be any sequence in D such that xn 6= c for any n ∈ N and
xn −→ c, then for this δ > 0 there exists N ∈ N such that

∀n ≥ N : |xn − c| < δ.

Since xn 6= c for any n ∈ N, then 0 < |xn − c|.

Therefore, ∀n ≥ N : 0 < |xn − c| < δ =⇒ |f (xn)− l| < ε .

Hence, the sequence (f (xn)) converges to l.

3. Discuss the existence of lim
x→0

cos

(
4

x

)
.

Solution:
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Let xn =
4

2nπ
, then xn 6= 0 , ∀ n ∈ N, and xn −→ 0.

Let yn =
4

π + 2nπ
, then yn 6= 0 , ∀ n ∈ N, and yn −→ 0.

cos

(
4

xn

)
= cos(2nπ) = 1 −→ 1 .

cos

(
4

yn

)
= cos(π + 2nπ) = −1 −→ −1 .

Therefore, lim
x→0

cos

(
4

x

)
does not exist.

4. If f is increasing on (a, b) and unbounded above,

Prove that lim
x→b−

f(x) =∞.

Solution:

To show that : ∀M > 0 there exists δ > 0 such that :

∀x ∈ (a, b) , 0 < b− x < δ =⇒ f(x) ≥M .

Since f is unbounded above on (a, b), then there exist x0 ∈ (a, b) such
that f (x0) ≥M .

Let δ = b− x0 then δ > 0.

∀x ∈ (a, b) , 0 < b− x < δ =⇒ 0 < b− x < b− x0 =⇒ x > x0

=⇒ f(x) > f (x0) ≥M . (since f is increasing).

Therefore, lim
x→b−

f(x) =∞.

Question (2): [(1+1)+3+2+(2+2)+(2+2) = 15 marks]

1. Give an example of the following:

(i) A function f not continuous at one point, but |f | is continuous at this
point.

Solution:

f(x) =

{
a , x ≥ 0
−a , x < 0

, where a ∈ R∗ .

f is not continuous at x = 0 , but |f(x)| = |a| is continuous at x = 0.

(ii) Two different functions f, g , where f is continuous at c and g is not
continuous at c, but fg is continuous at c.
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Solution:

f(x) = x2 is continuous at c = 0 and g(x) =
1

x
is not continuous at c = 0.

(fg)(x) = x is continuous at c = 0.

2. Let f : D −→ R , g : E −→ R , and f(D) ⊆ E. If f is continuous at
c ∈ D and g is continuous at f(c). Prove that g ◦ f is continuous at c.

Solution:

Let (xn) be any sequence in D such that xn −→ c ,

Since f is continuous at c then f (xn) −→ f(c).

The sequence (f (xn)) is in E and f (xn) −→ f(c) ,

Since g is continuous at f(c) the g (f (xn)) −→ g(f(c)) .

Therefore, (g ◦ f) (xn) −→ (g ◦ f)(c), and g ◦ f is continuous at c.

3. If f : [a, b] −→ R is continuous and f(x) > 0 , ∀x ∈ [a, b].

Prove that there exists α > 0 such that f(x) > α , ∀x ∈ [a, b].

Solution:

Since f is continuous on a closed and bounded interval, then f attains its
minimum at a point x0 ∈ [a, b], That is f(x) ≥ f (x0) , ∀x ∈ [a, b] .

Since f(x) > 0 , ∀x ∈ [a, b] then f (x0) > 0.

Take α =
f (x0)

2
, then α > 0 and f(x) ≥ f (x0) > α , ∀x ∈ [a, b].

4. (i) State the Intermediate Value Property of continuous functions.

Solution:

If f : [a, b] −→ R is continuous and λ ∈ R lies between f(a) and f(b) then
there exists c ∈ (a, b) such that f(c) = λ .

(ii) If f : R −→ R is continuous, f(a) = b , f(b) = a , where a, b ∈ R and
b > a. Prove that f has a fixed point.

Solution:

Define g : [a, b] −→ R as g(x) = f(x)− x.

Since f is continuous onn R then g is continuous on [a, b].
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g(a) = f(a)− a = b− a > 0 and g(b) = f(b)− b = a− b < 0 .

That is g(b) < 0 < g(a) . By I.V.P there exist c ∈ (a, b) such that g(c) = 0.

Therefore, f(c)− c = 0 =⇒ f(c) = c .

5. (i) Show that f(x) =
√
x satisfies Lipschitz condition on [1,∞).

Solution:

∀ x, y ∈ [1,∞) , |f(x)− f(y)| =
∣∣√x−√y∣∣ =

∣∣∣∣(√x−√y) √x+
√
y

√
x+
√
y

∣∣∣∣
|f(x)− f(y)| =

∣∣∣∣ x− y√
x+
√
y

∣∣∣∣ =
1√

x+
√
y
|x− y|.

x, y ∈ [1.∞) : x ≥ 1 and y ≥ 1 =⇒
√
x ≥ 1 and

√
y ≥ 1

=⇒
√
x+
√
y ≥ 2 =⇒ 1√

x+
√
y
≤ 2 .

Therefore, |f(x)− f(y)| =
∣∣√x−√y∣∣ ≤ 1

2
|x− y|.

f(x) satisfies Lipschitz condition on [1,∞).

(ii) Show that f(x) =
1

x3
is not uniformly continuous on (0,∞).

Solution:

Let xn =
1

2n
and tn =

1

n
for every n ∈ N, then

|xn − tn| =
∣∣∣∣ 1

2n
− 1

n

∣∣∣∣ =

∣∣∣∣−1

2n

∣∣∣∣ =
1

2n
−→ 0.

But |f (xn)− f (tn)| =

∣∣∣∣∣ 1(
1
2n

)3 − 1(
1
n

)3
∣∣∣∣∣ =

∣∣8n3 − n3∣∣ = 7n3 −→∞.

Therefore, f(x) =
1

x3
is not uniformly continuous on (0,∞).
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MATH 382 - Real Analysis (1)
Second Semester - 1446 H
Solution of the Final Exam

Dr Tariq A. Alfadhel

Question (1): [2+2+2+2 = 8 marks]

1. If A ⊆ R is a non-empty set which is bounded above, and k > 0 :

Show that sup(kA) = k sup(A).

Solution :

∀a ∈ A : a ≤ supA =⇒ ka ≤ k supA

So, k supA is an upper bound of the set kA.

Therefore, sup (kA) ≤ k supA −→ (1) .

∀n ∈ N, there exists an ∈ A such that supA− 1

n
≤ an .

So, k supA− k

n
≤ k an ≤ sup (kA)

=⇒ k supA− k

n
≤ sup (kA) , ∀n ∈ N

Therefore, k supA ≤ sup (kA) −→ (2) .

From (1) and (2) : sup(kA) = k sup(A) .

2. Let S ⊆ R be a non-empty set which is bounded below. Show that there
exists a sequence (xn) in S which converges to u = inf S .

Solution :

∀n ∈ N there exists xn ∈ S such that u = inf S ≤ xn ≤ u+
1

n
.

The sequence (xn) is in S and 0 ≤ |xn − u| ≤
1

n
, ∀n ∈ N.

Therefore, xn −→ u = inf S .

3. If (xn) is convergent, show that it is a Cauchy sequence.

Solution :

Suppose that xn −→ x0 .

Given ε > 0 , there exists N ∈ N such that : ∀n ≥ N : |xn − x0| ≤
ε

2
.

So, ∀n,m ≥ N :
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|xn − xm| = |xn − x0 + x0 − xm| ≤ |xn − x0|+ |xm − x0| <
ε

2
+
ε

2
= ε .

Therefore, (xn) is a Cauchy sequence.

4. (i) Give an example of an unbounded sequence that has a convergent
subsequence.

Solution :

Let (xn) be the sequence where x2n−1 = 2n− 1 and x2n =
1

2n
, ∀n ∈ N .

(xn) is not bounded since (x2n−1) is not bounded, and the subsequence
(x2n) converges to zero.

(ii) Give an example of a countable set A such that Â is not countable.

Solution :

A = Q is a countable set and Â = R is not countable.

Question (2): [3+3+2 = 8 marks]

1. If f : D −→ R , c ∈ D̂ and lim
x→c

f(x) = l .

Show that f is bounded in a neighborhood of c .

Solution :

Let ε = 1, since lim
x→c

f(x) = l, then there exists δ such that :

∀x ∈ D : 0 < |x− c| < δ =⇒ |f(x)− l| < 1

=⇒ ||f(x)| − |l|| ≤ |f(x)− l| < 1 =⇒ − 1 < |f(x)| − |l| < 1

=⇒ − 1 + |l| < |f(x)| < 1 + |l| =⇒ |f(x)| < 1 + |l| .

Let U = (x− δ, x+ δ), then U is a neighborhood of c and

|f(x)| < 1 + |l| for all x ∈ U \ {c}.

If c ∈ U take M = max {f(c), 1 + |l|}, otherwise take M = 1 + |l| .

Therefore, |f(x)| ≤M for all x ∈ U .

2. Let f : R −→ R satisfying f(x+ y) = f(x) + f(y) for all x, y ∈ R.

If f has a limit at some point in R. Prove that

(i) f has a limit at every point in R.

Solution :
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Note that f(0) = f(0 + 0) = f(0) + f(0) = 2f(0) =⇒ f(0) = 0 .

Also, 0 = f(0) = f(x− x) = f(x) + f(−x) =⇒ f(−x) = −f(x) .

Suppose that lim
x→c

f(x) = l , where c ∈ R .

Let t ∈ R, where t 6= c, and let (xn) be any sequence in R such that xn 6= t
for all n ∈ N and xn −→ t , then xn − t+ c −→ c.

Since lim
x→c

f(x) = l, then f (xn − t+ c) −→ l

=⇒ f (xn)− f(t) + f(c) −→ l =⇒ f (xn) −→ l + f(t)− f(c).

Therefore, lim
x→t

f(x) = l+ f(t)− f(c), and f has a limit at any point in R.

(ii) lim
x→0

f(x) = 0.

Solution :

Suppose that lim
x→0

f(x) = l0, let (xn) be any sequence in R such that

xn 6= 0 for all n ∈ N and xn −→ 0, then f (xn) −→ l0.

Note that the sequence (2xn) also in R , 2xn 6= 0 for all n ∈ N and

2xn −→ 0 , then f (2xn) = 2f (xn) −→ l0 =⇒ f (xn) −→ l0
2

.

By the uniqueness of the limit, l0 =
l0
2

=⇒ 2l0 = l0 =⇒ l0 = 0 .

Therefore, lim
x→0

f(x) = 0 .

3. If lim
x→∞

f(x)

g(x)
= l > 0 and lim

x→∞
f(x) =∞, show that lim

x→∞
g(x) =∞ .

Solution :

Let ε =
l

2
> 0, since lim

x→∞

f(x)

g(x)
= l > 0, then ∃ N1 > 0 such that

∀x ≥ N1 :

∣∣∣∣f(x)

g(x)
− l
∣∣∣∣ < l

2
=⇒ − l

2
<
f(x)

g(x)
− l < l

2
=⇒ f(x)

g(x)
<

3l

2

=⇒ 3l

2
g(x) > f(x) =⇒ g(x) >

2

3l
f(x) .

Let M > 0 be given, since lim
x→∞

f(x) =∞, then ∃ N2 > 0 such that

∀x ≥ N2 : f(x) >
3l

2
M .

Take N = max {N1, N2}, then

∀ x > N : g(x) >
2

3l
f(x) >

2

3l

(
3l

2
M

)
= M =⇒ g(x) > M .
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Therefore, lim
x→∞

g(x) =∞ .

Question (3): [3+3+2+2 = 10 marks]

1. If f : [a, b] −→ R is continuous, Prove that f is bounded.

Solution :

Let I = [a, b] .

Suppose f is not bounded on f(I), then ∀ n ∈ N , ∃ xn ∈ I such that
|f (xn)| ≥ n. The sequence (f (xn)) is not convergent.

The sequence (xn) is in I, and I is bounded, then it has a convergent
subsequence (xnk

), suppose xnk
−→ x0, since I is closed then x0 ∈ I .

Since f is continuous on I then f (xnk
) −→ f (x0) .

So, the subsequence (f (xnk
)) is convergent and hence it is bounded, which

is a contradiction, since f (xnk
) ≥ nk ≥ k , ∀ k ∈ N .

Therefore, f is bounded on I .

2. If f, g : R −→ R are both continuous, f(a) > g(a) and f(b) < g(b) , where
a, b ∈ R and a < b. Show that there exists c ∈ R such that f(c) = g(c) .

Solution :

Define h : R −→ R by h(x) = f(x)− g(x) , ∀ x ∈ R .

Since f and g are both continuous on R, then h is also continuous on R.

h(a) = f(a)− g(a) > 0 and h(b) = f(b)− g(b) < 0 .

So, h(b) < 0 < h(a) , By the intermediate value property, ∃ c ∈ (a, b) such
that h(c) = 0 =⇒ f(c)− g(c) = 0 =⇒ f(c) = g(c) .

3. Show that f(x) = ex is not uniformly continuous on [1,∞) .

Solution :

Take xn = ln(n+ 3) and tn = ln(n+ 2) , ∀ n ∈ N.

The sequences (xn) and (tn) are both in [1,∞) .

|xn − tn| = |ln(n+ 3)− ln(n+ 2)| =
∣∣∣∣ln(n+ 3

n+ 2

)∣∣∣∣ −→ ln(1) = 0 .

|f (xn)− f (tn)| =
∣∣∣eln(n+3) − eln(n+2)

∣∣∣ = |(n+ 3)− (n+ 2)| = 1 −→ 1 .

|f (xn)− f (tn)|9 0 .

Therefore, f(x) = ex is not uniformly continuous on [1,∞) .
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4. If f : D −→ R is continuous, prove that the set {x ∈ D : f(x) = 0} is
closed in D .

Solution :

Let A = {x ∈ D : f(x) = 0}, then A = f−1 ({0}) .

Since the set {0} is closed in R, and f is continuous on D, then the set
f−1 ({0}) is closed in D .

Therefore, A = {x ∈ D : f(x) = 0} is closed in D .

Question (4): [2+3+3+3+3 = 14 marks]

1. Let f be differentiable at a. Find lim
x→a

an f(x)− xn f(a)

x− a
, where n ∈ N.

Solution :

lim
x→a

an f(x)− xn f(a)

x− a
= lim

x→a

an f(x)− an f(a) + an f(a)− xn f(a)

x− a

= lim
x→a

an [f(x)− f(a)]− (xn − an) f(a)

x− a

= lim
x→a

[
an
(
f(x)− f(a)

x− a

)
−
(
xn − an

x− a

)
f(a)

]
= an f ′(a)−nan−1 f(a)

Note that lim
x→a

f(x)− f(a)

x− a
= f ′(a) (since f is differentiable at a ) .

Also, lim
x→a

xn − an

x− a
= n an−1 ( by L’Höpital’s rule) .

2. If f is continuous on [a, b] , differentiable on (a, b) and f ′(x) = 0 for all
x ∈ (a, b). Show that f is constant on [a, b].

Solution :

To show that f(x) = f(y), ∀ x, y ∈ [a, b] and x 6= y .

Apply Mean Value Theorem to f on the interval I between x and y,

then ∃ c ∈ I such that
f(x)− f(y)

x− y
= f ′(c) = 0 =⇒ f(x) − f(y) = 0

=⇒ f(x) = f(y) , ∀ x, y ∈ I .

Therefore, f is constant on [a, b]

3. Show that
∣∣tan−1 x− tan−1 y

∣∣ ≤ |x− y|, ∀ x, y ∈ R .
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Solution :

∀ x, y ∈ R and x 6= y, apply Mean Value Theorem to f(x) = tan−1 x on
the interval I between x and y, then ∃ c ∈ I such that

tan−1 x− tan−1 y

x− y
=

1

1 + c2
=⇒

∣∣∣∣ tan−1 x− tan−1 y

x− y

∣∣∣∣ =

∣∣∣∣ 1

1 + c2

∣∣∣∣ ≤ 1∣∣tan−1 x− tan−1 y
∣∣

|x− y|
≤ 1 =⇒

∣∣tan−1 x− tan−1 y
∣∣ ≤ |x− y| .

4. Define two functions f and g, in a neighborhood of zero such that

lim
x→0

f(x)

g(x)
= 0 but lim

x→0

f ′(x)

g′(x)
does not exist.

Solution :

Let f(x) = x and g(x) = x2 + 1 .

lim
x→0

f(x)

g(x)
= lim

x→0

x

x2 + 1
=

0

0 + 1
= 0 .

lim
x→0

f ′(x)

g′(x)
= lim

x→0

1

2x
does not exist.

5. Show that

∣∣∣∣cosx−
(

1− x2

2
+
x4

24

)∣∣∣∣ ≤ 1

120
, for all |x| ≤ 1 .

Solution :

Using Taylor’s Theorem on f(x) = cosx at x0 = 0 .

f(x) = cosx f(0) = cos(0) = 1
f ′(x) = − sinx f ′(0) = − sin(0) = 0
f ′′(x) = − cosx f ′′(x) = − cos(0) = −1
f (3)(x) = sinx f (3)(0) = sin(0) = 0
f (4)(x) = cosx f (4)(0) = cos(0) = 1
f (5)(x) = − sinx f (5)(c) = − sin(c) , where c ∈ (0, x)

cosx = 1− x2

2!
+
x4

4!
+
− sin(c) x5

5!
= 1− x2

2
+
x4

24
+
− sin(c) x5

120

cosx−
(

1− x2

2
+
x4

24

)
=
− sin(c) x5

120∣∣∣∣cosx−
(

1− x2

2
+
x4

24

)∣∣∣∣ =

∣∣∣∣− sin(c) x5

120

∣∣∣∣ =
| − sin(c)| |x|5

120∣∣∣∣cosx−
(

1− x2

2
+
x4

24

)∣∣∣∣ ≤ (1)(1)5

120
=

1

120
, for all |x| ≤ 1 .
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