MATH 382 - Real Analysis (1) Second Semester - 1446 H Solution of the First Exam Dr Tariq A. Alfadhel

Question (1): [8 marks]

1. Give an example of the following:

(i) A non-empty set $A \subset \mathbb{R}$ such that $\inf A = \min A$ and $\sup A \notin A$. [1]

Solution :

- A = [a, b) where $a, b \in \mathbb{R}$ and a < b.
- $A = [a, \infty)$ where $a \in \mathbb{R}$.
- (ii) Two infinite subsets $A \subset B$ and $A \sim B$. [1]

Solution :

- $A = \mathbb{N}_1$ or \mathbb{N}_2 , and $B = \mathbb{N}$.
- $A=\mathbb{N}$ and $B=\mathbb{Z}$.
- A = (0, 1) and B = (0, b), where $b \in \mathbb{R}$ and b > 1.
- 2. If A and B are two any non-empty upper bounded subsets of \mathbb{R} ,

Prove that : $\sup (A \cup B) = \max \{\sup A, \sup B\}$. [3]

Solution :

 $\begin{array}{ll} A \subset A \cup B \implies \sup A \leq \sup \left(A \cup B \right) \, . \\ B \subset A \cup B \implies \sup B \leq \sup \left(A \cup B \right) \, . \\ \text{Hence, max} \left\{ \sup A, \sup B \right\} \leq \sup \left(A \cup B \right) \quad \longrightarrow \quad (1). \\ \text{If } x \in A \cup B \implies x \in A \text{ or } x \in B \\ \implies x \leq \sup A \text{ or } x \leq \sup B \implies x \leq \max \left\{ \sup A, \sup B \right\} \\ \text{which means that max} \left\{ \sup A, \sup B \right\} \text{ is an upper bound of the set } A \cup B \\ \text{Hence, } \sup \left(A \cup B \right) \leq \max \left\{ \sup A, \sup B \right\} \quad \longrightarrow \quad (2) \\ \text{From } (1) \text{ and } (2) : \sup \left(A \cup B \right) = \max \left\{ \sup A, \sup B \right\} \, . \end{array}$

3. If A and B are denumerable subsets of \mathbb{R} , Prove that $A \times B$ is a denumerable set. [3]

Solution :

Since A is denumerable then there exists a bijection $f: A \longrightarrow \mathbb{N}$. also, since B is denumerable then there exists a bijection $g: B \longrightarrow \mathbb{N}$. Define $h: A \times B \longrightarrow \mathbb{N}$ as $: h(a, b) = 2^{f(a)}3^{g(b)}, \forall a \in A, b \in B$. Suppose $(a_1, b_1), (a_2, b_2) \in A \times B$: $h(a_1, b_1) = h(a_2, b_2) \implies 2^{f(a_1)}3^{g(b_1)} = 2^{f(a_2)}3^{g(b_2)}$ $\implies 2^{f(a_1)} = 2^{f(a_2)}$ and $3^{g(b_1)} = 3^{g(b_2)}$ $\implies f(a_1) = f(a_2)$ and $g(b_1) = g(b_2)$ $\implies a_1 = a_2$ and $b_1 = b_2$ (since f and g are both injective). $\implies (a_1, b_1) = (a_2, b_2)$. Therefore, h is an injection.

Hence, $A \times B \sim R_h \subset \mathbb{N}$.

Since R_h is countable, then $A \times B$ is countable, and being infinite it is denumerable.

Question (2): [17 marks]

1. Give an example of the following:

(i) A convergent sequence which is not monotonic. [1]

Solution :

The sequence
$$\left(\frac{(-1)^n}{n}\right)$$
.

(ii) A divergent sequence which has a Cauchy subsequence. [1]

Solution :

The sequence $(x_n) = ((-1)^n)$ is divergent,

the subsequence $(x_{2n}) = ((-1)^{2n})$ is convergent, so it is a Cauchy subsequence .

(iii) An infinite set A such that $\hat{A} = \phi$. [1]

Solution :

 $A = \mathbb{N} \text{ or } A = \mathbb{Z}.$

2. Prove that any convergent sequence is bounded. [2]

Solution :

Suppose the sequence (x_n) converges to x,

Let $\epsilon = 1$, then there exists $N \in \mathbb{N}$ such that :

For
$$n \ge N$$
 : $|x_n - x| < 1$
 $\implies ||x_n| - |x|| < |x_n - x| < 1$
 $\implies -1 < |x_n| - |x| < 1$
 $\implies |x_n| < 1 + |x|$
Take $K = \{|x_1|, |x_2|, \dots, |x_{N-1}|, 1 + |x|\}$
Then $K > 0$ and $|x_n| < K$, $\forall n \in \mathbb{N}$.
Therefore, the sequence (x_n) is bounded.

- 3. Discuss the convergence of the sequence $(\cos(n\pi))$. [2] **Solution :** Let $(x_n) = (\cos(n\pi))$, consider the subsequences $x_{2n} = \cos(2n\pi) = 1 \longrightarrow 1$. $x_{2n+1} = \cos((2n+1)\pi) = -1 \longrightarrow -1$. Therefore, the sequence $(\cos(n\pi))$ is divergent.
- 4. Find $\lim_{n \to \infty} \frac{2 + \sin n}{n^3 + 1}$. (Justify your answer) [2] **Solution :** Let $x_n = \frac{2 + \sin n}{n^3 + 1} = (2 + \sin n)$ $\frac{1}{n^3 + 1} = a_n \ b_n$, $\forall n \in \mathbb{N}$. $|a_n| = |2 + \sin n| \le 2 + |\sin n| \le 2 + 1 = 3$, $\forall n \in \mathbb{N}$, so (a_n) is bounded. Also, $b_n \longrightarrow 0$, Therefore $x_n = a_n \cdot b_n \longrightarrow 0$.
- 5. If (x_n) and (y_n) are Cauchy sequences, prove that (x_ny_n) is a Cauchy sequence. [3]

Solution :

Since (x_n) is Cauchy then it is bounded, so $|x_n| < K_1$, where $K_1 > 0$. Since (y_n) is Cauchy then it is bounded, so $|y_n| < K_2$, where $K_2 > 0$. Let $\epsilon > 0$ be given : Since (x_n) is Cauchy then there exists $N_1 \in \mathbb{N}$ such that : $\forall n, m \ge N_1 : |x_n - x_m| < \epsilon$. Since (y_n) is Cauchy then there exists $N_2 \in \mathbb{N}$ such that : $\forall n, m \ge N_2 : |y_n - y_m| < \epsilon$. Take $N = \max \{N_1, N_2\}$, then $\forall n, m \ge N$: $|x_n y_n - x_m y_m| = |x_n y_n - x_m y_n + x_m y_n - x_m y_m|$ $= |y_n (x_n - x_m) + x_m (y_n - y_m)|$ $\le |y_n| |x_n y - x_m| + |x_m| |y_n - y_m|$ $\le K_2 \epsilon + K_1 \epsilon = (K_1 + K_2) \epsilon = c \epsilon$, where $c = K_1 + K_2 > 0$. Therefore, $(x_n y_n)$ is a Cauchy sequence.

6. If
$$0 < a < b$$
, find $\lim_{n \to \infty} \sqrt[n]{a+b}$. [2]

Solution :

 $0 < a < b \implies a+b > 0$, Therefore, $\lim_{n \to \infty} \sqrt[n]{a+b} = \lim_{n \to \infty} (a+b)^{\frac{1}{n}} = 1$. Note that, if c > 0, then $\lim_{n \to \infty} c^{\frac{1}{n}} = 1$. (see Example 3.8, page 78).

7. If $x_1 = 1$ and $x_{n+1} = \sqrt{4x_n + 5}$, $\forall n \in \mathbb{N}$, show that (x_n) is monotonic and bounded, then find its limit. [3]

Solution :

First - Showing that (x_n) is an increasing sequence :

- (i). $x_1 = 1 \le 3 = x_2$.
- (ii). Suppose $x_{n-1} \leq x_n$.
- (iii) Proving that $x_n \leq x_{n+1}$:

 $x_{n-1} \le x_n \implies 4x_{n-1} \le 4x_n \implies 4x_{n-1} + 5 \le 4x_n + 5$

$$\implies \sqrt{4x_{n-1} + 5} \le \sqrt{4x_n + 5} \implies x_n \le x_{n+1}$$

Second - Showing that (x_n) is bounded above by 5 :

- (i). $x_1 = 1 \le 5$.
- (ii). Suppose $x_n \leq 5$.
- (iii) Proving that $x_{n+1} \leq 5$:

$$x_{n+1} = \sqrt{4x_n + 5} \le \sqrt{4(5) + 5} = \sqrt{25} = 5$$

Since (x_n) is an increasing and bounded above, then it converges to l.

Third - Finding the value of l:

$$\begin{aligned} x_{n+1} &= \sqrt{4x_n + 5} \implies l = \sqrt{4l + 5} \implies l^2 = 4l + 5 \\ \implies l^2 - 4l - 5 = 0 \implies (l - 5)(l + 1) = 0 \implies l = 5 \ , \ l = -1 \end{aligned}$$

Note that $x_n \geq 1$, $\forall n \in \mathbb{N},$ so l=-1 is excluded.

Therefore, $x_n \longrightarrow 5$.

Bonus Question: If (x_n) is an increasing sequence of positive terms which has a convergent subsequence, Prove that (x_n) is convergent. Solution :

Since (x_n) is an increasing sequence, then it is enough to show that it is bounded above.

Suppose that (x_{n_k}) is the convergent subequence, then (x_{n_k}) is bounded, $\begin{aligned} |x_{n_k}| &= x_{n_k} \leq M, \ \forall \ n_k \in \mathbb{N}, \ \text{where } M > 0 \ . \\ \forall \ k \in \mathbb{N} : \ k \leq n_k \implies x_k < x_{n_k} \ (\text{since } (x_n) \ \text{is increasing}) \ . \\ \implies x_k < x_{n_k} \leq M \ , \ \forall \ k \in \mathbb{N} \ . \end{aligned}$ Therefore, the sequence (x_n) is bounded above, Hence, it is convergent.

MATH 382 - Real Analysis (1) Second Semester - 1446 H Solution of the Second Exam Dr Tariq A. Alfadhel

Question (1): [(1+1)+3+2+3 = 10 marks]

1. Give an example of the following:

(i) A function $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that the limit does not exist at any point.

Solution:

 $f(x) = \begin{cases} a & , x \in \mathbb{Q} \\ -a & , x \in \mathbb{Q}^c \end{cases}, \text{ where } a \in \mathbb{R}^* .$

(ii) Two different increasing functions such that their product is not increasing.

Solution:

f(x) = x and $g(x) = x^3$ on [-1, 0].

Both f, g are increasing, but $(fg)(x) = x^4$ is decreasing on [-1, 0].

2. Let $f: D \longrightarrow \mathbb{R}$ and $c \in \hat{D}$, if $\lim_{x \to c} f(x) = l$, Prove that for every sequence (x_n) in D such that $x_n \neq c$ for any $n \in \mathbb{N}$ and $x_n \longrightarrow c$, the sequence $(f(x_n))$ converges to l.

Solution:

Let $\epsilon > 0$ be given, since $\lim_{x \to c} f(x) = l$, then there exists $\delta > 0$ such that : $x \in D$, $0 < |x - c| < \delta \implies |f(x) - l| < \epsilon$.

Let (x_n) be any sequence in D such that $x_n \neq c$ for any $n \in \mathbb{N}$ and $x_n \longrightarrow c$, then for this $\delta > 0$ there exists $N \in \mathbb{N}$ such that

 $\forall n \ge N : |x_n - c| < \delta.$

Since $x_n \neq c$ for any $n \in \mathbb{N}$, then $0 < |x_n - c|$.

Therefore, $\forall n \ge N : 0 < |x_n - c| < \delta \implies |f(x_n) - l| < \epsilon$.

Hence, the sequence $(f(x_n))$ converges to l.

3. Discuss the existence of $\lim_{x \to 0} \cos\left(\frac{4}{x}\right)$.

Solution:

Let $x_n = \frac{4}{2n\pi}$, then $x_n \neq 0$, $\forall n \in \mathbb{N}$, and $x_n \longrightarrow 0$. Let $y_n = \frac{4}{\pi + 2n\pi}$, then $y_n \neq 0$, $\forall n \in \mathbb{N}$, and $y_n \longrightarrow 0$. $\cos\left(\frac{4}{x_n}\right) = \cos(2n\pi) = 1 \longrightarrow 1$. $\cos\left(\frac{4}{y_n}\right) = \cos(\pi + 2n\pi) = -1 \longrightarrow -1$. Therefore, $\lim_{x \to 0} \cos\left(\frac{4}{x}\right)$ does not exist.

4. If f is increasing on (a, b) and unbounded above,

Prove that $\lim_{x \to b^-} f(x) = \infty$.

Solution:

To show that : $\forall M > 0$ there exists $\delta > 0$ such that :

 $\forall x \in (a,b) , 0 < b - x < \delta \implies f(x) \ge M$.

Since f is unbounded above on (a,b), then there exist $x_0 \in (a,b)$ such that $f(x_0) \ge M$.

Let $\delta = b - x_0$ then $\delta > 0$. $\forall x \in (a, b)$, $0 < b - x < \delta \implies 0 < b - x < b - x_0 \implies x > x_0$ $\implies f(x) > f(x_0) \ge M$. (since f is increasing). Therefore, $\lim_{x \to b^-} f(x) = \infty$.

Question (2): [(1+1)+3+2+(2+2)+(2+2) = 15 marks]

1. Give an example of the following:

(i) A function f not continuous at one point, but |f| is continuous at this point.

Solution:

$$f(x) = \begin{cases} a & , x \ge 0 \\ -a & , x < 0 \end{cases}, \text{ where } a \in \mathbb{R}^*.$$

f is not continuous at x = 0, but |f(x)| = |a| is continuous at x = 0.

(ii) Two different functions f,g , where f is continuous at c and g is not continuous at c, but fg is continuous at c.

Solution:

 $f(x) = x^2$ is continuous at c = 0 and $g(x) = \frac{1}{x}$ is not continuous at c = 0. (fg)(x) = x is continuous at c = 0.

2. Let $f: D \longrightarrow \mathbb{R}$, $g: E \longrightarrow \mathbb{R}$, and $f(D) \subseteq E$. If f is continuous at $c \in D$ and g is continuous at f(c). Prove that $g \circ f$ is continuous at c.

Solution:

Let (x_n) be any sequence in D such that $x_n \longrightarrow c$, Since f is continuous at c then $f(x_n) \longrightarrow f(c)$. The sequence $(f(x_n))$ is in E and $f(x_n) \longrightarrow f(c)$, Since g is continuous at f(c) the $g(f(x_n)) \longrightarrow g(f(c))$. Therefore, $(g \circ f)(x_n) \longrightarrow (g \circ f)(c)$, and $g \circ f$ is continuous at c.

3. If $f:[a,b] \longrightarrow \mathbb{R}$ is continuous and f(x) > 0, $\forall x \in [a,b]$.

Prove that there exists $\alpha > 0$ such that $f(x) > \alpha$, $\forall x \in [a, b]$.

Solution:

Since f is continuous on a closed and bounded interval, then f attains its minimum at a point $x_0 \in [a, b]$, That is $f(x) \ge f(x_0)$, $\forall x \in [a, b]$.

Since f(x) > 0, $\forall x \in [a, b]$ then $f(x_0) > 0$.

Take
$$\alpha = \frac{f(x_0)}{2}$$
, then $\alpha > 0$ and $f(x) \ge f(x_0) > \alpha$, $\forall x \in [a, b]$.

4. (i) State the Intermediate Value Property of continuous functions.

Solution:

If $f:[a,b] \longrightarrow \mathbb{R}$ is continuous and $\lambda \in \mathbb{R}$ lies between f(a) and f(b) then there exists $c \in (a,b)$ such that $f(c) = \lambda$.

(ii) If $f : \mathbb{R} \longrightarrow \mathbb{R}$ is continuous, f(a) = b, f(b) = a, where $a, b \in \mathbb{R}$ and b > a. Prove that f has a fixed point.

Solution:

Define $g: [a, b] \longrightarrow \mathbb{R}$ as g(x) = f(x) - x.

Since f is continuous on \mathbb{R} then g is continuous on [a, b].

g(a) = f(a) - a = b - a > 0 and g(b) = f(b) - b = a - b < 0. That is g(b) < 0 < g(a). By I.V.P there exist $c \in (a, b)$ such that g(c) = 0. Therefore, $f(c) - c = 0 \implies f(c) = c$.

5. (i) Show that $f(x) = \sqrt{x}$ satisfies Lipschitz condition on $[1, \infty)$.

Solution:

$$\begin{aligned} \forall x, y \in [1, \infty) \ , \left| f(x) - f(y) \right| &= \left| \sqrt{x} - \sqrt{y} \right| = \left| \left(\sqrt{x} - \sqrt{y} \right) \ \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} + \sqrt{y}} \right| \\ \left| f(x) - f(y) \right| &= \left| \frac{x - y}{\sqrt{x} + \sqrt{y}} \right| = \frac{1}{\sqrt{x} + \sqrt{y}} \ \left| x - y \right|. \\ x, y \in [1, \infty) \ : \ x \ge 1 \ \text{and} \ y \ge 1 \implies \sqrt{x} \ge 1 \ \text{and} \ \sqrt{y} \ge 1 \\ \implies \sqrt{x} + \sqrt{y} \ge 2 \implies \frac{1}{\sqrt{x} + \sqrt{y}} \le 2 \ . \end{aligned}$$

Therefore,
$$\left| f(x) - f(y) \right| = \left| \sqrt{x} - \sqrt{y} \right| \le \frac{1}{2} \ \left| x - y \right|. \end{aligned}$$

f(x) satisfies Lipschitz condition on $[1, \infty)$.

(ii) Show that $f(x) = \frac{1}{x^3}$ is not uniformly continuous on $(0, \infty)$.

Solution:

Let $x_n = \frac{1}{2n}$ and $t_n = \frac{1}{n}$ for every $n \in \mathbb{N}$, then $|x_n - t_n| = \left|\frac{1}{2n} - \frac{1}{n}\right| = \left|\frac{-1}{2n}\right| = \frac{1}{2n} \longrightarrow 0.$ But $|f(x_n) - f(t_n)| = \left|\frac{1}{\left(\frac{1}{2n}\right)^3} - \frac{1}{\left(\frac{1}{n}\right)^3}\right| = |8n^3 - n^3| = 7n^3 \longrightarrow \infty.$

Therefore, $f(x) = \frac{1}{x^3}$ is not uniformly continuous on $(0, \infty)$.

MATH 382 - Real Analysis (1) Second Semester - 1446 H Solution of the Final Exam Dr Tariq A. Alfadhel

Question (1): [2+2+2+2 = 8 marks]

1. If $A\subseteq \mathbb{R}$ is a non-empty set which is bounded above, and k>0 :

Show that $\sup(kA) = k \ \sup(A)$.

Solution :

 $\forall a \in A : a \leq \sup A \implies ka \leq k \sup A$

So, $k \sup A$ is an upper bound of the set kA.

Therefore, $\sup(kA) \leq k \, \sup A \longrightarrow (1)$.

 $\forall n \in \mathbb{N}$, there exists $a_n \in A$ such that $\sup A - \frac{1}{n} \leq a_n$.

So, $k \sup A - \frac{k}{n} \le k \ a_n \le \sup (kA)$ $\implies k \ \sup A - \frac{k}{n} \le \sup (kA) \ , \ \forall n \in \mathbb{N}$

Therefore, $k \sup A \leq \sup (kA) \longrightarrow (2)$.

From (1) and (2) : $\sup(kA) = k \, \sup(A)$.

2. Let $S \subseteq \mathbb{R}$ be a non-empty set which is bounded below. Show that there exists a sequence (x_n) in S which converges to $u = \inf S$.

Solution :

 $\forall n \in \mathbb{N} \text{ there exists } x_n \in S \text{ such that } u = \inf S \leq x_n \leq u + \frac{1}{n} \text{ .}$ The sequence (x_n) is in S and $0 \leq |x_n - u| \leq \frac{1}{n}$, $\forall n \in \mathbb{N}$. Therefore, $x_n \longrightarrow u = \inf S$.

3. If (x_n) is convergent, show that it is a Cauchy sequence.

Solution :

Suppose that $x_n \longrightarrow x_0$.

Given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that : $\forall n \ge N$: $|x_n - x_0| \le \frac{\epsilon}{2}$. So, $\forall n, m \ge N$:

$$|x_n - x_m| = |x_n - x_0 + x_0 - x_m| \le |x_n - x_0| + |x_m - x_0| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon .$$

Therefore, (x_n) is a Cauchy sequence.

4. (i) Give an example of an unbounded sequence that has a convergent subsequence.

Solution :

Let (x_n) be the sequence where $x_{2n-1} = 2n - 1$ and $x_{2n} = \frac{1}{2n}$, $\forall n \in \mathbb{N}$.

 (x_n) is not bounded since (x_{2n-1}) is not bounded, and the subsequence (x_{2n}) converges to zero.

(ii) Give an example of a countable set A such that \hat{A} is not countable.

Solution :

 $A = \mathbb{Q}$ is a countable set and $\hat{A} = \mathbb{R}$ is not countable.

Question (2): [3+3+2 = 8 marks]

1. If $f: D \longrightarrow \mathbb{R}$, $c \in \hat{D}$ and $\lim_{x \to c} f(x) = l$.

Show that f is bounded in a neighborhood of c .

Solution :

Let $\epsilon = 1$, since $\lim_{x \to c} f(x) = l$, then there exists δ such that : $\forall x \in D : 0 < |x - c| < \delta \implies |f(x) - l| < 1$ $\implies ||f(x)| - |l|| \le |f(x) - l| < 1 \implies -1 < |f(x)| - |l| < 1$ $\implies -1 + |l| < |f(x)| < 1 + |l| \implies |f(x)| < 1 + |l|$. Let $U = (x - \delta, x + \delta)$, then U is a neighborhood of c and |f(x)| < 1 + |l| for all $x \in U \setminus \{c\}$. If $c \in U$ take $M = \max\{f(c), 1 + |l|\}$, otherwise take M = 1 + |l|. Therefore, $|f(x)| \le M$ for all $x \in U$.

2. Let f: R → R satisfying f(x + y) = f(x) + f(y) for all x, y ∈ R.
If f has a limit at some point in R. Prove that
(i) f has a limit at every point in R.
Solution :

Note that $f(0) = f(0+0) = f(0) + f(0) = 2f(0) \implies f(0) = 0$.

Also, $0 = f(0) = f(x - x) = f(x) + f(-x) \implies f(-x) = -f(x)$.

Suppose that $\lim_{x \to c} f(x) = l$, where $c \in \mathbb{R}$.

Let $t \in \mathbb{R}$, where $t \neq c$, and let (x_n) be any sequence in \mathbb{R} such that $x_n \neq t$ for all $n \in \mathbb{N}$ and $x_n \longrightarrow t$, then $x_n - t + c \longrightarrow c$.

Since
$$\lim_{x \to c} f(x) = l$$
, then $f(x_n - t + c) \longrightarrow l$

$$\implies f(x_n) - f(t) + f(c) \longrightarrow l \implies f(x_n) \longrightarrow l + f(t) - f(c).$$

Therefore, $\lim_{x \to t} f(x) = l + f(t) - f(c)$, and f has a limit at any point in \mathbb{R} .

(ii)
$$\lim_{x \to 0} f(x) = 0.$$

Solution :

Suppose that $\lim_{x\to 0} f(x) = l_0$, let (x_n) be any sequence in \mathbb{R} such that $x_n \neq 0$ for all $n \in \mathbb{N}$ and $x_n \longrightarrow 0$, then $f(x_n) \longrightarrow l_0$.

Note that the sequence $(2x_n)$ also in \mathbb{R} , $2x_n \neq 0$ for all $n \in \mathbb{N}$ and $2x_n \longrightarrow 0$, then $f(2x_n) = 2f(x_n) \longrightarrow l_0 \implies f(x_n) \longrightarrow \frac{l_0}{2}$.

By the uniqueness of the limit, $l_0 = \frac{l_0}{2} \implies 2l_0 = l_0 \implies l_0 = 0$. Therefore, $\lim_{x \to 0} f(x) = 0$.

3. If $\lim_{x \to \infty} \frac{f(x)}{g(x)} = l > 0$ and $\lim_{x \to \infty} f(x) = \infty$, show that $\lim_{x \to \infty} g(x) = \infty$.

Solution :

Let $\epsilon = \frac{l}{2} > 0$, since $\lim_{x \to \infty} \frac{f(x)}{g(x)} = l > 0$, then $\exists N_1 > 0$ such that $\forall x \ge N_1 : \left| \frac{f(x)}{g(x)} - l \right| < \frac{l}{2} \implies -\frac{l}{2} < \frac{f(x)}{g(x)} - l < \frac{l}{2} \implies \frac{f(x)}{g(x)} < \frac{3l}{2}$ $\implies \frac{3l}{2} g(x) > f(x) \implies g(x) > \frac{2}{3l} f(x)$.

Let M > 0 be given, since $\lim_{x \to \infty} f(x) = \infty$, then $\exists N_2 > 0$ such that

$$\forall x \ge N_2 : f(x) > \frac{3l}{2} M .$$

Take $N = \max\{N_1, N_2\}$, then

$$\forall x > N : g(x) > \frac{2}{3l} f(x) > \frac{2}{3l} \left(\frac{3l}{2} M\right) = M \implies g(x) > M$$
.

Therefore, $\lim_{x \to \infty} g(x) = \infty$.

Question (3): [3+3+2+2 = 10 marks]

1. If $f:[a,b] \longrightarrow \mathbb{R}$ is continuous, Prove that f is bounded.

Solution :

Let I = [a, b].

Suppose f is not bounded on f(I), then $\forall n \in \mathbb{N}$, $\exists x_n \in I$ such that $|f(x_n)| \ge n$. The sequence $(f(x_n))$ is not convergent.

The sequence (x_n) is in I, and I is bounded, then it has a convergent subsequence (x_{n_k}) , suppose $x_{n_k} \longrightarrow x_0$, since I is closed then $x_0 \in I$.

Since f is continuous on I then $f(x_{n_k}) \longrightarrow f(x_0)$.

So, the subsequence $(f(x_{n_k}))$ is convergent and hence it is bounded, which is a contradiction, since $f(x_{n_k}) \ge n_k \ge k$, $\forall k \in \mathbb{N}$.

Therefore, f is bounded on I.

2. If $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ are both continuous, f(a) > g(a) and f(b) < g(b), where $a, b \in \mathbb{R}$ and a < b. Show that there exists $c \in \mathbb{R}$ such that f(c) = g(c).

Solution :

Define $h : \mathbb{R} \longrightarrow \mathbb{R}$ by h(x) = f(x) - g(x), $\forall x \in \mathbb{R}$.

Since f and g are both continuous on \mathbb{R} , then h is also continuous on \mathbb{R} .

h(a)=f(a)-g(a)>0 and h(b)=f(b)-g(b)<0 .

So, h(b) < 0 < h(a), By the intermediate value property, $\exists c \in (a, b)$ such that $h(c) = 0 \implies f(c) - g(c) = 0 \implies f(c) = g(c)$.

3. Show that $f(x) = e^x$ is not uniformly continuous on $[1, \infty)$.

Solution :

Take $x_n = \ln(n+3)$ and $t_n = \ln(n+2)$, $\forall n \in \mathbb{N}$.

The sequences (x_n) and (t_n) are both in $[1,\infty)$.

$$\begin{aligned} |x_n - t_n| &= |\ln(n+3) - \ln(n+2)| = \left| \ln\left(\frac{n+3}{n+2}\right) \right| \longrightarrow \ln(1) = 0 \ . \\ |f(x_n) - f(t_n)| &= \left| e^{\ln(n+3)} - e^{\ln(n+2)} \right| = |(n+3) - (n+2)| = 1 \longrightarrow 1 \ . \\ |f(x_n) - f(t_n)| \not\Rightarrow 0 \ . \end{aligned}$$

Therefore, $f(x) = e^x$ is not uniformly continuous on $[1, \infty)$.

4. If $f: D \longrightarrow \mathbb{R}$ is continuous, prove that the set $\{x \in D : f(x) = 0\}$ is closed in D.

Solution :

Let $A = \{x \in D : f(x) = 0\}$, then $A = f^{-1}(\{0\})$.

Since the set $\{0\}$ is closed in \mathbb{R} , and f is continuous on D, then the set $f^{-1}(\{0\})$ is closed in D.

Therefore, $A = \{x \in D : f(x) = 0\}$ is closed in D.

Question (4): [2+3+3+3+3 = 14 marks]

1. Let f be differentiable at a. Find $\lim_{x \to a} \frac{a^n f(x) - x^n f(a)}{x - a}$, where $n \in \mathbb{N}$.

Solution :

$$\lim_{x \to a} \frac{a^n f(x) - x^n f(a)}{x - a} = \lim_{x \to a} \frac{a^n f(x) - a^n f(a) + a^n f(a) - x^n f(a)}{x - a}$$
$$= \lim_{x \to a} \frac{a^n [f(x) - f(a)] - (x^n - a^n) f(a)}{x - a}$$
$$= \lim_{x \to a} \left[a^n \left(\frac{f(x) - f(a)}{x - a} \right) - \left(\frac{x^n - a^n}{x - a} \right) f(a) \right] = a^n f'(a) - na^{n-1} f(a)$$
Note that $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) - f(a)$

Note that $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$ (since f is differentiable at a). Also, $\lim_{x \to a} \frac{x^n - a^n}{x - a} = n \ a^{n-1}$ (by L'Höpital's rule).

2. If f is continuous on [a, b], differentiable on (a, b) and f'(x) = 0 for all $x \in (a, b)$. Show that f is constant on [a, b].

Solution :

To show that $f(x) = f(y), \forall x, y \in [a, b]$ and $x \neq y$.

Apply Mean Value Theorem to f on the interval I between x and y, then $\exists \ c \in I$ such that $\frac{f(x) - f(y)}{x - y} = f'(c) = 0 \implies f(x) - f(y) = 0$ $\implies f(x) = f(y) , \ \forall \ x, y \in I$.

Therefore, f is constant on [a, b]

3. Show that $|\tan^{-1} x - \tan^{-1} y| \le |x - y|, \forall x, y \in \mathbb{R}$.

Solution :

 $\forall x, y \in \mathbb{R}$ and $x \neq y$, apply Mean Value Theorem to $f(x) = \tan^{-1} x$ on the interval I between x and y, then $\exists c \in I$ such that

$$\frac{\tan^{-1} x - \tan^{-1} y}{x - y} = \frac{1}{1 + c^2} \implies \left| \frac{\tan^{-1} x - \tan^{-1} y}{x - y} \right| = \left| \frac{1}{1 + c^2} \right| \le 1$$
$$\frac{\left| \tan^{-1} x - \tan^{-1} y \right|}{|x - y|} \le 1 \implies \left| \tan^{-1} x - \tan^{-1} y \right| \le |x - y| .$$

4. Define two functions f and g, in a neighborhood of zero such that

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = 0 \text{ but } \lim_{x \to 0} \frac{f'(x)}{g'(x)} \text{ does not exist.}$$

Solution :

Let
$$f(x) = x$$
 and $g(x) = x^2 + 1$.

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x}{x^2 + 1} = \frac{0}{0 + 1} = 0$$
.

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{1}{2x} \text{ does not exist.}$$

5. Show that
$$\left|\cos x - \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right)\right| \le \frac{1}{120}$$
, for all $|x| \le 1$.

Solution :

Using Taylor's Theorem on $f(x) = \cos x$ at $x_0 = 0$.

$$\begin{aligned} &f(x) = \cos x \qquad f(0) = \cos(0) = 1 \\ &f'(x) = -\sin x \qquad f'(0) = -\sin(0) = 0 \\ &f''(x) = -\cos x \qquad f''(x) = -\cos(0) = -1 \\ &f^{(3)}(x) = \sin x \qquad f^{(3)}(0) = \sin(0) = 0 \\ &f^{(4)}(x) = \cos x \qquad f^{(4)}(0) = \cos(0) = 1 \\ &f^{(5)}(x) = -\sin x \qquad f^{(5)}(c) = -\sin(c) \qquad , \text{ where } c \in (0, x) \end{aligned}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{-\sin(c) x^5}{5!} = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \frac{-\sin(c) x^5}{120} \\ &\cos x - \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right) = \frac{-\sin(c) x^5}{120} \\ &\left|\cos x - \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right)\right| = \left|\frac{-\sin(c) x^5}{120}\right| = \frac{|-\sin(c)| |x|^5}{120} \\ &\left|\cos x - \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right)\right| \le \frac{(1)(1)^5}{120} = \frac{1}{120} \text{, for all } |x| \le 1 . \end{aligned}$$