Line Integrals

Mongi BLEL

King Saud University
March 25, 2024

```
(1)
2)
```

Consider a plane curve given by the parametric equations

$$
\gamma(t)=(x(t), y(t)), \quad t \in[a, b]
$$

Definition

Let f be a continuous function on \mathbb{R}^{2}. If γ is continuously differentiable, the line integral of f on γ with respect to the arc length is defined by:

$$
\int_{a}^{b} f \circ \gamma(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t .
$$

Remarks

(1) If $f=1, \int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$ is the length of γ.

Note that $\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}=\left\|\gamma^{\prime}(t)\right\|$. We denote $d s=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$.
(2) The value of the line integral does not depend on the parametrization of the curve, provided that the curve is traversed exactly once as t increases from a to b.

Example

(Integrating along an arc of circle)
Consider the arc of circle C parametrized by $(\cos t, \sin t)$, with $t \in\left[0, \frac{\pi}{2}\right]$. In this case $d s=\sqrt{\cos ^{2} t+\sin ^{2} t} d t=d t$

$$
\begin{aligned}
\int_{C}\left(x+4 x y^{2}\right) d s & =\int_{0}^{\frac{\pi}{2}}\left(\cos t+4 \cos t \sin ^{2} t\right) d t \\
& =\int_{0}^{\frac{\pi}{2}} \cos t\left(1+4 \sin ^{2} t\right) d t \\
& \stackrel{u}{=}=\int_{0}^{1}\left(1+4 u^{2}\right) d u=\frac{7}{3}
\end{aligned}
$$

Definition

Let f be a continuous function on \mathbb{R}^{2} and let γ be piecewise-smooth curve, that is, γ is a union of a finite number of smooth curves $\gamma_{1}, \ldots, \gamma_{k}$, such that the initial point of γ_{j+1} is the terminal point of γ_{j}. Then we define the integral of a continuous function f along γ with respect to the arc length by:

$$
\int_{\gamma} f(x, y) d s=\sum_{j=1}^{k} \int_{\gamma_{j}} f(x, y) d s
$$

Definition

[Center of mass of a wire]
If $\rho(x, y)$ is the linear density at a point (x, y) of a thin wire shaped like a curve $\gamma:[a, b] \longrightarrow \mathbb{R}^{2}$. The mass of the thin is

$$
m=\int_{a}^{b} \rho(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t
$$

and the center of mass of the thin

$$
\left(x_{0}, y_{0}\right)=\left(\int_{a}^{b} x(t) \rho(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t, \int_{a}^{b} y(t) \rho(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t\right)
$$

Example

A wire takes the shape of an arc of circle $(\cos t, \sin t)$, with $t \in[0, \pi]$. If the density of the thin is $\rho(x, y)=x^{2}+y^{2}$. Then the mass of the thin is

$$
m=\int_{0}^{\pi} d t=\pi
$$

and the center of mass of the this $\left(\int_{0}^{\pi} \cos t d t, \int_{0}^{\pi} \sin t d t\right)=(0,2)$.

Consider a space curve given by the parametric equations

$$
\gamma(t)=(x(t), y(t), z(t)), \quad t \in[a, b] .
$$

Definition

Let f be a continuous function on \mathbb{R}^{3}. If γ is continuously differentiable, the line integral of f on γ with respect to the arc length is defined by:

$$
\int_{a}^{b} f \circ \gamma(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t
$$

Remarks

(1) If $f=1, \int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$ is the length of γ.

Note that $\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}}=\left\|\gamma^{\prime}(t)\right\|$ and we denote $d s=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t$.
(2) The value of the line integral does not depend on the parametrization of the curve, provided that the curve is traversed exactly once as t increases from a to b.

Example

Consider the curve γ parametrized by $\gamma(t)=(\cos t, \sin t, 1)$, with $t \in\left[0, \frac{\pi}{2}\right]$. In this case $d s=\sqrt{\cos ^{2} t+\sin ^{2} t} d t=d t$

$$
\begin{aligned}
& \int_{C}\left(2 x z+5 x y^{2}+z\right) d s=\int_{0}^{\frac{\pi}{2}}\left(2 \cos t+5 \cos t \sin ^{2} t+1\right) d t \\
&=\frac{\pi}{2}+\int_{0}^{\frac{\pi}{2}} \cos t\left(2+5 \sin ^{2} t\right) d t \\
& \frac{\pi}{2}+\stackrel{u=\cos t}{=} \int_{0}^{1}\left(2+5 u^{2}\right) d u=\frac{\pi}{2}+\frac{11}{3} .
\end{aligned}
$$

Definition

Let f be a continuous function on \mathbb{R}^{3} and let γ be piecewise-smooth curve, that is, γ is a union of a finite number of smooth curves $\gamma_{1}, \ldots, \gamma_{k}$, such that the initial point of γ_{j+1} is the terminal point of γ_{j}. Then we define the integral of a continuous function f along γ with respect to the arc length as

$$
\int_{\gamma} f(x, y, z) d s=\sum_{j=1}^{k} \int_{\gamma_{j}} f(x, y, z) d s
$$

Definition

Let f be a continuous function on $D \subset \mathbb{R}^{3}$ and let C be piecewise-smooth curve on D parametrized by $(x(t), y(t), z(t)), t \in[a, b]:$
(1) The line integral of $f(x, y, z)$ with respect to x along the oriented curve C is written $\int_{C} f(x, y, z) d x$ and defined by:

$$
\int_{C} f(x, y, z) d x=\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t
$$

(2) The line integral of $f(x, y, z)$ with respect to y along the oriented curve C is written $\int_{C} f(x, y, z) d y$ and defined by:

$$
\int_{C} f(x, y, z) d y=\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t
$$

(3) The line integral of $f(x, y, z)$ with respect to z along the oriented curve C is written $\int_{C} f(x, y, z) d z$ and defined by:

$$
\int_{C} f(x, y, z) d z=\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t
$$

Work of a Force Field

If $F=(f, g, h)$ is a force field defined on a domain $D \subset \mathbb{R}^{3}$ and let C be piecewise-smooth curve on D parametrized by $(x(t), y(t), z(t)), t \in[a, b]$: The work of F along the curve C is defined by:

$$
\begin{aligned}
& W= \int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t+\int_{a}^{b} g(x(t), y(t), z(t)) y^{\prime}(t) d t \\
&+\int_{a}^{b} h(x(t), y(t), z(t)) z^{\prime}(t) d t \\
&= \int_{a}^{b}\left\langle F \circ C(t), C^{\prime}(t)\right\rangle d t \\
& \int_{a}^{b}\left\langle F \circ C(t), C^{\prime}(t)\right\rangle d t \text { is denoted also } \int_{C} F(x, y, z) \cdot d r
\end{aligned}
$$

