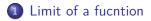
Introduction to Real Analysis Limit of Functions

Ibraheem Alolyan

King Saud University

Ibraheem Alolyan Real Analysis

Table of Contents



э

Limit of a fucntion

Definition

If
$$f: D \longrightarrow \mathbb{R}$$
 and $c \in \widehat{D}$. We say the limit of f at c is L If

$$\begin{array}{l} \forall \varepsilon > 0 \ \exists \ \delta > 0: \\ x \in D, \ 0 < |x-c| < \delta \qquad \Rightarrow |f(x)-L| < \varepsilon \end{array}$$

We write

$$\lim_{x\to c} f(x) = L$$

or $f(x) \longrightarrow L$ as $x \longrightarrow c$.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ

Limit of a fucntion

Examples

0	$\lim_{x \to 3} 4x + 1 = 13$
2	If $f(x) = \left\{ \begin{array}{ll} x^2 & x \neq 3 \\ 0 & x = 3 \end{array} \right.$
	then $\lim_{x\to 3} f(x) = 9$
3	$\lim_{x\to 3}\frac{1}{x}=\frac{1}{3}$

æ

Image: A matrix and a matrix

-

Remarks

- $\label{eq:linear} \bullet \ \mbox{If we can find } \delta > 0 \ \mbox{such that } |f(x) L| < \varepsilon \ \mbox{then any} \\ \delta' \in (0,\delta) \ \mbox{will work}.$
- ${\ensuremath{ @ { o } }}$ To prove that $\lim_{x\to c}f(x)=L$ It suffices to show

$$\begin{array}{rl} \forall \varepsilon > 0 & \exists \; \delta > 0 : & x \in D, \\ & 0 < |x-c| < \delta & \Rightarrow |f(x)-L| < a \varepsilon \end{array}$$

where a > 0 does not depend on x nor ε .

Limits and Sequences

Theorem

If $f: D \longrightarrow \mathbb{R}$ and $c \in \widehat{D}$. Then the following statements are equivalent.

$$\lim_{x \to c} f(x) = L$$

Limits and Sequences

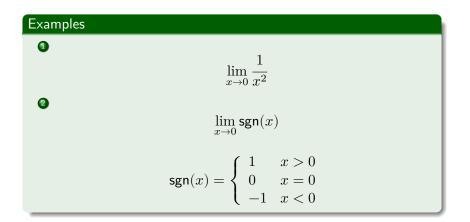
Corollary

If $f: D \longrightarrow \mathbb{R}$ and $c \in \widehat{D}$, and let we define

$$S:=\{(x_n)\subset D: x_n\neq c, x_n\rightarrow c\}$$
 then

- $\bullet~$ If there is a sequence (x_n) in S such that $(f(x_n))$ diverges, then $\lim_{x\to c}f(x)$ does not exist.
- $\label{eq:sequences} \textbf{0} \mbox{ If there are two sequences } (x_n) \mbox{ and } (y_n) \mbox{ in } S \mbox{ such that } \\ \lim_{x \to c} f(x_n) \neq \lim_{x \to c} f(y_n) \mbox{ then } \lim_{x \to c} f(x) \mbox{ does not exist.}$

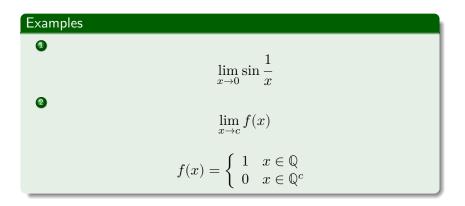
Limits and Sequences



æ

イロト イヨト イヨト イヨト

Limits and Sequences



æ

(日)

Basic Theorems

Theorem

Let $f: D \longrightarrow \mathbb{R}$ and $c \in \widehat{D}$. If $\lim_{x \to c} f(x)$ exists then it is unique.

Ibraheem Alolyan Real Analysis

æ

Basic Theorems

Theorem

Let $f: D \longrightarrow \mathbb{R}$ $c \in \widehat{D}$. If f has a limit at c then f is bounded in a neighborhood U of c, i.e., there is an M > 0 such that $|f(x)| \le M$ $\forall x \in U \cap D \setminus \{c\}$

Basic Theorems

Theorem

Let $f: D \longrightarrow \mathbb{R}$ $c \in \widehat{D}$. If $\lim_{x \to c} f(x) = L$ and $L \neq 0$ then there is a neighborhood U of c, and M > 0 such that

 $|f(x)| > M \qquad \forall x \in U \cap D \backslash \{c\}$

Basic Theorems

Theorem

Let $f,g:D\longrightarrow \mathbb{R}$, $c\in \widehat{D}.$ If $\lim_{x\to c}f(x)=L$ and $\lim_{x\to c}g(x)=K$ then

$$\lim_{x \to c} [f(x) + g(x)] = L + K$$

$$\lim_{x \to c} [f(x) \cdot g(x)] = LK$$

3 If
$$K \neq 0$$
, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}$

Image: A math a math

Basic Theorems

Theorem

Let $f,g:D\longrightarrow \mathbb{R}$ and $c\in \widehat{D}$. If $\lim_{x\to c}f(x)=L$ and $\lim_{x\to c}g(x)=K$ and there is a neighborhood U of c, such that

 $f(x) \leq g(x) \qquad \forall x \in U \cap D \backslash \{c\}$

then

 $L \leq K$

Sequeeze Theorems

Theorem

Let $f, g, h : D \longrightarrow \mathbb{R}$ and $c \in \widehat{D}$. If there is a neighborhood U of c, such that

$$f(x) \leq g(x) \leq h(x) \qquad \forall x \in U \cap D \backslash \{c\}$$

and $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$ then

$$\lim_{x \to c} g(x) = L$$

Squeeze Theorem

Examples

1 If p is a polynomial then $\lim_{x \to c} f(x) = f(c)$ for all $c \in \mathbb{R}$ $\lim_{x \to 1} \frac{x^2 + 2}{x + 1}$ $\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9}$ $\lim_{x \to 0} x \sin \frac{1}{x}$

Squeeze Theorem

Examples

- $\label{eq:theta} \blacksquare \lim_{\theta \to 0} \sin \theta = 0$
- $\lim_{\theta \to 0} \cos \theta = 1$
- $\label{eq:theta_states} \begin{tabular}{lll} \begin{tabular}{lll} \bullet & \\ \theta \to \theta_0 \end{tabular} \sin \theta = \sin \theta_0, & \\ \theta \to \theta_0 \end{tabular} \sin \theta = \cos \theta_0 \end{tabular} \end{tabular}$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Image: A matrix and a matrix

æ

Extensions of Limits

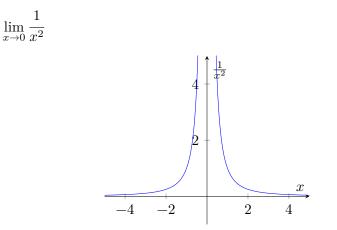
 $\lim_{x\to 0} \mathrm{sgn}(x)$

æ

≣⇒

Image: A mathematical states and a mathem

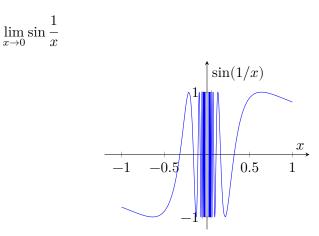
Extensions of Limits



æ

イロト イヨト イヨト イヨト

Extensions of Limits



æ

≣⇒

Image: A math a math

Right Limit

Definition

If $f: D \longrightarrow \mathbb{R}$ and c is a cluster point of $D \cap (c, \infty)$. Then the right hand limit of f at c equals L if

$$\begin{array}{ll} \forall \varepsilon > 0 \ \exists \ \delta > 0 : & x \in D, \\ & 0 < x - c < \delta & \Rightarrow |f(x) - L| < \varepsilon \end{array}$$

and we Write

$$\lim_{x \to c^+} f(x) = L$$

< (17) > <

Left Limit

Definition

If $f: D \longrightarrow \mathbb{R}$ and c is a cluster point of $D \cap (-\infty, c)$. Then the left hand limit of f at c equals K if

$$\begin{array}{ll} \forall \varepsilon > 0 \ \exists \ \delta > 0: & x \in D, \\ & 0 < c - x < \delta & \Rightarrow |f(x) - K| < \varepsilon \end{array}$$

and we write

$$\lim_{x \to c^-} f(x) = K$$

▲ (日) ▶ ▲

The Limit

Theorem

If
$$f: D \longrightarrow \mathbb{R}$$
 and $c \in \widehat{D}$ then
$$\lim_{x \to c} f(x) = L \iff \lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x) = L$$

・ロト ・日 ・ ・ ヨ ・ ・

글 🛌 😑

Right and Left Limits

Examples

0

2

 $f(x) = \left\{ \begin{array}{ll} \frac{x-4}{\sqrt{x}-2} & x>4 \\ 0 & x=4 \\ 2x-4 & x<4 \end{array} \right.$

what is $\lim_{x\to 4} f(x)$?

 $f(x) = \left\{ \begin{array}{cc} 1-x & x < 0 \\ x & x > 0 \end{array} \right.$

• □ ▶ • < </p>
• □ ▶ • < </p>

does $\lim_{x\to 0} f(x)$ exist ?

Infinite limits

Definition

Let
$$f: D \longrightarrow \mathbb{R}$$
 and $c \in \widehat{D}$ then
a) $\lim_{x \to c} f(x) = \infty$ if
 $\forall M \in \mathbb{R} \ \exists \ \delta > 0: \quad x \in D,$
 $0 < |x - c| < \delta \qquad \Rightarrow f(x) > M$
a) $\lim_{x \to c} f(x) = -\infty$ if
 $\forall M \in \mathbb{R} \ \exists \ \delta > 0: \quad x \in D,$
 $0 < |x - c| < \delta \qquad \Rightarrow f(x) < M$

æ

イロト イ団ト イヨト イヨト

Limits at infinity

Definition

Let $f: D \longrightarrow \mathbb{R}$ • If $(a, \infty) \subset D$ then $\lim_{x \to \infty} f(x) = L$ if $\forall \varepsilon > 0 \; \exists \; M \in \mathbb{R} : \quad x \in D,$ $x > M \quad \Rightarrow |f(x) - L| < \varepsilon$ ② If $(-\infty, b) \subset D$ then $\lim_{x \to -\infty} f(x) = L$ if $\forall \varepsilon > 0 \ \exists M \in \mathbb{R} : \quad x \in D,$ $x < M \implies |f(x) - L| < \varepsilon$

Infinite Limits

・ロト ・日 ・ ・ ヨ ・ ・

문 🛌 문