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Course Scope and Contents:

This course is an introduction to applied data analysis. We will explore data sets,
examine various models for the data, assess the validity of their assumptions, and
determine which conclusions we can make (if any). Data analysis is a bit of an art;
there may be several valid approaches. We will strongly emphasize the importance
of critical thinking about the data and the question of interest. Our overall goal is to
use a basic set of modeling tools to explore and analyze data and to present the
results in a scientific report. We then consider simple linear regression, a model
that uses only one predictor. After briefly reviewing some linear algebra, we turn
to multiple linear regression, a model that uses multiple variables to predict the
response of interest. For all models, we will examine the underlying assumptions.
More specifically, do the data support the assumptions? Do they contradict them?
What are the consequences for inference? Also, we will explore some nonlinear
models and data transformations. Finally, we discuss Linear regression based on
the categorical with some applications



Course Calendar

Week | Date Topics Covered
1 30/8/2020 Introduction and some basic concepts of probability and statistics
p 6/9/2020 Definition of the Simple linear regression model with some applications
3 13/9/2020 Estimation of the unknown parameters of the simple linear

regression model

4 20/9/2020 Properties of the least square method

5 27/9/2020 Confidence estimation of the least square estimated of the
coefficient of simple linear regression model.

6 4/10/2020 Hypotheses Testing of the simple linear regression model

7 11/10/2020 | The efficiency of the simple linear regression model by using
ANOVA

8 18/10/2020 Predication and residual analysis of the simple linear regression
model

9 25/10/2020 Like-of-fit test

10 1/11/2020 Multiple linear regression model

11 8/11/2020 Estimation of the unknown parameters of the multiple linear
regression model.

12 15/11/2020 Hypothesis testing of the multiple linear regression model

13 22/11/2020 Prediction and residual analysis of the multiple linear regression
model

14 29/11/2020 Stepwise regression

15 6/12/2020 Linear regression based on the categorical with some application
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Stat 332

Regression Analysis

Chapter 1

Linear Regression with One
Predictor Variable

» Regression analysis is a statistical methodology that utilizes the
relation between two or more quantitative variables so that a
response or outcome variable can be predicted from the other, or
others.

» This methodology is widely used in business, the social and
behavioral sciences, the biological sciences, and many other

disciplines.
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A few examples of applications are:

1- Sales of a product can be predicted by utilizing the relationship
between sales and amount of advertising expenditures.

2- The performance of an employee on a job can be predicted by
utilizing the relationship between performance and a battery of
aptitude tests.

3- The size of the vocabulary of a child can be predicted by utilizing
the relationship between size of vocabulary and age of the child
and amount of education of the parents.

4- The length of hospital stay of a surgical patient can be predicted by
utilizing the relationship between the time in the hospital and the
severity of the operation.
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> Relations between Variables

Functional Relation between Two Variables (mathematical relations)

Example (1-1)

Y=2X
X Y (Dollars)
Units Sales
75 150
25 50
130 260
Y
300 -
T:% 200 |
5
0O
100 |
| 1 ]
0 50 100 150 X

Units Sold

Fig.(1.1)
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> Statistical Relation between Two Variables

Example (1-2)

Performance evaluations for 10 employees were obtained at midyear and at year-
end. These data are plotted in Figure 1.2. Year-end evaluations are taken as the
dependent or response variable Y, and midyear evaluations as the independent,

explanatory, or predictor

Scatter Plot Scatter Plot and Line of Statistical Relationship
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Figure (1.2)
Example (1-3)

Figure 1.3 presents data on age and level of a steroid in plasma for 27 healthy females
between 8 and 25 years old. The data strongly suggest that the statistical relationship
is curvilinear (not linear). The curve of relationship has also been drawn in Figure
1.3. It implies that, as age increases, steroid level increases up to a point and then
begins to level off. Note again the scattering of points around the curve of statistical

relationship, typical of all statistical relations
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FIGURE 1.3 Curvllinear Statistical Relation between Age and Steroid Level in Healthy Females Aged 8 to 25.
Y
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What is the functional relations to describe Fig 1.2 and Fig 1.3?

It is a regression relation or regression model!

» Uses of Regression Analysis
Regression analysis serves three major purposes:
(1) description

(2) control
(3) prediction
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» Regression and Causality

The existence of a statistical relation between the response variable Y and the
explanatory or predictor variable X does not imply in any way that Y depends
causally on X.

No matter how strong is the statistical relation between X and Y, no cause-and-effect
pattern is necessarily implied by the regression model.

For example, data on size of vocabulary (X) and writing speed (Y) for a sample of
young children aged 5-10 will show a positive regression relation. This relation does
not imply, however, that an increase in vocabulary causes a faster writing speed.

Here, other explanatory variables, such as age of the child and amount of education,
affect both the vocabulary (X) and the writing speed (Y). Older children have a larger
vocabulary and a faster writing speed.
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Simple Linear Regression Model with Distribution
of Error Terms Unspecified

Let

Y; = Po+ b1 X; + & .

where:

Y; is the value of the response variable in the ;/th trial

Po and B, are parameters
X; is a known constant, namely, the value of the predictor variable in the ith trial

X; is a known constant, namely, the value of the predictor variable in the ith trial
&; is a random error term with mean E{g;} = 0 and variance o2{g;} = 0%; &; and ¢; are
uncorrelated so that their covariance is zero (i.e., o'{e;, ;1 = Oforall i, j; i # J)

i=1,...,n

Remark: we will use the symbol Var(g;) = o’ {5i } =0’

Important Features of the Model are:

E(Yi):ﬂo+ﬂlxi
Var(Yi):GZ{Yi}za2
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Example (2-4)

A consultant for an electrical distributor is studying the relationship between the number
of bids requested by construction contractors for basic lighting equipment during a week
and the time required to prepare the bids. Suppose that regression model (1.1) is applicable
and is as follows:

Y, =954+21X;+¢

where X is the number of bids prepared in a week and Y is the number of hours required to
prepare the bids. Figure 1.6 contains a presentation of the regression function:

E(Y}=95+21X

Suppose that in the ith week, X; = 45 bids are prepared and the actual number of hours
required is ¥; = 108. In that case, the error term value is £, = 4, for we have

E{Y;} = 9.5+ 2.1(45) = 104

For any fixed ‘x’, the response ‘y’ follows a normal
distribution with standard deviation .
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E{Y}} = 104

25

45
Number of Bids Prepared
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Y

E{Y} =95+ 21X

50

Hours

1Bo=95
0 10 20 30 40 X
Number of Bids Prepared
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Alternative Versions of Regression Model

The simple linear regression model 1s

Yi = BoXo + B X; + & where Xo = 1
Alternative Versions of Regression Model is

Yi=Po+BX;i—X)+ B X +¢&
= (Bo+ fiX) + Bi(X; — X) + &
= B + B1(X; — X) + ¢

Estimation of g, and g,

The least square method for estimating the unknown parameters of the simple

linear regression model can be explained as follows:

To find “good” estimators of the regression parameters Sy and 8, we employ the method
of least squares. For the observations (X;, ¥;) for each case, the method of least squares
considers the deviation of Y; from its expected value:

Yi — (Bo + P Xi)

10



In particular, the method of least squares requires that we consider the sum of the »n squared
deviations. This criterion is denoted by O:

Q=) (Yi—fo—HX)* - @
i=l

Differenatining (1.1) with respect to g, and 3 and equating to zero, we get

80
9o
20
£

=23 (¥; — fo— B X:)

=2 X;(¥; — o — i X))

Hence

~2) " Xi(¥; — by — by X;) = 0

11



Y (Yi—bo—biX;) =0
=l

D Xi(Yi —bg— b X;) =0
i=I

Z}ff—nbo—b,z;f, =0
Zx,-y}—bﬂZX,-—b.Zx,?=0

Solving with respect b0 and b1, we get

XX =X =)
B E(Xl — )—{)2

b= (-5 Y X)=F-b

Which can be written as

12
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. QXY =2 X2y
:Blzbl: 2
n) x’ —(ij

20 :bo :Y__blx_

Example 1 (Toluca Company Data)

The Toluca company manufactures refrigeration equipment as well as many
replacement parts. In the past, one of the replacement parts has been produced
periodically in lots of varying sizes. When a cost improvement program was
undertaken, company officials wished to determine the optimum lot size for
producing this part. The production of this part involves setting up the production
process (which must be done no matter what is the lot size) and machining and
assembly operations. One key input for the model to ascertain the optimum lot size

was the relationship between lot size and labor hours required to produce the lot.

To determine this relationship, data on lot size and work hours for 25 recent
production runs were utilized. The production conditions were stable during the six-
month period in which the 25 runs were made and were expected to continue to be
the same during the next three years, the planning period for which the cost

improvement program was being conducted.

The data is given in the book data website:
http://www.stat.ufl.edu/~rrandles/sta4210/Rclassnotes/data/textdatasets/KutnerDat
a/Chapter%20%201%20Data%20Sets/CHOITAO1.txt

13



(N (2)

Lot Work

Size Hours
X; Yi
80 399
30 121
50 221
40 244
80 342
70 323

1,750 7,807

Find the estimation of the simple linear regression model

Y =6, +BX +¢

Solution

The scatter plot for the data shows that the simple linear model represents a good fit

for the data as follows:

14
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Then it casy to calculate
> (X — X)X — ¥) = 70,690
Y (Xi — X)* = 19,800

X =700
Y = 312.28

Then

15



S(X; — X)Y; —F) 70,690
Y(X;—X)2 19,800

7 — b X = 312.28 — 3.5702(70.0) = 62.37

= 3.5702

by

One can use R as follows:

mydata = read.table("TCD.txt", header=TRUE)
# How to separate some variables the data file
x=mydataSX

y=mydataSy

x.bar=mean(x)

y.bar=mean(y)

print(c(x.bar,y.bar))
t1=sum((x-x.bar)*(y-y.bar))
t2=sum((x-x.bar)"2)

b1=t1/t2

Or one can use the direct R command for regression as: Im(y~x) to get the same

results.

Call:

Im(formula =y ~ x)
Coefficients:
(Intercept) X

62.37 3.57

16



As we can see from the results the estimated linear regression model is

Y = 62.4 + 3.57 X &)

» Interpretation of the results

1- When the lot size (X) increases by one units, the work hours (Y) increase
by 3.57 hours.
2- There is 62.4 hour of the work hours (Y) do not depend on the lot size (X).

» The estimated simple linear regression model in equation (2) can be used
to predict the work hours required for a certain lot size. For example, if

the lot size is 85 units, then

Y =62.4 + 3.57 * 85 = 365.85 hours.

> We can use the alternative Model as:

¥ — 312.28 + 3.5702(X — 70.0)

» The residual can be calculated at each point

of the intendent variable x as
This residual is denoted by ¢; and is defined in general as follows:
€ — Y, i f},'

17



For example, when X=30 and X=80, we calculate

the residuals as:

Y, = 399

}'}2 — 169.47

Hours

V= 30 80
From the Figure, we see that

e =Y, —(bp+ 0 X;) =Y, — by — b X;

18



e =Y — ¥, =399 —347.98 = 51.02

Similarly, we can calculate the residuals at the all point of x to get

i e i e i e
1 51.02 11 -45.17 21 103.53
2 -48.47 12 -60.28 22 84.32
3 -19.88 13 5.32 23 38.83
4 -7.68 14 -20.77 24 -5.98
5 48.72 15 -20.09 25 10.72
6 -52.58 16 0.61

7 55.21 17 42.53

8 4.02 18 27.12

9 -66.39 19 -6.68

10 -83.88 20 -34.09

These residuals can be calculated directly from R providing as:

summary(model)$res

19
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In the simple linear regression model:
Y, =B, +B8 X, +&,1=12,..,n
E(5)=0,Var(g)=0> and Cov(s,s)=0forall i =j.
Then
EY)=8+BX, and Var(Yi):O'Z-

Let’s introduce some more notations:

The least square estimates of f,, 3, are

o 2X=X) ) g

By =b =15 S
> X
i=1

30:bo:Y__b1X_

Properties of the fitted regression line

~

The residuals  €; =Y; =Y i, i =1,2,... of the simple linear regression model

satisfies the following properties

20
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1- The sum of the residuals is zero i.e.

Proof.

D8 :Z(Yi Y ):Z(Yi =0, +b X))
:Z(Yi _bo_blxi)

=nY -nb,—nb X

=nY -n{Y —b,X)-nbX
=nY —nY +nb,X —nbX
=0

2- The regression line always goes through the point (X Y ) .

Proof.
Y. =b,+b X, =b, +b X =Y —b X +b X =Y
3- The sum of the observed values Y, ; equals the sum of the fitted values Y ;

Proof.
Y=Y (b, +b,X,)=nb, +nbX
=n(Y —-b,X)+nbX =nY —nbX +nb,X

=nY =>Y,

21
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4- The sum of the weighted residuals is zero when the residual in the ith trial is

weighted by the level of the predictor variable in the ith trial Zei X;=0

i=1

Proof.

n

ieixi =_§n:(vi Y )X, =D, by -b X, )X,

i=l i=l1

zzn:(vi -/ —bX)-bX, )X,
SV X, Y YX, b X X X

:Zn:YiXi _Y_ixi *I(anx i2 —nX_Z)
i =1 =l P=l

n

:iYiXi _Y_ixi _Z(Yi _Y_)(xi _X_)

i=I

A —

:znlvixi —n><‘\(‘—i\/ixi +nXY
i=1 i=1
=0.

5- A consequence of properties (1) and (4) is that the sum of the weighted

residuals is zero when the residual in the ith trial is weighted by the fitted
value of the response variable for the ith trial ZeiYAi :

i=l1

Proof.

ieiYAi =iei (b0+b1Xi)=bOZn:ei +blieixi =0+0=0
i=l i=l1 i=l1 i=l1

22
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Point Estimator of &

Under the assumption that the residuals ¢ ~N (0, o*), the maximum likelihood

methods can be used to derive the MLE of & as

VYY)
D XUE T e

o which is biased estimate for o

n n

The unbiased estimate of o can be obtained as

N~ >y SSE
S*=MSE = 50 = il p— = which is called the residual mean square
MSE
Then
MSE — SSE
n-2
Example

We will calculate SSE for the Toluca Company example. The residuals were
obtained earlier. From these results, we obtain:

SSE = 54825
Then

MSE =S? :S;ﬁ:zsm and S =+MSE =+/2384 = 48.8 hours

23
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The sum of squared errors can be calculated from R results simply as:

model=Im(y~x)
summary(model)
summary(model)Scoef
e=summary(model)Sres

sum(e”2)

24
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Chapter 2
Inferences in Regression
and Correlation Analysis

In the simple linear regression model:
Y. =B, +0 X, +&,1=12,..,n
E(5)=0,Var(s)=0> and Cov(s,s)=0forall i =j.
Then
EY)=6+06X, and Var(Yi):gz.

Let’s introduce some more notations:

n — O S
2. (%=X ) (2.1)

25
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Properties of Point estimation of 5, 4,

The point estimation of the coefficients of the simple linear

regression model in (2.1) can be written in linear combination

forms of Y ; as follows:

31=b1=Z KiY (2.2)

where

26
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K = (Z(X ___XX_))Z (2.3)

i
i=1

As we can see, the form of the point estimation of slope the

simple liner model is given in a liner combination form of Y ; .

Similarly,

>

B,=b,=Y -bX =¥ =X Y kY,

Il
r
<

(2.4)

27
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where
L =—-X K, (2.5)

and K, is given in (2.3).

The coefficients K; and L; satisfy the following properties:

Lemma
The coefficients K; given in (2.3) satisfies the following

properties

28
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Proof.

29
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Lemma

The coefficients L; given in (2.5) satisfies the following

properties
$ o
i=1
Zn: L.X, =0
i=1
o, 1 X2
Z‘ L =t —
=1 Z (XI_X)
=1
Proof.
L=y (l—x_Ki):%—x_ZKi ~1-0=1
1=1 1=1

30
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zn: L_Z:Zn: (l—x_K,V:Zn: ( 12—2K'X_+K2x_2j
i-t g N i1 \ N n |
2X n
n 1 ; |<I —, n 5
=2 +X?) K
i= i=l1
11 X 2
=—+
TN, =X

1- Unbiasedness of Point estimation of 3, 5,

Lemma

The point estimators of A and 5, are unbiased

Proof.

From (2.2), we have

ﬁl :bl ZZ KiYi then
i=1

31
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E(B)=EB)=Y KE¥,)=Y K, (4+5X,)
=3 K (A +AX)

:,Bo_zn: Ki +ﬂ1zn: KiXi
:;Br

Similarly, from (2.4), we have
E(B)=Eb)=Y LEV)=Y L, (f+5X,)
=3 LA+ AX)

:'B‘)i Li +ﬂ1zn: LiXi
:IBO'

32
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2- Variances

Lemma

The point estimators of 4 and f, have the following

variances, respectively

o
Z O<i _X)z

Va(B)=Va(b,)=

and
~ |1 X 2
Var(p,) =Var(b,))=0"| —+
Ty (X, =X
Proof.

From (2.2), we have

B, =b, :Z KYithen
i=1

33
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n

Var(B)Var(y) =i K2Var(y,)=) Ko

B

_
Z(Xi _X)z

Similarly, from (2.4), we have

n

Var(f,)=Var(b,)=> LfVar(Yi)zzn: 26>

1=1 i =1

34



Dr. Khalaf Sultan Regression Analysis (Stat 332)

Example

Consider the Toluca Company example, the variance of £, £,

are:

o’
D X XY’
. MSE 3%
_Zm_i)z_l%oo

Va(B)=Va(b)=

=.12040

Hence the squared error of f; is

S.E(B,)=Var(B,) =+/.12040 = .3470

Similarly,

35
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Var(B,)=Var(b,)=oc’| —+

=MSE | —+

2
_2384| LY
25 19800

= 685.34

Hence the squared error of f is

S.E(B,)=\Var(5,) =/685.34 = 26.18

36
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In the simple linear regression model:
Y. =8, +B X, +&,1=12,..,n
E(5)=0, Var(g)=0c> and Cov(g,e)=0forall i #j.

127

Then

EY)=4+BX, ad Var(Y)=c"

Let’s introduce some more notations:

n n

S, =2 (Y, Y ) =Dy -ny?

yy 4 4
i=1 i=1
Sy :Z;x Y, —nXY
The point estimates of f,, 3 are

n

o XXX ) g

B, =b =1 _ _ T
B
i=1
B, =b, =Y —bX
ﬂlzblzi KuYua K| = n(Xi _X)
i< (X, -X)

37
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Var(f3)= o —, SE(R)=\Var(B)
2 X=Xy’

and

Var(B,) = o’ L X . SE(B)=Nar(f,)

Ty (X, =X

The unbiased estimate of &2 1s
52 = MSE =o” :iEz, SSE =Ye?, e =Y, Y, i=12,.
n-— i—1

3- Sampling distribution

The normal error regression model is as follows:

Yi =Po+ B X: + &

where:

Y; is the observed response in the ith trial
X; 1s a known constant, the level of the predictor variable in the i th trial

Bo and B, are parameters
&; are independent N (0, o%)

i=1,...,m

38
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21_ﬂ1 _ b1_ﬂ1 and :/6\0_150 _ bo_ﬂo

3-1 Sampling distribution of L= =
SE() SEb) SE(B,) SEb)

Lemma

Let b, is the estimator of the slop in the simple linear regression model, then

I/B\l _/:\81 — bl_ﬂl
SE(B) SED)

has t distribution with (n-2) degrees of freedom.

Similarly,

Let b, is the estimator of the intercept in the simple linear regression model, then

2’0_@) _ bo_ﬂo

= has t distribution with (n-2) degrees of freedom.
S.E(B,) SE®)

Interval Estimation

This distribution of 2= _ b =B can be used to construct 100(1- )%
SE(B) SE®O)

confidence interval for g as follows

AN AN

151 T tl—a/2,n—2S E (IB)

f 130_130 _ bo_ﬁo

= can be used to construct 100(1-a)%
SE(B,) SEb)

Similarly, the distribution o

confidence interval for g3 as follows

PoE > E(S)

39
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Example

Consider the Toluca Company example, find 95% confidence
intervals for both of 4 and 23,.

For such data, we have calculated

o’ MSE 2384

S Xy :Z X Xy =og0g = 12040

Var () =Var(b,) =

Hence the squared error of 5, is

S.E(B,)=Var(B,) =+.12040 = 3470

Similarly,

S.E(B,)=NMar(B,) =~/685.34 = 26.18

tans =toorsss = 2.068658=2.069

and
B, =3.5702, B, =62.4

Then 95% confidence interval for gas follows

181 a= tl—a/z,n—ZS E (181)

3.5702£2.069(0.3470)

40
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Hence

2.85< 3 <4.29

Similarly, then 95% confidence interval for 3, as follows

P P

,Bo a= tl—a/z,n—ZS E5)

62.4+2.069(26.18)

Hence

8.25< B, <116.57

This can be done easily using R as:

confint(model,level=0.95) #Cls for all parameters

Hypotheses Testing

A~

This distribution of -2 _A'Bl _b-4 and B _Aﬂ" _ DAy can be used to test
SE(B,) SE®b) SE(B,) S-E,)

some hypotheses concerning the coefficients of the simple linear regression model

as follows:

41
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[ Steps for testing g, }

1) Setup the hypotheses
. — RO . (0)
HO'ﬂl_ 1 VS Hl'ﬂl'_'t 1
11)  Test statistic under HO

b1 _ﬂ(o)

0= SE—(bl) this statistic has t distribution with (n-2) d.f

1i1)  Critical regions

R.R. ) R.R.
of Ho t1—as2 taiz G Ho

== top
R.R: Rejection Region and A.R: Acceptance Region

iv)  Decision
When the calculated T, belongs to the shaded areas, we reject the null

hypothesis HO, otherwise Accept HO.

42
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[ Steps for testing g, }

1) Setup the hypotheses
. —_ pO) . (0)
Ho-ﬂo_ 0 VS Hl-IBO;t 0
11)  Test statistic under HO

b, — 5"

0= SE—(bO) this statistic has t distribution with (n-2) d.f

1i1)  Critical regions

R.R. ) R.R.
of Ho t1—as2 taiz G Ho

== top
R.R: Rejection Region and A.R: Acceptance Region

iv)  Decision
When the calculated T, belongs to the shaded areas, we reject the null

hypothesis HO, otherwise Accept HO.
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Remarks:

(1) In some applications, we may need to test
H,: =0 vs H,:5=#0
and
H,:5,=0 vs H,:8 %0
In these cases, you need to replace both of g and g” by zeros in the test
steps. This equivalents testing the significance of the linear term ( 5, ) or the

intercept term g, . R output are designed for these cases.

(2) In some applications, we may need to test
H,: =0 vs H:£>K0
and
H,:5,=0 vs H,:8 >()0
In these cases, you need to replace the critical regions to one-sided critical

regions.

(3) One may use the two-sided p-value approach: p —value =2P (T >T,), then
reject HO when p —value < a , otherwise accept HO. The one-sided p-value

is p —value =P (T >T,), then reject HO when p —value <« , otherwise

accept HO.
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Example:

Consider the Toluca Company example, test the hypotheses
H,: =0 vs H,:5#0

and

H,:5,=0 vs H,:8 #0

Testing A
1) Setup the hypotheses
H,: =0 vs H,:5=#0
1)  Test statistics under HO

; _D-A" 357020

= _ 10.29
SE®,) 03470

1i1)  Critical regions
a=0.05——>a/2=0.025
t,,=2.069 and -t ,=-2.069

- R 2 . R.R.
of Ho t.q,=20069 of Hg

R.R: Rejection Region and A.R: Acceptance Region
iv)  Decision: The calculated T, =10.29 belongs to the shaded areas, then we

reject the null hypothesis HO

These calculations can be conducted using the R output as:
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Coefficients:
Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 62.366 26.177 2.382 0.0259 *
3.570 0.347 10.290 4.45e-10 ***

Signif. codes: 0 *** 0.001 ** 0.01 " 0.05‘° 0.1 1
As we can see from the results that, T=10.29. Also, the p-value=0.000<0.05, then

reject HO.

Testing g,

1) Setup the hypotheses
H,:8,=0 vs H,:5 %0
1)  Test statistics under HO

b — 3O B
L ) _624-0_ .
SE(b, 26.18

1i1)  Critical regions
a=0.05--—>a/2=0.025
t ,=2.069 and-t_,=-2.069

R - K R.R.
of HO to,=2009 of HO

R.R: Rejection Region and A.R: Acceptance Region
iv)  Decision: The calculated T, = 2.38 belongs to the shaded areas, then we
reject the null hypothesis HO.
As we can see from the results that, T=10.29. Also, the p-value=0.026<0.05, then

reject HO.
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Recall:
In the simple linear regression model:
Y. =8, +0 X, +&,1=12,..,n
E(g)=0Var(s)=0c" and Cov(s,s;)=0forall i #j.
Then
2
EY)=4+X, and Var(,)=0".
The point estimates of 3,3 are

n

_ 22X Y

= SXy r> = a
B, =b, = - = , Bo=b,=Y —bX

ICTESS

i=l1

ﬁlzblzi KIYI’ Ki= n(Xi_X) 9%02 n LIYI’ lel_X_Kl
i=1 (Xi _X—)2 o1 n
| ]
VH(E):L_, Va(p)=c| -+ — |
> %Xy ’]Zarma

The unbiased estimate of & 1s

~ SSE

s? =MSE =¢? S» SSE =6, e =Y, Y, i=12,.
n-— i1
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Analysis of Variance Approach to Regression Analysis

We now have developed the basic regression model and demonstrated its major uses.
At this point, we consider the regression analysis from the perspective of analysis of
variance. This new perspective will not enable us to do anything new, but the
analysis of variance approach will come into its own when we take up multiple

regression models and other types of linear statistical models.

Types of sum of squared Errors

Use the data in Toluca Company example, we show three types
of sum of the squared errors as:

(@) (b) ©
Total Deviations ¥, — ¥ Deviations Y; — ¥; Deviations ¥; — ¥

=

Hours
=<l

Yz

Lot Size Lot Size
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1- SSTO stands for total sum of squares

n
V2
SSTO=) (Y;-Y)
=1
2- SSE stands for error sum of squares

SSE=Y " (Y:-Y,)’
i=1

3- SSR stands for regression sum of squares

SSRzzn:(?i YY)

=1

Lemma:

SSTO=SSR+SSE
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Proof.

,-Y=V-Y+Y ¥
N Nt N, et

Total Deviation Deviation
deviation of fitted around
regression fitted
value regression
around mean line

-

Y =1 =) [ — D)+ (% — PP
=Y IF - V)2 + (¥, — 7 +2(Fi — )Y — 1))
=Y @ -0 +> @ -0 +2) E - D - 1)

But

i(?l -?)(Yl Y, )= i(?l _?)ei :Zn: ?iei —Y_Z e, =0-0=0
=1 i=1 =1

Then

SSTO=Y (v,-9) = Y (Vi-97 + Y (Y-,
=1 i=1 i=1

=SSR +SSE
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Types of sum of squared Errors

4- SSTO stands for total sum of squares
n
2
SSTO=) (Y;-Y)
i=1

5- SSE stands for error sum of squares

n N
2
SSE=> (Yi-Y))
=1
6- SSR stands for regression sum of squares

SSRzzn:(s?i YY)

i=1
Lemma:

SSTO=SSR+SSE

SSR=106] ) (X — XY’
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ANOVA TABLE
Source of = N
Variation 58 df :MS
Regression  SSR=Y(f; — V)2, 1 MSR = ;-S;SR ~ M3R
SSE MSE
Error SSE=S(Y,—¥)? n-2  MSE= i
Total SSTO=S(¥;i—= V2  n—1

ANOVA tables are widely used; we shall usually utilize the basic type

of the tables.

F-test

This test is basically depending on the ANOVA table and it works like t-
test (in the simple linear regression model). We summarize the test as

given below:
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1) Setup the hypotheses
H,: =0 vs H,:5#0
i1)  Test statistic under HO

= _MsR

" = MSE (From ANOVA table)

this statistic has F, distribution with (1,n-2) d.f

i11)  Critical region

The shaded area is the rejection Region and the unshaded area is

acceptance Region

1v)  Decision
When the calculated F, belongs to the shaded area, we reject the null

hypothesis HO, otherwise Accept HO.
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P-value approach

1) Setup the hypotheses
H,: =0 vs H,:5#0

i1) Calculate p-value

P —value =P(F >F,)
Reject HO, otherwise, Accept HO

Remarks:

Since Both of F-test and t-test do the same job for testing
H,:5=0 vs H,:5 =0

So, there is a relation between F, and T, as (F, = T})

Example

Consider the Toluca Company example, Use F test (ANOVA)
for testing the significance of the linear term in the simple linear

regression model.

From the data, we have
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SSTO=) (Y;-Y)* =307203
i=1
SSE=Y"(Yi-Y,)? =54825
i1

SSR=Y"(Yi-Y)* =bS,, =SSTO —SSE
=1

=307203 -54825=252378

Then The ANOVA Table is
Source of SS df MS FO
Variation
Regression | SSR=252378 1 MSR=252378 F,=105.9
Error SSR=54825 23 MSE=2384
SSTO SST0=307203 24
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1) Setup the hypotheses

H,: =0 vs H,:5#0
i1)  Test statistic under HO

F, =105.9 (From ANOVA table)

this statistic has F, distribution with (1,n-2) d.f

i11)  Critical regions

0 Fpps=4.28

The shaded area is the rejection Region and the unshaded shaded area is

acceptance Region

1v)  Decision
since the calculated F, =105.9 > 4.28 belongs to the shaded area, we

reject the null
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P-value approach

1) Setup the hypotheses
H,: =0 vs

i1) Calculate p-value

H,:8 #0

P —value =P (F >F,;)~0.0000=.0000<0.05

Then Reject HO

Remarks:

Since Both of F-test and t-test do the same job for testing

H,: =0 vs H,:5#0

So, there is a relation between F, and T, as (1059 = (10.29)%)

anova (mogQael)

Analysis of Variance Table

Response: y

&
Df Sum 5q Mean 5q F wvalus Pr (>F)

b4 1 252378 252378 105.88 4,44%9e-10 %=
Residuals 23 54825 2384
Signif. codes: 0 ‘Yaxxr (,001 **%*F Q.01 ‘*F
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Coefficient of Determination

We saw earlier that SSTO measures the variation in the observations Yi ,
or the uncertainty in predicting Y, when no account of the predictor
variable: X 1is taken. Thus, SSTO is a measure of the uncertainty in
predicting Y when X is not considered. Similarly, SSE measures the
variation in the Yi when a regression model utilizing the predictor variable
X is employed. A natural measure of the effect of X in reducing the
variation in Y, i.e., in reducing the uncertainty in predicting Y, is to express
the reduction in variation (SSTO - SSE = SSR) as a proportion of the total
variation

n2_ SSR SSE

SSTO  SSTO
The measure R2is called the coefficient of determination.

For the Toluca Company example, we obtained SSTO = 307,203 and SSR = 252,378.
Hence:

2 _ 252,378

= = .822
307,203

Thus, the variation in work hours is reduced by 82.2 percent when lot size is considered.
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Coefficient of Correlation

A measure of linear association between ¥ and X when both ¥ and X are random is the
coefficient of correlation. This measure is the signed square root of R%:

I‘=:|:'\/*RT2

A plus or minus sign is attached to this measure according to whether the slope of the fitted
regression line is positive or negative. Thus, the range of ris: =1 <r < 1.

For the Toluca Company example, we obtained R? = .822. Treating X as a random variable,
the correlation coefficient here is:

r=+4+/.822 = 907

Example

The plus sign is affixed since &, is positive.

Remark

The Correlation Coefficient between two variables Y, and Y, 1s given by

S (Y1 — 7)) (Y — Fa)
[ — P1)2 (X — ¥2)2]

Flz2 =

cor(x,y)

[1] 0.9063848

tt=summary(model)Sr.squared
> sqrt(tt)
[1] 0.9063848
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Recall:
In the simple linear regression model:
Y, =8, +0 X, +&,1=12,..,n
E(g)=0,Var(s)=0c" and Cov(s,s;)=0forall i #j.
Then
2
EY)=4+4X, and Var(,)=0".
The point estimates of 3,3 are

n

22X x) )

. S, ~ _ _
ﬂ1=b1=|:1 = y, ,B0=b0=Y _blx

S(xX) S

i=1

31:b1:i KIYH Ki: n<Xi_X) 920: n I—|Y|> lel_x_Ki
i=1 (XI _)(_)2 i=1 n
VH(E):L_, VH@O)=02 _r11+ X — |
Z (Xi _X)2 Z(Xu _X)Z

The unbiased estimate of &2 is

~ SSE

s? =MSE =o’ . SSE =S, e =Y, Y, i=12,.
n-— i1
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Interval Estimation of the mean response when X =X

e The mean response when X =X, is denoted E (Y ,)

e The point estimation of the response mean is given by

Y n=b,+b X,

e Sampling distribution of YAh :
Since Y n = b, +b, X, and
b, ~N (ﬁoavar(bo))a b, ~N (,prar(bl)),then Yo isnormally

distributed with mean

EY n)=E®b)+E®X,)=EW,)=4+5X,

and

Var(Y n)=Var(b, +b,X,)=V ary +b,(X, -X))
=Var(Y )+ (X, -X)Var(b,)+2(X,—X)Cov (Y ,b,)

02+0'2(Xh—)(_)2+0

n S

XX

because
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- 1 n n
COV(Yabl):COV(n_ZYisZkiyi)
i=1 i=1

=1—ZkiCOV(yi,yi)
n =
1 n
=—> kVar(y,)
n 5=
1 n O_Z n
= — k 2:— k :0
n,zz“1 1 n ,Z‘l '
Then
_ 2 2
Var( n)=c’ L Xn =X ) ysp [ L K= X)
n S, n S,
SE(N n)=Nar( »)
Lemma
Yi—E(Y,)

The statistics SE (YA ") had t distribution with (n-2) degrees of

freedom. For more details, see the book (page 54).

This lemma enables us to construct 100(1 —a)% confidence interval about

the response mean Y, as follows:

S

YAh m) RPN SE.Y n)
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Example

Consider the Toluca Company example, find 90% confidence
interval for the response meanE(Y,) when X, =65

From the data, we have

AN

Y.=b,+b X, = 62.37 + 3.5702(65) = 294.4

L, (65 -70.0)°
25 19800

Var(YAh):I\/ISE(l+(X“S_X)2j:2384[ 1=98.37

n XX
S.E(?h)Z\[gar(YAh) =9.918

For a 90 percent confidence coefficient, we require t(.95; 23) = 1.714,

Hence, our confidence interval with confidence coefficient .90 is by

Yntt 00 SEE(Y 1)
294.4 - 1.714(9.918)<E (Y . ) < 294.4 + 1.714(9.918)

2774<E({ ,)<3114
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We conclude with confidence coefficient .90 that the mean number of
work hours required when lots of 65 units are produced is somewhere
between 277.4 and 311.4 hours. We see that our estimate of the mean

number of work hours is moderately precise.

Suppose the Toluca Company wishes to estimate E{Y}} for lots with X, = 100 units with
a 90 percent confidence interval. We require:

Example 2

Y, = 62.37 +3.5702(100) = 419.4

R 1 (100 — 70.00)*
2 _ =
s2{Y,) = 2,384 [ >3 + 15.:800 ] 203.72

s{¥,) = 14.27
£(.95:23) = 1.714

Hence, the 90 percent confidence interval is:

419.4 — 1.714(14.27) < E{Y,} < 419.4 + 1.714(14.27)
394.9 < E{Y,} < 443.9 N

Note that this confidence interval is somewhat wider than that for Example 1, since the
X}, level here (X, = 100) is substantially farther from the mean X = 70.0 than the X,
level for Example 1 (X, = 65).

One may use R commands:
newx = data.frame(x=100)

predict(model, newx, level=0.90,interval="confidence")
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Predicting a Future Observation When X is Known

We consider now the prediction of a new observation Y corresponding to

a given level X of the predictor variable.

If p,,8,0 were known, we’d know that the distribution of responses when
X=Xn 1s normal with mean g, +4 X, and standard deviation . Thus,
making use of the normal distribution (and equivalently, the empirical
rule) we know that if we took a sample item from this distribution, it is
very likely that the value fall within 2 standard deviations of the mean.
That is, we would know that the probability that the sampled item lies

within the range (8, + 8, X, — .8, + B, X, +0o) 1s approximately 0.95.

In practice, we don’t know the mean g, + g X, or the standard deviation o.

However, we just constructed a (1-a)100% Confidence Interval for E{Yx},

The prediction error 1s for the new observation is the difference between

the observed value and its predicted value: Y ;new) —Y 1. Since the data are

assumed to be independent, the new (future) value is independent of its
predicted value, since it wasn’t used in the regression analysis. The

variance of the prediction error can be obtained as follows:
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A A _—2
Var{pred}:var{Yh(new)_Y h}zvar{Yh(new)}+Var{Y h}:O'2-|-O'2 l"' n(Xh x_)
Y, Xy

i=1

v \2
! P R T O

1Y X X

and an unbiased estimator is:

1, (X, =X)
" Z(Xi_x_)2

S.E{pred}:wﬁar(_pred)

Var{pred } =MSE | 1+

A (1-2)100% Prediction Interval for New Observation When X=X,

. w2
Yott(a/2n—2) |MSE| 1+ 4+ n(Xh X) |
Y (X, - X)?
L i=1 ]
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Example (book: page.59)

The Toluca Company studied the relationship between lot size and work hours primarily
to obtain information on the mean work hours required for different lot sizes for use in
determining the optimum lot size. The company was also interested, however, to see whether
the regression relationship is useful for predicting the required work hours for individual
lots. Suppose that the next ot to be produced consists of X, = 100 units and that a 90 gercent
prediction interval is desired. We require £(.95; 23) = 1.714. From earlier work, we have:

In this example

Yw=b,+b X, = 62.37 + 3.5702(100) = 419.4

s -X)’
Z(x —X)

S.E{pred}= ar(pred):50.87

Var {pred } = MSE 1+ =2587.72

For a 90 percent confidence coefficient, we require t(.95; 23) = 1.714.

Hence, our confidence interval with confidence coefficient .90 is by

YA i l-a/2,n-2 S E (Pred)
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419.4 - 1.714(50.87)<Y | rou) < 419.4 + 1.714(50.87)

3322 <Y <506.6

h(new )
With confidence coefficient .90, we predict that the number of work hours
for the next production run of 100 units will be somewhere between 332

and 507 hours

R commands:
newx = data.frame(x=100)

predict(model, newx, level=0.90,interval="predict")
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Diagnostics and
Remedial Measures

Recall:

In the simple linear regression model:
Y, =8, +0 X, +&,1=12,..,n
E(s)=0Var(s)=0" and Cov(s,s;)=0forall i #j.
Then
EY)=4+B8X, and Var(Y,)=0c’

The point estimates of 3,3 are

D N A

:Blzbl_I:l n . =~ ﬂozbozY _blx
IZ::I(X i - X ) XX
R n (X, -X) ~ g 1 -
ﬂlzblzz KIYI’ KI B > ﬂO:Z I‘|Y|9 LI =——X KI
i=1 (Xi —)(_)2 i-1 n
i=1
i |
A o 1 X2
Var(5)= Na () =c| ,
2 n 7 \2
> (X —X) > X _X)j
The unbiased estimate of & 1s
S?=MSE =0’ =22F  SSE=Ye2, e =Y, Vi, i =12,..
n-— =1
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When a regression model, such as the simple linear regression model is
considered for an application, we can usually not be certain in advance
that the model 1s appropriate for that application. Anyone, or several, of
the features of the model (conditions), such as linearity of the regression
function or normality of the error terms, may not be appropriate for the
particular data at hand. Hence, it is important to examine the aptness of
the model for the data before inferences based on that model are
undertaken. In this part, we discuss some simple graphic methods for
studying the appropriateness of a model.

We also consider some remedial techniques that can be helpful

when the data are not in accordance with the conditions of regression

model. One of these techniques is the transformations.

Transformations for Nonlinear Relation Only

We first consider transformations for linearizing a nonlinear regression
relation when the distribution of the error terms is reasonably close to a
normal distribution and the error terms have approximately constant
variance. In this situation, transformations on X should

be attempted. The reason why transformations on Y may not be desirable

here is that a transformation on Y, such as Y'=,/y , may materially change

the shape of the distribution
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of the -error terms from the normal distribution and may also lead to
substantially differing

error term variances.

The following Figure contains some prototype nonlinear regression
relations with constant error variance and also presents some simple
transformations on X that may be helpful to linearize the regression
relationship without affecting the distributions of Y. Several alternative
transformations may be tried. Scatter plots and residual plots based on
each transformation should then be prepared and analyzed, to decide

which transformation is most effective

Prototype Regression Pattern Transformations of X

Prototype
Nonlinear
Regression
Patterns with
Constant Error
Variance and
Simple Trans-
formations

of X. (b)

(a)

X=X  X=exp(X)

© X'=1/X  X'=exp(—X)
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Example (page 129)

Data from an experiment on the effect of number of days of training
received (X) on performance (Y) in a battery of simulated sales situations
are presented in the following table, columns 1 and 2, for the 10
participants in the study. A scatter plot of these data is shown. Clearly the
regression relation appears to be curvilinear, so the simple linear

regression model does not be appropriate. Since the variability at the
different X levels appears to be fairly constant, we shall consider a
transformation on X. Based on the prototype plot in (a), we shall consider

initially the- square root transformation

X'= \/X_ The transformed values are shown below:
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(1 (2) (3)
Sales Days of Performance
Trainee Training Score

i X; Y; X =~/X;
1 5 42.5 70711
2 5 50.6 70711
3 1.0 68:5 1.00000
4 1.0 80.7 1.00000
S5 1.5 89.0 1.22474
6. 1.5 99.6 1.22474
7 2.0 105.3 1.41421
8 2.0 1118 1.41421
9 2.5 112.3 1.58114

10 2.5 125.7 1.58114

To examine further whether the simple linear regression model (2.1) is
appropriate now, we fit it to the transformed X data. The regression
calculations with the transformed X data are carried out in the usual
fashion, except that the predictor variable now i1s X'. We obtain the

following fitted regression function:

Y =-10.33 + 83.45X’

Form this model, we see that
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1- No strong indications of substantial departures from normality are
indicated by this plot.

2- The coefficient of correlation between the ordered residuals and
their expected values under normality, .979. is substantially larger
and supports the reasonableness of normal error terms. Thus, the
new simple linear regression model appears to be appropriate here

for the transformed data.

The fitted regression function in the original units of X can easily be

obtained, if desired:

Y =-10.33 + 83.4S VX
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Residual

Scatter Plots and Residual Plots—Sales Training Example.

(a) Scatter Plot
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(b) Scatter Plot against VX
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Diagnostics and
Remedial Measures: Continue.

Recall:

In the simple linear regression model:

Y, =8, +0 X, +&,1=12,..,n

E(s)=0Var(s)=0" and Cov(s,s;)=0forall i #j.
Then

EY,)=4+AX, ad Var(f,)=c’

The point estimates of 3,3 are

. > (X, =X ), )

:Blzbl:iZI n . :zxy’ 30:b0:Y__b1X_
IZ::I(X | - X ) XX

R n (X, -X) ~ g 1 -
ﬂlzblzz KiYi’ Ki: n ,,Bo: L|Y|9 L|:——X Ki

i=1 (Xi —)(_)2 i-1 n

i=1
i |
A o 1 X2
Va(B)= , Var(B)=c*| :
7\2 n 7 \2

Z(Xi _X) Z(X| _X)J
The unbiased estimate of & 1s
S?=MSE =0’ =22F  SSE=Ye2, e =Y, Vi, i =12,..

n-— =1
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When a regression model, such as the simple linear regression model is
considered for an application, we can usually not be certain in advance
that the model 1s appropriate for that application. Anyone, or several, of
the features of the model (conditions), such as linearity of the regression
function or normality of the error terms, may not be appropriate for the
particular data at hand. Hence, it is important to examine the aptness of
the model for the data before inferences based on that model are
undertaken. In this part, we discuss some simple graphic methods for
studying the appropriateness of a model.

We also consider some remedial techniques that can be helpful

when the data are not in accordance with the conditions of regression

model. One of these techniques is the transformations.

Transformations for Nonnormality and Unequal Error Variances

Unequal error variances and nonmorality of the error terms frequently
appear together. To remedy these departures from the simple linear
regression model, we need a transformation on Y, since the shapes and
spreads of the distributions of Y need to be changed. Such a
transformation on Y may also at the same time help to linearize a
curvilinear regression relation. At other times, a simultaneous
transformation on X may be needed to

obtain or maintain a linear regression relation.
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Frequently, the nonmorality and unequal variances departures from
regression model take the form of increasing skewness and increasing
variability of the distributions of the error terms as the mean response E
{Y} increases. For example, in a regression of yearly household
expenditures for vacations (Y) on household income (X), there will

tend to be more variation and greater positive skewness (1.e., some very
high yearly vacation expenditures) for high-income households than for
low-income households, who tend to consistently spend much less for
vacations.

The figure below also presents some simple transformations on Y that
may be helpful for these cases. Several alternative transformations on Y
may be tried, as well as some simultaneous transformations on X. Scatter
plots and residual plots should be prepared to determine the

most effective transformation(s).
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Prototype Regression Pattern

@ (b) ©,
Transformations on Y
Y =Y
Y =log Y
Y'=1/Y

Example (page 132)

Data on age (X) and plasma level of a polyamine (Y) for a portion of the
25 healthy children in a study are presented in columns 1 and 2 of Table
3.8. These data are plotted in Figure 3.16a as a scatter plot. Note the
distinct curvilinear regression relationship, as well

as the greater variability for younger children than for older ones.
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(M (2) (3
Child Age Plasma Level o _

i X; Y; Y! =liog,, Y;

1 0 (newbom) 13.44 1.1284

2 0 (newborn) 12.84 1.1086

3 0 (newborn) 11.91 1.0759

4 0 (newborn) 20.09 1.3030

5 0 (newbom) 15.60 1.1931

6 1.0 10.11 1.0048

7 1.0 11.38 1.0561
19 3.0 6.90 8388
20 3.0 6.77 8306
21 4.0 4.86 6866
22 4.0 5.10 7076
23 4.0 5.67 7536
24 4.0 5.75 7597
25 . 4.0 6.23 7945

On the basis of the prototype regression pattern in Figure 3.15b, we shall
first try the logarithmic transformation Y'=1ogl10(Y). The transformed Y
values are shown in column 3 of Table 3.8. Figure 3.16b contains the
scatter plot with this transformation. Note that the transformation not only
has led to a reasonably linear regression relation, but the variability at the
different levels of X also has become reasonably constant. To further

examine the reasonableness of the transformation Y' = loglO( Y), we

fitted the
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simple linear regression model (2.1) to the transformed Y data and

obtained:

Y'=1.135-.1023X

A plot of the residuals against X is shown in Figure 3.16¢, and a normal
probability plot of the residuals is shown in Figure 3.16d. The coefficient
of correlation between the ordered residuals and their expected values
under normality is .981. For a = .05, Table B.6 indicates that the critical
value 1s .959 so that the observed coefficient supports the assumption of
normality of the error terms. All of this evidence supports the

appropriateness of regression model (2.1) for the transformed Y data.
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F- Test for Lack of Fit

In this part, we take up a formal test for determining whether a

specific type of regression function adequately fits the data.
We illustrate this test for ascertaining whether a linear

regression function is a good fit for the data under some

assumptions.

Assumptions

The lack of fit test assumes that the observations Y for given X
are:

(1) independent of errors

(2) the error is normally distributed

(3) The distributions of Y~have the same variance ¢

The lack of fit test requires repeat, observations at one or more
X levels. These data can be obtained as:
1- In non-experimental data, these may occur by chance, as

when in a productivity study relating workers' output and
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age, several workers of the same age happen to be
included in the study.

2- In an experiment, one can assure by design that there are
repeat observations. Repeat trials for the same level of the
predictor variable, of the type described, are called
replications. The resulting observations are called

replicates.

Example [see text book page.120]

In an experiment involving 12 similar but scattered suburban branch
offices of a commercial bank, holders of checking accounts at the offices
were offered gifts for setting up money market accounts. Minimum initial
deposits in the new money market account were specified to qualify for
the gift. The value of the gift was directly proportional to the specified

minimum deposit. Various levels of minimum deposit and related gift
values were used in the experiment in order to ascertain the relation
between the specified minimum deposit and gift value, on the one hand,
and number of accounts opened at the office, on the other. Altogether, six
levels of minimum deposit and proportional gift value were used, with
two of the branch offices assigned at random to each level. One branch
office had a fire during the period and was dropped from the study. The

data are given below:
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Size of Size of
Minimum Number Minimum Number
Deposit of New Deposit of New
Branch (dollars) Accounts Branch (dollars) Accounts
i X; Y: i Xi Y;
1 125 160 7 75 42
2 100 112 8 175 124
3 200 124 9 125 150
4 75 28 10 200 104
5 150 152 11 100 136
6 175 156

The simple regression model is estimated as

Y =50.72251 + 0.48670X

R-results

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.7225 39.3979  1.287 0.23
X 0.4867 0.2747  1.772 0.11

Residual standard error: 40.47 on 9 degrees of freedom
Multiple R-squared: 0.2586, Adjusted R-squared: 0.1762
F-statistic: 3.139 on 1 and 9 DF, p-value: 0.1102

> summary(aov(model))

Df Sum Sq Mean Sq F value Pr(>F)
X 1 5141 5141 3.139 0.11
Residuals 9 14742 1638
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A scatter plot, together with the fitted regression line, and the other
results indications that a linear regression function is inappropriate. Here

we can us the for Lack of Fit  to test this.

F-Test for lake of fit

Let the simple regression model (the reduced model) in the from

Yy, =8 +8X, +&,1 =1...,n,

While the true model (Full model) in the form

Y. =4 +&,1 =1...,n,

Yi =4 +&,i =L...,n= the true model and 4 might not be
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By + BX.
Now if the used model is not the true model (44 # B + BX; ), then

¥, =b, +b,X; based on the simple linear regression model cannot be an

accurate predicted. value of U;.

Thus, & =Y, —Y; =4 —b,—bXx, +& =s, #.¢ .

Then, the mean residual sum of squares

i(yi_yi)z isf igiz

n—2 :n—2 n—2

. . . 2
Is no longer a sensible estimate of o”.

To resolve this problem, we could try to obtain repeat observations with
respect to the same covariate. Let

Yi11 Y125+-4s ¥Y1in, = n, repeated observation at x;;

Yo11Y221--43 Y20, = n, repeated observation at x,;

ycl,ycz,-..,ycnc = n, repeated observation at x_;

C
Note: an =n
j=1

In view of the repeated observation the full model can be
formatted as:
Vi =H; +&
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where:

; are parameters j = 1,..., ¢
&;; are independent N (0, 0%)

Since the error terms have expectation zero, it follows that:

E{Y;j} = u,

Thus, the parameter ¢; (j = 1, ..., c) is the mean response when X = X ;.

To fit the full model to the data, we require the least squares or maximum

likelihood estimators for the parameters x; . It can be shown that these

estimators of 4, are simply the sample means Y as follows

n C nJ c

Q:Zj: Zgi?=2 2 Vy—m)

i=1 j=1 i=1 j=1

0 n; n;
EQ 203_22 (Yij _ﬂj):O — N K; :; (Yij)
j 1= i=

1 < —
H :_Z (Yij):Yj

n j i=1
Thus, the estimated expected value for observation Y;; is I_’j, and the error sum of squares
for the full model thercfore is:

SSE(F)=) > (¥;~ ¥’ = SSPE
i i

In the context of the test for lack of fit, the full model error sum of squates is called
the pure error sum of squares and is denoted by SSPE.
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Note that SSPE is made up of the sums of équared deviations at each X level. At level
X = X, this sum of squared deviations is:

Z(Yi;‘ - ¥))?

I

The degrees of freedom of the SSPE is
dfr=> (nj—1)=)» nj—c=n—c
J J

The reduced model

The general linear test approach next requires consideration of the reduced model under
H,. For testing the appropriateness of a linear regression relation, the alternatives are:

Ho: E{Y} = fo + Bi X
H,: E{Y) # fo + i X

Thus, Hy postulates that 1. in the full model is linearly related to X ;:
mi=PBo+ B X;

The reduced model under H, therefore is:

Yij=Po+ PiX;+ ey Reduced model

Hence, the error sum of squares for the reduced model is the usual error sum of squares SSE:
SSE(RY =Y | [¥i; — (bo + by X))

We also know that the degrees of freedom associated with SSE(R) are:
dfg =n—2
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Test Statistic ’

The general linear test statistic
_ SSE(R) — SSE(F) . SSE(F)
- dfi—df dfr -

F*

here becomes:
. SSE — SSPE ~ SSPE
T m—D—(m—¢) n-—c

The ditference between the two error sums of squares is called the lack of fit sum of squares
here and is denoted by SSLF:

SSLF = SSE — SSPE
We can then express the test statistic as follows:

SSL PE
oo _ SSLE S8

c—2 n—c
_ MSLF
~ MSPE
where MSLF denotes the lack of fir mean square and MSPE denotes the pure error mean
square.

We know that large values of F* lead to conclusion H, inthe general linear test. Decision
rule

If F* < F(1 - o;¢ —2,n — c), conclude Hy
If F*> F(l —a;¢—2,n —c),conclude H,

Then, we summarize the test steps as follows:

Let the given data as follows
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Y 11 Y 21 Y cl
Y 12 Y 22 Y c2
Y in, Y 2n, Y cn,
Y, Y, Y

From the data we calculate the following quantities

Yj—Yy =Y;—Y;, + ¥~
S — —— N————’

Frror Pure error Lack of fit
deviation deviation deviation
hence
PP IR MDD IR OIS I RS
SSE = SSPE 4 SSLF

i}ij — bg—f—bIXj

JZZM

_ 4is — 14 : N
n n; s j=1

we can define the lack of fit sum of squares directly as follows:

Since all ¥;; observations at the level X ; have the same fitted value, which we can denote
by ¥;, we can express

SSLF = "n;(¥; — ¥y’

I
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Step 1:

H,:E (yji ):ﬂ0+ﬁlxj vs HE (yji )¢ﬁ0+ﬂlxj
Step 2:

Calculate the test statistic F from the ANOVA table

Step 3:

Calculate the critical region F(1-a, ¢-2, n-c), where c-2 and

n-c are the degrees of freedom (from AONVA table)

Step 4:

Decision:

We know that large values of F* lead to conclusion H, inthe general linear test. Decision
rule

If F* < F(1 - o;¢ —2,n — c), conclude Hy
If F*> F(l —a;¢—2,n —c),conclude H,

All what we need now is to construct the ANOVA Table as follows:
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The ANOVA table
Source of . :
Variation 5s df MS
) s o SSR
Regression SSR= ZE(Y,-; - ¥ 1 MSR = T
Error SSE= S~ Pip2 n—2  MSE= -’-7-5-'%
. i} 2 SSLF
Lack of fit SSLF = SO S(F; — P4y c-2  MSLF= "=
. SP,
Pureemror  SSPE=S SV, —V;)2  n—c  MSPE= %‘%
Total SSTO'=S " S°(Y;; — V)2 n—1

Example [see text book page.120]

In this example, we see

Size of Minimurm Deposit (dollars) B

j=1 j=2  j=3 j=4 j=5 j=6
Replicate X; =75 X;=100 X3=125 X;=150 X5=175 X;=200

i=1 28 12 160 152 156 124
i=2 42 136 150 124 104
+ Mean ¥; 35 124 155 152 140 114

These sums of squares are then added over all of the X levels

G=1,..,0).

For the bank example, we have:
SSPE == (28 - 35)2 + (42 — 35)? + (112 - 124)2 + (136 - 124)2
+ (160 - 155)2+ (150 - 155)2 + (152 - 152)2 + (156 - 140)2
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+ (124 - 140)2+ (124 - 114)2 + (104 - 114)2
= 1148
dfi=n-c=11-6=5

SSE (R)=SSE =147416, df,=n—2=9

SSLF=SSE-SSPE=14741.6 — 1148=13593.6

Then ANOVA Table is

Source df SS MS F
SSR 1 5141 5141 F1=5141/1637.956=3.138668
SSE n-2=9 14741.6 1637.956
Lack of fit | c-2=6-4=4 13593.6 3398.4 F'=3398.4/229.6=14.80139
Pure error | n-c=11-6=5 1148 229.6
SSTOT 10 19882.6
(b) Bank Example -
Source of '
Variation 55 df MS
Regression 5,141.3 1 15,1413
Error 14,741.6 9 7-1,638.0
Lack of fit 13,593.6 4 3,398.4
Pure error 1,148.0 5 229.6
Total 19,882.9 10

If the level of significance is to be a = .01, we require F(.99;4,5) = 11.4.
Since

F* =MSLF/MSPE=13593.6/1148=14.80 > 11.4, we conclude HO, that
the regression function is not linear.

This, of course, accords with our visual impression from scatter plot. The
P-value for the test is .006 = reject = simple linear model is not good fit
for the given data.
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install.packages(**olsrr')

library(olsrr)
x=c(125,100,200,75,150,175,75,175,125,200,100)
y=c(160,112,124,28,152,156,42,124,150,104,136)
fit=Im(y~x)

ols_pure_error_anova(fit)

> librarv{olscr)

x=C |__¢,_;C,22& 75,150,175, 75,175,125,200,100)
: c{160,112,124,29,152,156,42,124,150,104,136)
> f t=1lm(v~x)
> ols _pure error_anova (fit)
Lack of Fit F Test

Response : ¥
Predictor: b4
Analysis of Variance Takle
DF Sum Sg Mean S5g F Value Pr (>F)
4 1 5141.338 5141.338 22.382589 0.001070765S
Residual ] 14741.57 1637.952
Lack of fit 4 13593.57 33598.393 14.80136 0.005593812
Pure Error 5 1148.00 229.60
m
— A\ 2
an(yj o yJ)
(RSS(model 2)— RSS(model m))/ =L
F = m-—2 _ m-—2
RSS(model m)/ m 0
n- 2. 2. (=Y
j=1 i=1
n—m

In general, we use the following procedure to fit simple regression
model when the data contain repeated observations.

1. Fit the model, write down the usual analysis of variance table. Do

not perform an F-test for regression (H,: 3, =0).

2. Perform the F-test for lack of fit. There are two possibilities.
(a) If significant lack of fit, stop the analysis of the model fitting
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and seek ways to improve the model by examining residuals.

(b)If lack of fit test is not significant, carry out an F-test for
regression, obtain confidence interval and so on. The residuals
should still be plotted and examined for peculiarities.

X Y
90 81,83
79 75
66 68,60,62
51 60,64
35 51,53

10 10 10 10 10
D X, =629,> "y, =657,> x7 =43161 >y = 44249 x,y, = 43189.

i=1 i=1 i=1 i=1 i=1

Thus, total sum of squares:

10 10
Dy, —Y)? =D yf —10y? = 44249-10(65.7)* =1084.1,
i=1 i=1

10
X.y. —10Xy
Sy 2. %Y, ~10%y | 43189-10%62.9%65.7

=L = - -~ =051814
S 3 X2 ~10%° 43161-10*(62.9)
i=1

=b =

= regressionsum of squares = b/S,, =965.65636
= residual sum of squares (reduced model) =1084.1—956.66 =118.44

Pure error sum of squares:

X
90: Y, = 81;83 =82,i(\(li ~Y,)? = (81-82)% + (83-82)% = 2.
=
79: (75-75)° =0
A w - 63.33,2(\/3i Y,)? = (68— 63.33)? + (60— 63.33)?
+ (62— 63.33)2 = 34.67
51: ¥, = 00704 _ 65 (v, —V,)? = (60-62)7 + (64-62)° =8,

2 =)
2
35: Y, = 51;53 =52, (Y, —Y;)? = (51-52)% + (53-52)* =2

i=1

Then, pure error sum of squares=2+0+34.67+8+2=46.67
Lack of fit sum of squares=118.44-46.67=71.77
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Source df SS MS
Regression 1 965.66 965.66
Lack of fit 3 71.77 23.92
Pure error 5 46.67 9.33

Total 9 1084.1
=F= @

533 = 290 fasoes =541

= Not significant!! That is, the simple linear regression is adequate. The standard
F-test for regression can be carried out.
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Matrix Approach to Simple
Linear Regression Analysis

Recall:

In the simple linear regression model:
Y, =6, +8X,+¢,1=12,..,n
E(g)=0Var(s)=0" and Cov(s,s;)=0forall i #j.

Then

EY,)=4+AX, ad Var(f,)=c’

The point estimates of 3,3 are

. > (X, =X ), )

:Blzbl:iZI n :Sxy’ 30:b0 :Y__blx_
> (x-x)
“ n (X, -X) ~ Q@ 1 -
ﬂlzblzz KiYi’ KI B > ﬂO:Z I‘|Y|9 LI =——X KI
i=1 (Xi —)(_)2 i-1 n
=l
~ 2
Va(B)=—— Va(p)= —rlla AN
D X=Xy > XXy
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Basic Definitions of the matrices and operations

The matrix A of with r rows and ¢ columns will be represented either in

full

an a2 - ;o e ac |
az) Gz ~--- Qzj -+ A4y
A — . :
an a2 a;; dic
| a1 Gyz2 - Gy - e |

or in abbreviated form: ,
A = [a;] i=1,...,r;j=1,...,¢

or simply by a boldface symbol, such as A.

Transpose

The transpose of a matrix A is another matrix, denoted by A’, that is obtained by inter-
changing corresponding columns and rows of the matrix A.
For example, if:

then the transpose A’ is:

L [2 73
2&3_[5 10 4:'
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Equality of Matrices

Two matrices A and B are said to be equal if they have the same dimension and if all
corresponding elements are equal. Conversely, if two matrices are equal, their corresponding
elements are equal. For example, if:

ay 4
3x1 as 3x1 3

then A = B implies:

Similarly, if:
ap; ap 17 2
A= ay axn = |14 5
3x2 as as 3x2 13 9

then A = B implies:

ay) = 17 ay; = 2
dy = 14 yy = 5
a3 = 13 sy = 9

Regression Examples

In regression analysis, one basic matrix is the vector Y, consisting of the n observations on
the response variable:

Y,
Y,
Y=1|"-
axl :
Y,
Note that the transpose Y’ is the row vector:
Y =0t % o K

Another basic matrix in regression analysis is the X matrix, which is defined as follows for
simple linear regression analysis:
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Another basic matrix in regression analysis is the X matrix, which is defined as follows for
simple linear regression analysis:

1 X,
1 X3
X =
nx2 - N
1 Xy

The matrix X consists of a column of 1s and a column containing the n observations on the
predictor variable X . Note that the transpose of X is:

, 1 o1 1
x=l% % xl

The X matrix is often referred to as the design matrix.

Matrix Addition and Subtraction

Adding or subtracting two matrices requires that they have the same dimension. The sum,
or difference, of two matrices is another matrix whose elements each consist of the sum, or
difference, of the corresponding elements of the two matrices. Suppose:

1 4 1 2
3x2 3 6 Ix2 3 4
then:
14+1 442 2 6
A+B=|24+2 5+3| =14 8
A2 3+3 6+4 6 10
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Similady:
1—1 4-2 0 2
A-B=|[2-2 5-3| =10 2
Ax2 3-3 6-—4 0 2

in general, if:

Az[alj] B:[b!f} i=1$'-'ar;j=]-!"'9C

rxce I'Xc
then:
rxe 'Xc
Formula generalizes in an obvious way 1o addition and subtraction of more than two
matrices. Note also that A + B = B + A, as in ordinary algebra. L

Regression Examples

The regression model:
YI=E{Y1}+8r i=1,....n

can be written compactly in matrix notation. First, let us define the vector of the mean
responses:

EY}
E{Y,}
E(Y} =

nxl

E{Y,}

and the vector of the error terms:
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Recalling the definition of the observations vector Y , We can write the regression
model as follows:

Y =E(V]+ ¢

nxl nxl1
because: ;
17T [EW) £ E{N) +¢
Y, E{Ya} &1 E{Ya) + &2
. = . + -1 = .
Y, E{Y,} En E{Y,} + &y

Thus, the observations vector Y equals the sum of two vectors, a vector containing the
expected values and another containing the error terms.

Multiplication of a Matrix by a Scalar

A scalar is an ordinary number or a symbol representing a number. In multiplication of a
matrix by a scalar, every element of the matrix is multiplied by the scalar. For example,

suppose the matrix A is given by:
27
A= [9 3]

Then 4A, where 4 is the scalar, equals:

271 8 28
4A—4[9 3}:[36 12]

Similarly, kA equals:

2 1 [
kA_k[sv 3}_“[% Bk]

where k denotes a scalar.
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Matrix multiplications

Here is example of matrix multiplication:
- by b
a [#4 [ 47
AB = all alZ alB] b21 b22
| 21 22 23 b3| b32

_ [anby, +apby + aisbsy  anbip +apbn + aISZ;:'
| a21biy + anbay + asbsr  azbyy + anbn + anbyn

In general, if A has dimension r x ¢ and B has dimension ¢ X s, the product AB is a matrix
of dimension r x s whose element in the ith row and-jth column is:

50 that:

Thus, in the foregoing example, the element in the first row and second column of the
product AB is:

3
E aybiy = anbiy + apbn + azbs;
k=1

as indeed we found by taking the cross products of the elements in the first row of A and
second column of B and summing.
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Regression Examples

A product frequently needed is Y'Y, where Y is the vector of observations on the response
variable as defined in

Y
YY=[¥, ¥, - Y1|.|=[+P++7] =3 ¥

Ix1 :
Y,
Note that Y'Y is a 1 x 1 matrix, or a scalar. We thus have a compact way of writing a sum

of squared terms: Y'Y = 3_ Y72
We also will need XX, which is a 2 x 2 matrix, 1

1 X
X'X — 1 1 SRR | 1 XZ _ n EXI
22 | Xy X2 --- X, 1: T x Tx?
1 X,
and XY, which is a 2 X 1 matrix:
| €
Y :
xy= |1 1 L2 [ 2=
2x1 X, X2 X, : S XY,
Y.
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Identity Matrix. The identity matrix or unit matrix is denoted by I. Itis a diagonal matrix
whose elements on the main diagonal are all 1s. Premultiplying or postmultilying any r x r
matrix A by the r x r identity matrix I leaves A unchanged. For example:

1 00 ay dyiz a3 aygy app O3
IA=10 1 0 |an axn as|=|an ax axn
0 0 1 a3 dzz da3 ds; O3z daz

Similarly, we have:

a) iz a3 1
Al= |ay apn an| |0
a3y dizz d3sz 0 0

0 a) djiz a4
0l =|an ax ans
1

ds dsp dsz

Note that the identity matrix I therefore corresponds to the number 1 in ordinary algebra,
since we have there that1 - x = x -1 = x.
In general, we have for any r x r matrix A:

Al=JA=A

Vector and Matrix with All Elements Unity

A column vector with all elements 1 will be denoted by 1:

1
1
1 - :
rxl .
—1_

1 --- 1
1=
1 1
For instance, we have:
1 1 1 1
1 = J=1111
ix1 Ix3 1 1 1

Note that for an n x 1 vector T we obtain:
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Zero Vector

1
11=[1 - || =Mml=n
1
and:
1 1 1
l l I nxxn

A Zero vector is a vector containing only zeros. The zero column vector will be denoted
by 0: -

0

, 0
0=|.

- rxl .
Q

Finding the Inverse

Up to this point, the inverse of a matrix A has been given, and we have only checked to
make sure it is the inverse by seeing whether or not A~'A = I. But how does one find the
inverse, and when does it exist?

Aninverse of a square r x r matrix exists if the rank of the matrix is r. Such a matrix is
said to be nonsingular or of full rank. An r X r matrix with rink less than r is said to be
singular or not of full rank, and does not have an inverse. The inverse of an ¥ X r matrix of
full rank also has rank r.

Finding the inverse of a matrix can often require a large amount of computing. We ghall
take the approach in this book that the inverse of a 2 x 2 matrix and a 3 x 3 matrix can
be calcnlated by hand. For any larger matrix, one ordinarily uses a computer to find the
inverse, unless the matrix is of a special form such as a diagonal matrix. It can be shown
that the inverses for 2 x 2 and 3 x 3 matrices are as follows:

1. If:
a b
= [C d]
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then:
d —b
Al — a b —l_ D D
2  |le d = @
D D
where:
D =ad —bc

D is called the determinant of the matrix A. If A were singular, its determinant would equal

zer0 and no inverse of A would exist.

2. If
a b c¢
B=|d ¢ f
3x3 g }’l k
then
a b ]! A B C
B'=|d ¢ f| =|D E F
33 g h k G H K
Example
, 2 4
SE
We have:
a=2 b=4
o C=3 d=l
D=ad —bc=2(1)—-43)=-10
Hence:
-1 4 "
Al |10 —10 -1 4
—3 2 3 -2
L —10 -=10._
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Regression Example

The principal inverse matrix encountered in regression analysis is the inverse of the matrix

X'X
I’l- X,'
XX = 2
22 ¥ X XX

Using rule , We have: -
a=n b=>3X; ,
e=2X d=3X; .
S0 that: .
D=n x2- (Z X;) (ZX) —n [ZX} - (Ef‘)z] =S (X, — %)’
Hence:

> X7 -2 X ]

(X’X)_l — n Z(Xf —_ )_()2 n Z(X,' - }_()2
2x2 -3 X; n

| n 33X — X)2 nd (X, — X)? |

Since Y~ X; = nX and }_(X; — X)? = " X? — nX?, we can simplify

-l N 72 _% i}
)2 )
I 2(Xi—X)? YAXi—X)
()2(3-:2) —}_f 1
(X — X)? > (X — X)? |
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Some Basic Results for Matrices

We list here, without proof, some basic results for matrices which we will utilize in later

work.
A+B=B+A
A+B)+C=A+B+0O
(ABYC = A(BC)
C(A+B)=CA+CB
7 k(A +B) = kA + kB
(AY =A
A+BY =A"+PB
(ABY = B'A’

(ABC) = C'B'A’
(AB)—I =B 'A!
(ABC)™! = CIBlA™!
A HT=A
AY =AY

Random Vectors and Matrices

Expectation of Random Vector or Matrix

Suppose we have = 3 observations in the observations vector Y-

4]
Y=|Y
Ixl Y3 -

The expected value of Y is a vector, denoted by E{Y}], that is defined as follows:

E{Y,}
E(Y} = | E{Y3)
3x1 E{Yg]
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Regression Example

Suppose the number of cases in a regression application is n = 3. The three error terms g,
&2, &3 each have expectation zero. For the error terms vector:

ol

£
E = | & |
3x1
£3
we have:
E{e}= 0
3x] 3x1
since:
E[Sl} 0
E[Sz} =10
Eles} 0

Variance-Covariance Matrix of Random Vector

If we have p random variables we can put them into a random vector as

Y :[Yl,...,Yn]', then

O, Oy Oip
O, Oy ... O,

Var(Y )=| . . P, where
Oy Oy oo O

o; =05 =cov(Y,Y;) and o =var(f,).
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Regression Example

o, 0 0

0O o, ... 0
Var(e)=| . . 0 . |=o

0 O o

Some Basic Results

Frequently, we shall encounter a random vector W that is obtained by premultiplying the
random vector Y by a constant matrix A (a matrix whose elements are fixed):

W =AY
Some basic results for this case are:

E{A}]=A
E{W} = E{AY} = AE{Y}

Var (AW )= A variV )A".

111



Dr. Khalaf Sultan Regression Analysis (Stat 332)

Simple Linear Regression Model in Matrix Terms

We are now ready to develop simple linear regression in matrix terms. Remember again that
we will not present any new results, but shall only state in matrix terms the results obtained
earlier. We begin with the normal error regression model

Y=6+6X:+¢& i=1,....n

This implies:
Y1 = Bo+ Bi X1 + &
Yo=P0o+ B X2+ &2

-
L]

Yn =ﬁ0+ﬁ1Xn+8n

Let us repeat these definitions and also define the £ vector of the

regression

Y] (1 X 4417

Y; 1 X, Bo &9

= . = . . == e = .

n¥l : n}x{2 : : ZEI [ﬁ]] nxl :
| Y, |1 X, | . | €5 _
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Then

since:

and the conditions are

Then

Y=X B+e

nxl

1 X,
1 Xz l

1 X,

[ Bo+ i X\
fo + Br X2

L Bo + i X,

0

E(e)=|: |=0

0

nx? 2x1 nxl

&)
€3
|+
&
£ Bo+ B X, + &
£ Bo+ 6 X2+ &2
+ | .| = .
Ep ﬁ(}"‘ﬁan""En

and var(e)=o"l

EY)=X /4 and Var{ )=o’l
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Matrix Approach to Simple
Linear Regression Analysis

Least squared estimation

The simple linear regression model and be formed in the matrix form as

Y =X B+¢&, E(¢)=0Var(e)=0o"l,

where

Y, 1 X,
Y2 1 X2 ﬁo
= . = . . = E =
n}:l : n)x{? N : QEI ﬁ]] nxl
Y, 1 X,

Now, we apply the least squared method t

o find the estimation of the vector £ as follows:

Q=Ye =e'e=( XAV ~X )
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Expanding, we obtain:
0=YY-BXY~-YXB+pXXp

since (XB) = B'X’ Note now that Y'X$ is 1 x 1, hence is equal to its transpose,
is f’X’Y. Thus, we find:

0=YY-2pXY +pXXB

To find the value of B that minimizes Q, we differentiate with respect to 8 and B;. Let:

g
P 36
E(Q) = 20
Gile
Then it follows that: ;
a -1 I

Equating to the zero vector, we get

b.] | 8] -~
b=| °|= % =B=(X"'X)'XY
b1 _131_

where
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X7 -3 X

xx = | " >(Xi — X)) nYy.(X;— X)?
2x2 — > X n

L nY (Xi = X)? nd(X;—X)?_

Y,
Y. :
XY — 1 1 1 2| _ >.Y
2x1 Xl Xg Xn . EX,Y;
LT,
Example

We shall use matrix methods to obtain the estimated regression
coefficients for the Toluca Company example. The data On the Y and X
Variables. Using these data, we define the Y observations vector and the

X matrix as follows:
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3007 1 80
121 1 30
Y=| . X=1. .
| 323 | 1 70|

We now require the following matrix products:

1 807
wx_ |1 1 1]t 0 125 1750
~ 18 30 --- 70| | [T |1750 142300
1 70

we find the inverse of X'X:

ot [ 287475 —.003535
XX) —[_.003535 00005051

In subsequent matrix calculations utilizing this inverse matrix and other matrix results, we

shall actually utilize more digits for the matrix elements than are shown.

_ bo _ } —1 92 _ .287475 —.003535 7,807
b= [b;] = XX) XY= [—.003535 00005051 | | 617,180

_162.37

| 3.5702
or bg=62.37 and b, =3.5702. These results agree with the ones in Chapter 1. An%f differ-
ences would have been due to rounding effects.
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One can use R code direct to get the estimates as:

mat <- scan('a.txt")

mat <- matrix(mat, ncol = 2, byrow = TRUE)
mat[,1]

mat[,2]

length(mat[,1])

one=as.vector(rep(1, 25))
x=cbind(one,mat[,1])

y=mat[,2]
b=solve(t(x)%*%x)%*%t(x)%*%y

b
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Recall:

The simple linear regression model and be formed in the matrix form as

Y =X f+eg,
E(e)=0,Var(s)=0c’l,
EY )=Xp, Var{y )=oc’l,

where
Y, 1X,
Ys 1 X, By
= = | . = E
n¥l n§2 : zgl ﬁl] nxl|
¥, 1 X
= =

b=| =" [=p=(X"X)'X VY

The Fitted Values and Residuals
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Let the vector of the fitted values ¥; be denoted by Y:

_i‘-’-,l._
.| P
Y =
nxl .
In matrix notation, we then have:
Y=Xb
nxl nx?2 2x1
because:
-Fl— -1 Xl-l -bO"I_lel-l
Ys 1 X2 bO‘ bo‘l'lez
_f’n_ _l X, | _b0+le,,_
Example

For the Toluca Company example, we obtain the vector of fitted values using the matrices

1 80 347.98
) 1 30| [en37 169.47
Y=Xb=1. - [3.5702}=

1 70 312,28

It can be easily calculated using R as: fits=x%*%b
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Hat Matrix. We can express the matrix result for ¥

¥ =XX'X)"'X'y
or, equivalently:
= By
where:
H = XX'X)™'X

nXAn

The matrix H is symmetric and has the special property (called

idempotency):

In general, a matrix M is said to be idempotent if MM = M.
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Residuals

Let the vector of the residvals ¢; = ¥; — ¥; be denoted by e:

€
€7

nxl

In matrix notation, we then have:

For the Toluca Company example, we obtain the vector of the residuals by using the results

399 347.98 51.02

121 169.47 —48.47
e = . —_ . = .

323 312.28 10.72

It can be easily calculated using R as: Res= y-fits

Variance-Covariance Matrix of Residuals. The residuals ¢;, like the fitted values ¥;,
can be expressed as linear combinations of the response variable observations ¥;, using the
result forY:

e=Y-Y=Y-HY=(1-HY
We thus have the important result:

e =1-H Y

nxl1 nXn nxn nxl
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Vare)=Var((l —H)Y )= —H)var(Y )(I —H)
=(I =H)a’I (I —H)'
=o’(I —H)I (1 —=H)'
=o’(l —-H)=MSE (I —H),

where

MSE =SSE /(n—-2)=e'e /(n —-2).
SSE =e'e.

Analysis of Variance Results

Sums of Squares . )
To see how the sums of squares are expressed in matrix nOtation, we begin with the total sum
of squares SSTO, it will be convenient to use an algebraically equivalent
expression:

i o o1
sst0=% (X -"?=3 y2 - =
i ) ! n
We know from (5.13) that:

YY=) ¥

The subtraction term (3 ¥;)%/n in matrix form uses J, the matrix of Is

2
QY _ (1) YIY

n n
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For instance, if n = 2, we have:

1 1 1]y, (Y1 + ¥o)(¥; + 12)
G | 4] =

Hence, it follows that:

n

1
SSTO =Y'Y — ( ) Y'JY
Justas 3" Y2 is represented by Y'Y in matrix terms, 50 SSE = 3 ¢? = 3(¥; — ¥)? can
be represented as follows:

SSE =¢€e= (Y —Xb)(Y — Xb) = Y'Y - 2bX'Y +-P'X'Xb

hence

SSE=Y Y -b'X Y.

Finally, it can be shown that:

SSR = b'X'Y — (—1—) Y'JY

n

Remark: SSTO=SSE+SSR

Example

For Toluca Company example, find the SSE, SSTO and SSR

399 |
121

YY=([399 121 ... 323] = 2,745,173

323
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7,807

avea A
bX'Y =1[62.37 3.5702] ’617,180

} = 2,690,348

Hence:

SSE =YY —b'X'Y = 2,745,173 — 2,690,348 = 54,825

SSTO =Y Y —l(Y 'JY )=2745173 - 2437970
n

= 307203

SSR=b'X'Y-l(Y 'JY ) =2690348-243790=252378
n

Remark:
SSTO=t(y)%*%y-t(y)%*%J%*%y/25
SSR=t(b)%*%t(x)% *%y-t(y)%*%J%*%y/25

Sums of Squares as Quadratic Forms

"The ANOVA sums of squares can be shown to be quadratic forms. An example of a quadratic
form of the observations ¥; when n = 2 is:

5Y} + 6Y,Y, + 4Y;}
Note that this expression is a second-degree polynomial containing terms involving the

squares of the observations and the cross product. We can express in matrix terms as
follows:

2

24 Yz]‘lg z] [}}:;] = Y'AY

where A is a symmetric matrix.
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In general, a quadratic form is defined as:

YI'A]Y= E E a; YiY; where a;; = aj;
X
i=l j=I

A is a symmetric # X n matrix and is called the matrix of the quadratic form.
The ANOVA sums of squares $570, SSE, and SSR are all quadratic forms, as can be
seen by reexpressing b’X". From (5.71), we know,

b'X' = Xb) =Y
We now use the result in (5.73) to obtain:
b'X' = (HY)
Since H is a symmetric matrix so that H' = H, we finally obtain
b'’X =YH

This result enables us to express the ANOVA sums of squares as follows:

SSTO = Y' ll - (i) J] Y
H

SSE = Y'(1— H)Y

SSR=Y [H— (i—) J] Y

Each of these sums of squares can now be seen to be of the form Y’AY, where the three A

matrices are:
- (1)
n

I-H

u-(2);
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Recall:
The simple linear regression model and be formed in the matrix form as
Y =X fB+e¢,
E(s)=0,Var(e)=0’l,
EY)=Xp, Var(y )=0o"l,
where
Y, 1 X,
Y 1 X,
Yl - ,352: 2x1 - g?] .l
Y, 1 X B
b :{bo}: @’ = B=(X"'X)'X Vv
b, v

Y =Xb=XB=HY, H=X(X'X)'X"

Var@e)=Var((I —=HY )=( —=H)varY )(I =H)
(1 =H)a?1 (I =H)'
—o>(1 =H)I(I =H)'
—o’(1 =H)=MSE(l —H),
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MSE =SSE /(n—-2)=e'e /(n -2).
SSE =e'e
SSE=YY -b'X Y.

SSTO =Y ¥ —L¢v 'Y )
N

SSR=bX'Y- (Y 'Y )
n

SSTO =Y’ ll - (%) J] Y

SSE=Y'I—-H)Y

ssr=v - ()] x

Each of these sums of squares can now be scen to be of the form Y'AY, where the three A

matrices are:
1

n

I-H

n
n

P
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Inferences in Regression Analysis

E(B)=p
Var(f)=MSE (X 'X )

Proof

E(B)=E(X 'X)'X Y =(X 'X)'X '"E(Y)
= (X 'X)"'X 'XB
:|,B
::B-

This show that the Least square estimate of / is an unbiased estimator.
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Var(B)=Var[(X 'X )'X VY ]
= (X "X )X Var(y )[(X 'X)'X T
=(X "X )'X 'S [(X X)X T
=2 (X "X )X X (X X))
= o*(X 'X )l
= o*(X 'X )
=MSE (X 'X )™

This can be written as

Var(B)=MSE (X 'X )=

" o2 o2X? —~Xo?2 ]
R RS YT %
N —Xo? o?
So(X: — X)? So(Xi — X)? |

Or
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Var(f)=MSE (X 'X )™

[ MSE X?MSE —XMSE
n S - R 3K — X)
- —XMSE MSE
L (X — X)? (X — X)? .

Example:

For Toluca Company example by matrix methods, we get

Var(f)=c>(X 'X )

| —.003535  .00005051

_ [685.34 —8.428
~ | —8428  .12040
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Mean Response

To estimate the mean response at X}, let us define the vector:

Xh = [ L ] or th ; [1 Xh]

. Ix2
The fitted value in matrix notation then is:
i}h — X;ib
since:
/ b O O
X,b={1 X] [b(j =[bo+ b Xl =[N ]=1Y,

Note that X b is a 1 x 1 matrix; hence, we can write the final result as a scalar.

Var(Y n)=Var(X ' b)=Var[X ' (X 'X)'X VY ]
=X (X X)X Var(y )[X (X X)X
=X (X X)X G X XX )X
=X (X X)) TXOTX (X X)X
=X (X 'X )X,
=MSE (X " (X "X )"'X,)
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Example

For Toluca Company example, the variance of the mean of the response

when X=65 can be calculated using the matrix form as

Var(Y,)=X "V ar(b)X,

685.34 —8.428 ] [ 1] - 08.37

=1 65][-—8.428 12040 | | 65

Which is the same result as that obtained before.

Prediction of New Observation

Proceeding similarly, we get

Var(y new)=MSE(1+X ' (X 'X)'X,)
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Multiple Linear Regression

In This chapter, we generalized the simple linear regression model as

General Linear Regression Model

In general, the variables X,,..., X p:, in a regression model do not need to represent
different predictor variables, as we shall shortly see. We therefore define the general linear

regression model, with normal error terms, simply in terms of X variables:
YVi=Fo+BiXa+ BoXo+- + 6,1 Xip-1 + &
where:

Bo» P1, - - -, Bp—1 are parameters

X1, - - - Xi,p—1 are known constants
g; are independent N (0, 0?)
i=1,....n

If we let X;o = 1, regression model can be written as follows:
Yi = BoXio + B1Xay + BoXio +--- 4+ Bp-1 Xi p—1 + &7
where X;o = 1, or:
p—
Y=Y BiXu-+e&  where Xip=

k=0 i

K=U

The response function for regression model. is, since E{g;} = 0:

EfY} =B+ X1 +5Xs+ -+ Bp 1 X

This model can be specialized for different cases as follows
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1- Simple linear model when p=2

Y =8, +8X,+¢,

2- Model with some Qualitative Predictor Variables

Y :ﬁo+ﬁ1xl+ﬂzxz+59

This model cab be used in different applications such as:

The first-order regression model then is as follows:

Yi=PBo+ B Xi, + B2 Xin + &
where:

X;) = patient’s age

Xy = 1 if patient female
2710 if patient male

3- Polynomial regression

Polynomial Regression. Polynomial regression models are special cases of the general
linear regression model. They contain squared and higher-order terms of the predictor vari-

able(s), making the response function curvilinear. The following is a polynomial regression
model with one predictor variable: ‘

Y, =Po+ B Xi + B X + 5
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4- Transformed Variables

Transformed Variables. Models withtransformed variables involve complex, curvilinear
response functions, yet still are special cases of the general linear regression model. Consider
the following model with a transformed ¥ variable:

logY;, = Bo+ fiXin + BoXio + B3Xis + &

Here, the response surface is complex, yet model can still be treated as a general
lincar regression model. If we let ¥/ = log ¥;, we can write regressignsmodel

Y = po+ BiXu + HXin+ BiXis + &

which is in the form of general linear regression model The response variable just
happens to be the logarithm of Y.

Many models can be transformed into the general linear regression model. For instance,
the model:

1
Y,‘ =
BotBiXu+ BXin+ &

can be transformed to the general linear regression model by letting ¥ = 1/Y;. We then
have:

Y=Pph+bBXu+bhXnte
5- Interaction Effects

Interaction Effects. When the effects of the predictor variables on the response variable
are not additive, the effect of one predictor variable depends on the levels of the other pre-
dictor variables. The general linear regression model encompasses regression models
with nonadditive or interacting effects. An example of a nonadditive regression moedel with
two predictor variables X, and X5 is the following:

Yi=Po+ B Xa+ BXio+ BXnXn+s

Here, the response function i1s complex because of the interaction term B3 X;; Xy, Yet
regression model is a special case of the general linear regression model. Let X3 =
X1 X2 and then write

Y; = Bo+ Bi1Xo + B2 Xio + B3 Xiz + &;
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6-Combination of Cases

Combination of Cases. A regression model may combine several of the elements we have
just noted and still be treated as a general linear regression model. Consider the following
regression model containing linear and quadratic terms for each of two predictor variables
and an interaction term represented by the cross-product term:

Y = o+ PrXa + B X2 + BaXio + PuX: + BsXu X + &

Let us define:
Zy = Xi Zin = X}, Zn=Xn  Zu=Xp Zis = XnXin
We can then write regression model (6.16) as follows:
Yi =Po+ P12 + BoZiz ¥ B3Zis + PyZis + BsZis + &

General Linear Regression Model in Matrix Terms

To express general linear regression model
Yi=fo+ BiXu+ B Xz +--- +ﬁp71Xi,p7] + &

in matrix terms, we need to define the following matrices:

Y (1 Xy X -0 Xip
Y, 1 Xa Xoo -+ Xop
Y=1. X=1. . . .
nxl : nxp : . .
__K!__ __1 Xﬂl XnZ e Xn,p——l__
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bo } £)

B &

B=1] . e =) .
px1 : nxl

_ﬁp—h En

Note that the Y and e vectors are the same as for simple linear regression. The § vector
contains additional regression parameters, and the X matrix contains a column of 1s as well
as a column of the n observations for each of the p — 1 X variables in the regression model
The row subscript for each element X;; in the X matrix identifies the trial or case, and the
column subscript identifies the X variable.

In matrix terms, the general linear regression model

Y=X B+e

nxl nXp nxp nxl

where:

Y is a vector of responses
B is a vector of parameters
X is a matrix of constants
€ is a vector of independent normal random variables with expectation

E{e} = 0 and variance-covariance matrix:

'0'2 0 P 0-

0 ¢ -« 0 .
o’{e} = : : . =GZI‘

(0 0 .- o?]

Consequently, the random vector Y has expectation:

E(Y) = XB

nxl

and the variance-covariance matrix of Y is the same as that of €:

oY} = o021

nxn
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Estimation of Regression Coefficients

The least squares criterion is generalized as follows for general linear regression
model

Q=" (Yi—Fo~fiXn— - — BpXip)
i=1

The least squares estimators are those values of g, B, . .., Bp—1 that minimize Q. Let us
denote the vector of the least squares estimated regression coefficients by, by, . .., b,_; ashb:

» bo -
b
b =
pxl
]
- pr—l_.

The least squares normal equations for the general linear regression model
- X'Xb=XY g

Hence

b=| | |= = B=(X"X)'X Y

<)
I
>
O
I
>
)
I
T
_<
T
[
>
5%
>
~
>
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The prove 1s similar to the simple linear model in the matrix form.

Example: Multiple Regression with Two Predictor Variables (Dwaine
Studios)

Dwaine Studios, Inc., operates portrait studios in 21 cities of medium size.
These studios specialize in portraits of children. The company is
considering an expansion into other cities of medium size and wishes to
investigate whether sales (Y)- thousands- in a community can be
predicted from the number of persons aged 16 or younger in the
community (X1)- thousands- and the per capita disposable personal
income in the community (X2 )- thousands. Data on these variables for
the most recent year for the 21 cities in which Dwaine Studios is now
operating are shown below:

city X1 X2 Y

1 68.5 16.7 174.4
2 45.2 16.8 164.4
3 91.3 18.2 244.2
4 47.8 16.3 154.6
5 46.9 17.3 181.6
6 66.1 18.2 207.5
7 49.5 15.9 152.8
8 52 17.2 163.2
9 48.9 16.6 145.4
10 38.4 16 137.2
11 87.9 18.3 241.9
12 72.8 171 191.1
13 88.4 17.4 232
14 42.9 15.8 145.3
15 52.5 17.8 161.1
16 85.7 18.4 209.7
17 41.3 16.5 146.4
18 51.7 16.3 144
19 89.6 18.1 232.6
20 82.7 19.1 224.1
21 52.3 16 166.5
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# How to read txt file in R

mat <- scan('DSD.txt")

mat <- matrix(mat, ncol = 3, byrow = TRUE)
X1=mat[,1]

X2=mat[,2]

Y=mat[,3]

n=length(mat[,1])
one=as.vector(rep(1, n))
X=cbind(one,X1,X2)
b=solve(t(X)%*%X)%*%t(X)%*%Y
model=Im(Y~X1+X2)

summary(model)

then we obtain

Y =—689+1.46X 1+9.37X 2.
The model coefficients can be interpreted as:
1- There is -68.9 of the sales when X1 and X2 are zeros
2- When 1n population size increases by one unit (thousand), the sales
increases by 1.46 thousand with fixed income.
3- When in income increases by one unit (thousand), the sales

increases by 9.37 thousand with fixed population zise.
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Multiple Linear Regression

General Linear Regression Model

In general, the variables X,,..., X -, in a regression model do not need to represent

different predictor variables, as we shall shortly see. We therefore define the general linear

regression model, with normal error terms, simply in terms of X variables:
Yi=PBo+ b1 Xii + BoXiz+--- + Bp1 Xip-1 + &

where;

Bos Pr - - - » Bp—1 are parameters
X1, - - Xi,p—1 are known constants

g; are independent N (0, 0%)
i=1,....n

To express general linear regression model
Yi=po+ B Xit + BoXin+ -+ Bp_1Xi p—1 + &

in matrix terms, we need to define the following matrices:

BN 1 Xy X o0 Xipa ]
Y, 1 X3 X -+ Xpp
Y =1. X=1]. . . :
nxl nXp .
_YYH _1 an XnZ Xn p1
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bo } £)

B &

B=1] . e =) .
px1 : nxl

_ﬁp—h En

Note that the Y and e vectors are the same as for simple linear regression. The § vector
contains additional regression parameters, and the X matrix contains a column of 1s as well
as a column of the n observations for each of the p — 1 X variables in the regression model
The row subscript for each element X;; in the X matrix identifies the trial or case, and the
column subscript identifies the X variable.

In matrix terms, the general linear regression model

Y=X B+e

nxl nXp nxp nxl

where:

Y is a vector of responses
B is a vector of parameters
X is a matrix of constants
€ is a vector of independent normal random variables with expectation

E{e} = 0 and variance-covariance matrix:

'0'2 0 P 0-

0 ¢ -« 0 .
o’{e} = : : . =GZI‘

(0 0 .- o?]

Consequently, the random vector Y has expectation:

E(Y) = XB

nxl

and the variance-covariance matrix of Y is the same as that of €:

oY} = o021

nxn
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Estimation of Regression Coefficients

bO
bl

b

p-1

N

| Fom1_

= B=(X"X)'X Y

Y =Xb=X B=HY, H=XX'X)'X"

Statistical inference for the multiple linear model

Lemma:

Lemma

E(B)=p
Var(f)=MSE (X 'X )

Proof
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E(B)=E(X 'X)'X Y =(X"'X)'X '"E()
= (X "X )'X 'XB
zlﬂ
:,B-

This show that the Least square estimate of £ is an unbiased estimator.

Var(B)=Var[(X 'X )'X VY ]
= (X "X )X Vary (X 'X)'X T
= (X "X )X 'E[X X)X
=2 (X "X )X X (X 'X )
=o>(X "X )]
=o*(X "X )
=MSE (X 'X )"
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Example: (Dwaine Studios)

Form the estimated model, we get

A Y = Xb
(Y7 1 685 16.7] [187.2]
¥, 1 452 168 | ~68:8%7 154.2
. =1. ) ) 1.455 | = _
: ’ : ’ 9.366 '
| Y5, 1 523 16.0] | 157.1
we find
e=Y-V
(e | [ 174.4 ] C187.27 [ —12.8]]
€9 164.4 154.2 10.2
L€2| ) i 1665_ L.1571_ L 94_
Hence,
SSE e'e 2180.927
MSE = = = =121.1626
n-p 21-3 18
and

Var(f)=MSE (X 'X )
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[ 207280 0722 —1.9926
= 121.1626 0722  .00037 —.0056

| —1.9926 —.0056 1363 |
3,6020 8748 —241.43 ]
= | 8748 0448  —.679
24143 —.679 16.514

Take the square root of the diagonal we get

SE (B,) = Var (B,) =/3602 = 60.017
SE (B,) = \Var(B,) =+0.0448 =0.212

SE (5,) = \Var(B,) =+16.514 = 4.06

Calculate the variance in Dwaine Studios, Inc. data.
# How to read txt file in R

mat <- scan('DSD.txt")

mat <- matrix(mat, ncol = 3, byrow = TRUE)
X1=mat[,1]

X2=mat[,2]
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Y=mat[,3]

n=length(mat[,1])
one=as.vector(rep(1, n))
X=cbind(one,X1,X2)
b=solve(t(X)%*%X)%*%t(X)%*%Y
model=Im(Y~X1+X2)

e=model$residual
SSE=t(e)%*%e
MSE=SSEJ[1,1]/18
varb=MSE*solve(t(X)%*%X)
SEbO=sqrt(varb[1,1])
SEbl=sqrt(varb[2,2])
SEb2=sqrt(varb[3,3])

summary(model)

Confidence Interval of the multiple linear regression model

coefficients

The 100(1-a)% confidence interval for the model coefficients can be

obtained by

BiEtt nnoSE(B)), 1=0,1,2,....,p
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Example: (Dwaine Studios)

Form the estimated model, calculate 95% C.Is for the model coefficients

Y =—689+1.46X 1+9.37X 2.

,Bo itl—a/2,n—pSE (,Bo) - :80 it0.975,185E (ﬂo)
= -68.9+ 2.1(60.017)
=(~195.94, 56.14)

ﬂl itl—a/2,n—pSE (131) - ﬂl it0.975,185E (IB1)
=146+ 2.1(0.212)
=(1.01, 1.91)

ﬂz itl—a/2,n—pSE (ﬂz) - :Bz it0.975,188E (182)
=9.37+ 2.1(4.06)
=(0.84, 17.90)

confint(model,level=0.95) #Cls for all parameters
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Multiple Linear Regression

General Linear Regression Model

In general, the variables X,,..., X -, in a regression model do not need to represent

different predictor variables, as we shall shortly see. We therefore define the general linear

regression model, with normal error terms, simply in terms of X variables:
Yi=PBo+ b1 Xii + BoXiz+--- + Bp1 Xip-1 + &

where;

Bos Pr - - - » Bp—1 are parameters
X1, - - Xi,p—1 are known constants

g; are independent N (0, 0%)
i=1,....n

To express general linear regression model
Yi=po+ B Xit + BoXin+ -+ Bp_1Xi p—1 + &

in matrix terms, we need to define the following matrices:

BN 1 Xy X o0 Xipa ]
Y, 1 X3 X -+ Xpp
Y =1. X=1]. . . :
nxl nXp .
_YYH _1 an XnZ Xn p1
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bo } £)

B &

B=1] . e =) .
px1 : nxl

_ﬁp—h En

Note that the Y and e vectors are the same as for simple linear regression. The § vector
contains additional regression parameters, and the X matrix contains a column of 1s as well
as a column of the n observations for each of the p — 1 X variables in the regression model
The row subscript for each element X;; in the X matrix identifies the trial or case, and the
column subscript identifies the X variable.

In matrix terms, the general linear regression model

Y=X B+e

nxl nXp nxp nxl

where:

Y is a vector of responses
B is a vector of parameters
X is a matrix of constants
€ is a vector of independent normal random variables with expectation

E{e} = 0 and variance-covariance matrix:

'0'2 0 P 0-

0 ¢ -« 0 .
o’{e} = : : . =GZI‘

(0 0 .- o?]

Consequently, the random vector Y has expectation:

E(Y) = XB

nxl

and the variance-covariance matrix of Y is the same as that of €:

oY} = o021

nxn
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Estimation of Regression Coefficients

b, 1 | B
b g | -
b= . |= ﬂ,l =B=(X"X)'XY

b S
Lo _/Bp—l_

Y =Xb=XB=HY, H=X(X'X)'X"
E(B)=5
Var(f)=MSE (X 'X )

SSE
n—p

MSE =

Hypothesis Testing

To test the coefficients of the multiple linear regression model, we

follow the standard steps as: follows:
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Step 1: The hypotheses

Hy: B =AY, i=0,12,..p
H: B =(Cor <),Bi(°)

Step 2: The test statistic

B _ RO
1P i Conap

TSE®)

Step 3: The Critical regions

Use the quantiles of t distribution to find the critical regions corresponding the
null hypnosis  H,: g #,>or < g, respectively, as

(—oo, _tl—a/z,n—p)U(otl—a/z,n—p ,00), (tl—a,n—p > OO) or (_oo’tl—“’”—lo)

Step 4: The decision: Reject HO, if the calculate test statistic in step 2

belongs to the corresponding critical region.

p-value approach:
one can use p-value approach testing the hypotheses.

Remark:

Testing the significance of any of the coefficient is equivalent testing
whether that coefficient is zero.
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Example: (Dwaine Studios)

Test the significance of coefficients in the Dwaine Studio data (use « =

5% if it is not given).

Y =—689+1.46X 14+9.37X 2.

In this model, we run the test as follows:

Testing /5,
Step 1: The hypotheses

H,: 5,=0
H,: 5, %0

Step 2:
The test statistic

B,-0  —689-0 —689

= o= 7T =—1.147
SE(B,) S.E(B,) 60.017

TO

Step 3:
The Critical regions

The critical region in this case is

(—o0, o )U( L aanps o) =(—00, _t0.975,18) U (gg75.185)
=(—00,-2.101)U( 2.101,0)

Step 4:

The test statistic belongs to the acceptance region, then accept HO.
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Testing S,
Step 1: The hypotheses

Step 2:
The test statistic

AN

pi-0 _146-0 _ 146 _

T = - = _ -
' SE(B,) SE(B) 0212

Step 3:
The Critical regions

The critical region in this case is

(—o0, s )U( L aanps o) =(—00, _t0.975,18) U (gg75.155)
=(—00,-2.101)U( 2.101,0)

Step 4:

The test statistic belongs to the rejection region, then reject HO.

Testing 5,
Step 1: The hypotheses

H,: 5,=0
H,: B,#0
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Step 2:
The test statistic

AN

B,-0 937-0 937

=27 =22 =231
SE(B,) 406 406

T2

Step 3:
The Critical regions

The critical region in this case is

(—o0, o )U( i aonps 00) =(—0, 1t 97515) Y (197515, %)
=(—00,-2.101)U( 2.101,0)

Step 4

The test statistic belongs to the rejection region, then reject HO.

Also, one can use p-value approach

The R-results in this example as:
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -68.8571 60.0170 -1.147 0.2663
X1 1.4546 0.2118 6.868 2e-06 ***
X2 9.3655 4.0640 2.305 0.0333 *

Signif. codes: 0 “***>0.001 “**> 0.01 “*> 0.05 ‘> 0.1 *’ 1
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ANOVA TEST (F-test)

Step 1: The hypotheses

Hy: B=p=...=0,,=0
H,: g =#p fori=]j

Step 2:
The test statistic
MSR
F="""
MSE
Step 3:
The Critical regions The critical region in this case is
(Fl—a,p—l,n—p o OO)
Step 4:

If the test statistic belongs to the rejection region, then reject HO.

Example: (Dwaine Studios)

Test the significance of model in the Dwaine Studio data (use « =5% if

it s not given).

Y =—68.9+1.46X 1+9.37X 2.

In this model, we run the test as follows:
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Step 1: The hypotheses
Hy: 8,=5,=0
H : 5 #p5
Step 2:
The test statistic

I
SSTO=Y'Y — (—) Y'JY =721,072.40 — 694,876.19 = 26,196.21

il

and.
SSE=YY -hvX'Y
3,820
= 721,072.40 — [-68.857 1.455 9.366] | 249,643
66,073
= 721,072.40 - 718,891 .47 = 2,180.93 L

Finally, we obtain by subtraction:

SSR = S§STO — SSE = 26,196.21 — 2,180.93 = 24,015.28

_MSR _ 24015.28/2 _ o
MSE ~ 21180.93/18

Step 3:

The Critical Region: The critical region in this case is

(Fl—a,p—l,n—p ,00) = (F0.95,2,189OO) =(3.55,0)
Step 4:
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If the test statistic belongs to the rejection region, then reject HO. The
model is significant.

Also, one can use p-value in such test.

R-results are:

F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10

Coefticient of Multiple Determination. For our example, we have

. SSR_ 24,015.28

R = =
SSTO  26,196.21

Thus, when the two predictor variables, target population and per capita disposable income,
are considered, the variation in sales is reduced by 91.7 percent.

= 017

coefficient of multiple correlation

The coefficient of multiple correlation is given by

R =+vR?=+0.917 =0.96
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E@ﬁir;“ﬁation of Mean Response

Dwaine Studios would like to estimate expected (mean) sales in cities with target population
Xn = 635.4 thousand persons aged 16 years or younger and per capita disposable income

Xy2 = 17.6 thousand dollars with a 95 percent confidence interval. We define:

1
X, = | 65.4
17.6

The point estimate of mean sales is by (6.55):

—68.857
V'w=Xb=[l 654 17.6] 1.455 | = 191.10
9.366
The estimated variance
s2{#,} = X, s (b}X, 7

3.602.0° 8748 —241.43 1
=[1 654 17.6] 8.748  .0448 ~.679| | 65.4
—241.43 —.679 16.514| | 17.6

= 7.656

Then

S.E(Y n)=+7.656=2.77

90% CI for the mean of Y 1s
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Y h £ty an s )SEX 1)

191.10 £2.101 (2.77)

185.3 < E{Y}} < 196.9

prediction Limits for New Observations

Dwaine Studios as part of a possible expansion program would like to predict sales for two
new cities, with the Tollowing characteristics:

CityA CityB

Xm 654 531
Xpp 176 177

-

Prediction intervals with a 90 percent family confidence coefficient are desired. Note that
the two new cities have characteristics that fall well within the pattern of the 2& cities on
which the regression analysis is based.

For City A, we have

A 1001-a)% CI for Y pen

Y”eW (1a/2n p)SE(Y new )

S.E (Y rew ) =MSE +var(Y 1) =121.626+7.656 =11.35

In similar fashion, we obtain for city B (calculations not shown):

¥, =174.15  s{pred} = 11.93
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YAnew itl_a/z,n —P S.E (YAnew )

City A: 167.3 < Yoy < 214.9
Similarly, For City B, we have

Clty B: 149.1 < Yh(new) < 199.2~

R code

mydata=read.table("Dwaine Studios.txt",header=TRUE)
Y=mydata§Y

X1=mydata$X1

X2=mydata$X2

n=length(X1)

model=Im(Y~X1+X2)
summary(model)

one=matrix(1,n)
X=cbind(one,X1,X2)
b=solve(t(X)%*%X)%*%t(X)%*%Y
p=3
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J=matrix(1,21,21)

# SSTO=Y'Y - I/n(Y'TY)
SSTO=t(Y)%*%Y-1/n*(t(Y)%*%J%*%Y)
SSE=t(Y)%*%Y -t(b)%*%t(X)%*%Y
SSR=SSTO-SSE

MSR=SSR/(p-1)

MSE=SSE/(n-p)

F=MSR/MSE

RS=SSR/SSTO

R=sqrt(RS)

vb=vcov(Model)
MSE[1,1]*solve(t(X)%*%X)

Xh=c(1, 65.4, 17.6)

Yh=t(Xh)%*%Db
vYh=t(Xh)%*%vb%*%Xh

vYh[1,1]

seYh=sqrt(vYh[1,1])
vYnew=MSE+vYh[1,1]
seYhnew=sqrt(vY¥new)

newx = data.frame(X1=65.4, X2=17.6)
predict(Model, newx, level=0.95,interval="confidence")

predict(Model, newx, level=0.95,interval="predict")
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model=Im(Y~X1+X2)
summary(model)
anova(model)

r=modelS$res

sum(r"2)
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Multiple Regression 11

regression model, with normal error terms, simply in terms of X variables:
Yi=Bo+ B X+ BoXio+ -+ Bp1 Xip-1 + &

where:

ﬁﬂs ﬁl; .- ﬁp—] arc paIaI]‘letcr'S
X1, - - -» Xi.p—1 are known constants

g; are independent N (0, 0%)

i=1,...,n

To express general linear regression model
Vi=Ppo+ br1Xua+ B X+ +PpaXipate&

in matrix terms, we need to define the following matrices:

Y (1 Xy X oo+ Xipe
Y, 1 X2 X - Xpp
- X ooy . . . .
nxl : nXp : : . .
__Yn_ __1 an XnZ e Xn.p—l__
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bo } £)

B &

B=1] . e =) .
px1 : nxl

_ﬁp—h En

Note that the Y and e vectors are the same as for simple linear regression. The § vector
contains additional regression parameters, and the X matrix contains a column of 1s as well
as a column of the n observations for each of the p — 1 X variables in the regression model
The row subscript for each element X;; in the X matrix identifies the trial or case, and the
column subscript identifies the X variable.

In matrix terms, the general linear regression model

Y=X B+e

nxl nXp nxp nxl

where:

Y is a vector of responses
B is a vector of parameters
X is a matrix of constants
€ is a vector of independent normal random variables with expectation

E{e} = 0 and variance-covariance matrix:

'0'2 0 P 0-

0 ¢ -« 0 .
o’{e} = : : . =GZI‘

(0 0 .- o?]

Consequently, the random vector Y has expectation:

E(Y) = XB

nxl

and the variance-covariance matrix of Y is the same as that of €:

oY} = o021

nxn
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Estimation of Regression Coefficients

b, | | B
b g | -

b= . |= ﬂ,l =B=(X"X)'XY
LTS _2p_1_

Y =Xb=XB=HY, H=X(X'X)'X"
E(B)=5
Var(f)=MSE (X 'X )

SSE
n—p

MSE =
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The Extra Sum of Squares

An extra sum of squares measures the marginal reduction in the error sum
of squares when one or several predictor variables are added to the
regression model, given that other predictor variables are already in the
model. Equivalently, one can view an extra sum of squares as measuring
the marginal increase in the regression sum of squares when one or several
predictor variables are added to the regression model. We first utilize an
example to illustrate these ideas, and then we present definitions of extra
sums of squares and discuss a variety of uses of extra sums of squares in

tests about regression coefficients.

Example (Book: page 256) Body fat example.
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From the example, we define

SSR(X ]| X5) = SSE(X32) — SSE(X,, X3)
or, equi;/alently:

SSR(X,|X2) = SSR(X1, X2) — SSR(X>)
If X, is the extra variable, we define:

SSR(X,3]X,) = SSE(X,) — SSE(X,, X»)
or, equivalently: . '
SSR(X,|X ) = SSR(X,, X2) — SSR(X))

Extensions for three or more variables are straightforward: For example, we define:

SSR(X;;]X], Xg) = S’SE(X[, Xz) - SSE(XI, Xz, X3)

or:
SSR(X3|X,, X2) = SSR(X,, X2, X3) — SSR(X,, X>)
and:
SSR(Xa, X3|X ) = SSE(X ) — SSE(X,. X, X3)
or:

SSR(X2, XX 1) = SSR(X ., X2, X3) — SSR(X))
and:

SSR(Xa, X31X1) = SSE(X1) — SSE(X\. X2, X3)
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Decomposition of $SR into Extra Sums of Squares

In multiple regression, unlike simple linear regression, we can obtain a variety of decom-
positions of the regression sum of squares SSR into extra sams of squares.

o

SSTO = SSR(X,) + SSE(X ) =

where the notation now shows explicitly that X is the X variable in the model. Replacing
SSE(X,) by its equivalent

SSTO = SSR(X,) + SSR(Xa[X1) + SSE(X ., X2)

We now make use of the same identity for multiple regressicn with two X variables as
for a single X variable, namely:

SSTO = SSR(X,, X2} + SSE(X . X>)
Solving (7.7) for SSE(X,, X2)
SSR(X,, X2} = SSR(X,) + SSR(X21 X))

Of course, the order of the X variables is arbitrary. Here, we can also Obtain the
decomposition:

SSR(X 1. X2} = SSR(X3) + SSR(X |1 X2)

When the regréssion model contains three X variables, a variety of decompositions of
SSR(X . X2, X3) can be obtained. We illustrate three of these:

SSR(X ., X2, X3) = SSR(X,) + SSR(X2| X)) + SSR(OX:|X . X2)
SSR(X\, Xa. X3) = SSR(X2) + SSR(X3]X2) + SSR(X(|X2. X3)
SSR(X\, Xa. X3) = SSR(X) + SSR(X2, X3|X,)
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5570 = 495.39

SSR(X,) = 381.97 4

SSROGIX) = 347 —( B8

SSE(X,) = 11342 < |

r ~

 SSROXG, Xg) = 385.44 —

$57T0 = 495.39

~

=< SSE(Xq, X5) = 109.95 —-j :

-

> SSR(Xy) = 352.27

4
L j ~— SSROG|Xy) = 33.17
> SSE(X;) = 143.12

J JI—p
Bxampleof Source of
ANOVA Table Vanatlg:?“ 55 df | MS |
with Regression SSR(Xq, X2, X3) 3 MSR(X1, X2, X3)
Decomposition X1 SSR(X1) 1 MSR(X4)
of SSR for Xa| X1 SSR(X21Xq).. 1 MSR(X2| X1)
Three X X3l X4, X2 SSR(X3| X1, X2) 1 MSR(X3| X1, Xz)
Variables. Error SSE(Xq; X3, X3) n—4 MSE(X+, Xa,. X3)

Total $ST0 n—1
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Uses of Extra Sums of Squares in Tests
for Regression Coefficients

Test whether a Single 8,=0

When we wish to test whether the term ¢ X can be dropped from a multiple regression
model, we are interested in the alternatives:

HO:ﬁk :0
H: B #0

We already know that test statistic

is appropriate for this test.

We, now show that this can also be done using the extra sum of squares.
Let us consider the first-order regression model with three predictor
variables:
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Y = Bo+ i1 Xut + foXio+ BsXis +&  Full model
To test the alternatives:
Hy: =0
H;:p:#0

we fit the full model and obtain the error sum of squares SSE(F). We now explicitly show
the variables n the full model, as follows:

SSE(F) = SSE(X,, X2, X3)

The degrees of freedom associated with SSE(F) are dfy = n — 4 since there are four
parameters in the regression function for the full model
The reduced model when Hy holds is:

Y,‘ = ﬁg + ﬁ] Xfl -+ ﬁzng + &; Reduced model

We next fit this reduced model and obtain:

SSE(R) = SSE(X,, X»)
There are dfp = n — 3 degrees of freedom associated with the reduced model.
The general linear test statistic
P SSE(R)— SSE(F) _ SSE(F)
dfg —dfr  dfr

here becomes:
_ SSE(X,, Xp) — SSE(X,, X2, X3)  SSE(X,, X3, X3)

F* :
(n—3)—(n—4) n—4
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Note that the difference between the two error swums of squares in the numerator term 1s the
extra sum of squares

SSE(X,, X2) — SSE(X 1, X5, X3) = SSR(X;3]| X1, X5)

Hence the general linear test statistic here 1s:

_ SSR(X;3]X), X2) N SSE(Xy, X2, X3)  MSR(X3]Xy, X»)

F* : —
1 n—4 MSE(XI,Xz, Xq)

And this can be compared with the critical region F(1, n-4) to have the

decision.

Remark: F-statistic in this case also equal to (t-statistic)?

Example:
In the body fat example, can we remove the X3 from the model?
Solution

1- HO: B3=0 vs HI: B3£0

2-

_ SSR(X3|X11 XZ) . SSE(XIQ X29 XS)
N 1 ' n—4

1.5 i
1 16

F*
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3-

For o = .01, we require £(.99;1, 16) = 8.53. Since F* = 1.88 < 8.53, we conclude H,,
that X5 can be dropped from the regression model that already contains X, and X,.

Remark: if we use t-test we see that

Since (*)* = (—1.37)* = 1.88 = F*, we see that the two test statistics are equivalent, just
as for simple linear regression.

Test whether Several Coefficients

In multiple regression we are frequently interested in whether several terms in the regression
model can be dropped. For example, we may wish to know whether both 8, X5 and f343
can be dropped from the full model . The alternatives here are:

Hyo: o = B3=0
H,: not both $, and 3 equal zero
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With the general linear test approach, the reduced model under Hj is:
Y; =60+ 61Xy + & Reduced model
and the error sum of squares for the reduced model is:
SSE(R) = SSE(X))

This etror sum of squares has dfg = n — 2 degrees of freedom associated with it.
The general linear test statistic (2.70) thus becomes here:

_ SSE(X)) — SSE(X,, X2, X3)  SSE(X), X3, X3)

B (n—2)—(m—4) ' n—4

%k

Again the difference between the two error sums of squares in the numerator term is an
extra sum of squares, namely:

SSE(X,) — SSE(X,, X2, X3) = SSR(X>, X5/ X)) .

Hence, the test statistic becomes:

. SSR(XZ, X3|Xl) . SSE(XI: XZs Xﬁ) . MSR(X2: X3|Xl)
B 2 ) n—4 ~ MSE(X1, X2, X3)

F’F

Note that SSR(X>, X3|X;) has two degrees of freedom associated with it, as we pointed out
earlier.

Example:

In the body fat example, can we remove the X2 and X3 from the model?
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Multiple Regression 11

regression model, with normal error terms, simply in terms of X variables:
Yi=Bo+ B X+ BoXio+ -+ Bp1 Xip-1 + &

where:

ﬁﬂs ﬁl; .- ﬁp—] arc paIaI]‘letcr'S
X1, - - -» Xi.p—1 are known constants

g; are independent N (0, 0%)

i=1,...,n

To express general linear regression model
Vi=Ppo+ br1Xua+ B X+ +PpaXipate&

in matrix terms, we need to define the following matrices:

Y (1 Xy X oo+ Xipe
Y, 1 X2 X - Xpp
- X ooy . . . .
nxl : nXp : : . .
__Yn_ __1 an XnZ e Xn.p—l__

176



Dr. Khalaf Sultan Regression Analysis (Stat 332)

bo } £
B &
B s R E —
pxl1 : nxl
_ﬁp—| N €n

Note that the Y and e vectors are the same as for simple linear regression. The § vector
contains additional regression parameters, and the X matrix contains a column of 1s as well
as a column of the n observations for each of the p — 1 X variables in the regression model
The row subscript for each element X;; in the X matrix identifies the trial or case, and the
column subscript identifies the X variable.

In matrix terms, the general linear regression model

Y=X B+e

nxl nXp nxp nxl

where:

Y is a vector of responses
B is a vector of parameters
X is a matrix of constants
€ is a vector of independent normal random variables with expectation

E{e} = 0 and variance-covariance matrix:

'0'2 0 P 0-

0 ¢ -« 0 .
o’{e} = : : . =GZI‘

0 0 - o?]

Consequently, the random vector Y has expectation:
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Summary of Tests Concerning Regression Coefficients

Test whether All 8, =0

This is the overall F test of whether or not there is a regression relation between the
response vanable ¥ and the set of X variables. The alternatives are:

Hypr=p=--- :ﬁp_l =90
Hynotall B (k=1,..., p— 1) equal zero
and the test statistic 1s:

SSR(X,,. . X,n) | SSE(Xy, .. X))
p—1 ' n-p

F*

 MSR
"~ MSE

If Hyholds, F* ~ F(p — 1, n — p). Large values of F* lead to conclusion H,.
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Test whether a Single Bx = 0

This is a partial F test of whether a particular regression coefficient 8, equals zero. The
alternatives are:

H(}: ﬁk =0

Ha: ﬁk ?é 0
and the test statistic is:
— SSR(XkIXl! AR Xk—-ll Xf{'i"li e Xp—l) . SSE(Xh ceny Xp—l)

l ‘ a:-n - p
_ MSR(XiX\s oo Xi—1 Xiearts < ooy Xp—1)
MSE
If Hp holds, F* ~ F(1,n — p). Large values of F* lead to conclusion H, dStatistics

packages that provide extra sums of squares permit use of this test without having to fit the

reduced model.
An equivalent test statistic is

F*

 site}

If Hp holds, t* ~ r(rn — p). Large values of |r*| lead to conclusion H,,.

*

Test whether Some Bx =0

This 18 another partial F test. Here, the alternatives are:

HO:Bq:ﬁq+1 :"':ﬁp—l =0
H,: not all of the B in Hy equal zero
where for convenience, we arrange the model so that the last p — g coefficients are the ones
to be tedted. The test statistic 1s:
_ SSR(Xgs - Xp al X1, Xg 1) | SSE(X1, -5 Xp 1)
p—q ' n—p
_ MSR(X,, ..., Xp_1l X1, oo, Xgo4)
MSE

F*

If Hp holds, F* ~ F(p — g, n — p). Large values of F* lead to conclusion H,.
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Remark:

The partial F* for several Bx=0 can be formed in terms of R? as

SSR(X gseves Xy [ X sy X )

e MSR(Xqoo Xy [ X s X g ) p-q
MSE (X ,,....,X ) SSE(X,....X ;)
n—-p
SSR(X 1.0, X ) ) =SSR(X ,.e0s X )
_ P—q
SSE (X ... X )
n—-p
SSR(X 1., X ) ) =SSR(X ,..0u X )
_ (P —q)SST
SSE (X ,....X ;)
(n—p)SST
R*(X,,....X , )-R*(X,...X,,) RZ2-R?
_ (p_q) :de—dfF
1-R*(X ... X ) 1-R;
(n-p) af.
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Coefticients of Partial determination

Two Predictor Variables

Yi = Bo+ BiXu + B Xiz + &

SSE(X>) measures the variation in Y when X; is included in the model. SSE(X;, X3)
measures the variation in ¥ when both X; and X; are included in the model. Hence, the
relative marginal reduction in the variation in ¥ associated with X when X5 is already in
the model is:
SSE(X,) — SSE(X1, X2)  SSR(X1|X»)
SSE(X>) — SSE(Xa)

This measure is the coefficient of partial determination between ¥ and X, given that X5 is
in the model. We denote this measure by RZ,,:

g2 _ SSE(X) — SSE(X), X;) _ SSR(X1|Xp)
Yiz = SSE(X») " SSE(X,)

Thus, RZ,,, measures the proportionate reduction in the variation in ¥ remaining after X
is included in the model that is gained by also including X in the model.

The coefficient of partial determination between ¥ and X5, given that X is in the model,
is defined correspondingly:

Thus, R},, measures the proportionate reduction in the variation in ¥ remaining after X
is included in the model that is gained by also including X in the model.

The coefficient of partial determination between ¥ and X, given that X1 is in the model,
is defined correspondingly:

o SSR(XalX)
Yo —
SSE(X1)
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General Case

The generalization of coefficients of partial determination to three or more X variables in
the model is immediate. For mstance:
, _ SSR(X1|Xs, X3)
T2 SSE(Xa, X3)
SSR(X>| X1, X3)
SSE(X;, X3)
w2 SSR(X3| X1, Xo)
T2 SSE(X;, Xa)
R2 . SSR(X4|X13 XZ! X3)
FBT T SSE(X), X2, X3)

2 —
RY2|13 —

Note that in the subscripts to R?, the entries to the left of the vertical bar show in turn
the variable taken as the response and the X variable being added. The entries to the right
of the vertical bar show the X variables already in the model.

Example For the body fat example, we can obtain a variety of coefficients of partial determinaﬁoﬂ_
—————————— Here are three (Tables 7.2 and 7.4):

. SSR(Xa2X)) 3347

T TRCE(X,) 14302
, SSR(X31X:, Xa) 1154
VIR TOORX,. X)) 109.95
. SSR(X1|Xs) 347

N s o = 03
Ry SSE(X2) 113.42 '

232

We see that when X, is added to the regtession model containing X, here, the error sup
of squares SSE(X1) s reduced by 23.2 percent. The error sum of squares for the mode|
containing both X, and X, is only reduced by another 10.5 percent when X 3 1s added 1o the
model. Finally, if the regression model already contains X, adding X, reduces SSE(X,)
by only 3.1 percent.
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Coefficients of Partial Correlation

—————" For the body fat example, we have:
Example
— Py = .232 = 482

Fyajiz = — 105 = -—324
rrip = +.031 = .176

Note that the coefficients 7y, and ry,p are positive because we see from'
b, = .6594 and b, = .2224 are positive. Similarly, rys);2 is negative because we see from
Table 7.2d that by = —2.186 is negative.

P

Comment

Coefficients of partial determination can be expressed in terms of simple or other partial correlation
coefficients. For example:

(ry2 — ?’lzf’n)2

1— rlzz) (l - r;";l)
(ryap — Fiptyi)?
1 rIZZB) (1 - ”%15)

where ry; denotes the coefficient of simple correlation between Y and X, ri2 denotes the coefficient
of simple correlation between X and X5, and so on. Extensions are straightforward.

Ryan = [ryap)? = (

R%"_J,“j. = [rlf2||3]2 = (

install.packages("asbio")
library(asbio)
Im1=Im(y~x1)
Im12=Im(y~x1+x2)

partial.R2(Im1, Im12)
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Standardized Multiple Regression Model

regression model, with normal error terms, simply in terms of X variables:

Yi=PFo+ B X+ B Xip+ -+ Bp1 Xip1 + &

where:
Bo. B, - -» Bp-1 are parameters
X1, - --» Xi,p—1 are known constants

g; are independent N (0, 0%)
i=1,....n

The standardized regression model is as follows:

/=B Xa+ -+ B Xip e

where the response variable Y™ and the independent

variables X;* are given by
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where ¥ and X, are the respective means of the ¥ and the X, observations, and sy and s
are the respective standard deviations defined as follows:

“t=

Z_:(Yi—f’)z
SY:\ n—1
Z(Xik—}zk)z
=\ k=1,...,p—1)

The correlation transformation is a simple function of the standardized variables

pr 1 (Y,-—?
"_\m—l Sy

1 X — Xy
Y = k=1,...,p—1
g ¢7:T( S ) ( p=b

The relation between the coefficients of the original

model and standardized model are

-

m=(ﬂ)& k=1,.... p=1)
Sk

Bo=Y—piX1— — BpaXp

We see that the standardized regression coefficients 8; and the original regression coeffi-

cients B (k=1, ..., p—1) are related by simple scaling factors involving ratios of standard
deviations.
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Estimated Standardized Regression Coefficients

Let
| TI o XT-p—I'
* *
) I 2.p—1
X = .
ux(p—-1j
- .:I:l X:;.p-r!_
and
_yf_
v |z
Yo
Then
b=XX)"XY
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It can be shown that for the transformed variables, X'Y and X'X
become

X'X=ry and XY =r

yX
1 N, r1,p—1 ryl
. N> 1 Iys r2,p—1 . ry2
Fyx = . » Kx = . )
| Tpar Top Fi-pya-p) | NEEY
r, =corr(X,;,X ), r; =corr(Y ,X;)
and hence
b=r;]
= Ly Tyx
- *J—
bl
* |
y
b = .
(p—1)x1 .
%
_bpﬂl_
‘The fegression coefficients 27, ..., b;ﬂl are often called standardized regression
coefficients.
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The return to the estimated regression coefficients for regression model
original variables is accomplished by employing the relations:

b = (f‘i)b;; k=1,....,p—1)

bo=Y~bX)— - —bp1X,

Example: In Dwaine Studios example data

yr— | (Yl—}_’) o | (Xu—}?.'l)
L™ =1\ sy o /n—1 81
1 174.4 — 181.90 1 [68.5—62.019
E JZI——I( 36.191 ) - le—-1( [8.620 )
— 04634 — 07783

1 Xin = X2 1 16.7 — 17.143
1= = = —.10208
e ( 52 ) 21— 1 ( 97035 ) 20

P* = 7484X* + 251X}

and

36.191
Sl) 0 (.7484) = 1.4546

~18.620

If

v 36.191
— = INE=
(S ) 97035(25 ) = 9.3652

X, — b X, = 181.90 — 1.4546(62.019) — 9.3652(17.143) = —68.860

||
~::
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R:Code

mydata=read.table("Dwaine Studios.txt",header=TRUE)
Y=mydata$§Y

X1=mydata$X1

X2=mydata$X2

n=length(X1)

one=as.vector(rep(1, n))

X=cbind(one,X1,X2)

Model=Im(Y~X1+X2)

library(QuantPsyc)

Im.beta(Model)
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Regression Model Selection

Likelihood function

In the multiple linear regression model, we have

Yi=Fo+BiXa+BXo+ -+ Bp-1Xip-1 +6&

where:
Bos Bis - - - » Pp-1 are parameters
Xi1, - -, Xi,p—1 are known constants

& are independent N (0, 0?)
i=1,....n

As we can see, the error term 1s follow normal distribution with mean 0
and variance o2, then we can write

2
(Yi—ﬁo—ﬁ1X1— —Bp—1XP—1)
202

Likelihood = (2mo?) ™™/ 2exp(—

n
L=

1

When replace 2 by its estimate (s%= SSE/n) and the model coefficients
by their estimates, we get
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n 12
. . _ _ —TL/Z (le T Yl)
Likelihood = L = (2nSSE /n) exp(— )

i=1

2SSE/n
then

-2Log L =n[ log(2 ™ )+ log(SSE/n)+1]

Akaitke®"s An Information Criterion

Generic function calculating Akaike's ‘An Information Criterion’ for
one or several fitted model objects.

Akaike’s Information Criterion is usually calculated with software.
The basic formula is defined as:
AIC =-2(log-likelihood) + 2K
Where:
« K is the number of model parameters (the number of variables in the
model plus the intercept).
. Log-likelihood is a measure of model fit. The higher the number, the
better the fit. This 1s usually obtained from statistical output.

or small sample sizes (n/K <= 40), use the second-order AIC:
AICc = -2(log-likelihood) + 2K + 2K(K+1)/(n-K-1))

Where:

n = sample size,

K= number of model parameters,

Log-likelihood is a measure of model fit.
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formula -2*log-likelihood + k*npa,
where npar represents the number of parameters in the fitted model,
k = 2 for the usual AIC,

or k = log(n) (n being the number of observations). This can be used when n/p<40.

1.e

AIC=-2log L + 2(p+1),
Where

L is the likelihood function

p is the number of parameters in linear model and we add one because
we have sigma”?2 to be estimated.
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How to know if the model is best fit for your data?

The most common metrics to look at while selecting the model are:

STATISTIC

R-Squared

Adj R-Squared

F-Statistic

Std. Error

t-statistic

AIC

BIC

Mallows cp

MAPE (Mean absolute percentage

error)

MSE (Mean squared error)

Min_Max Accuracy =>
mean(min(actual,

CRITERION

Higher the better (> 0.70)

Higher the better

Higher the better

Closer to zero the better

Should be greater 1.96 for p-value to be less than 0.05

Lower the better

Lower the better

Should be close to the number of predictors in model

Lower the better

Lower the better

Higher the better
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In this part we use AIC as a criterion to the model selection.

Example: Use the mtcars data to select the best model

https://gist.eithub.com/seankross/a412dfbd88b3db70b74b

Using

Stepwise: Backward selection

Stepwise: Forward selection

Stepwise: Combination of Forward and Backward selection

R code:

data(mtcars)

d=mtcars

head(d)

FitAll=lm(mpg~., data=d)
summary(FitAll)

p=length(FitAll$coef)

n=length(d$mpg)

SSE=sum((FitAll$res)"2)
AIC=n*(log(2*pi)+1+log(SSE/mn))+2*(p+1)
logl.=as.numeric(logLik(FitAll))
AIC=-2*logL+2*(p+1)

AIC(FitAll)
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A4

# Backward
step(FitAll, direction="backward")

A4

# Forward
Fitstart=Im(mpg~1,data=d)

summary(Fitstart)

step(Fitstart, direction="forward", scope=formula(FitAll))
it Both

Fitstart=Im(mpg~1,data=d)
summary(Fitstart)
step(Fitstart, direction="both", scope=formula(FitAll))

17
s

195



Dr. Khalaf Sultan Regression Analysis (Stat 332)

R:Code

mydata=read.table("Dwaine Studios.txt",header=TRUE)
Y=mydata$Y

X1=mydata$X1

X2=mydata$X2

n=length(X1)

one=as.vector(rep(1, n))

X=cbind(one,X1,X2)

Model=Im(Y~X1+X2)

library(QuantPsyc)

Im.beta(Model)
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