
Lecture Notes for Probability Theory - STAT 215

Elaborated by Wissem Jedidi

Department of STAT & OR, College of Science, King Saud University

January 2026



The goal of these lecture notes is to familiarize students with elementary probability theory.

In addition, the material is designed to prepare students for probability-based professional certifi-

cation examinations, such as Exam P of the Society of Actuaries (SOA). To this end, the theory

is presented in Part I and is divided into three main topics:

• Topic 1: In Chapter 1, we review elementary principles of combinatorics. Chapter 2 intro-

duces the probability measure as a function on events.

• Topic 2: This topic is presented in Chapter 3 and explores the concept of random variables

on the real line (univariate random variables).

• Topic 3: This topic is presented in Chapter 4 and completes Topic 2 by studying random

variables in higher dimensions (multivariate random variables), with a focus on the bivariate

case.

In Part II (Chapters 5, 6, and 7), the necessary mathematical background is included solely to

assist students and make the lecture notes self-contained; these chapters serve only as prerequisites.

These lecture notes are divided into chapters, sections, and subsections. For example, 3.2.4

refers to Chapter 3, Section 2, Subsection 4. Thus, “according to 3.4.6” refers to Chapter 3,

Section 4, Subsection 6. Within the same chapter, statements are numbered continuously using

parentheses. For example, “see (3.5)” refers to the fifth numbered equation in Chapter 3.
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Chapter 1

Principle of Combinatorics
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1.1 Power set and rules
We start with two crucial rules.

1.1.1 Product rule
Suppose that a procedure can be broken down into a sequence of two tasks. If there are n1

ways to do the first task and for each of these ways of doing the first task, there are n2 ways to

do the second task, and so on for the e nk-th task then there are

n1 × n2 × . . . × nk possibilities.

Example: The number of license plates of three letters (a to z) followed by three numbers (0 to

9) is 263 × 10.

Example: Choosing one-by-one with replacement r balls from an urn containing n numbered

balls gives

nr possibilities.

1.1.2 Sum rule
If a task can be done either in one of ni, i = 1, . . . k ways, where none of the set of ni ways is

the same as any of the set of nj ways (≤ i ≠ j ≤ k), then there are

n1 + n2 + . . . nk possibilities.

Example: The number of passwords that must be six to eight characters long, where each char-

acter is an uppercase letter or a digit, and must contain at least one digit: Let P6, P7, and P8 be

the numbers of passwords of length 6, 7, and 8, respectively. Then the total number of passwords

is

P6 + P7 + P8 = (366 − 266) + (367 − 267) + (368 − 268) = 2,684,483,063,360.

1.1.3 Power set and its cardinal
A set Ω is finite if it contains, say, n distinct elements ω1, . . . , ωn. If n is infinite, we say that Ω

is countable. Ω is at most countable if it is finite or countable. The cardinal n of Ω is often denoted

∣Ω∣. In passing, note that

counting the cardinal of set Ω⇐⇒ finding in how many ways one can form distinct elements of Ω.

(1.11)

The power set P(Ω) is the set of all the subsets of Ω. Its cardinal is

∣P(Ω)∣ = 2∣Ω∣. (1.12)
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For instance, the number of subsets of Ω = a, b, c, d is 16 = 24. To show (1.12), it suffices to

understand that (1.11) allows us to show that

forming a distinct element of P(Ω) ⇐⇒ forming a subset of Ω

⇐⇒ for each element ωj of Ω, one of two choices:

to keep it in the subset or not,

and one concludes with the product rule 2n = 2 × 2 × . . . × 2 (n times) is the number of choices for

forming a distinct element of P(Ω).

1.2 Permutations
(1) The factorial of a number n, denoted by n!, is defined as:

n! = n ⋅ (n − 1) ⋅ (n − 2)⋯3 ⋅ 2 ⋅ 1, for n ≥ 1,

with 0! = 1 by convention.

(2) A permutation of a set of distinct objects is any rearrangement of them (ordered list). Let

r ≤ n. An r-permutation of a set of n distinct objects is any permutation of any r of these n

objects. Making an r-permutation is equivalent to one of the following:

(i) choosing a subset of size r from n distinct objects one-by-one without replacement (i.e.,

after the first object is chosen, the next object is chosen from the remaining n − 1, the
next after that from the remaining n − 2, etc.);

(ii) choosing one-by-one without replacement r balls from an urn containing n numbered

balls;

(iii) dispatching r numbered black balls into n numbered boxes, each box contains at most 1 object.

The number of choices of r-permutation is given by the combinatorial number

P (n, r) ∶= n!

(n − r)! = n(n − 1) . . . (n − r + 1),

sometimes denoted nPr or Pn,r.

Example 1.2.1. The number of ways of choosing an ordered subset of size 2 from the set of

3 letters {a, b, c} without replacement is:

P (3,2) = 3!

(3 − 2)! = 6,

9
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which are:

ab, ac, ba, bc, ca, cb.

n-permutations: this is the special case of r = n. Given n distinct objects, the number of

different ways in which the objects may be ordered (permuted) is

P (n,n) = n!.

Example: the set of 3 letters {a, b,} can be ordered in 3! = 6 ways:

abc, acb, bac, bca, cab, cba.

1.3 Combinations
(1) Let 0 ≤ r ≤ n. An r-combination of a set of n distinct objects is any (unordered) subset that

contains exactly r of these objects. Making an r-combination of a set of n distinct objects is

equivalent to one of the following:

(i) choosing an r-permutation and forget the order, i.e. choosing a subset of size r

without replacement and without regard to order;

(ii) choosing in one hand r balls from an urn containing n numbered balls ;

(iii) dispatching r black balls into numbered n boxes, each box could contain all balls.

The number of choices of r-combination is given by the binomial coefficient

(n
r
) = n!

r! (n − r)! =
P (n, r)
r!

,

and is read as “n choose r.” This number is sometimes denoted C(n, r) or nCr or Cn,r. Pro-

cedure (1) is then a special case with n1 = r and n2 = n − r.

Remarks: (n0) = (
n
n
) = 1, and that if n is an integer and r is a non-negative integer less than

n, then:

(n
r
) = ( n

n − r) = (
n − 1
r − 1) + (

n − 1
r
).

Example: Using the set {a, b, c}, the number of ways of choosing a subset of size 2 is:

(3
2
) = 3!

2! 1!
= 3,

which are:

{a, b},{a, c},{b, c}.

10



Principle of Combinatorics

Example 1.3.1. A purse contains one quarter, one dime, one nickel, and one penny. Two

coins are chosen randomly without regard to order. The total number of ways is:

(4
2
) = 6,

which is the cardinal of the set:

{{Q,D},{Q,N},{Q,P},{D,N},{D,P},{N,P}}.

Binomial theorem Note that in the power expansion of (x+ y)n, x, y ∈ R, the coefficient of

xryn−r is (nr):

(x + y)n =
n

∑
r=0

(n
r
)xryn−r, (1.31)

Retrieving (1.12): Let Ω be a set with ∣Ω∣ = n. Using the Binomial formula (1.31), one has

2n =
n

∑
r=0

(n
r
) = number of ways to form a subset of Ω with a cardinal at most n = ∣P(Ω)∣.
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2.1 Sample spaces
In probability theory, the fundamental building blocks are sample spaces, sample points, and

events. These concepts provide the foundation for understanding random experiments and their

outcomes.

2.1.1 Sample point and sample space
A sample point is the simplest possible outcome of a random experiment. The sample space,

usually denoted Ω, is the set of all possible sample points associated with a given experiment. For

example, when tossing a six-faced die, the sample space is Ω = {1,2,3,4,5,6}.

2.1.2 Mutually exclusive and exhaustive outcomes
Mutually exclusive outcomes: Two or more outcomes are said to be mutually exclusive if they

cannot occur simultaneously. These are also referred to as disjoint outcomes.

Exhaustive outcomes: Outcomes are said to be exhaustive if, collectively, they represent the

entire sample space. In other words, at least one of these outcomes must occur whenever the

experiment is performed.

2.2 Events
An event is any collection of sample points or any subset of the sample space. Events are

central to the study of probability, as they represent the conditions or outcomes we are interested

in.

2.2.1 Operations on events
Union of events: The union of two events A and B, denoted A∪B, consists of all sample points

that are in either A or B. This concept extends to multiple events: the union of A1,A2, . . . ,An,

denoted
n

⋃
i=1

Ai or A1 ∪A2 ∪ ⋅ ⋅ ⋅ ∪An,

consists of all sample points in at least one of the events Ai. For an infinite collection of events,

this concept generalizes accordingly.

Intersection of events: The intersection of two events A and B, denoted A ∩B, consists of all

sample points that are in both A and B. Similarly, the intersection of A1,A2, . . . ,An, denoted

n

⋂
i=1

Ai or A1 ∩A2 ∩ ⋅ ⋅ ⋅ ∩An,

consists of all sample points in every one of the events Ai.
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Mutually exclusive events: Events A1,A2, . . . ,An are mutually exclusive if they have no sample

points in common, or equivalently, if their two by two intersections are empty:

Ai ∩Aj = ∅, ∀i ≠ j.

Exhaustive events: Events A1,A2, . . . ,An are said to be exhaustive if their union equals the

entire sample space:
n

⋃
i=1

Ai = Ω.

Complement of an event: The complement of an event A, denoted Ac, is also an event that

consists of all sample points in the sample space that are not in A. Formally, Ac = Ω ∖A.

Subevent: If event B contains all the sample points in event A, then A is a subevent of B,

denoted A ⊆ B. The occurrence of event A implies that event B has occurred.

Partition with events: Events E1,E2, . . . ,En form a partition of event A if:

A =
n

⋃
i=1

Ei and Ei ∩Ej = ∅, ∀ i ≠ j.

Indicator function for event A: The function:

1A(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if x ∈ A,
0, if x ∉ A,

where x denotes a sample point,

is the indicator function for event A.

Example 2.2.1. Suppose that an ”experiment” consists of tossing a six-faced die. The sample

space of outcomes consists of the set Ω = {1,2,3,4,5,6}, each number being a sample point rep-

resenting the number of spots that can turn up when the die is tossed.

● The outcomes 1 and 2 (or more formally, the events {1} and {2}) are mutually exclusive

when tossing a die. The outcomes (sample points) 1 to 6 are exhaustive for the experiment of

tossing a die.

● The collection {2,4,6} represents the event of tossing an even number when tossing a die. If

A = {1,2,3} and B = {2,4,6}, then:

A ∪B = {1,2,3,4,6}, A ∩B = {2}.

● The events A = ”a number less than 4 is tossed” = {1,2,3} and B = ”a 4 is tossed” = {4} are
mutually exclusive since they have no sample points in common, i.e., A ∩B = ∅.
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● If A = {1,2,3}, then Ac = {4,5,6}.

● If A = ”a 2 is tossed” = {2} and B = ”an even number is tossed” = {2,4,6}, then A ⊆ B.

● The events A = ”a 2 or 4 is tossed” = {2,4} and B = ”a 6 is tossed” = {6} form a partition of

the event C = ”an even number is tossed” = {2,4,6}.

● For the die-tossing experiment, if A = {1,2,3} and B = {2,4,6}, then:

Ac = {4,5,6}, Bc = {1,3,5},

and

A ∪B = {1,2,3,4,6}, (A ∪B)c = {5}.

Thus:

(A ∪B)c = Ac ∩Bc.

2.2.2 Rules for operations on events
Several rules govern operations on events, which form the basis of probability theory:

(a) For any event A,

A ∪Ac = Ω and A ∩Ac = ∅.

(b) The set difference A ∖ B = A ∩ Bc consists of all sample points in A but not in B. This is

sometimes denoted A ∖B.

(c) If A ⊆ B, then A ∪B = B and A ∩B = A.

(d) DeMorgan’s laws: For two events A and B,

(A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc.

The latter generalizes to more than two events.

(e) For any events A,B1,B2, . . . ,Bn,

A ∩ (B1 ∪B2 ∪ ⋅ ⋅ ⋅ ∪Bn) = (A ∩B1) ∪ (A ∩B2) ∪ ⋅ ⋅ ⋅ ∪ (A ∩Bn),
A ∪ (B1 ∩B2 ∩ ⋅ ⋅ ⋅ ∩Bn) = (A ∪B1) ∩ (A ∪B2) ∩ ⋅ ⋅ ⋅ ∩ (A ∪Bn).

(f) If B1,B2, . . . ,Bn are exhaustive events (i.e., B1 ∪B2 ∪ ⋅ ⋅ ⋅ ∪Bn = Ω), then for any event A:

A = (A ∩B1) ∪ (A ∩B2) ∪ ⋅ ⋅ ⋅ ∪ (A ∩Bn).

15
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As a special case, for any events A and B,

A = (A ∩B) ∪ (A ∩Bc) Ô⇒ A ∩B and A ∩Bc form a partition of A.

Figure 2.1: Venn diagram for events.

2.3 Probability

2.3.1 Probability function
A probability function P assigns a probability to each event E in the sample space Ω. The proba-

bility function must satisfy the following axioms:

(i) 0 ≤ P(A) ≤ 1 for every event A,

(ii) P(Ω) = 1,

(iii) For mutually exclusive events A1,A2, . . . ,An . . .,

P(A1 ∪A2 ∪ ⋅ ⋅ ⋅ ∪An ∪ . . .) =
n

∑
i=1

P(Ai).

2.3.2 The uniform probability on a finite sample space
If the sample space Ω has a finite number of sample points, say Ω = {ω1, . . . , ωn}, then the

probability of an event A is computed as follows

P(A) = ∑
ωi∈A

P({ωi}).

If furthermore each sample point ωi is equally likely, then the probability function P is said to be

uniform, and

P({ωi}) =
1

n
, i = 1,2, . . . , n.

Moreover, for any event A, we have

P(A) = ∣A∣∣Ω∣ .

16
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Example 2.3.1 (Tossing a fair die). In the experiment of tossing a six-faced die, assume each face

has an equal chance of turning up. The sample space is Ω = {1,2,3,4,5,6}, and the probability

function is uniform:

P({ω}) = 1

6
, ω ∈ Ω.

The event A of rolling an even number is A = {2,4,6}. The probability of A is:

P(A) = P({2}) + P({4}) + P({6}) = 1

6
+ 1

6
+ 1

6
= 1

2
.

2.3.3 Additional rules for probability
(i) P(∅) = 0,

(ii) P(Ω) = 1,

(iii) For any event A, 0 ≤ P(A) ≤ 1,

(iv) If A ⊆ B, then P(A) ≤ P(B).

(v) For any event A, P(Ac) = 1 − P(A).

(vi) For any events A and B, since P(A) + P(B) counts P(A ∩B) twice, then

P(A) = P(A ∩B) + P(A ∩Bc),
P(A ∪B) = P(A) + P(B) − P(A ∩B),

(vii) For any events A, B and C,

P(A ∪B ∪C) = P(A) + P(B) + P(C) − P(A ∩B) − P(A ∩C) − P(B ∩C) + P(A ∩B ∩C).

The latter extends to more that three events by taking caution to the sign alternation.

(viii) For any events A1,A2, . . . ,An,

P(
n

⋃
i=1

Ai) ≤
n

∑
i=1

P(Ai),

with equality holding if and only if the events are mutually exclusive.

(ix) Law of total probability: For exhaustive events B1,B2, . . . ,Bk that are mutually exclusive

(forming a partition of the entire sample space), for any event A:

P(A) = P(A ∩B1) + P(A ∩B2) +⋯ + P(A ∩Bk). (2.31)
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Example 2.3.2. A survey finds that in a city:

P(R) = 0.75 (households with radios),

P(I) = 0.65 (households with irons),

P(T ) = 0.55 (households with toasters),

P(R ∩ I) = 0.50,
P(R ∩ T ) = 0.40,
P(I ∩ T ) = 0.30,

P(R ∩ I ∩ T ) = 0.20.

Find the probability that a household has at least one appliance.

Solution:

P(R ∪ I ∪ T ) = P(R) + P(I) + P(T ) − P(R ∩ I) − P(R ∩ T ) − P(I ∩ T ) + P(R ∩ I ∩ T ).

Substitute the values:

P(R ∪ I ∪ T ) = 0.75 + 0.65 + 0.55 − 0.50 − 0.40 − 0.30 + 0.20 = 0.95.

Example 2.3.3. Given P(A ∩B) = 0.3, P(A) = 0.6, P(B) = 0.5, find P(Ac ∩Bc).
Solution: We have

P(Ac ∩Bc) = 1 − P(A ∪B) and P(A ∪B) = P(A) + P(B) − P(A ∩B).

Substituting the values,

P(A ∪B) = 0.6 + 0.5 − 0.3 = 0.8Ô⇒ P(Ac ∩Bc) = 1 − 0.8 = 0.2.

2.4 Conditional probability and independence of events

2.4.1 Definition.
If P(B) > 0, the conditional probability of A given B is

P(A ∣ B) = P(A ∩B)
P(B) , for an event A.

Note that the function PB = P(. ∣ B) is also a probability. Indeed,

(i) For every event A,

0 ≤ PB(A) = P(A ∣ B) =
P(A ∩B)
P(B) ≤ 1;
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(ii) PB(Ω) = P(Ω∩B)
P(B) = 1,

(iii) For mutually exclusive events A1,A2, . . . ,An . . ., the events A1 ∩B,A2 ∩B, . . . ,An ∩B . . . are
also mutually exclusive , then

PB(∪iAi) =
P(B ∩ (∪ni=1Ai))

P(B) =
P( ∪i (B ∩Ai))

P(B) = ∑
i

P(B ∩Ai)
P(B) = ∑

i

P(Ai ∣ B)

= ∑
i

PB(Ai).

Note that for any events A and B, such that P(A), P(B) > 0, we have

P(B ∣ A) = P(A ∣ B)P(B)
P(A) ,

and

P(A) = P(A ∣ B) P(B) + P(A ∣ Bc) P(Bc). (2.41)

2.4.2 Bayes theorem
Bayes Theorem is a consequence of the law of total probability (2.31): If B1,B2, . . . ,Bn form a

partition of sample space Ω, then

P(Bi ∣ A) =
P(A ∣ Bi) P(Bi)

∑n
j=1 P(A ∣ Bj) P(Bj)

.

Example 2.4.1 (Bayes and the sweets). Box A contains 5 dark chocolates and 10 milk chocolates.

Box B contains 12 dark chocolates and 12 milk chocolates. Craig picks a box at random and then

takes out one chocolate at random. What is the probability that he gets a dark chocolate?

Solution: Let M=“picking milk chocolate”, D=“picking dark chocolate”, A=“picking box A,

and B=“picking box B. Assuming the boxes are picked with equal probability, we have:

P(A) = 1

2
, P(B) = 1

2
, P(D ∣ A) = 5

15
, P(D ∣ B) = 12

24
.

By formula (2.41), we then have:

P(D) = P(D ∣ A)P(A) + P(D ∣ B)P(B)

= 5

15
⋅ 1
2
+ 12

24
⋅ 1
2
= 5

12
.

2.4.3 Independent events
If events A and B satisfy the relationship

P(A ∣ B) = P(A) or P(B ∣ A) = P(B),
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then the events are said to be independent or stochastically independent or statistically independent.

The independence of (non-empty) events A and B is equivalent to:

P(A ∩B) = P(A) P(B) = P(B ∩A).

2.4.4 Mutually independent events
If events A1,A2, . . . ,An satisfy the relationship

P(A1 ∩A2 ∩ ⋅ ⋅ ⋅ ∩An) = P(A1)P(A2) . . .P(An) =
n

∏
i=1

P(Ai),

then they are said to be mutually independent.

2.4.5 Additional rules
(a) If P(A1 ∩A2 ∩ ⋅ ⋅ ⋅ ∩An) ≠ 0, then:

P(A1 ∩A2 ∩ ⋅ ⋅ ⋅ ∩An) = P(A1)P(A2 ∣ A1)P(A3 ∣ A1 ∩A2) . . .P(An ∣ A1 ∩A2 ∩ ⋅ ⋅ ⋅ ∩An−1).

(b) P(Ac ∣ C) = 1 − P(A ∣ C).

(c) If A ⊆ C, then P(A ∣ C) = P(A)
P(C) .

(d) If A and B are independent events, then Ac and B are independent events, A and Bc are

independent events, and Ac and Bc are independent events.

(e) Since P(Ω) = 1, P(Ω∩A) = P(A) for any event A, it follows that Ω is independent of any event

A.

2.5 Solved problems
Example 2.5.1. Let events A and B be independent. Find the probability, in terms of P(A) and
P(B), that exactly one of the events A and B occurs.

Solution: Observe that “exactly one of A and B”= (A∩Bc)∪ (B ∩Ac). Since A∩Bc and B ∩Ac

are mutually exclusive, then

P(exactly one of A and B) = P(A ∩Bc) + P(B ∩Ac)
= P(A) + P(B) − 2P(A ∩B).

Now, since A and B are independent, then

P(exactly one of A and B) = P(A) + P(B) − 2P(A) P(B).
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Example 2.5.2. If

P(A) = 1

6
, P(B) = 5

12
, P(A ∣ B) + P(B ∣ A) = 7

10
,

find P(A ∩B).
Solution: Let P(A ∩B) = x. We know that

P(A ∣ B) + P(B ∣ A) = P(A ∩B)
P(B) + P(A ∩B)

P(A) = ( 1

P(B) +
1

P(A))x.

Then:
7

10
= (6 + 12

5
)x = 6 + 42

5
xÔ⇒ P(A ∩B) = x = 35

420
= 1

12
.

.

Example 2.5.3. Suppose the die-tossing experiment is considered again. The sample space is

Ω = {1,2,3,4,5,6}. We define the following events:

• A = {”the number tossed is 1 or 3”} = {1,3},

• B = {”the number tossed is even”} = {2,4,6},

• C = {”the number tossed is a 1 or a 2”} = {1,2},

• D = {”the number tossed doesn’t start with the letters ’f’ or ’t’”} = {1,2,3,4,5,6}.

The conditional probability of A given B is:

P(A ∣ B) = P(A ∩B)
P(B) = P({2})

P({2,4,6}) =
1/6
1/2 =

1

3
.

Events A and B are not independent, since:

1

6
= P(A ∩B) ≠ P(A)P(B) = 1

2
× 1

2
= 1

4
,

or alternatively, events A and B are not independent since P(A ∩B) ≠ P(A).
Events A and C are not independent since:

P(A ∣ C) = 1 ≠ 1

2
= P(A).

Events B and C are independent, since:

P(B ∣ C) = 1

2
= P(A).

(Alternatively, P(B ∩C) = P({2}) = 1
6 = 1

2 × 1
3 = P(B)P(C)).

Similarly, both A and B are independent of D.
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Example 2.5.4. Three dice have the following probabilities of throwing a ”six”: p, q, r respec-

tively. One of the dice is chosen at random and thrown (each is equally likely to be chosen). A

”six” appeared. What is the probability that the die chosen was the first one?

Solution: The event ”a 6 is thrown” is denoted by ”6”.

P(die 1 ∣ ”6”) = P(”6” ∣ die 1)P(die 1)
∑i P(”6” ∣ die i)P(die i)

=
p × 1

3

P(”6”) .

Since

P(”6”) = P(”6” ∣ die 1)P(die 1) + P(”6” ∣ die 2)P(die 2) + P(”6” ∣ die 3)P(die 3)
= p

3
+ q
3
+ r
3
= p + q + r

3
,

then

P(die 1 ∣ ”6”) = p

p + q + r .

Example 2.5.5. Identical twins come from the same egg and hence are of the same sex. Fraternal

twins have a 50-50 chance of being the same sex. Among twins, the probability of a fraternal set

is p and an identical set is q = 1 − p. If the next set of twins are of the same sex, what is the

probability that they are identical?

Solution: Let A=“the next set of twins are of the same sex”, and B=“the next sets of twins are

identical”. We are given:

P(A ∣ B) = 1, P(A ∣ Bc) = 1

2
, P(B) = q, P(Bc) = p = 1 − q,

and

P(B ∣ A) = P(A ∣ B)P(B)
P(A)

Since

P(A ∩B) = P(A ∣ B) P(B) = q and P(A ∩Bc) = P(A ∣ Bc) P(Bc) = p
2
,

then

P(A) = P(A ∩B) + P(A ∩Bc) = q + p
2
= 1 + q

2
,

hence

P(B ∣ A) = 2q

1 + q .

Remark 2.5.6. In questions involving coin flips or dice tossing, it is understood, unless indicated.

Otherwise, successive flips or tosses are independent of one another. In making a random selection

of an object from a collection of n objects, it is understood that each object has the same chance

of being chosen. In questions involving choosing r objects at random from a total of n objects,

or constructing a random permutation of a collection of objects, it is understood that each of the

possible choices or permutations is equally likely to occur.
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Example 2.5.7. Three people, X,Y, and Z, in order, roll an ordinary die. The first one to roll an

even number wins. The game continues until someone rolls an even number. Find the probability

that X will win.

Solution: Since X rolls first, fourth, seventh, etc., until the game ends, the probability that X

will win is the probability that, in throwing a die, the first even number will occur on the 1st, or

4th, or 7th, or . . . throw.

Due to the independence of successive throws, the probability that the first even number occurs

on the n-th throw is given by:

P(first even throw on n-th throw) = (1 − p)n−1p,

where p = P(throw is even) = 1
2 . Thus, the probability that the first even throw occurs on the 1st,

or 4th, or 7th, or . . . throw is:

P(first even throw on 1st, 4th, 7th, . . . ) = p + (1 − p)3p + (1 − p)6p +⋯.

Substituting p = 1
2 :

P(first even throw on 1st, 4th, 7th, . . . ) = 1

2
+ (1

2
)
3 1

2
+ (1

2
)
6 1

2
+⋯.

This is an infinite geometric series with the first term a = 1
2 and common ratio r = (12)

3 = 1
8 . The

sum of the series is:
∞

∑
n=0

arn = a

1 − r =
1
2

1 − 1
8

= 4

7
.

Thus, the probability that X will win is:

P(X wins) = 4

7
.

Example 2.5.8. A calculator has a random number generator button which, when pressed, dis-

plays a random digit 0,1,2, . . . ,9. The button is pressed four times. Assuming that the numbers

generated are independent of one another, find the probability of obtaining one ”0”, one ”5”, and

two ”9”s in any order.

Solution: There are 104 = 10,000 possible four-digit orderings that can arise, ranging from 0000

to 9999. From the notes on permutations, if we have four digits with one ”0”, one ”5”, and two

”9”s, the number of orderings is:
4!

1! 1! 2!
= 24

2
= 12.

The probability in question is then:

p = Number of favorable outcomes

Total possible outcomes
= 12

10,000
= 0.0012.
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Univariate Random Variables
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3.1 Random variables and probability distributions
A random variable (shortly r.v.) is a function on a sample space Ω that assigns a real number

X(ω) to each sample point ω ∈ Ω. The set

Ω′ ∶=X(Ω)

is seen as new sample space and is called the state space of X. The set (X ∈ B) denotes

{ω, s.t. X(ω) ∈ B}

which is an event in Ω′. The probability distribution of X, denoted PX is a probability on Ω′ which

assigns to each event B ⊂ Ω′, the value P(X ∈ B):

PX(B) ∶= P(X ∈ B) = P({ω, s.t.X(ω) ∈ B}).

3.1.1 Independence of random variables
Two X and Y are said to be independent, and we denote X ⊥⊥ Y , if

P(X ∈ B, Y ∈ C) = P(X ∈ B) P(Y ∈ C),

for B ⊂ X(ω) and C ⊂ Y (ω). If furthermore X and Y identical probability distributions, we

shortly denote X and Y are i.i.d

Often, a random variable is simply equal to the sample point ω, if the sample points are

numerical values. For example, the sample space representing the number of spots that turn up

when an ordinary die is tossed, the random variable X , which describes the number of spots that

turn up are

Ω = {1,2,3,4,5,6}, and X(ω) = ω.

3.1.2 Some clarification
A random variable is sometimes described in terms of the outcome of a random experiment (such

as tossing a die). It could be also described without explicit reference to the underlying random

experiment or sample space (such as the prime rate of interest two years from now). For instance,

suppose that a gamble based on the outcome of the toss X of a die pays $10 if an even number

is tossed and pays $20 if an odd number is tossed. The payoff can be represented by the random

variable Y , where:

Y =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

10, if X is even,

20, if X is odd.

Thus,

P(Y ≥ 12) = P(X ∈ {1,3,5}).
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Note that for a fair die, this probability is 1
2 .

3.2 Discrete random variables and their distribution
The random variable X is discrete and is said to have a discrete distribution if it can take on

values only from a finite or countable infinite sequence (usually the integers or some subset of the

integers).

As an example, consider the following two random variables related to successive tosses of a

coin:

• X = 0 if the first head occurs on an even-numbered toss, X = 1 if the first head occurs on an

odd-numbered toss;

• Y = n, where n is the number of the toss on which the first head occurs.

Both X and Y are discrete random variables, where X can take on only the values 0 or 1, and Y

can take on any positive integer value. Both X and Y are based on the same sample space, the

sample points are sequences of tail coin flips ending with a head coin flip:

Ω = {H,TH,TTH,TTTH,TTTTH, . . .}.

For example:

X(H) = 0 (a head on the second flip, an odd-numbered flip), X(TH) = 1, . . .
Y (H) = 1 (first head on flip 1), Y (TH) = 2, Y (TTH) = 3, . . . .

The probability mass function (p.m.f.) of a discrete random variable X often denoted by p(x)
(or by pX(x) if several random variables are involved) taking is

p(x) = P(X = x); x ∈X(Ω) = {x1, x2 . . .}.

It must satisfy:

p(xn) ≥ 0 and ∑
n

p(xn) = 1.

Given a set A of real numbers,

P(X ∈ A) = ∑
i, s.t. xi∈A

p(xi).

3.3 Continuous random variables and their distribution
A continuous random variable usually can assume numerical values from an interval of real

numbers, perhaps the whole set of real numbers R. For example, the length of time between suc-

cessive streetcar arrivals at a particular stop could be regarded as a continuous random variable

(assuming time measurement can be made perfectly accurate).
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A continuous random variable X u has a probability density function (p.d.f.), denoted f(x) (or
fX(x) if several random variables are involved) satisfying

(i) f(x) ≥ 0 for all x;

(ii) ∫
∞

−∞
f(x)dx = 1.

Probabilities related to X are found by integrating:

P(a ≤X ≤ b) = ∫
b

a
f(x)dx, −∞ < a < b < ∞.

We emphasize that f is continuous except at a finite number of points, then probabilities are

defined and calculated as if f was continuous everywhere (the discontinuities are ignored).

A generic example for a p.d.f. is when X is uniformly distributed on the interval (0,1), i.e. X
has the density function

f(x) = 1 for 0 < x ≤ 1, f(x) = 0 otherwise.

3.4 Cumulative distribution function (CDF) and survival

function
Given a random variable X, the cumulative distribution function (also called the distribution

function or c.d.f.) of X is defined as:

F (x) = P(X ≤ x),

which can also be denoted as FX(x) if several random variables are involved. The survival function

is the complement of the cumulative distribution function and is defined as:

S(x) = 1 − F (x) = P(X > x).

The event (X > x) = {ω, s.t.X(ω > x)} is referred to as a ”tail” of the distribution. Also, for a

continuous random variable, the hazard rate is defined as:

h(x) = f(x)
S(x) .

3.5 Key properties of the CDF
• The c.d.f. F (x) is a non-decreasing function such that

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.
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• P(X = a) = F (a) − F (a−) = F (a) − limx→a− F (x).

• For a discrete random variable, F (x) has a step increase at each point with non-zero prob-

ability mass and remains constant between jumps.

• For a continuous random variable with density function fX(x), the c.d.f. is continuous,

differentiable, and satisfies:

F (x) = ∫
x

−∞
f(t)dt.

• At points of non-zero probability mass for a mixed distribution, F (x) will have a jump (see

Section ??).

3.6 Examples of distribution functions
1. Discrete Random Variable: Let X be the number turning up when tossing one fair die.

The probability function is:

P(X = x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
6 , x ∈ {1,2,3,4,5,6},
0, otherwise.

The c.d.f. is given by:

FX(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 1,
1
6 , 1 ≤ x < 2,
2
6 , 2 ≤ x < 3,
3
6 , 3 ≤ x < 4,
4
6 , 4 ≤ x < 5,
5
6 , 5 ≤ x < 6,
1, x ≥ 6.

2. Continuous Random Variable: Let Y be a continuous random variable on the interval

[0,1] with density function:

fY (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2x, 0 ≤ x ≤ 1,
0, otherwise.

The c.d.f. is:

FY (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, x < 0,
x2, 0 ≤ x ≤ 1,
1, x > 1.
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3.7 Some results and related formulas
(i) For a continuous random variable X,

P(a ≤X ≤ b) = P(a <X ≤ b) = P(a ≤X < b) = P(a <X < b)

when calculating the probability for a continuous random variable, whether or not the

endpoints are included.

P(X = a) = 0

Non-zero probabilities only exist over an interval, not at a single point. More generally the

non-zero set of the p.d.f. S = {x s.t.f(x) ≠ 0} corresponds to the state space of X:

X(Ω) ≡ S.

(ii) If X has a mixed distribution, then P(X = a) will be non-zero for some value(s) of a, and

P(a ≤ X ≤ b) will not always be equal to P(a < X < b) (they will not be equal if X has a

nonzero probability mass at either a or b).

(iii) The p.d.f. may be defined piecewise, meaning that f(x) is defined by a different algebraic

formula on different intervals.

(iv) A continuous random variable may have two or more different, but equivalent p.d.f.’s, but

the difference in the p.d.f.’s would only occur at a finite (or countably infinite) number of

points. The c.d.f. of a random variable of any type is always unique to that random variable.

3.8 Solved problems
Example 3.8.1. A die is loaded in such a way that the probability of the face with k dots turning

up is proportional to k for k = 1,2,3,4,5,6. What is the probability, in one roll of the die, that an

even number of dots will turn up?

Solution Let X denote the random variable representing the number of dots that appears when

the die is rolled once. Then,

P(X = k) = c ⋅ k, for k = 1,2,3,4,5,6,

where c is the proportionality constant. Since the sum of all probabilities must equal 1, we have:

c ⋅ (1 + 2 + 3 + 4 + 5 + 6) = 1 Ô⇒ c = 1

21
.

P(even number of dots turns up) = P(X = 2) + P(X = 4) + P(X = 6)

= 2

21
+ 4

21
+ 6

21
= 12

21
= 4

7
.
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Example 3.8.2. An ordinary single die is tossed repeatedly until the first even number turns up.

The random variable X is defined to be the number of the toss on which the first even number

turns up. Find the probability that X is an even number.

Solution: X is a discrete random variable that can take on an integer value of 1 or more, more

precisely, the distribution is given by

P(X = n) = (1
2
)
n−1

× 1

2
= (1

2
)
n

, n = 1,2, . . .

(this is the probability of n−1 odd tosses followed by an even toss). The probability P(X is even)
is then

P(X is even) =
∞

∑
k=1

P(X = 2k) =
∞

∑
k=1

(1
2
)
2k

=
∞

∑
k=1

(1
4
)
k

=
1
4

1 − 1
4

= 1

3
.

Example 3.8.3. The continuous random variable X has density function:

fX(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k ⋅ x, 0 ≤ x ≤ 1,
0, otherwise.

Find P(0 ≤X ≤ 1
2).

Solution: First, determine the value of k by ensuring the total probability is 1:

∫
1

0
k ⋅ xdx = 1 Ô⇒ k

2
= 1 Ô⇒ k = 2.

Thus, the density function is fX(x) = 2x for 0 ≤ x ≤ 1, and

P(0 ≤X ≤ 1

2
) = ∫

1/2

0
2xdx = [x2]1/2

0
= (1

2
)
2

− 0 = 1

4
.

Example 3.8.4. Suppose that the continuous random variable X has the cumulative distribution

function:

FX(x) =
1

1 + e−x , x ∈ R.

Find X’s density function.

Solution: The density function for a continuous random variable is the first derivative of the

cumulative distribution function:

fX(x) =
d

dx
FX(x) =

e−x

(1 + e−x)2 .
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Example 3.8.5. X is a random variable for which:

P(X ≤ x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, x < 0,
x2, 0 ≤ x ≤ 1,
1, x > 1.

Which of the following statements is true?

A) P(X = 1) = 0 and P(X ≤ 1) = 1
B) P(X = 1) = 1 and P(X ≤ 1) = 1
C) P(X = 1) = 0 and P(X < 1) = 1
D) P(X = 1) = 1 and P(X < 1) = 0
E) P(X = 1) = 0 and P(X < 1) = 0.
Solution: Since FX(x) is continuous, we know P(X = 1) = 0. Thus,

P(X ≤ 1) = P(X < 1) + P(X = 1) = P(X < 1) = 1.

The correct answer is: A.

3.9 Expected value
For a bounded or is a nonnegative random variable X, the expected value is denoted

E[X] or µX or if there is no ambiguity µ,

and is computed as

E[X] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑n xn P(X = xn), if X is discrete,X(Ω) = {x1, x2 . . .}

∫I xfX(x)dx, if X is continuous, X(Ω) − I ⊂ R.
(3.91)

The expected value of X is also called the expectation of X, or the mean of X. The expected

value is the ”average” over the range of values that X can be, or the ”center” of the distribution.

If X is non bounded or is nonnegative but

E[∣X ∣] is finiteÔ⇒ E[X] has a meaning.

3.9.1 Expectation of h(X)
If h is a bounded or is a nonnegative function, then formula (3.91) becomes

E[h(X)] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑n h(xn)P(X = xn), if X is discrete,

∫ h(x) fX(x)dx, if X is continuous,
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3.9.2 Moments and variance
If k is an integer and E[∣X ∣k] < ∞, then the k-th moment of X and the k-th central moment of X

about the mean µ are:

E[Xk] and µk = E[(X − µ)k].

The variance of X is

σ2
X = µ2 = E[(X − µ)2] = E[X2] − (E[X])2,

and the standard variation is σX .

3.9.3 Moment generating function
The moment generating function (MGF) of a random variable X is defined as:

MX(t) = E[etX] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑ etxfX(x) (discrete case),

∫ etxfX(x)dx (continuous case).

It is always true that MX(0) = 1. The moment generating function of X might not exist for all

real numbers but usually exists on some interval of real numbers. The function ln[MX(t)] is called
the cumulant generating function.

If Y = aX + b, a, b ∈ R, then:
MY (t) = ebt ⋅MX(at).

If X ⊥⊥ Y , then

MX+Y (t) = E[et(X+Y )] = E[etX etY ] = E[etX] E[etY ] =MX(t)MY (t),

see

3.9.4 Percentiles of a distribution
If 0 < p < 1, then the 100p-th percentile of the distribution of X is the number η that satisfies both

of the following inequalities:

P(X ≤ ηp) ≥ p and P(X ≥ ηp) ≥ 1 − p.

In the continuous case, the latter reduces to P(X ≤ ηp) = p. The 50-th percentile of a distribution

is referred to as the median of the distribution. For a continuous random variable, it is sufficient

to find ηp such that

P(X ≤ ηp) = p.

3.9.5 The mode of a distribution
The mode is any point m at which the p.m.f. pX(x) or the p.d.f. fX(x) is maximized.
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3.9.6 The skewness of a distribution
If the mean of the random variable X is µ and the variance is σ2, then the skewness is defined as:

E[(X − µ)3]
σ3

.

3.9.7 The covariance of two random variables
Let X1 and X2 be two r.v.’s such that E[X2

1 ], E[X2
2 ] exist (hence by Jensen inequality in Subsec-

tion ??, E[X1] and E[X2] also exist). The covariance of X1 and X2 is given by

cov(X1,X2) = E[(X1 −E[X1])(X1 −E[X2])] = E[X1X2] −E[X1] E[X2].

3.10 Some results and formulas related to the expectation

3.10.1 Existence of mean and variance
The mean of a random variable X might not exist; or might be +∞ or −∞, hence the variance

of X might be +∞. For example, the continuous random variable X with the probability density

function (p.d.f.):

f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
x2 , x > 1,
0, otherwise,

has an expected value:

∫
∞

1
x ⋅ 1
x2
dx = +∞.

3.10.2 Linear transformations and expectations
For any constants a1, a2 the following hold”

(i) Linearity: if E[X1], E[X2] exist, then

E[a1 X1 + a2 X2] = a1E[X1] + a2E[X2].

In particular, for real numbers a1, a2,

E[a1X1 + a2] = a1E[X1] + a2.

(ii) Quadraticity property: If E[X2
1 ], E[X2

2 ] exists then:

V [a1 X1 + a2 X2] = a21 V [X1] + a22 V [X2] + 2 a1 a2 cov(X1,X2).
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3.10.3 The MGF and the moments
If the moment generating function MX(t) exists in an interval containing t = 0, then:

M ′
X(0) = E[X] and M ′′

X(0) = E[X2] Ô⇒ Var[X] =M ′′
X(0) −M ′

X(0)2.

If the m.g.f. of ∣X ∣ is well defined, then the Taylor series expansion of MX(t) about t = 0 is:

MX(t) = 1 +E[X] t +E[X2] t
2

2!
+E[X3] t

3

3!
+ ⋅ ⋅ ⋅ =

∞

∑
k=0

E[Xk] tk
k!

.

If X and Y are random variables, and MX(t) =MY (t) for all values of t in an interval containing

0, then X and Y have identical probability distributions.

3.10.4 Percentiles and median
The median (50th percentile) and other percentiles of a distribution are not always unique. For

example, if X is the discrete random variable with:

p(x) = 0.25 for x = 1,2,3,4,

then the median of X could be any value from 2 to 3. The convention is to use the midpoint

M = 2.5.

3.10.5 Standardization
If E[X] = µ and Var[X] = σ2, and Z = X−µ

σ , then:

E[Z] = 0 and Var[Z] = 1.

3.11 Independence of two random variables revisited
Random variables X and Y are said to be independent (or stochastically independent) if the

cumulative distribution function of the joint distribution F (x, y) can be factored as:

F (x, y) = FX(x) ⋅ FX(y), for all (x, y).

This definition can be extended to a multivariate distribution of more than two variables. If X

and Y are independent, then:

p(k, l) = pX(x) ⋅ pX(y) (discrete case) and f(x, y) = fX(x)fX(y) (discrete case).

More generally, for any nonnegative bounded functions g and h,

E[g(X) ⋅ h(Y )] = E[g(X)] ⋅E[h(Y )].
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In particular, in case of first moments,

E[X ⋅ Y ] = E[X] ⋅E[Y ].

Note that X and Y are independent Ô⇒Cov[X,Y ] = 0. The converse is untrue in general.

3.12 Solved problems
Example 3.12.1. A fair die is tossed until the first ”1” appears. You receive 1

2X
dollars if the ”1”

appears on the X-th toss. Find the expected amount of the payout P you will receive.

Solution: X is a discrete random variable with distribution

P(X = n) = 1

6
(5
6
)
n−1

, n = 1,2, . . .

Using the relation P = 1
2X

, the expected payout is:

E[P ] =
∞

∑
n=1

1

2n
⋅ 1
6
(5
6
)
n−1

= 1

12

∞

∑
k=0

( 5
12
)
k

= 1

12

1

1 − 5
12

= 1

7
.

Example 3.12.2. Given λ > 0 the p.d.f.

f(x) = λ e−λx, x > 0

and 0 elsewhere, find the n-th moment of X.

Solution: The n-th moment is obtained by integration by parts repeatedly:

E[Xn] = ∫
∞

0
xn λe−λx dx = n!

λn
.

Example 3.12.3. A continuous random variable X has density function

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − ∣x∣, if − 1 < x < 1,
0, elsewhere.

Find Var[X].
Solution: The density of X is symmetric about 0 (since f(x) = f(−x)), so that E[X] = 0. This
can be verified directly, but doers not worth it:

E[X] = ∫
1

−1
x(1 − ∣x∣)dx = ∫

0

−1
x(1 + x)dx + ∫

1

0
x(1 − x)dx = −1

6
+ 1

6
= 0.

Then,

Var[X] = E[X2] = ∫
1

−1
x2(1 − ∣x∣)dx = 2∫

1

0
x2(1 − x)dx = 1

6
.
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Example 3.12.4. The moment generating function of a r.v. X is given by:

MX(t) =
λ

λ − t , t < λ,

where λ > 0. Find Var[X].
Solution: First, compute E[X]:

E[X] =M ′
X(0) =

d

dt
( λ

λ − t)∣t=0
= λ

(λ − t)2 ∣
t=0

= 1

λ
.

Next, compute E[X2]:

E[X2] =M ′′
X(0) =

d2

dt2
( λ

λ − t)∣t=0
= 2λ

(λ − t)3 ∣
t=0

= 2

λ2
.

Thus:

Var[X] = E[X2] − (E[X])2 = 2

λ2
− 1

λ2
= 1

λ2
.

Example 3.12.5. A continuous random variable X has p.d.f.:

f(x) = 1

2
e−∣x∣, −∞ < x < ∞.

Find the 87.5-th percentile of the distribution.

Solution: The 87.5-th percentile is the value η = η0.875 for which:

0.875 = P(X ≤ η) = ∫
η

−∞
f(x)dx = ∫

η

−∞

1

2
e−∣x∣ dx.

Note that the distribution is symmetric about 0, as f(−x) = f(x). Therefore, the mean and median

are both 0. Since η > 0, we can rewrite the integral:

0.875 = ∫
η

−∞

1

2
e−∣x∣ dx = ∫

0

−∞

1

2
e−∣x∣ dx + ∫

η

0

1

2
e−∣x∣ dx = 1

2
+ [−e

−x

2
]η0 =

1

2
+ 1 − e−η

2
.

Thus, e−η = 0.25⇐⇒= η ln(4).

3.13 Frequently used discrete distributions

3.13.1 Discrete uniform distribution U(1,2, . . . ,N)
We denote X

d= U(1,2, . . . ,N) if the distribution of X is

P(X = k) = 1

N
for x = 1,2, . . . ,N, and p(k) = 0 otherwise.

E[X] = N + 1
2

, Var(X) = N
2 − 1
12

, MX(t) =
N

∑
x=1

etx

N
= e

t(eNt − 1)
N(et − 1)
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for any real t.

3.13.2 Binomial distribution B(n, p)
A single trial of an experiment results in either success with probability p ∈ (0,1), or failure with

probability 1 − p = q. We say that

X =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if the trial is a success,

0, if the trial is a failure.

follows a Bernoulli distribution with parameter p ∈ [0,1], denoted XB(p), if

P(X = 1) = p and P(X = 0) = 1 − p.

If n independent trials of the experiment are performed, and S is the number of successes that

occur, then Sn is an integer between 0 and n. S is said to have a binomial distribution with

parameters n and p and we denote S
d= B(n, p), if

P(S = k) = (n
k
) pk (1 − p)n−k for k = 0,1,2, . . . , n,

E[S] = np, Var(S) = np(1 − p), MS(t) = (1 − p + pet)n.

In the special case of n = 1 (a single trial), the distribution is referred to as a Bernoulli distribution.

If S
d= B(n, p), then S is the sum of n independent random variables each with distribution B(p).

More generally, from the MGF form, we see that if X ⊥⊥ Y , X
d= B(n, p) and Y d= B(m,p), then

X + Y d= B(n +m,p).

The Binomial distribution generalizes the multinomial distribution which will be seen in Ex-

ample 4.7.1.

3.13.3 Poisson distribution P(λ)
Let λ > 0. We denote X

d= Poisson(λ) if

P(X = k) = λ
ke−λ

k!
for k = 0,1,2,3, . . . ,

E[X] = Var(X) = λ, MX(t) = eλ(e
t−1), t ∈ R.

From the MGF form, we see that if X ⊥⊥ Y, X d= P(λ) and Y d= P(µ), then

X + Y d= P(λ + µ).
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The Poisson distribution is often used as a model for counting the number of events of a certain type

that occur in a certain period of time. Suppose that X represents the number of customers arriving

for service at a bank in a 1-hour period, and that a model for X is the Poisson distribution with

parameter λ. Under some reasonable assumptions (such as independence of the numbers arriving

in different time intervals), it is possible to show that the number arriving in any time period also

has a Poisson distribution with the appropriate parameter that is ”scaled” from λ. Suppose that

λ = 40 - meaning that X, the number of bank customers arriving in one hour, has a mean of 40. If

Y represents the number of customers arriving in 2 hours, then Y has a Poisson distribution with

a parameter of 80 — for any time interval of length t, the number of customers arriving in that

time interval has a Poisson distribution with parameter λt = 40t — so the number of customers

arriving during a 15-minute period (t = 1
4 hour) will have a Poisson distribution with parameter

40 × 1
4 = 10.

3.13.4 Geometric distribution G(p)
A single trial of an experiment results in either success with probability p ∈ (0,1), or failure with

probability 1 − p = q. The experiment is performed with successive independent trials until the

first success occurs. If X represents the number of failures until the first success, then X is a

discrete random variable that can be 0, 1, 2, 3, . . . . X is said to have a geometric distribution

with parameter p and we denote X
d= G(p), if

P(X = k) = p (1 − p)k, for k = 0,1,2,3, . . . ,

E[X] = 1 − p
p
= q
p
, Var(X) = 1 − p

p2
= q

p2
, MX(t) =

pet

1 − (1 − p)et for t < − ln(1 − p).

The geometric distribution has the lack of memory property:

P(X ≥ n + k ∣X ≥ n) = P(X ≥ k).

Another version of a geometric distribution is the random variable Y , the number of the experiment

on which the first success occurs; Y =X + 1 and

P(Y = k) = P(X = k − 1), k ≥ 1.

3.13.5 Negative binomial distribution NB(r, p)
Let r is an integer and p ∈ (0,1). We denote X

d= NB(r, p) if the probability mass function of X is

P(X = k) = (k + r − 1
r − 1 ) p

r (1 − p)k for k = 0,1,2,3, . . . ,

E[X] = r(1 − p)
p

, Var(X) = r(1 − p)
p2

, MX(t) = (
p

1 − (1 − p)et)
r

, for t < − ln(1 − p).
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The negative binomial random variable X can be interpreted as being the number of failures

until the r-th success occurs when successive trials of an experiment are performed for which the

probability of success in a single particular trial is p. As the geometric distribution, the Pascal

distribution denoted Pa(r, p) corresponds to the r.v.

Y = r +X

which counts the number of trials needed to see the r-th success, that is, Y is the first trial that

gives r-successes. Its p.m.f. is

P(Y = k) = (k − 1
r − 1) p

r (1 − p)k−r for k = r, r + 1, r + 2, r + 3, . . .

Note that

Pa(1, p) = G(p)

and that

MY (t) = E[et(r+X)] = etr MX(t) = (
pet

1 − (1 − p)et)
r

, for t < − ln(1 − p),

and that the distributions NB(r, p) and Pa(r, p) are defined even if r is not an integer. From the

MGF form, we see that if X ⊥⊥ Y, X d= Pa(r, p) and Y
d= Pa(s, p), then

X + Y d= Pa(r+, p).

This distribution is discussed later in these notes.

3.13.6 Hypergeometric distribution H(N,n,K)
Consider a group of N objects, K of which are of Type I and M −K are of Type II. If n objects

are randomly chosen without replacement from the group of N , let X denote the number of Type

I objects in the group of n. X is a non-negative integer that satisfies:

max[0, n − (N −K)] ≤X ≤min[n,K],

and has a hypergeometric distribution:

X
d= H(N,n,K).

The p.m.f. is given by:

P(X = k) =
(K
k
)(N−K

n−k
)

(N
n
)

, for k =max[0, n − (N −K)] to x =min[n,K].
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The expected value and variance are:

E[X] = nK
M

, Var[X] = nK(N −K)
N2(N − 1) .

Example 3.13.1. Let X be a discrete random variable that is uniformly distributed on the even

integers x = 0,2,4, . . . ,22, so that the p.m.f of X is:

P(X = x) = 1

12
, for each even integer x from 0 to 22.

Find E[X] and Var[X].
Solution: The discrete uniform distribution described earlier in the notes is on the points x =
1,2, . . . ,N . If we consider the transformation:

Y = 1 + X
2
, (3.131)

then the random variable Y is distributed on the points Y = 1,2, . . . ,12, with p.m.f:

P(Y = y) = 1

12
, for y = 1,2, . . .12.

Thus, Y has the discrete uniform distribution described earlier in Subsection 3.13.1, and:

E[Y ] = 1 + 12
2
= 6.5, Var[Y ] = 122 − 1

12
= 143

12
.

Using (3.131), we use the rules for expectation and variance to get:

E[X] = 2 ⋅E[Y ] − 2 = 11, Var[X] = 4 ⋅Var[Y ] = 143

3
.

Example 3.13.2. IfX is the number of ”6”s that turn up when 72 ordinary dice are independently

thrown, find the expected value of X.

Solution: X has a binomial distribution with n = 72 and p = 1
6 . Then:

E[X] = np = 72 ⋅ 1
6
= 12, Var[X] = np(1 − p) = 12 ⋅ 5

6
= 10.

Example 3.13.3. The number of hits, X, per baseball game has a Poisson distribution. If the

probability of a no-hit game is P(X = 0) = 10−4, find the probability of having 4 or more hits in a

particular game.

Solution: The probability of having no hits is

P(X = 0) = e−λ = 1

10.000
Ô⇒ λ = 4 ln(10).
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Thus, the probability of having 4 or more hits is:

P(X ≥ 4) = 1 −
3

∑
k=0

P(X = k) = 1 − e−λ
3

∑
k=0

λk

k!
= 1 − 1

10.000

3

∑
k=0

(4 ln(10))k

k!
.

Example 3.13.4. In rolling a fair die repeatedly (and independently on successive rolls), find the

probability of getting the third ”1” on the t-th roll.

Solution: The negative binomial random variable X with parameters r = 3 and p = 1
6 is the

number of failures (rolling 2, 3, 4, 5, or 6) until the third success. The probability that the third

success occurs on the k-th roll is the same as the probability of having k − 3 failures before the

third success. Thus, the probability is:

P(X = k − 3) = (k − 1
2
)(1

6
)
3

(5
6
)
k−3

.

Example 3.13.5. An urn contains 6 blue and 4 red balls. 6 balls are chosen at random and

without replacement from the urn. If X is the number of red balls chosen, find the standard

deviation of X.

Solution: This is a hypergeometric distribution with M = 10, K = 4, and n = 6. The p.m.f of X

is:

f(x) =
(4
x
)( 6

6−x
)

(10
6
)

, x = 0,1,2,3,4.

The variance is:

Var[X] = nK(M −K)(M − n)
M2(M − 1) = 6 ⋅ 4 ⋅ 6 ⋅ 4

102 ⋅ 9 = 0.8.

Thus, the standard deviation is then: σX =
√
0.8 ≈ 0.894.

3.14 Frequently used continuous distributions

3.14.1 Continuous uniform distribution U(a, b)
Let −∞ < a < b < ∞. A continuous random variable X has the uniform distribution on the interval

(a, b), and we denote X
d= U(a, b), if

fX(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
b−a , for a < x < b,
0, otherwise.

E[X] = a + b
2

, Var[X] = (b − a)
2

12
, MX(t) =

ebt − eat
t(b − a) , t ≠ 0.

This is a symmetric distribution about the mean and Median = a+b
2 .
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3.14.2 Normal distribution N(µ,σ2)
A continuous random variable X has the normal distribution with mean µ ∈ R and standard

variation σ > 0, and we denote X
d= N(µ,σ2), if

fX(x) =
1√
2πσ2

e−
(x−µ)2
2σ2 , −∞ < x < ∞.

E[X] = µ, Var[X] = σ2, MX(t) = eµt+
σ2t2

2 , t ∈ R.

The distribution N(0,1) is referred to as the standard normal distribution. In this case, F (x) is
sometimes denoted Φ(x).

3.14.3 Properties of the normal distibution
From the standard normal table:

Φ(1) = P(Z ≤ 1) = 0.8413.

Because of symmetry:

1 −Φ(−1) = P(Z ≥ −1) = 0.8413, Φ(−1) = 1 − P(Z ≥ −1) = 0.1587.

In general, for a > 0:
Φ(−a) = 1 −Φ(a).

Given any normal random variable X
d= N(µ,σ2):

Z = X − µ
σ

d= N(0,1).

Thus

P(r <X < s) = P(r − µ
σ
< Z < s − µ

σ
) = Φ(s − µ

σ
) −Φ(r − µ

σ
) .

Additionally, if X ′
d= N(µ′, σ′2) and is independent of X, then

X +X ′ d= N(µ + µ′, σ2 + σ′2).

3.14.4 Exponential distribution E(λ)
A positive continuous random variable X has the exponential distribution with mean λ > 0 if

fX(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λe−λx, x > 0
0, otherwise

Ô⇒ FX(x) = 1 − e−λx, x ≥ 0, .

E[X] = 1

λ
, Var[X] = 1

λ2
, MX(t) =

λ

λ − t , t < λ.
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An exponential distribution with mean µ has p.d.f. f(x) = 1
µe
−x/µ.

3.14.5 Properties of the exponential distribution
1. Lack of memory property for E(λ): For x, y > 0,

P(X > x + y ∣X > x) = P(X > y). (3.141)

2. Link to Poisson distribution: Suppose that X
d= E(λ), and we regard X as the time

between successive occurrences of some type of event (e.g., the arrival of a new insurance

claim at an insurance office), where time is measured in appropriate units (seconds, minutes,

hours, or days, etc.).

Now, imagine choosing a starting time (say labeled as t = 0), and from this point onward,

we begin recording times between successive events. Let N represent the number of events

(claims) that have occurred when one unit of time has elapsed. Then N will be a random

variable related to the times of the occurring events. The distribution of N is Poisson with

parameter λ.

3.14.6 Gamma distribution G(α,β)
Let α > 0 and β > 0. The distribution of a continuous positive r.v. X has the Gamma

distribution G(α,β), if

fX(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

βα

Γ(α) x
α−1 e−βx, x > 0,

0, otherwise.

Here, Γ(α) is the gamma function, defined for α > 0 as:

Γ(α) = ∫
∞

0
yα−1e−y dy,

from which it follows that if n is a positive integer, Γ(n) = (n − 1)!.

E[X] = α
β
, Var(X) = α

β2
, MX(t) = (

β

β − t)
α

, 0 < t < β.

The exponential distribution with parameter λ is a special case of the gamma distribution

with α = 1 and β = λ. From the MGF form, we see that if X ⊥⊥ Y, X d= G(αX , β) and Y
d=

mathcalG(αY , β), then
X + Y d= G(αX + αY , β).
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3.15 Functions and transformations of random vari-

ables

3.15.1 Distribution of a function of a discrete random variable

Suppose that X is a discrete random variable with probability mass function p(x). If u(x)
is a function of x, and Y is a random variable defined by the equation Y = u(X), then Y is

a discrete random variable with probability function

g(y) = ∑
i, u(xi)=y

p(xi),

where given a value of y, find all values of x for which y = u(x) (say u(x1) = u(x2) = ⋯ =
u(xn) = y), and then g(y) is the sum of those p(xi) probabilities.

3.15.2 Distribution of a function of a continuous random variable

Suppose that X is a continuous random variable with p.d.f. f(x) and c.d.f. F (x), and
suppose that u(x) is a one-to-one function (usually u is either strictly increasing, such as

u(x) = x, ex, lnx, or u is strictly decreasing, such as u(x) = e−x). As a one-to-one function, u

has an inverse function v, so that

v(u(x)) = x.

Then the random variable Y = u(X) (Y is referred to as a transformation of X) has p.d.f.

fY (y) = ∣v′(y)∣ fX(v(y)).

If u is a strictly increasing function, then

FY (y) = P(Y ≤ y) = P(u(X) ≤ y) = P(X ≤ v(y)) = FX(v(y)).

3.16 Solved problems

Example 3.16.1. Suppose that X
d= U(0, a), where a > 0. Find P(X >X2).

Solution: We have

P(X >X2) = P(X < 1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, a ≥ 1,
1
a , a < 1.

Example 3.16.2. A random variable T has an exponential distribution such that P(T ≤
20 = 2P(T > ln 2). Find Var(T ).
Solution: We have

P(T ≤ 2) = 1 − e−2λ = 2e−λ ln 2.

44



Univariate Random Variables

Solving yields λ = ln 2, so:
Var(T ) = 1

λ2
= 1

(ln 2)2 .

Example 3.16.3. If X is a normal random variable with P(X < 500) = 0.5 and P(X >
650) = 0.0227, find the standard deviation of X.

Solution: Since

µ = 500, P(Z > 650 − 500
σ

) = 0.0227.

and since, Z0.0227 = 150
σ = 2.00 (from the standard normal table), then

σ = 650 − 500
2.00

= 75.

Example 3.16.4. Verification of Exponential Distribution Properties. Show the

lack of memory property (3.141) for X
d= E(λ).

Solution: Using P(X > u) = e−λu, u > 0, we obtain

P(X > x + y ∣X > x) = P(X > x + y)
P(X > x) = e

−λ(x+y)

e−λx
= e−λy.

Example 3.16.5. Normal approximation to the binomial distribution. Suppose that

X has a binomial distribution based on 100 trials with a probability of success of 0.2 on any

given trial. Find the approximate probability P(15 ≤ E ≤ 25).
Solution: The mean and variance of X are:

E[X] = 100(0.2) = 20, Var(X) = 100(0.2)(0.8) = 16.

Using the normal approximation with integer correction, X is approximately normal. We

calculate:

P(15 ≤X ≤ 25) = P(14.5 ≤X ≤ 25.5).

Standardizing:

P(14.5 ≤X ≤ 25.5) = P(14.5 − 20√
16

≤ Z ≤ 25.5 − 20√
16

) = P(−1.375 ≤ Z ≤ 1.375),

where Z is a standard normal random variable. From standard normal tables:

P(−1.375 ≤ Z ≤ 1.375) = Φ(1.375) −Φ(−1.375) = 2Φ(1.375) − 1.

Using linear interpolation

Φ(1.375) ≈ 0.25Φ(1.3) + 0.75Φ(1.4) = 0.25(0.9032) + 0.75(0.9192) = 0.9152,
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we finally obtain

P(15 ≤X ≤ 25) ≈ 2(0.9152) − 1 ≈ 0.8304.
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Multivariate Random Variables
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4.1 Joint and Marginal

4.1.1 Joint distribution of random variables X and Y :

A joint distribution of two random variables is described as follows.

Discrete Case: If X and Y are discrete random variables, then have joint p.m.f p(k, l) =
P(X = k, Y = l), (k, l) ∈ (X,Y )(Ω), which must satisfy

0 ≤ p(k, l) ≤ 1 and ∑
k

∑
l

p(k, l) = 1.

Thus,

P(X ∈ A,Y ∈ B) = ∑
k∈A

∑
l∈B

p(k, l), A ×B ⊂ (X,Y )(Ω).

Continuous Case: If X and Y are continuous random variables, then they have a joint

p.d.f. f(x, y), which must satisfy

f(x, y) ≥ 0 and ∫ ∫ f(x, y)dy dx = 1.

Thus,

P(X ∈ A,Y ∈ B) = ∫
A
∫
B
f(x, y)dy dx, A ×B ⊂ (X,Y )(Ω).

Remark 4.1.1. It is possible to have a joint distribution where one variable is discrete,

and the other is continuous, or where either has a mixed distribution. The joint distribution

of two random variables can be extended to a joint distribution of any number of random

variables.

Cumulative Distribution Function: If random variables X and Y have a joint distri-

bution, then the cumulative distribution function is:

F (x, y) = P(X ≤ x,Y ≤ y)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑k≤x∑l≤y p(k, l), in the discrete case,

∫
x

−∞ ∫
y

−∞
f(u, v)dv du, in the continuous case.

We have

lim
x→−∞

F (x, y) = lim
y→−∞

F (x, y) = 0,

P(x1 <X ≤ x2, y1 < Y ≤ y2) = F (x2, y2) − F (x2, y1) − F (x1, y2) + F (x1, y1),
P(X > x,Y > y) = FX(x) + FY (y) − F (x, y) − 1.
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Note that in the continuous case, we have

f(x, y) = ∂
2F (x, y)
∂x∂y

= ∂
2F (x, y)
∂y ∂x

.

4.1.2 Marginal distributions

If X and Y have a joint p.m.f. p(k, l) (respectively a joint p.d.f. f(x, l), then the marginal

distribution of X has a p.m.f. (respectively a p.d.f. given by

pX(k) = ∑
l

p(k, l) (in the discrete case),

respectively,

fX(x) = ∫ f(x, y)dy (in the continuous case).

The cumulative distribution of X is then:

FX(x) = lim
y→∞

F (x, y).

The density function for the marginal distribution of Y is found in a similar way. This

concept can be extended to define the marginal distribution of any one (or subcollection) of

variables in a multivariate distribution.

4.1.3 Expectation of a function of jointly distributed random vari-

ables

If h(x, y) is a function of two variables, andX and Y are jointly distributed random variables,

then the expected value of h(X,Y ) is defined as:

E[h(X,Y )] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑k∑l h(k, l) ⋅ p(k, l), (discrete case),

∫ ∫ h(x, y) ⋅ f(x, y)dy dx, (continuous case).

4.1.4 Covariance

If random variables X and Y are jointly distributed with joint density/probability function

f(x, y), then the covariance between X and Y is:

Cov[X,Y ] = E[(X −E[X])(Y −E[Y ])] = E[XY ] −E[X]E[Y ].

The covariance satisfies the following
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• Symmetry:

Cov[X,Y ] = Cov[Y,X] with Cov[X,X] = Var[X];

• Bilinearity:

Cov[X +X ′, Y + Y ′] = Cov[X,Y ] +Cov[X,Y ′] +Cov[X ′, Y ′] +Cov[X ′, Y ].

4.1.5 Coefficient of correlation

The coefficient of correlation between random variables X and Y is defined as:

ρX,Y =
Cov[X,Y ]√

Var[X] ⋅Var[Y ]
= ρY,X .

It satisfies −1 ≤ ρX,Y ≤ 1, and ∣ρX,Y ∣ = 1 if and only if Y = aX + b for some constant a, b.

4.1.6 Moment generating function of a joint distribution

Given jointly distributed random variables X and Y , the moment generating function of the

joint distribution is:

M(s, t) = E[esX+tY ], (s, t) ∈ D.

where s and t are real numbers in some domain of definition. This concept can be extended to

the moment generating function of the joint distribution of any number of random variables.

Note that

MX(s) =M(s,0), MY (t) =M(0, t).

4.2 Distribution of a sum of random variables

(a) If X and Y are discrete non-negative integer-valued random variables with joint proba-

bility mass function p(k, l), then for an integer n ≥ 0,

P(X1 +X2 = n) = ∑
k,l

p(k,n − l).

If furthermore X and Y are independent, then

P(X1 +X2 = n) = ∑pX(k) ⋅ pY (n − k).

(This is the convolution method of finding the distribution of the sum of independent

discrete random variables.)

(b) If random variable (X,Y ) ∈ R2 is jointly continuous with joint p.d.f. f(x, y), then X

and Y are also continuous random variables with density functions fX(x) and fY (y),

50



Multivariate Random Variables

respectively. The density function of Z =X + Y is given by:

fZ(z) = ∫
∞

−∞
f(x, z − x)dx = ∫

∞

−∞
f(x − y, y)dy.

If furthermore X and Y are independent, then

fZ(z) = ∫
∞

−∞
fX(x) fY (z − x)dx = ∫

∞

−∞
fX(x − y) fY (y)dy.

This integral represents the convolution product of the density functions of fX and fY .

(c) If X1,X2, . . . ,Xn are random variables with finite second moments, then

Var(
n

∑
i=1

Xi) =
n

∑
i=1

Var(Xi) + 2 ∑
1≤i<j≤n

Cov(Xi,Xj).

Recall that if X1,X2, . . . ,Xn are mutually independent random variables, then

Cov(Xi,Xj) = 0.

4.3 Sums of certain distributions

Suppose that X1,X2, . . . ,Xn are independent random variables and Y = ∑n
i=1Xi. Then we

have the following stability by convolution:

Distribution of Xi Distribution of Y

Bernoulli B(p) Binomial B(n, p)
Geometric G(p) onN Negative Binomial NB(n, p)
Geometric G(p) onN⋆ Negative Binomial Pa(n, p)

Poisson P(λi) P (∑n
i=1 λi)

Gamma G(αi, β) Gamma G (∑n
i=1αi, β)

4.4 Conditional distribution of Y Given X = x
4.4.1 Definition

Suppose that the random variables X and Y have a joint p.m.f. p(k = l) (respectively p.d.f.

f(x, y)), and the marginal distribution of X is pX(k) (respectively p.d.f. fX(x)). Then, the
conditional distribution of Y given X = x is given by

pY ∣X=k(l) =
p(k, l)
pX(k)

, if pX(k) > 0 (resp. fY ∣X=x(y) =
f(x, y)
fX(x)

if fX(x) > 0).

The same formula holds for X given Y = y by exchanging the role of X and Y .
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4.4.2 Properties

(i) The joint density/probability function of X and Y can be written as:

p(k, l) = pY ∣X=k(l) ⋅ pX(k) = pX ∣Y =l(k) ⋅ pY (l), (discrete case)

f(x, y) = fY ∣X=x(y) ⋅ fX(x) = fX ∣Y =y(x) ⋅ fY (y), (continuous case).

(ii) The conditional expectation of X given Y = x is:

E[X ∣ Y = y] = ∑
x

x ⋅ pX(x ∣ Y = y), (discrete case)

E[X ∣ Y = y] = ∫ x ⋅ f(x ∣ Y = y)dx, (continuous case).

(iii) Note that E[X ∣ Y = y] depends on y:

h(y) ∶= E[X ∣ Y = y] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑x x P(X = x∣Y = y), (discrete case),

∫ x fX ∣Y =y)(x) dx, (continuous case).
(4.41)

It can be shown that h(Y ) = E[X ∣ Y ], hence

E[h(Y )] = E[E[X ∣ Y ]] = E[X].

We also have

Var[X] = E[Var[X ∣ Y ]] +Var[E[X ∣ Y ]].

(iv) If X and Y are independent, then:

pX(k ∣ Y = l) = pX(k) and pY (l ∣X = k) = pY (l) (discrete case).

and

fX(x ∣ Y = y) = fX(x) and fY (y ∣X = x) = fY (y) (continuous case).

4.5 Some results and formulas

(a) The marginal MGF are given by:

MX(t,0) = E[etX] =MX(t), MY (0, t) = E[etY ] =MY (t).

The random variables X and Y are independent, if and only if,

MX,Y (s, t) = E[esX+tY ] =MX(s) ⋅MY (t),
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for (s, t) in some region in R2.

(b) If X and Y have a joint uniform distribution over a region R (usually R will be a

triangle, rectangle or circle in the (x, y) plane), then the conditional distribution of Y

given X = x has a uniform distribution on the line segment (or segments) defined by the

intersection of the region R with the line X = x . The marginal distribution of Y might

or might not be uniform.

4.6 Approximation of sums, the law of large numbers

and the central limit theorem

4.6.1 Law of large numbers

The following result is central is statistical theory, as it approximates the sample mean.

Theorem 4.6.1 (Law of Large numbers (LLN)). Let X1,X2, . . . ,Xn be a sequence of in-

dependent and identically distributed random variables (i.i.d.) with mean µ. As the sample

size n becomes large, the sample mean

Xn =
1

n

n

∑
i=1

Xi

approaches µ:

Xn
a.s.Ð→ µ.

where
a.s.Ð→ is convergence in the almost sure sense.

4.6.2 Central Limit Theorem

The following result is a justification for the importance of the normal distribution, as it

approximates to the distribution of a sum of random variables.

Theorem 4.6.2 (Central Limit Theorem (CLT)). Let X1,X2, . . . ,Xn be a sequence of i.i.d.

random variables with mean µ and variance σ2. As the sample size n becomes large, the

distribution of the sample mean

Xn =
1

n

n

∑
i=1

Xi

approaches a normal distribution:

Xn
d≈ N (µ, σ

2

n
) ,

or more precisely,
Xn − µ
σ/√n

dÐ→ N(0,1), as n→∞,
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4.7 Solved problems

Example 4.7.1 (The multinomial distribution). The multinomial distribution is defined

with parameters n, p1, p2, . . . , pk (where n is a positive integer and p1 + p2 +⋯ + pk = 1 with

pi ≥ 0 for all i = 1,2, . . . , k) as follows. Suppose that an experiment has k possible outcomes,

with probabilities p1, p2, . . . , pk respectively. If the experiment is performed n successive times

independently, let Xi denote the number of experiments that resulted in outcome i, so that:

X1 +X2 +⋯ +Xk = n.

The joint probability mass function of X1,X2, . . . ,Xk is:

P(X1 = i1,X2 = i2, . . . ,Xk = ik) =
n!

i1!i2!⋯ik!
pi11 p

i2
2 ⋯p

ik
k ,

where i1 + i2 +⋯ + ik = n and ij ≥ 0 for all j = 1, . . . k. Note that the marginal distributions

are such that

Xi
d= B(n, pi) and Cov[Xi,Xj] = −npipj for 1 ≤ i ≠ j ≤ k.

Thus,

Corr[Xi,Xj] =
Cov[Xi,Xj]√

Var[Xi] ⋅Var[Xj]
= −pipj√

pi(1 − pi) ⋅ pj(1 − pj)
.

For example, the toss of a fair die results in one of k = 6 outcomes, with probabilities:

p1 = p2 = ⋯ = p6 =
1

6
.

If the die is tossed n times, then the counts of each face appearing, then with

Xi = of tosses resulting in face i turning up,

the random variable X =X1 + . . . +Xn follows a multinomial distribution.

Example 4.7.2. Let X and Y be two continuous random variables with joint p.d.f.

f(x, y) =K (x2 + y2),

defined over the unit square bounded by the points (0,0), (1,0), (1,1), (0,1). Find K.

Solution: The (double) integral of the density function over the region of density must equal

1. Thus:

1 = ∫
1

0
∫

1

0
K (x2 + y2)dxdy =K ∫

1

0
(∫

1

0
(x2 + y2)dx) dy =K ∫

1

0
(1
3
+ y2) dy = 2

3
K.
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Therefore, K = 3
2 .

Example 4.7.3. The cumulative distribution function for the joint distribution of the con-

tinuous random variables X and Y is given by:

F (x, y) = 1

5
(3x3 y + 2x2y2), for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Find the joint p.d.f.

Solution: The density function is obtained by differentiating the cumulative distribution

function: for x, y ∈ (0,1),

f(x, y) = ∂
2F (x, y)
∂x∂y

= 1

5

∂

∂x
( ∂
∂y
(3x3 + 2x2y2)) = 1

5

∂

∂x
(3x3 + 4x2y) = 1

5
(9x2 + 8xy) .

Example 4.7.4. X and Y are discrete random variables that are jointly distributed with

the following probability function f(x, y):

Y /X −1 0 1

1 1
18

1
9

1
6

0 1
9 0 1

6

−1 1
6

1
9

1
9

Find E[XY ].
Solution:

E[XY ] = ∑
k

∑
l

kl ⋅ p(k, l)

= (−1)(1) 1
18
+ (−1)(−1)1

6
+ (1)(1)1

6
+ (1)(−1)1

9
+ 0 = 1

6
.

Example 4.7.5. Continuous random variables X and Y have a joint distribution with

density function

f(x, y) = 3

2
(2 − 2x − y),

in the region bounded by y = 0, x = 0, and y = 2 − 2x. Find the p.d.f. fX(x) for 0 < x < 1.
Solution: For 0 < x < 1, we have

fX(x) = ∫
2−2x

0
f(x, y)dy = 3

2 ∫
2−2x

0
(2 − 2x − y)dy = 3(1 − x)2.

Example 4.7.6. Suppose that X and Y are independent continuous random variables with

the following density functions:

fX(x) = 1 for 0 < x < 1 and fY (y) = 2y for 0 < y < 1.
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Find P(Y <X).
Solution: Since X and Y are independent, the density function of the joint distribution of

E and Y is

f(x, y) = fX(x) ⋅ fY (y) = 2y, 0 < x < 1, 0 < y < 1

Thus

P(Y <X) = ∫
1

0
∫

1

0
2y dy dx = 1

3
.

Example 4.7.7. Continuous random variables X and Y have a joint distribution with

density function

f(x, y) = x2 + xy
3
+ for 0 < x < 1 and 0 < y < 2.

Find P(X > 1
2 ∣ Y > 1

2).
Solution: For 0 < u < 1, 0 < v < 2,

P (X > u,Y > v) = ∫
1

u
∫

2

v
[x2 + xy

3
] dy dx = ∫

1

x
[x2y + xy

2

6
]
y=2

y=v

dx

= ∫
1

u
[x2(2 − v) + x(4 − v

2)
6

]
y=2

y=v

dx = [x
3(2 − v)

3
+ x

2(4 − v2)
12

]
x=1

x=u

= (1 − u
3)(2 − v)
3

+ (1 − u
2)(4 − v2)
12

Thus,

P(Y > 1

2
) = P(X > 0, Y > 1

2
) = 13

16
and P(X > 1

2
, Y > 1

2
) = 43

64
,

hence

P(X > 1

2
∣ Y > 1

2
) =

P(X > 1
2 , Y > 1

2)
P(Y > 1

2

= 43

64
× 16

13
= 43

52

Example 4.7.8. X is a continuous random variable with density function

f(x) = x + 1

2
for 0 < x < 1.

X is also jointly distributed with the continuous random variable Y , and the conditional

density function of Y given X = x, 0 < x < 1, is

fY ∣X=x(y) =
x + y
x + 1

2

for 0 < y < 1.

Find fX(y). Solution: The joint density function is given by

f(x, y) = fY ∣X=x(y) ⋅ fX(x) = (
x + y
x + 1

2

) ⋅ (x + 1

2
) = x + y.
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Then, the marginal density of Y is

fY (y) = ∫
1

0
f(x, y)dx = ∫

1

0
(x + y)dx = y + 1

2
, 0 < y < 1.

Example 4.7.9. Find Cov(X,Y ) for the jointly distributed discrete random variables in

Example 4.7.4 above.

Solution: We have found E[XY ] = 1
6 , it remains to compute E[X] and E[Y ].

E[X] = ∑
x

x∑
y

P(X = x,Y = y) = (−1)( 1
18
+ 1

9
+ 1

6
) + 0 + (1)(1

6
+ 1

6
+ 1

9
) = −1

3
+ 4

9
= 1

9

E[Y ] = ∑
x
∑
y

yP(X = x,Y = y) = (1)( 1
18
+ 1

9
+ 1

6
) + 0 + (−1)(1

6
+ 1

9
+ 1

9
) = 1

3
− 7

18
= − 1

18
.

Thus,

Cov(X,Y ) = E[XY ] −E[X] ⋅E[Y ] = 1

6
− 1

9

1

18
= 41

81
.

Example 4.7.10. The coefficient of correlation between random variables E and Y is 1
3 ,

and σ2
X = a, σ2

Y = 4a. The random variable Z is defined to be Z = 3X − 4Y , and it is found

that σ2
Z = 114. Find a.

Solution: Since

Cov(X,Y ) = σXσY
3
= 2a

3
,

and since the variance of Z is given by

114 = Var(3X − 4Y ) = 9 ⋅Var(E) + 16 ⋅Var(Y ) − 24 ⋅Cov(X,Y ) = 9a + 64a − 16a = 77a,

we deduce requested value is a = 2.

Example 4.7.11. Suppose that X and Y are random variables whose joint distribution has

moment generating function

M(t1, t2) = (
3 + 2et1 + 3et2

8
)
10

, for all real t1 and t2.

Find the covariance between X and Y .

Solution: To find the expectations, we need to compute the partial derivatives of the MGF

with respect to t1 and t2.

∂M(t1, t2)
∂t1

= 10

810
× 2et1(3 + 2et1 + 3et2)9

∂M(t1, t2)
∂t2

= 10

810
× 3et2(3 + 2et1 + 3et2)9
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Then using any of the following formula,

∂2M(t1, t2)
∂t1∂t2

= ∂

∂t1

∂M(t1, t2)
∂t2

= ∂

∂t2

∂M(t1, t2)
∂t1

,

we find
∂2M(t1, t2)
∂t1∂t2

= 10

810
× 6et1+t2(3 + 2et1 + 3et2)8.

Now, evaluating at t1 = 0 and t2 = 0, we find

E[X] = ∂M(t1, t2)
∂t1

∣
t1=0,t2=0

= 5

2

E[Y ] = ∂M(t1, t2)
∂t2

∣
t1=0,t2=0

= 15

4

E[XY ] = ∂2M(t1, t2)
∂t1∂t2

∣
t1=0,t2=0

= 135

16
.

The covariance is then Cov(X,Y ) = −15
16 .

Example 4.7.12. Suppose that X has a continuous distribution with probability density

function

fX(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2x for x ∈ (0,1),
0 elsewhere,

Suppose that Y is a continuous random variable such that the conditional distribution of Y

given X = x is uniform on the interval (0, x). Find the mean and variance of Y .

Solution: We first compute the mean and the variance of X:

E[X] = ∫ xfX(x)dx = 2∫
1

0
x2 dx = 2

3
.

E[X2] = ∫
1

0
x2fX(x)dx = 2∫

1

0
x3 dx = 1

2

Var(X) = 1

18
.

Since Y ∣X = x has the uniform distribution on the interval (0, x), with conditional p.d.f.

fY ∣X=x(y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
x for 0 ≤ y ≤ x,
0 elsewhere,

hence with mean and variance

E[Y ∣X = x] = 0 + x
2
= x
2
, Var(Y ∣X = x) = x

2

12
.
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we deduce that the conditional mean and variance

E[Y ∣X] = X
2
, Var(Y ∣X) = X

2

12
,

which give

E[Y ] = E[[E[Y ∣X]] = E[X]
2
= 1

3

Var(E[Y ∣X]) = Var(X)
4

= 1

72

E[Var(Y ∣X)] = E[X2]
12

= 1

24

Var(Y ) = Var(E[Y ∣X]) +E[Var(Y ∣X)] = 1

24
+ 1

72
= 1

18
.

Example 4.7.13. The random variable X has an exponential distribution with a mean of

1. The random variable Y is defined to be Y = e−bX . Find fY (y), the p.d.f. of Y .

Solution: For y ∈ (0,1), we have

P(Y ≤ y) = P(e−bX ≤ y) = P(X ≥ − ln y
b
) = 1 − P(X < − ln y

b
) = 1 − e lny

b = 1 − y 1
b .

Differentiating, we get,

fY (y) = b y1+
1
b , 0 < y ≤ 1.

Example 4.7.14. The random variable X has an exponential distribution with a mean of

1. The random variable Y is defined to be Y = 2 ln(X). Find fY (y) the p.d.f. of Y .

Solution: We have

FY (y) = P (Y ≤ y) = P (2 ln(X) ≤ y) = P (X ≤ ey/2) = 1 − e−e
y/2
, y ∈ R.

Then

fY (y) = F ′Y (y) =
1

2
ey/2e−e

y/2
, y ∈ R.

Alternatively, we choose y = u(x) = 2 ln(x)), x > 0, to get Y == u(x). The inverse v of u is

given by x = v(y) = ey/2, y ∈ R. It follows that

fY (y) = ∣v′(y)∣ fX(v(y)) =
1

2
ey/2e−e

y/2
, y ∈ R.

Example 4.7.15. Suppose that X and Y are independent discrete integer-valued random

variables with X uniformly distributed on the integers 1 to 5 , and Y having the following

probability mass function

fY (0) = 0.3, fY (1) = 0.5, fY (3) = 0.2.
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Let Z =X + Y , find P (Z = 5) .
Solution: Using the fact that fX(k) = 0.2 for all k ∈ {1, . . . ,5}, and the convolution method

for independent discrete random variables, we have

fZ(5) =
k

∑
k=1

fX(k)fY (5 − k) = (0.2)(0) + (0.2)(0.2) + (0.2)(0) + (0.2)(0.5) + (0.2)(0.2) = 0.2.

Example 4.7.16. X1 and X2 are independent exponential random variables each with a

mean of 1. Find P (X1 +X2 < 1).
Solution: Using the convolution method, the density function of Y ∶=X1 +X2 is

fY (y) = ∫
y

0
fX1(t)fX2(y − t)dt = ∫

y

0
e−te−(y−t)dt = ye−y, y > 0,

hence Y has the gamma distribution G(2,1). So that

P (X1 +X2 < 1) = ∫
1

0
y e−y dy = 1 − 2e−1.

Example 4.7.17. Independent random variablesX and Y and Z are identically distributed.

Let W =X + Y . The moment generating function of W is

MW (t) = (0.7 + 0.3et)6 , t ∈ R.

Find the moment generating function of S ∶=X + Y +Z.
Solution: For independent random variables, the moment generating function of the sum

is the product of the moment generating functions. Since X and Y are i.i.d, they have the

same moment generating function. Thus,

MW (t) =MX(t)MY (t) = (MX(t))
2
, MX(t) ≥ 0Ô⇒MX(t) =

√
MW (t) = (0.7 + 0.3et)3 .

Similarly, X, Y and Z are i.i.d, we obtain

MS(t) = (MX(t))3 = (0.7 + 0.3et)9 .

Alternatively, note that the moment generating function of the binomial distributionBin(n, p)
is

M(t) = (1 − p + pet)n.

Thus, S has a binomial distribution B(9,0.3), and each of X, Y , and Z has a binomial

distribution, so the sum of these independent binomial distributions is B(3,0.3).

Example 4.7.18. The birth weight of males is normally distributed with mean 6 pounds,

10 ounces, standard deviation 1 pound. For females, the mean weight is 7 pounds, 2 ounces

with standard deviation 12 ounces. Given two independent male/female births, find the
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probability that the baby boy outweighs the baby girl.

Solution: Let random variables X and Y denote the boy’s weight and girl’s weight, respec-

tively. Then, W =X − Y has a normal distribution with mean

6
10

16
− 7 2

16
= −1

2
and variance σ2

X + σ2
Y = 1 +

9

16
= 25

16
.

Then, the probability that the boy outweighs the girl is

P(X > Y ) = P(W > 0) = P
⎛
⎜
⎝
W − (−1

2)√
25
16

>
1
2
5
4

⎞
⎟
⎠
= P(Z > 2

5
) = P(Z > 0.4).

Since Z has been standardized, this is the probability that a standard normal variable exceeds

0.4, which is approximately 0.3446.

Example 4.7.19. If the number of typographical errors per page typed by a certain typist

follows a Poisson distribution with a mean λ, find the probability that the total number of

errors in 10 randomly selected pages is 10.

Solution: The 10 randomly selected pages have independent distributions of errors per

page. The sum of n independent Poisson random variables with parameter λ has a Poisson

distribution with parameter nλ. Thus, the total number of errors in the 10 randomly selected

pages follows a Poisson distribution with parameter 10λ. The probability of 10 errors in the

10 pages is
e−10λ(10λ)10

10!
.
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Chapter 5

Sequences, Limits and Series
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5.1 Sequences

Finite sequences are also called strings, denoted by

a1, a2, a3, . . . an.

A sequence is defined as a function from a subset of N to a set S. We use the notation an to

denote the image of the integer n. We call an a term of the sequence and we use the notation

(an)n∈N to describe the sequence. It is convenient to describe a sequence with a formula.

Example 5.1.1.

n 1 2 3 4 5 ⋯
an 2 4 6 8 10 ⋯

This sequence can be specified as an = 2n.

Example 5.1.2. What are the formulas that describe the following sequences a1, a2, a3, . . .?

1) 1,3,5,7,9, . . . ;

2) −1,1,−1,1,−1, . . .;

3) 2,5,10,17,26, . . .;

4) 0,0.25,0.5,0.75,1,1.25, . . .;

5) 1,3,9,27,81,243, . . ..

6) 0,1,1,2,3,5,8,13,21,34, . . ..

Solution:

1) 1,3,5,7,9, . . ., an = 2n − 1, n ≥ 1.

2) −1,1,−1,1,−1, . . ., an = (−1)n, n ≥ 1.

3) 2,5,10,17,26, . . ., an = n2 + 1, n ≥ 1.

4) 0,0.25,0.5,0.75,1,1.25, . . ., an = 0.25n, n ≥ 0.

5) 1,3,9,27,81,243, . . ., an = 3n, n ≥ 0.

6) This is the famous Fibonacci sequence an+2 = an+1 + an. With some analysis, it can be

shown that is has the closed-form expression:

an =
φn − (−φ)−n√

5
, where φ = 1 +

√
5

2
. (5.11)
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5.1.1 Arithmetic and geometric sequences

An arithmetic sequence satisfies

an+1 − an = r, r ∈ R, n ∈N. Its form is an = a0 + nr.

A geometric non-null sequence satisfies

an+1/an = r, r ∈ R⋆, n ∈N. Its form is an = a0 rn.

5.1.2 Summations

A summation of a sequence (aj)j starting form the integer rang m and finishing at the rank

n, 0 ≤m ≤ n, represents the sum

n

∑
j=m

aj = am + am+1 + am+2 +⋯ + an.

The variable j is called the index of summation, running from its lower limit m to its

upper limit n. Any other letter could be used to denote this index.

1) What does ∑6
j=1 j stand for?

6

∑
j=1

j = 1 + 2 + 3 + 4 + 5 + 6 = 21.

It is tedious to calculate this manually.

2) How can we express the sum of the first 1000 terms of the sequence (an)n where an = n2

for n = 1,2,3, . . .? We write it as ∑1000
n=1 n

2. What is the value of this summation?

Example 5.1.3 (Arithmetic Sum). How does:

sn ∶= 1 + 2 + 3 +⋯ + n =
n

∑
j=1

j = n(n + 1)
2

, (5.12)

work?

Observation:

sn = 1 + 2 + 3 +⋯ + n = n + (n − 1) + (n − 2) +⋯ + 1
2sn = (n + 1) + (n + 1) +⋯ + (n + 1) (with n terms)

sn =
n(n + 1)

2
.

Example 5.1.4 (Geometric Sum). How does: Sn = 1 + a + a2 + a3 +⋯ + an = ∑n
j=0 a

j work?
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If a = 1, then S = n + 1. If a ≠ 1, then

aSn = a + a2 + a3 +⋯ + an+1

(aSn − Sn) = (a − 1)Sn = an+1 − 1

Sn =
an+1 − 1
a − 1 . (5.13)

For instance 1 + 2 + 4 + 8 +⋯ + 1024 = 2047.

Example 5.1.5 (Other useful Sums). We have the following computations

n

∑
j=1

j2 = n(n + 1)(2n + 1)
6

, (5.14)

n

∑
j=1

j3 = (n(n + 1)
2

)
2

. (5.15)

5.1.3 Double Summations

Corresponding to nested loops in programming languages, there are double summations:

n

∑
j=1

m

∑
k=1

aj,k.

5.2 Limits

5.2.1 Definition

We define x as the limit of the sequence (xn), denoted as:

xn Ð→
n→∞

x or lim
n→∞

xn = x,

if the following condition is satisfied:

∀ε > 0, ∃N ∈N, s.t. ∀n ≥ N, ∣xn − x∣ < ε,

which reads: for every real number ε > 0, there exists a natural number N such that for all

n ≥ N , the inequality ∣xn − x∣ < ε holds. In simpler terms, for any given measure of closeness

ε, the terms of the sequence eventually become that close to the limit x. The sequence (xn)
is said to converge to or tend to the limit x.

If a sequence (xn) converges to a limit x, it is called convergent, and x is its unique limit.

Otherwise, the sequence is said to be divergent. For instance xn Ð→
n→∞
±∞ is formulated as
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follows:

∀R > 0, ∃N ∈N, s.t. ∀n ≥ N, ∣xn∣ > R.

5.2.2 Examples

Example 5.2.1. The sequence (xn) defined by xn = 1
n , n ≥ 1, converges to the limit x = 0.

This is an example of a non-null sequence tending to 0:

lim
n→∞

1

n
= 0.

Example 5.2.2. The sequence (yn) defined by yn = sin(n)
n also converges to the limit x = 0,

as the absolute value of the terms approaches zero: we use ∣ limn→∞ yn∣ ≤ limn→∞ ∣yn∣, thus

lim
n→∞

yn∣ = ∣ lim
n→∞

sin(n)
n
∣ ≤ lim

n→∞

1

n
= 0Ô⇒ lim

n→∞
yn = 0.

Example 5.2.3. The sequence (zn) defined by zn = cos(nπ) has no limit as

z2n = 1 and z2n+1 = −1.

Example 5.2.4. The sequence (un) defined by un = e−n Ð→
n→∞

0

5.3 Series

5.3.1 Definition

The n-th partial sum, Sn, is the sum of the first n terms of the sequence (ak)k is given by:

Sn = a1 + a2 +⋯ + an =
n

∑
k=1

ak.

A series is the sum of all the terms:

S = a1 + a2 + a3 +⋯ =
∞

∑
n=1

an.

A series is said to be convergent (or that it converges) if the sequence (Sn)n converge in

the sense of Section 5.2. series that does not converge is said to be divergent or to diverge.

Note that
∞

∑
n=1

an convergesÔ⇒ an Ð→
n→∞

0.

Thus, if an does not tend to zero, then ∑∞n=1 an diverge !
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5.3.2 Examples of convergent and divergent series

(a) Harmonic series (divergent): The reciprocals of positive integers produce a divergent

series an = 1
n :

1

1
+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+⋯ →∞.

(b) Alternating harmonic series (convergent): Alternating the signs of the reciprocals

of positive integers produces a convergent series an = (−1)
n

n :

1

1
− 1

2
+ 1

3
− 1

4
+ 1

5
−⋯ = ln(2).

(c) Reciprocals of prime numbers (divergent): The reciprocals of prime numbers pro-

duce a divergent series an = 1
pn
, where pn is the n-th prime number:

1

2
+ 1

3
+ 1

5
+ 1

7
+ 1

11
+ 1

13
+⋯ →∞.

(d) Reciprocals of triangular numbers (convergent): The reciprocals of triangular

numbers produce a convergent series with an = 2
n(n+1) , see (5.12):

1

1
+ 1

3
+ 1

6
+ 1

10
+ 1

15
+ 1

21
+⋯ = 2.

(e) Reciprocals of factorials (convergent): The reciprocals of factorials produce a con-

vergent series an = 1
n! :

1

1
+ 1

1
+ 1

2
+ 1

6
+ 1

24
+ 1

120
+⋯ = e. (5.31)

(f) Reciprocals of square numbers (convergent): The reciprocals of square numbers

produce a convergent series (the Basel problem) with an = 1
n2 :

1

1
+ 1

4
+ 1

9
+ 1

16
+ 1

25
+ 1

36
+⋯ = π

2

6
.

(g) Reciprocals of powers of n > 1 (convergent): An application of (5.13) gives that

the reciprocals of powers of any x > 1 produce a convergent series with an = 1
xn :

1

1
+ 1

x
+ 1

x2
+ 1

x3
+ 1

x4
+⋯ = x

x − 1 .

In particular the reciprocals of powers of 2 produce a convergent series is

1

1
+ 1

2
+ 1

4
+ 1

8
+ 1

16
+ 1

32
+⋯ = 2.

(h) Reciprocals of Fibonacci numbers (convergent): The reciprocals of Fibonacci
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numbers produce a convergent series with 1/an = Fibonacci sequence:

1

1
+ 1

1
+ 1

2
+ 1

3
+ 1

5
+ 1

8
+⋯ = ψ ≈ 3.359885.

This convergence can be analyzed using (5.11):

1

an
=

√
5

φn − (−φ)−n .

5.3.3 Methods for determining series convergence or divergence

1) Absolute convergence test. Let an ∈ R, Then

∞

∑
n=1

∣an∣ convergesÔ⇒
∞

∑
n=1

an converges.

2) Comparison test. Let an, bn > 0 satisfying one of the following conditions:

an ≤ bn, or lim
n→∞

an
bn
= 0.

Then
∞

∑
n=1

bn convergesÔ⇒
∞

∑
n=1

an converges.

Conversely,
∞

∑
n=1

an divergeÔ⇒
∞

∑
n=1

bn diverge.

3) Equivalence test. Let an, bn satisfying one of the following conditions:

0 ≤ bn ≤ an ≤ bn+1, or lim
n→∞

an
bn
= c, for some 0 < c < ∞.

Then
∞

∑
n=1

an⇐⇒
∞

∑
n=1

bn converges.

4) Integral test. If an = f(n), where f(x) is positive, continuous, and monotonically de-

creasing, then

∫
∞

1
f(x)dx converges⇐⇒

∞

∑
n=1

an converges.

The notion of convergence of ∫
∞

1 f(x) dx will be seen Chapter 7.

5) Ratio Test. Let

r = lim
n→∞
∣an+1
an
∣ .

• If r < 1, the series is absolutely convergent.
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• If r > 1, the series diverges.

• If r = 1, the test is inconclusive.

6) Root test (or n-th root test). Let

r = lim sup
n→∞

n
√
∣an∣.

• If r < 1, the series converges.

• If r > 1, the series diverges.

• If r = 1, the test is inconclusive.

7) Alternating series test. Let an ≥ 0. Then

an is monotonically decreasing to 0Ô⇒
∞

∑
n=1

(−1)n anconverge.

The above criteria help to explain the convergence and divergence of the examples in Sub-

section 5.3.2.
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6.1 Limit of a function in a point

A real valued function f is said to have a limit l at a point a, if any sequence (xn)n∈N of points

in the domain D that converges to a, the corresponding sequence (f(xn))n∈N converges to

l. In mathematical notation:

∀(xn)n∈N ⊂D, lim
n→∞

xn = aÔ⇒ lim
n→∞

f(xn) = l.

We denote l by limx→a f(x).

6.1.1 Continuity a function in a point

Given a function f ∶ D → R and an element x0 ∈ D, f is said to be continuous at the point

x0 if limx→x0) f(x) = f(x0). In mathematical notation: for every ε > 0, there exists a δ > 0
such that for all x ∈D:

∣x − x0∣ < δ Ô⇒ ∣f(x) − f(x0)∣ < ε.

One can alternatively define continuity by requiring limx→a− f(x) = limx→a,x<a f(x) and

limx→a+ f(x) = limx→a,x>a f(x) exist and are equal. We then say that f is continuous at x0

and we have

lim
x→a

f(x) = lim
x→a−

f(x) = lim
x→a+

f(x) = f(x0).

A function is said to be continuous on D = [a, b] if it is continuous at each point of D.

Example 6.1.1. Given the graph of f(x), shown below, determine if f(x) is continuous

at x = −2, x = 0, and x = 3. The graph represents a function with two distinct pieces. The

first piece, for x < −2, starts at (−4,−2) and increases to (−2,2). The second piece starts

with an open dot at (−2,−1), increases, then decreases to (3,0), and continues increasing.

It has open dots at (−2,−1) and (3,0), and closed dots at (0,1) and (3,−1). The function

is continuous except at two points where the pencil must be lifted.
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Example 6.1.2. Determine where the function below is defined and continuous.

h(t) = 8tt − 16t2 − 120t
t2 − 2t − 15

Solution The numerator is of the form t(4t − 20)(2t + 6), and denominator is of the form

(t + 3)(t − 5) function h has no problem of definition:

h(t) = t(4t − 20)(2t + 6)(t + 3)(t − 5) = 8t.

Thus h is well defined and continuous on R.

6.1.2 Fact

A consequence of continuity is the following fact. If f(x) is continuous at x = b and

limx→a g(x) = b, then:
lim
x→a

f(g(x)) = f (lim
x→a

g(x)) .
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Example 6.1.3. Evaluate the following limit: limx→0 esinx

6.2 Intermediate value theorem (nice consequence of

continuity)

Suppose that f(x) is continuous on [a, b] and let M be any number between f(a) and f(b).
Then there exists a number c such that:

a < c < b and f(c) =M.

The intermediate value theorem says is that a continuous function will take on all values

between f(a) and f(b).

Example 6.2.1. Check that p(x) = 2x3 − 5x2 − 10x+ 5 has a root somewhere in the interval

[−1,2].

Example 6.2.2. If possible, determine if f(x) = 20 sin(x + 3) cos (x2

2 ) takes the following

values in the interval [0,5].

(i) Does f(x) = 10?

(ii) Does f(x) = −10?

6.3 Differentiation of a function

A function f ∶ I → R is differentiable at a point a if its domain I contains an open interval

containing a, and the limit

L = lim
h→0

f(a + h) − f(a)
h

exists. This means that, for every positive real number ε, there exists a positive real number

δ such that, for every h such that 0 < ∣h∣ < δ, then f(a + h) is defined, and

∣L − f(a + h) − f(a)
h

∣ < ε,
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where the vertical bars denote the absolute value. The value L is denoted by f ′(x). The
derivative tells us the slope of a function at any point. For example:

• The slope of a constant function (like 3) is always 0.

• The slope of a linear function like 2x is 2.

6.3.1 Common functions and their derivatives

Here are useful rules to help you work out the derivatives of many functions. Note: the little

mark ′ means derivative of, and f and g are functions.
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Function Derivative

Constant c 0

Line ax, a ∈ R a

Power function xα αxα−1

Exponential ax, a > 0 ln(a) ⋅ ax
Exponential function ex ex

Logarithm ln(x) 1
x

Sine, sin(x) cos(x)
Cosine, cos(x) − sin(x)
Tangent, tan(x) sec2(x)
Inverse Sine, sin−1(x) 1√

1−x2

Inverse Cosine, cos−1(x) − 1√
1−x2

Inverse Tangent, tan−1(x) 1
1+x2

Rule Derivative

Multiplication by a constant: cf cf ′

Sum rule: f + g f ′ + g′
Difference rule: f − g f ′ − g′
Product rule: fg f ⋅ g′ + f ′ ⋅ g
Quotient rule: f

g
f ′⋅g−g′⋅f

g2

Power rule: fα α f ′ fα−1

Composition rule f(g(x)) f ′(g(x)) ⋅ g′(x)

6.3.2 Examples of differentiation

Example 1: Power rule

What is the derivative of d
dxx

3? Using the Power rule where n = 3: d
dxx

n = nxn−1. So,

d

dx
x3 = 3x3−1 = 3x2.

Example 2: Derivative of 1
x = x−1

Using the Power rule where n = −1: d
dxx

n = nxn−1. So,

d

dx
x−1 = −1 ⋅ x−1−1 = −x−2 = − 1

x2
.
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Example 3: Multiplication by a constant

What is d
dx5x

3? Using the Power rule:

d

dx
x3 = 3x2.

So:
d

dx
5x3 = 5 ⋅ d

dx
x3 = 5 ⋅ 3x2 = 15x2.

Example 5: Sum rule

What is the derivative of x2 + x3? The Sum Rule says:

d

dx
(f + g) = d

dx
f + d

dx
g.

Using the Power Rule d
dxx

2 = 2x, d
dxx

3 = 3x2. So,

d

dx
(x2 + x3) = 2x + 3x2.

Example 6: Difference rule

What is d
dv(v3 − v4)? The Difference Rule says d

dv(f − g) = d
dvf − d

dvg. So,

d

dv
(v3 − v4) = 3v2 − 4v3.

6.4 Problems

Find the domain, the continuity and the derivative of the given function.

1. f(x) = 6x3 − 9x + 4
Solution:

2. y = 2t4 − 10t2 + 13t
Solution:

3. g(z) = 4z7 − 3z − 7 + 9z
Solution:
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4. h(y) = y−4 − 9y−3 + 8y−2 + 12
Solution:

5. y = √x + 8 3
√
x − 2 4

√
x

Solution:

6. f(x) = 10 5
√
x3 −
√
x7 + 6 3

√
x8 − 3

Solution:

7. f(t) = 4t−1 − 6t3 + 8t5
Solution:

8. R(z) = 6 3
√
z + 1

8z
4 − 1

3z
10

Solution:

9. z = x(3x2 − 9)
Solution:

10. g(y) = (y − 4)(2y + y2)
Solution:

11. h(x) = 4x3 − 7x + 8x
Solution:

12. f(y) = y5 − 5y3 + 2yy3
Solution:
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Determine where the function is not changing.

1. f(x) = x3 + 9x2 − 48x + 2
Solution:

2. y = 2z4 − z3 − 3z2
Solution:

Find the tangent line to the given function.

1. g(x) = 16x − 4√x at x = 4
Solution:

2. f(x) = 7x4 + 8x − 6 + 2x at x = −1
Solution:

Determine where the function is increasing and decreasing.

1. h(z) = 6 + 40z3 − 5z4 − 4z5
Solution:

2. R(x) = (x + 1)(x − 2)2
Solution:

Tangent line parallel to a given line

Determine where, if anywhere, the tangent line to f(x) = x3 − 5x2 + x is parallel to the line

y = 4x + 23.
Solution:
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Solve each of the following inequalities

1. u2 + 4u ≥ 21
Solution:

2. x2 + 8x + 12 < 0
Solution:

3. 4t2 ≤ 15 − 17t
Solution:

4. z2 + 34 > 12z
Solution:

5. y2 − 2y + 1 ≤ 0
Solution:

6. t4 + t3 − 12t2 < 0
Solution:

Simplify each expression

1. −36x3

42x2

Solution:

2. 16r2

16r3

Solution:

3. 16p2

28p

Solution:
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4. 32n2

24n

Solution:

5. −70n2

28n

Solution:

6. 15n
30n3

Solution:

7. 2r−4
r−2

Solution:

8. 45
10a−10

Solution:

9. x−4
3x2−12x

Solution:

10. 15a−3
24

Solution:

11. v−5
v2−10v+25

Solution:

12. x+6
x2+5x−6

Solution:
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Chapter 7

Simple and Generalized Integrals
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7.1 Definite Integrals

7.1.1 Riemann Integrals

The Riemann integral is a foundational concept in calculus, providing a method for calcu-

lating the area under a curve. The approach involves approximating this area by dividing it

into a series of rectangles and summing their areas.

Let [a, b] be a closed interval. A subdivision (or partition) of [a, b] of size n is a finite sequence

of points {x0, x1, x2, . . . , xn} such that

a = x0 < x1 < x2 < ⋅ ⋅ ⋅ < xn = b.

Each [xi−1, xi], for i = 1,2, . . . , n, is called a subinterval of the partition, it has equal or

varying widths width ∆xi = xi+1 − xi. Note that ∆xi depends on n and that ∆xi Ð→
n→∞

0.

To approximate the integral of a continuous function f ∶ [a, b] → R, rectangles are con-

structed with basis the subintervals [xi−1, xi], the height of each is determined by f(xi−1)
the value of the function at the left endpoint (one may also choose the right endpoint, or

midpoint ...). Then, the sum of the areas of these rectangles equals

Sn =
n

∑
i=1

f(xi)∆xi.

As n→∞, this sum converges to a value L called the Riemann integral:
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L = lim
n→∞

n

∑
i=1

f(xi)∆xi.

This value is denoted by L = ∫
b

a f(x)dx. We will see that this method is widely used to

visualize and compute the integrals, defined as in the following sections, as it connects the

geometric idea of area with the analytical process of summation.

Example 7.1.1 (Approximation of I = ∫
1

0 x
2 dx). With the subdivision

xi =
i

n
, 0 ≤ i ≤ n,

the Riemann sum corresponding to I is

Sn =
n

∑
i=1

f(xi)∆xi =
n

∑
i=1

( i
n
)
2 i + 1 − i

n
= 1

n3

n

∑
i=1

i2 = n(n + 1)(2n + 1)
6 n3

= (n + 1)(2n + 1)
6 n2

,

see Formula 5.14

The approximation of the integral ∫
1

0 x
2 dx with n = 20 is:

S20 =
21 × 41
6 × 202 ≈ 0.35875.

For Comparison, the exact value of the integral is:

∫
1

0
x2 dx = [x

3

3
]
1

0

= 1

3
≈ 0.33.

7.1.2 Definite integrals with antiderivatives

Definite integrals often rely on the use of antiderivatives (or primitives) for evaluation.

Antiderivatives provide a direct way to evaluate definite integrals through the Fundamental

Theorem of Calculus:

∫
b

a
f(x)dx = F (b) − F (a), where F ′(x) = f(x). (7.11)

7.1.3 Change of variables method for integrals

The change of variables method is an essential technique for simplifying integrals, particularly

when dealing with complex or complicated expressions. This method involves substituting

a new variable into the integral to make the computation more manageable. Below is the

procedure for performing a change of variables on definite integrals.
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Steps to perform change of variables

Let g ∶ [a, b] → [c, d] be continuous bijection with inverse g−1 ∶ [c, d] → [a, b]. Note that

[c, d] = [g(a), g(b)] or [c, d] = [g(b), g(a)], depending on the monotonicity of g (we know

that a continuous injective function is strictly monotonic). Then, for a continuous function

f ∶ [a, b] → R, the integral

I = ∫
d

c
f(g−1(x)) dx

can be computed by these steps:

(a) Choose the substitution: Define a new variable x = g(u);
(b) Calculate the derivative: Compute the derivative g′(u); If the original integral is

from x = a to x = b, then the new limits will be g(a) and g(b).
(c) Substitute into the integral: Replace x by g(u), and the integral becomes

I = ∫
d

c
f(g−1(x))dx = ∫

b

a
f(u) ∣g′(u)∣du.

(d) Simplify the integral: Perform any simplification to make the integral easier to solve.

(e) Perform the integration: Evaluate the integral in the new variable u.

(f) Revert to the original variable (if needed): If you need the result in terms of the

original variable, substitute back to get the final answer.

Example 7.1.2. Let’s look at an example of a definite integral using the change of variables

method:

I = ∫
1

0
x
√
1 + x2 dx.

(a) Choose the substitution: We select u = 1 + x2, x ∈ [0,1] ⇐⇒ x = g(u) =
√
u − 1, u ∈

[1,2]. This substitution simplifies the square root term.

(b) Calculate the derivative: g′(u) = 1
2
√
u−1

.

(c) Substitute into the integral:The original integral becomes:

I = ∫
2

1

√
u − 1

√
u

1

2
√
u − 1

du.

(d) Simplify the integral: We can now simplify the integral to:

I = 1

2 ∫
2

1

√
udu.

(e) Perform the integration: Integrating u1/2 gives

I = 1

2
[2
3
u3/2]

2

1

= 1

3
[23/2 − 1].
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7.2 Integration by Parts
The Integration by parts is a method based on the product rule of differentiation. It is useful

for integrating the product of two functions. The formula is derived from the following

identity:
d

dx
(u(x)v(x)) = u′(x)v(x) + u(x)v′(x)

By rearranging this, we get:

u(x)v(x) = ∫ u′(x)v(x)dx + ∫ u(x)v′(x)dx

Thus, the integration by parts formula is:

∫ u(x)v′(x)dx = u(x)v(x) − ∫ v(x)u′(x)dx

Steps to apply integration by parts

(a) Choose u(x) and v′(x) from the integrand. The function u(x) should be chosen to

simplify when differentiated, and v′(x) should be easy to integrate.

(b) Compute u′(x) (the derivative of u(x)) and v(x) (the antiderivative of v′(x)).
(c) Substitute into the integration by parts formula.

(d) Simplify and integrate the remaining terms.

Example 7.2.1. Consider the integral:

∫
5

1
xex dx.

(a) Let u = x (so u′(x) = 1) and v′(x) = ex (so v(x) = ex).
(b) Using the formula:

∫
5

1
xex dx = [xex]

5

1
− ∫

5

1
ex dx

(c) The remaining integral is ∫
5

1 e
x dx = e5 − e1.

(d) Therefore, the result is:

∫
5

1
xex dx = 5e5 − e1 − [e5 − e1] = 5e5 − e5 = 4e5.

This shows how integration by parts can simplify an integral involving a product of functions.

7.3 Taylor formula with integral remainder
In calculus, Taylor’s theorem provides an approximation of a function that is k-times dif-

ferentiable around a given point using a polynomial of degree k, known as the k-th-order
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Taylor polynomial. More precisely, let I be an open interval and f ∶ I → R be a function

that has n+1 continuous derivatives in some neighborhood of a ∈ I. Taylor’s theorem asserts

that for any x in this neighborhood, f(x) is represented by

f(x) = f(a) + f
′(a)
1!
(x − a) + f

′′(a)
2!
(x − a)2 +⋯ + f

(n)(a)
n!

(x − a)n +Rn(x),

where the remainder term is the integral

Rn(x) ∶=
1

n! ∫
x

a
f (n+1)(t) (x − t)n dt.

Example 7.3.1. Consider f(x) = ex, x ∈ R. Taylor’s expansion of f around 0 gives that for

any x ∈ R
ex = 1 + x + x

2

2!
+⋯ + x

n

n!
+Rn(x),

with

Rn(x) =
1

n! ∫
x

0
et (x − t)ndt = x

n+1

n! ∫
1

0
ext (1 − t)n dt.

Observing that ext ≤ e∣x∣ for any t ∈ [0,1], we deduce

∣Rn(x)∣ =
∣x∣n+1
n! ∫

1

0
ext (1 − t)n dt

≤ ∣x∣
n+1e∣x∣

n! ∫
1

0
(1 − t)n dt = ∣x∣

n+1e∣x∣

(n + 1)! Ð→n→∞
0,

we deduce that

1 + x + x
2

2!
+⋯ + x

n

n!
Ð→
n→∞

ex.

We have then recovered formula (5.31).

7.4 Generalized Integrals

This principle of this section is to handle infinite intervals or points of discontinuity by intro-

ducing limits to define integrals. More precisely, Generalized (or improper) integrals extend

the concept of definite integrals to cases where the limits of integration or the integrand

do not meet the standard requirements of continuity or boundedness. For instance, how to

handle the integral

∫
∞

1

1

x2
dx

Why are generalized integrals needed? Many real-world problems (e.g., in physics, probabil-

ity) require integrating functions over infinite intervals or functions with singularities.

Definition 7.4.1. If f is a real-valued function defined on some open interval I, then the

generalized integral of f on I is of two types
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1) If I =]a, b] is a finite interval, and if f has a singularity in a, then the generalised integral

∫
b

a f(x)dx is defined if

lim
ϵ→0
∫

b

a+ϵ
f(x)dx is finite. (7.41)

2) If I = [a,∞[ is an infinite interval, then the generalised integral ∫
∞

a f(x)dx is defined if

∫
∞

a
f(x)dx = lim

b→∞
∫

b

a
f(x)dx is finite.

If f is non negative, we denote ∫I f(x)dx < ∞ if the generalised integral converges.

Example 7.4.2. a) f is not defined in a. For ]a, b] =]0,1] and f(x) = 1/√x, we have

∫
1

0

1√
x
dx = lim

ϵ→0+∫
1

ϵ

1√
x
dx = lim

ϵ→0+
[2
√
x]1

ϵ
= 2.

b) f is defined on an infinite interval. For f(x) = 1/x2, we have

∫
∞

1

1

x2
dx = lim

b→∞
∫

b

1

1

x2
dx = lim

b→∞
[−1
x
]
b

1

= 1.

For f(x) = e−x, we have

∫
∞

1
e−xdx = lim

b→∞
∫

b

1
e−xdx = lim

b→∞
[−e−x]b1 = e−1.

7.4.1 Removing the singularities

When the function has a discontinuity at a point in the integration range:

∫
b

a
f(x)dx, f(x) undefined at c ∈ [a, b] (7.42)

Split into two parts:

∫
b

a
f(x)dx = lim

t→c−∫
t

a
f(x)dx + lim

t→c+∫
b

t
f(x)dx (7.43)

7.4.2 Some applications of generalized integrals

A. Physics: Electric Fields The electric field generated by a point charge can involve

improper integrals. For example:

∫
∞

0

1

(x2 + a2)3/2dx. (7.44)

Using substitution x = a tan θ, the integral simplifies, and the antiderivative leads to a finite

value.
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B. Probability: Gaussian Distribution The Gaussian probability density function is

given by:

f(x) = 1√
2π
e−x

2/2. (7.45)

The total probability over (−∞,∞) is:

∫
∞

−∞
f(x)dx = 1. (7.46)

The antiderivative involves advanced techniques base on the error function

erf(x) = ∫
x

−∞
f(u)du, x ∈ R.

7.4.3 Convergence and divergence of Riemann integrals

Riemann integrals Ia and Ja are defined by the values

Ia ∶= ∫
1

0

1

xa
dx and Ja ∶= ∫

∞

1

1

xa
dx.

Do not mix the label of the latter Riemann integrals with the concept of the inteegrals

obtrained by the Riemann sums in Subsection 7.1.1. It is easy to prove

Ia converges⇐⇒ a < 1 and Ja converges⇐⇒ a > 1.

7.4.4 Tests for convergence

Let f, g ∶ I → R+. The singularity is denoted by l, where

l = a is I =]a, b],−∞ < a < b < ∞, or l = ∞ if I = [a,∞[.

(i) Comparison test: If 0 ≤ f ≤ g, or if limx→l
f(x)
g(x) = 0, then

∫
I
g(x)dx < ∞Ô⇒ ∫

I
f(x)dx < ∞.

(ii) Equivalence test: If 0 ≤ f ≤ g or if limx→l
f(x)
g(x) = c ∈]0,∞[, then

∫
I
g(x)dx < ∞⇐⇒ ∫

I
f(x)dx < ∞.
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7.4.5 Problems

1) Apply the comparison test to

∫
∞

1

lnx

x2
dx compared to ∫

∞

1

1

x3/2
dx.

Solution: Both function f(x) = ln(x)/x2 and g(x) = x−3/2 are nonnegative on [1,∞[.
Since

lim
x→∞

f(x)/g(x) = 0

and since the Riemann integral J3/2 = ∫
∞

1
1

x3/2dx converges, we deduce that ∫
∞

1
lnx
x2 dx < ∞

also converge

2) Evaluate I = ∫
∞

2
1

x(x+1)dx.

Solution: Using 1
x(x+1) = 1

x − 1
x+1 , we have

I = lim
a→+∞

[∫
a

2
(1
x
− 1

x + 1)dx] = lim
a→+∞

[∫
a

2

1

x
dx − ∫

a

2

1

x + 1dx]

= lim
a→+∞

[∫
a

2

1

x
dx − ∫

a+1

3

1

x
dx] = lim

a→+∞
[ ln(2/3) − ln((a + 1)/a)]

= ln(2/3)

3) Show that ∫
1

0
lnx
x dx diverges.

Solution: With F (x) = ln(x), note that

ln(x)
x
= F ′(x)F (x) = G′(x), where G(x) = 1

2
F 2(x),

which gives

∫
1

0

lnx

x
dx =∫

1

0
G′(x)dx = lim

a→0, a>0
[G(x)]

1

a
= G(1) − lim

a→0, a>0
G(a) = −∞.

4) Prove that I ∶= ∫
∞

0
1

(1+x2)2
dx converges and find its value.

Solution: The integral I is obviously convergent since

0 < I ≤ ∫
∞

0

1

1 + x2dx = [arctan(x)]
∞
0 =

π

2
< ∞.

Using the substitution x = tan(θ), we have that if x→ 0, then θ → 0 and if x→ +∞, then

θ → π
2 . Moreover,

dx = tan′(θ)dθ = 1

cos(θ)2dθ, (1 + x
2)2 = (1 + tan(θ)2)2 = 1

cos(θ)4 .
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We deduce

I = ∫
π
2

0
cos(θ)4 1

cos(θ)2dθ = ∫
π
2

0
cos(θ)2dθ = ∫

π
2

0

1 + cos(2θ)
2

dθ = π
4
.
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