
CSC 201 CSC 150
C++ Programming

Dr. Mazen Zainedin

Stat & OR Dept.

College of sciences KSU

Lecture 2: Flow of Control,
Conditional Constructs, Loops

Conditional Constructs
if-else construct: executes a set of statements if
the specified condition is true

Syntax:
if (<condition>)

{ statement1; statement 2; …. statement n; }
else

{ statement1; statement 2; …. statement n; }
In this: if the specified condition is true, then the statements in the
first curly braces will be executed, else the statements in the next curly
braces will be executed

To write conditions we need
Relational Operators
Relational or Comparison Operators are used to
compare values. Return Boolean value of True
or False (1 or 0) to the statements they are in.
<, <=,>,=>, !=, ==
eg: if (a>b)

cout<<a;
else cout<<b;

The condition is true if a>b, and is false if a<=b

To write more than one condition we use
Logical Operators. ||, &&, !

&&-AND
All the conditions connected by the AND
operator have to be true for the statement to
evaluate to true.
e.g.:

if ((a>b)&&(a>c)) cout<<a;

Here if both conditions are true i.e if a>b and a>c,
then the statement will evaluate to true

||-OR
Any one of the conditions connected by the
AND operator have to be true for the statement
to evaluate to true.

if ((a>b)||(a>c)) cout<<a;
Here if any of the conditions is true i.e if a>b or a>c, then the
statement will evaluate to true

!-NOT
It is used to negate a particular condition
i.e it converts true to false, and false to true

if !(a>b) cout<<a;
In the above example, if a>b, then the statement should return a
value true, but the not operator negates this

Nested if-else
ladders-used when the if-else construct has to be used
over and over again.
if (<condition1>)

{ statement1; …. statement n; }
else if (<condition2>)

{ statement1; …. statement n; }
…
else if (<condition n>)

{ statement1; …. statement n; }
else
{ statement1; …. statement n; }

Note: The last else is optional

Loops:
Used to repeatedly execute a set of statements till a
given statement is true.

while loop
-executes a set of statements as long as the condition
specified at the beginning is true. The condition is
evaluated at the beginning of the loop, so it has to be
true in the beginning for the loop to execute even once.
Syntax:
while(<condition>)
{
statement1;
…
statement n; }

Note: Similar to the if statement, the curly
braces are optional if there is only one
statement in the loop

do-while loop
-it is similar to while loop except the condition is at
the end of the loop. As a result, the loop always
executed at least once, regardless of whether the
condition is true or not.
Syntax:
do
{
statement 1;
..
statement n; }
while(<condition>);

Note: A semicolon at the end and curly
braces are always required.

Example:

int a=1;
do
{

cout<<a++<<endl;
}
while(a<=3);

int a=1;
while(a<=3)
{

cout<<a++<<endl;
}

Output:
1
2
3

For loop
It is used to execute a set of statements as long
as the condition specified is true.
for(i=1;i<=4;i++)
{
cout<<i;
}
Output:

1 2 3 4

i=1 initialization expression, It sets the
value of the variable i to 1

i<=4 test expression and is evaluated before
every iteration of the loop

i++ increase or decrease expression, and is
executed at the end of each iteration of the
loop

Note:
-The curly braces are optional if the loop has only 1 statement.
-The initialization and increase expression can be left blank, and
the tasks they do can be done outside and inside the loop
respectively.
- A for loop can have more than one variable.
- A loop without statements: Note semicolon at the end of for statement

int i=1;
for(; i<=4;)
{
cout<<i++;

}

int i,j;
for(i=1, j=2; i<=4; i++, j+=2)
{
cout<<i<<’:’<<j<<endl;

}

int i;
for (i=1;i<=3;i++);
cout<<i;
Output: 4

Nested loops
-using one looping construct inside another. Used when for one
repetition of a process, many repetitions of another process are
needed. Some applications are-to print patterns, find sum of a
repeating series etc.
Eg. Pattern: 1

12
123
1234

Thus we can write the following code:
for(i=1;i<=4;i++) // outer loop
{
for(j=1;j<=i; j++) // inner loop
cout<<j;
cout<<endl;
}

