
Fits and Tolerances

Lecture-01 (part-1)

Why tolerances and fits are required?

Due to the **inevitable inaccuracy of manufacturing methods**, a part cannot be made precisely to a given dimension, the difference between maximum and minimum limits of size of a part is the tolerance.

Tolerance is the total amount that a specific dimension is permitted to vary.

There is no such thing as an "exact size". Tolerance is key to interchangeable parts.

When two parts are to be assembled, the relation resulting from the difference between their sizes before assembly is called a **fit**.

Examples of Interchangeable Manufacture

Bottle caps

Rims

Tires

Advantages For Interchangeable Manufacture

Replacement: One such part can freely replace another, without any custom fitting (such as filling).

Easy to Assembly: This interchangeability allows easy assembly of new devices

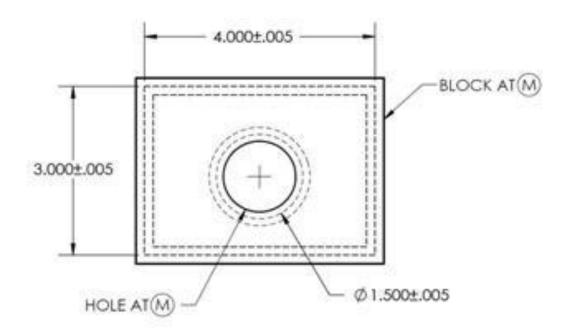
Repairing: Easier repair of existing devices.

Minimizing time and cost: Minimizing both the time and skill required of the person doing the assembly or repair.

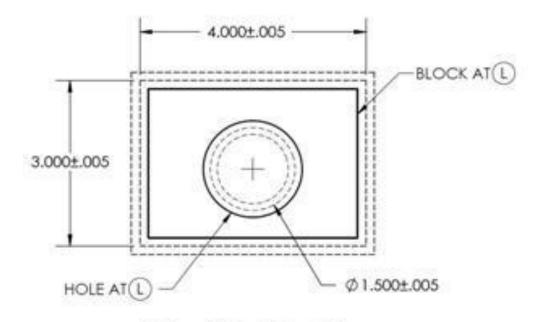
How to decide tolerance?

- Functional requirements of mating parts
- Cost of production
- Available manufacturing process

Choose as coarse tolerance as possible without compromising functional requirements.

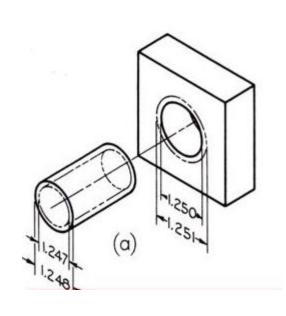

Proper balance between cost and quality of parts.

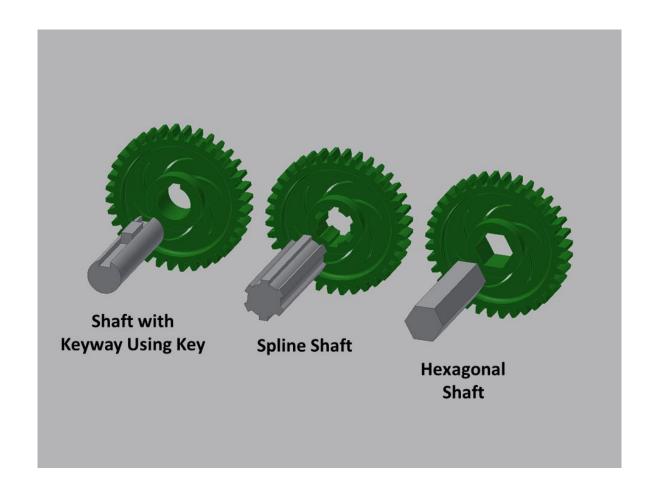
Dimensional Tolerances

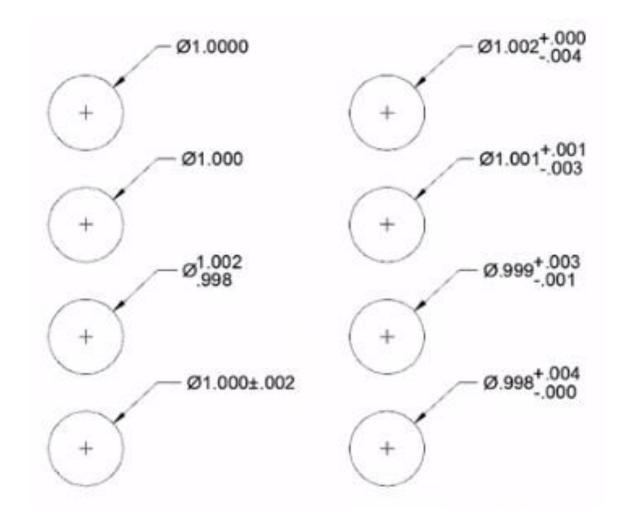

Some of the dimensional tolerances terms are defined as follows:

- 1. Dimension (A dimension is "a numerical value expressed in appropriate units of measure and indicated on a drawing and in other documents along with lines, symbols, and notes to define the size or geometric characteristic, or both, of a part or part feature")
- 2. Size (It is a number expressed in a particular unit in the measurement of length)
- 3. Basic size (the theoretical size used as a starting point for the application of tolerances)
- 4. Actual size (of a part) (the measured size of the finished part after machining)
- 5. Design size (The ideal size for each component (shaft and hole) based upon a selected fit)

- 6. Limits of size (the maximum and minimum sizes shown by the tolerance dimension)
- 7. Maximum limit of size (Is the maximum size permitted for the part)
- 8. Minimum limit of size (it is the minimum size permitted for the part limit of size)
- 9. Maximum material limit (condition) (is the condition of a part when it contains the most amount of material. The MMC of an external feature (such as a shaft) is the upper limit. The MMC of an internal feature (such as a hole) is the lower limit)
- 10. Minimum material limit (condition) (is the condition of a part when it contains the least amount of material possible. The LMC of an external feature is the lower limit of the part. The LMC of an internal feature is the upper limit of the part.)

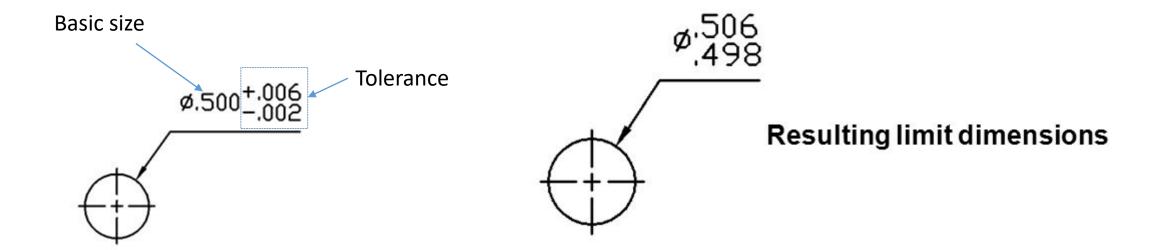

Maximum Material Condition

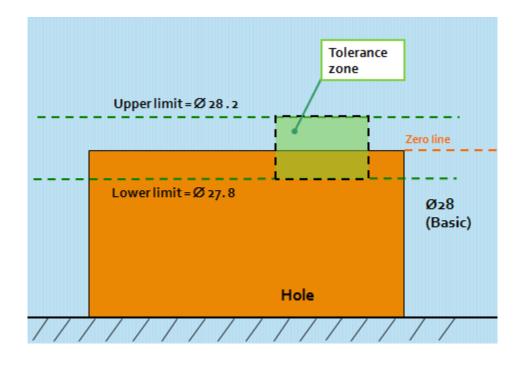


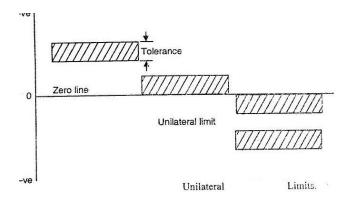

Least Material Condition

- 11. Tolerance (Tolerance is the difference between maximum limit of size and minimum limit of size)
- 12. Zero line (Basic size) (it represents the basic size)
- 13. Upper deviation (It is the algebraic difference between maximum limit of size and its corresponding basic size)
- 14. Lower deviation (It is the algebraic difference between minimum limit of size and its corresponding basic size)
- 15. Tolerance zone (a region representing the difference between the upper and the lower limits)
- 16. Unilateral tolerance (In this method of presenting the limits, variation is allowed only on one side of the zero line)
- 17. Bilateral tolerance (Here the limits variation is allowed on either sides of the zero line)
- 18. Shaft (it refers to any external feature of a part, including any non cylindrical features as well)
- 19. Hole (the term used for any internal feature of a part including any non cylindrical as well)

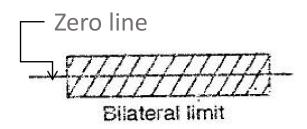
Examples of holes and shafts

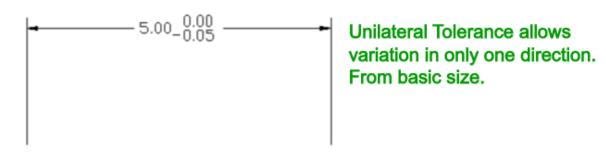


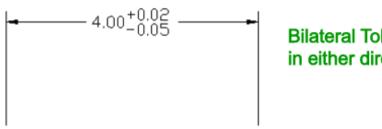


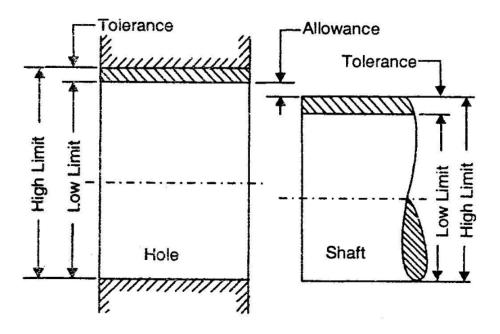

Video link to understand tolerances:

https://www.youtube.com/watch?v=KiXHABfRHfQ

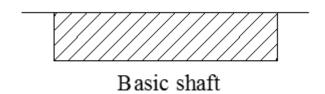



Unilateral tolerance


Bilateral tolerance


Unilateral Tolerance

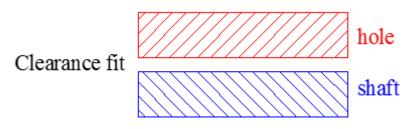
Bilateral Tolerance

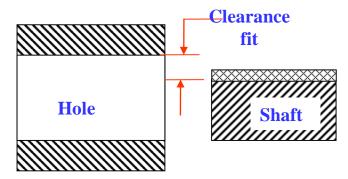


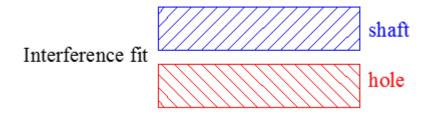
Bilateral Tolerance allow variation in either direction from basic size.

Limits and Tolerance.

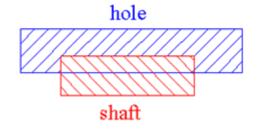
20. Basic shaft (the shaft chosen as a basis for the shaft basis system of fit)

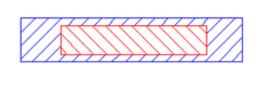


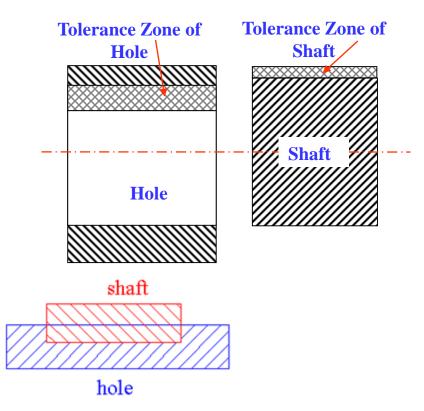

21. Basic hole (the hole chosen as a basis for the hole basis system of fit)

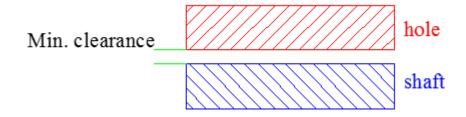

- 22. Fit (Fit is the relationship that exists between two mating parts, a hole and shaft with respect to their dimensional difference)
- 23. Basic size of a fit (common value of the basic size of the two parts of a fit)

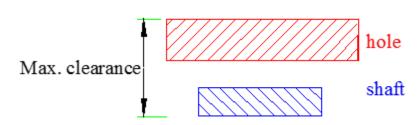
24. Clearance fit

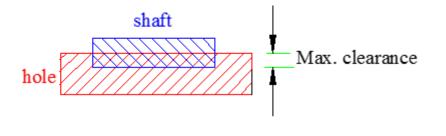




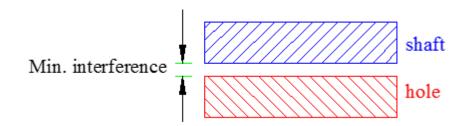

25. Interference fit


26. Transition fit





27. Minimum clearance

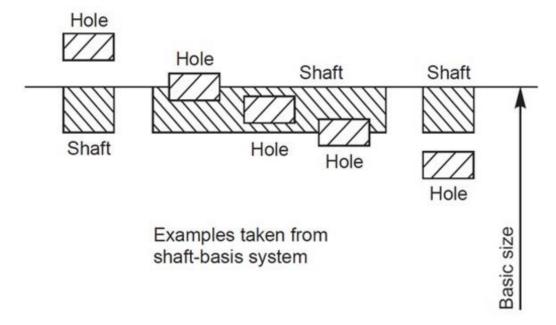


28. Maximum clearance



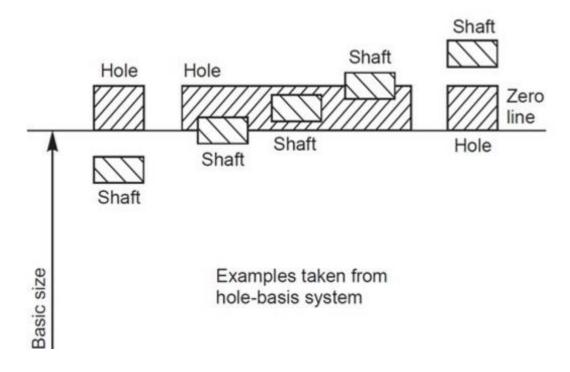
29. Minimum interference

30. Maximum interference

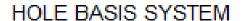

An interference fit results in an interference between two mating parts under all tolerance conditions.

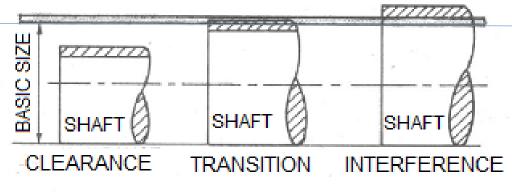
A clearance fit results in a clearance between the two mating parts under all tolerance conditions.

A transition fit results in either a clearance or an interference condition between two assembled parts.

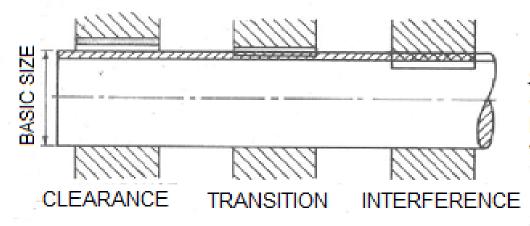

31 - Basic Shaft System of fits

In this system the size of the shaft remains the same and the hole size is varied to get the required fit. **Maximum shaft size is taken as the basic size**, an allowance is assigned, and tolerances are applied on both sides of and away from this allowance.




32 - Basic Hole System of fits

In this system the size of the hole remains the same and shaft size is varied to get the required fit. **Minimum hole is taken as the basic size**, an allowance is assigned, and tolerances are applied on both sides of and away from this allowance.

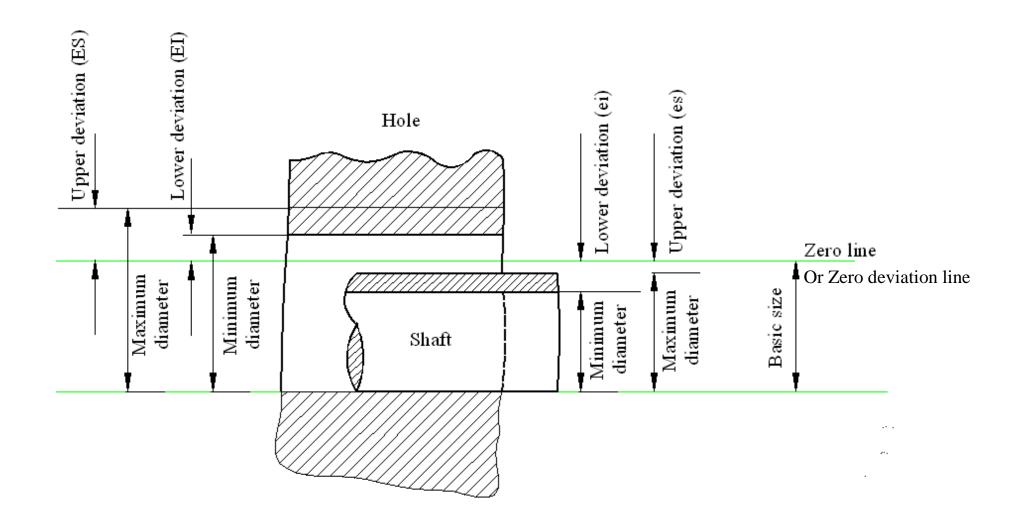

HOLE AND SHAFT BASIS SYSTEM

HOLE BASED SYSTEM

Size of hole is kept constant, shaft size is varied to get different fits.

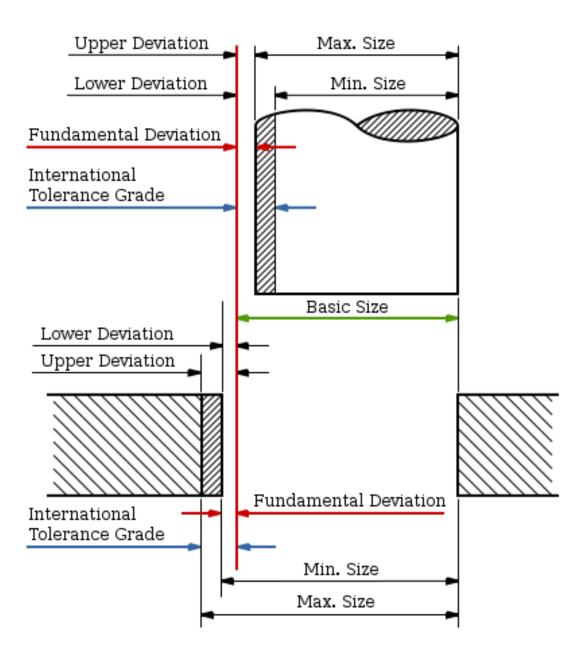
SHAFT BASED SYSTEM

Size of shaft is kept constant, hole size is varied to get different fits.


Some definitions

Basic Size: is the size from which limits or deviations are assigned. Basic sizes, usually diameters, should be selected from a table of preferred sizes.

Deviation: is the difference between the basic size and the hole or shaft size.


Upper Deviation: is the difference between the basic size and the permitted maximum size of the part.

Lower Deviation: is the difference between the basic size and the minimum permitted size of the part.

Some Definitions

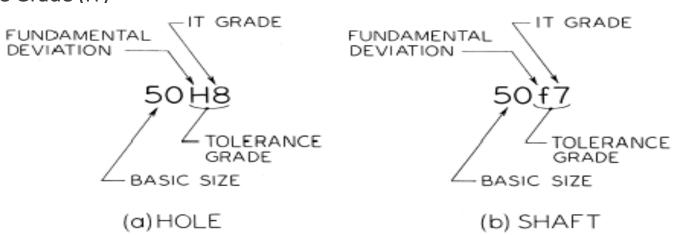
Fundamental Deviation: is the deviation closest to the basic size. This is identical to the upper deviation for shafts and the lower deviation for holes in a clearance fit.

Some Definitions

The hole-basis system of preferred fits is a system in which the basic diameter is the minimum size of the hole. For the generally preferred hole-basis system, the fundamental deviation is specified by the upper-case letter.

The shaft-basis system of preferred fits is a system in which the basic diameter is the maximum size of the shaft. The fundamental deviation is given by the lowercase letter.

1.2 Symbols for Tolerances and Deviation and Symbols for Fits:

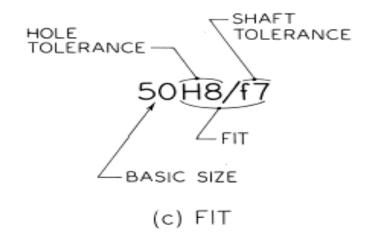

1. Tolerance values (The tolerance value is a function of the basic size and is indicated by a number called the grade.)

2. Tolerance zone position

The position of the tolerance zone with respect to the zero line, is indicated by a letter symbol, a capital letter for holes and a small letter for shafts. The tolerance size thus defined by its basic value followed by a symbol composed of a letter and a number. It is established by a combination of the fundamental deviation indicated by a letter and the IT grade number. In the dimension 50H8, the H8 specifies the tolerance zone.

Example for shaft: 45 g7

International Tolerance Grade (IT)


1.2 Symbols for Tolerances and Deviation and Symbols for Fits:

3.A fit (A fit is indicated by the basic size common to both components, followed by symbol corresponding to each component, the hole being quoted first)

Example: 50 H8 f7

Possibly 50 H8 – f7

Or 50 H8/f7

1.3: Grades of tolerances:

Eighteen grades of tolerances are provided IT01, ITO and IT1 to IT16

The Table 1.1 gives the possible degrees of precision or grade of tolerance, achieved with different machine tools.

	For Measurig Tools										For Material							
IT Grades	01	0	1	2	3	4	5	б	7	8	9	10	11	12	13	14	15	16
							For Fits							For La	rge Mai	nufactur	ing Tole	erances

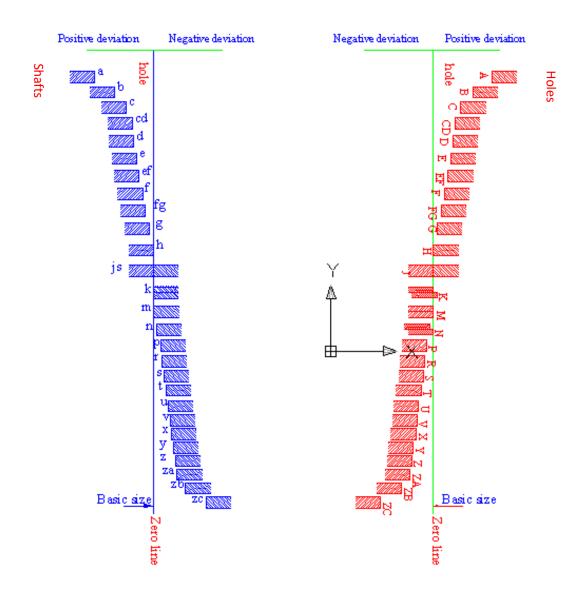
Table 1.1: degree of precision or grade of tolerance

Tolerance grade	Intended for	Applicable to components or machines							
I T 01									
I T 0		Slip blocks, Reference gauges							
IT1	Gauges								
I T 2	Gauges	High quality gauges							
IT3									
I T 4									
I T 5		Ball bearing							
I T 6		Grinding, Honing							
I T 7		Broaching							
I T 8	Fits	Center lathe turning							
I T 9		Worn automatic lathe							
I T 10		Milling							
I T 11		Drilling, Rough turning							
I T 12		Light press work							
I T 13		Press work							
I T 14	Not for fits	Die casting							
I T 15		Stamping							
I T 16		Sand casting							

International Tolerance Grade Selection

Representation of Tolerance
2) Number or Grade

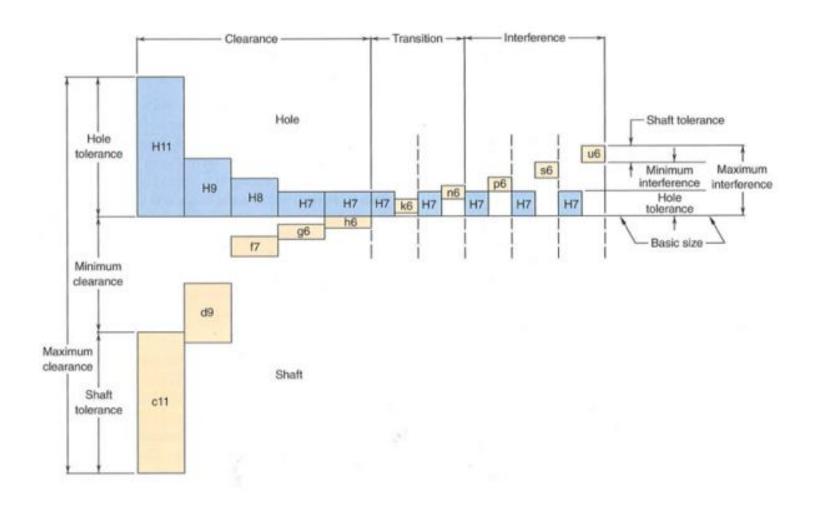
IT01, IT0, IT1,....IT16

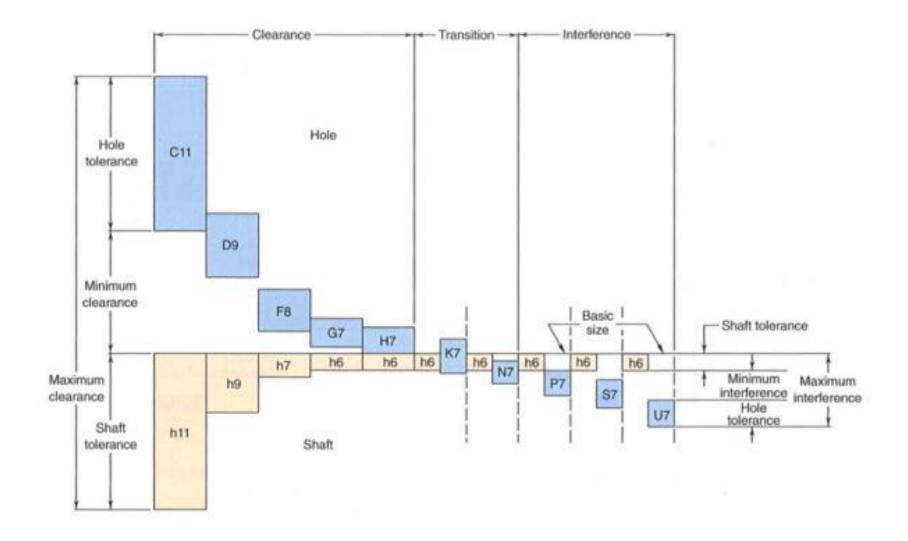

Tolerance Grade defines range of dimensions (dimensional variation)

There are manufacturing constraints on tolerance

grade chosen Manufacturing process Tolerance grade Machine required and applications ITO1, ITO Super finishing process, such as lapping, Super finishing machines diamond boring etc. Use: Gauges IT1 to IT5 IT6 Grinding Grinding machines IT7 Precision turning, broaching, honing Boring machine, honing machine 1T8 Turning, boring and reaming Lathes, capstan and automats IT9 Boring Boring machines IT10 Milling, slotting, planing, rolling and Milling machine, slotting machine, planing machine and extruders extrusion IT11 Drilling, rough turning Drilling machine, lathes IT12, IT13, IT14 Metal forming processes Presses IT15 Die casting, stamping Die casting machine, hammer machine IT16 Sand casting

DIAMETER STEPS IN mm		VALUES OF TOLERANCES IN MICRONS													(1 MICRON = 0.001 mm)						
			TOLERANCE GRADES																		
		01	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14*	15*	16*		
TO and mm	3	0.3	0.5	0.8	1.2	2	3	4	6	8	10	14	25	40	60	100	140	400	600		
Over To and mm	3 6	0.4	0.6	1	1.5	2.5	4	5	8	12	18	30	48	75	120	180	300	400	750		
Over To and mm	6 10	0.4	0.6	1	1.5	2.5	4	6	9	15	22	36	58	90	150	220	360	580	900		
Over To and mm	10	0.5	0.8	1.2	2	3	5	8	11	18	27	43	70	110	180	270	430	700	1100		
Over To and mm	18	0.6	1	1.5	2.5	4	6	9	13	21	33	52	84	130	210	330	520	840	1300		
Over	30	0.6	1	1.5	2.5	4	7	11	16	25	39	62	100	160	250	390	620	1000	1600		
To and mm Over	50	0.8	1.2	2	3	5	8	13	19	30	46	74	120	190	300	460	740	1200	1900		
To and mm Over To	80															100	- 15				
and mm	120	1	1.5	2.5	4	6	10	15	22	35	54	87	140	220	350	540	870	1400	2200		
Over To and mm	120 180	1.2	2	3.5	5	8	12	18	25	40	63	100	160	250	400	630	1000	1600	2500		
Over To and mm	180 250	2	3	4.5	7	10	14	20	29	46	72	115	185	290	460	720	1150	1850	2900		
Over To	250 315	2.5	4	6	8	12	16	23	32	52	81	130	210	320	520	810	1300	2100	3200		
Over To and mm	315 400	3	5	7	9	13	18	25	36	57	49	140	230	360	570	890	1400	2300	3600		
Over	400																				
To and mm	500	4	6	8	10	15	20	27	40	63	97	155	250	400	630	970	1550	2500	4000		


Position of the various tolerance zones for a given diameter in the ISO system


Position of the various tolerance zones for a given diameter in the ISO system

Metric Preferred Hole Based System of fit

Metric Preferred Shaft Based System of fit

Table for fundamental deviations for shafts

Fundamental deviation					Lower deviation ei																
Letter		aa	ba	c	cd	d	e ef		f fg		g h		js ^b		j	k		k			
Grade			01 to 16													8	4-7	≤3 >7			
Nomin	al sizes																				
Over	To																				
mm	mm 3	-270	-140	-60	-34	-20	14	-10	-6	-4	-2	0		-2	-4	-6	0	0			
3	6	-270	-140	-70	-46	~30	-20	-14	10	-6	-4	0		-2	-4	-	+1	0			
6	10	-280	-150	-80	-56	-40	-25	-18	-13	-8	-5	0		-2	-5	-	+1	0			
10	14	-290	-150	-95	-	-50	-32	-	-16	-	-6	0		-3	-6	-	+1	0			
18	18	_				-	-	_	-									-			
24	30	-300	-160	-110	-	-65	-40	-	-20	~	-7	0		-4	-8	-	+2	0			
30	40	-310	-170	-120		-		-									+2				
40	50	-320	-180	-130	-	-80	-50		-25	-	-9	0		-6	-10	-	+2	0			
50	65	-340	-190	-140		100			20		10	0		-7	-12	_	+2	0			
65	80	-360	-200	-150	-	-100	-60	-	-30	-	-10			-/	-12		72				
80	100	-380	-220	-170		-120	-72	_	-36	_	-12	0	±IT/2	_9	-15	_	+3	0			
100	120	-410	-240	-180		-120	-72		-36		-12		+1		-1.5		,,,	Ľ			
120	140	-460	-260	-200							1						ì				
140	160	-520	-280	-210	-	-145	-85	-	-43	-	-14	0		-11	-18	-	+3	0			
160	180	-580	-310	-230]													-			
180	200	-660	-340	-240																	
200	225	-740	-380	-260	-260	-260	-260	-260	-	-170	-100	-	-50	-	-15	0		-13 -21	-	+4	0
225	250	-820	-420	-280	1		-	-			-17	0					+4	0			
250	280	-920	-480	-300		100			-56	-				-16	-26	_					
280	315	-1050	-540	-330	-	-190	-110				-17			-16	-20	_	74	L			
315	355	-1200	-600	-360	_	-210	-125	_	~62	_	-18	0		-18	-28	_	+4	0			
355	400	-1350	-680	-400		2.0	123		0.2			<u> </u>						L.			
400	450	-1500	760	~440	_	-230	-135	_	-68	_	-20	0		-20	-32	-	+5	0			
450	500	-1650	-840	-480				L					<u></u>				1				
Gr	ade		,		,			,	,	6 to	0 16			_							
500	630	-	-	-	-	-260	-145	-	-76	-	-22	0	1					0			
630	800	-	_	-	-	-290	-160	-	-80	-	-24	0		1				0			
800	1000	-	-		-	-320	-170	-	-86	-	-26	0						0			
1000	1250	-		-		-350	-195	-	-98	-	-28	0	±1T/2					0			
1250	1600	-	-	-	-	-390	-220	-	-110	-	-30	0	Ŧ					-0			
2000	2500	-	-	-	-	-480	-260		-130	-	-34	0		ļ				0			
2500	3150	~	-	-	-	-520	-290	-	-145	-	-38	0		i				0			

Adapted from: Metrology & Measurement By Bewoor

Table for fundamental deviations for shafts

Fundamental deviation						Lo	wer d	eviatio	n ei						_				
Letter		m	n	P	,	s	1	и	ν	х	у	z	za	zb	zc				
Grade			01 to 16																
Nomin	al size																		
Over	To																		
mm -	mm 3	+2	+4	+6	+10	+14	_	+18	_	+20	_	+26	+32	+40	+60				
3	6	+4	+8	+12	+15	+19	-	+23	-	+28	-	+35	+42	+50	+80				
6	10	+6	+10	+15	+19	+23	-	+28	-	+34		+42	+52	+67	+97				
10	14	+7	+12	+18	+23	+28	_	+33	-	+40		+50	+64	+90	+130				
14	18			- 10		. 20			+39	+45		+60	+77	+108	+150				
18	24	+8	+15	+22	+28	+35	-	+41	+47	+54	+63	+73	+98	+136	+188				
24	30						+41	+48	+55	+64	+75	+88	+118	+160	+218				
30	40	+9	+17	+26	+34	+43	+48	+60	+68	+80	+94	+112	+148	+200	+274				
40	50				154	145	+54	+70	+81	+97	+114	+136	+180	+242	+325				
50	65	+11	+11	+11	+11	+11	+20	+32	+ 41	+53	+66	+87	+102	+122	+144	+172	+226	+300	+405
65	80		1 20	7.5%	+43	+59	+75	+102	+120	+146	+174	+210	+274	+360	+480				
80	100	+13	-23	+37	+51	+71	+91	+124	+146	+178	+214	+258	+335	+445	+585				
100	120	113			+54	+79	+104	+144	+172	+210	+254	+310	+400	+525	+690				
120	140				+63	+92	+122	+170	+202	+248	+300	+365	+470	+620	+800				
140	160	+15	+27	+43	+65	+100	+134	+190	+228	+280	+340	+415	+535	+700	+900				
160	180				+68	+108	+146	+210	+252	+310	+380	+465	+600	+780	+1000				
180	200				+77	+122	+166	+236	+284	+350	+425	+520	+670	+880	+1150				
200	225	+17	+31	+50	+80	+130	+180	+258	+310	+385	+470	+575	+740	+960	+1250				
225	250				+84	+140	+196	+284	+340	+425	+520	+640	+820	+1050	+1350				
250	280	+20	+34	+56	+94	+158	+218	+315	+385	+475	+580	+710	+920	+1200	+1550				
280	315	+20	T 34	+30	+98	+170	+240	+350	+425	+525	+650	+790	+1000	+1300	+1700				
315	355	+21	+37	+62	+108	+190	+268	+390	+475	+590	+730	+900	+1150	+1500	+1900				
355	400	721	+31	+02	+144	+208	+294	+435	+530	+660	+820	+1000	+1300	+1650	+2100				
400	450	+23	+40	+68	+126	+232	+330	+490	+595	+740	+920	+1100	+1450	+1850	+2400				
450	500	+23	740	+68	+132	+252	+360	+540	+660	+820	+1000	+1250	+1600	+2100	+2600				
Gra	ade				6 to 16														
500	560	+26	+44	+78	+150	+280	+400	+600											
560	630	+20		-70	+155	+310	+450	+660											
630	710	+30	+50	+88	+175	+340	+500	+740											
710	800	+30	+30	+66	+185	+380	+560	+840											
800	900	+34	+56	+100	+210	+430	+620	+940											
900	1000	+34	7.30	+100	+220	+470	+680	+1050											
1000	1120	+40	+66	+120	+250	+520	+780	+1150											
1120	1250	740	+66	+120	+260	+580	+840	+1300											

Adapted from: Metrology & Measurement By Bewoor

https://books.google.com.sa/books?id=2ck0AwAAQBAJ&pg=SA6-PA13&lpg=SA6-PA13&dq=fundamental+deviation+selection+fits+IT&source=bl&ots=ZO-M02NqbP&sig=ofRGWezbxKzJe9uW9zwxVZRZPdk&hl=en&sa=X&redir_esc=y#v=onepage&q=fundamental%20deviation%20selection%20fits%20IT&f=false

Table for fundamental deviations for holes

Funda	mensal	 									Upper deviation ES												
Letter		A"	B°	c	CD	D	E	EF	F	FG	G	Н	J ^b		,		K		М		N		
Grade									01 to 1	16				6	7	8	<8	>8	<8"	>8	<8	>8"	
Nomin	al sizes																						
Over	To	+	+	+	+	+	+	+	+	+	+			+	+	+							
mm	mm																						
	3	270	140	60	34	20	14	10	6	4	2	0		2	4_	6	0	0	-2	-2	-4	-4	
3	6	270	140	70	46	30	20	14	10	6	4	0		5	6	10	-1+A	-	-4+A	-4	-8+ 4	0	
6	10	280	150	80	56	40	25	18	13	8	5	0		5	8	12	-1+A	-	-6+ 4	-6	-10+A	0	
10	14	290	150	95		50	32	-	16	-	6	0		6	10	15	-1+A	-	-7+ 4	-7	-12+A	0	
14	18																						
18	24	300	160	110	-	65	40	-	20	-	7	0		8	12	20	-2+A	_	-8+A	-8	-15+ Δ	0	
24	30																						
30	40	310	170	120	_	80	50	_	25	_	9	0		10	14	24	-2+A	-	-9+ 4	-9	-17+A	0	
40	50	320	180	130																			
50	60	340	190	140	_	100	60	_	30	_	10	0		13	18	28	-2+A	-	-11+4	-11	-20+4	0	
65	80	360	200	150																			
80	100	380	220	170	_	120	72	-	36	_	12	0	22	16	22	34	-3+A	_	-13+A	-13	-23+A	0	
100	120	410	240	180									±117/2		-								
120	140	460	260	200									1										
140	160	520	280	210	-	145	85	-	43	-	14	0		18	26	41	-3+4	-	-15+A	-15	-27+A	0	
160	180	580	310	230																			
180	200	660	340	240			-						1										
200	225	740	380	260	-	170	100	-	50	-	15	0		22	30	47	-4+A	-	-17+A	-17	-31+A	0	
225	250	820	420	280															1				
250	280	920	480	300		190	110		56		17	0		25	36	55	-4+A		-20+A	-20	-34+ <i>\Delta</i>	0	
280	315	1050	540	330	-	190	110	-	36	-	17	ľ		۵	30	33	-4+2	-	-20+2	-20	-34+2	ľ	
315	355	1200	600	360		210	125	_	62	_	18	0	1	29	39	60	-4+A	_	-21+A	-21	-37+A	0	
335	400	1350	680	400		210	123	_	02	_	10	ľ	Ì]"	00	-472	-	-2142	-21	-3/42	ľ	
400	450	1500	760	440		230	135		68	_	20	0	1	33	43	66	-5+A	_	-23+A	-23	-40+∆	0	
450	500	1650	840	480	-	230	133	_	00	-	20	("		33		00	-3+4	-	-25+4	-25	-40+2	ľ	
Gr	ade										_	6 to	16	_		_							
500	630	-	-	-	-	260	145	-	76	-	22	0					0		-2	6		14	
630	800	-	-	-	-	290	160	-	80	-	24	0	1				0		-3	0		50	
800	1000	-	-	-	-	320	170	-	86	-	26	0					0		-3	4		56	
1000	1250	-	-	-	-	350	195	-	98	-	28	0	2				0		-4	0		56	
1250	1600	-	-	-	-	390	220	-	110	-	30	0	± IT/2				0		-4	8	-:	78	
1600		-	-	-	-	430	240	-	120	-	32	0	1				0	_	-5		-9		
						_		_		_			1										

Adapted from: Metrology & Measurement By Bewoor

https://books.google.com.sa/books?id=2ck0AwAAQBAJ&pg=SA6-PA13&lpg=SA6-PA13&dq=fundamental+deviation+selection+fits+IT&source=bl&ots=ZO-M0zNqbP&sig=ofRGWezbxKzJe9uW9zwxVZRZPdk&hl=en&sa=X&redir_esc=y#v=oation%20selection%20fits%20IT&f=false

41

Table for fundamental deviations for holes

Please note that all values in this table are actually negative

Fundar							Upper	deviati	on ES														
Let	Letter		P	R	s	Т	U	V	X	Υ	Z	ZA	ZB	ZC									
Grade		≤7	>7													Values for A*							
Nominal sizes															Grade	s:							
Over	To		-	-	-	-	-	-	-	-	-	-	-	-	3	4	5	6	7	8			
mm	mm 3		6	10	14	_	18	_	20		26	32	40	60	0	0	0	0	0	0			
3	6		12	15	19	-	23	_	28	_	35	42	50	80	1	1.5	1	3	4	6			
-6	10		15	19	23	-	28	-	34		42	52	67	97	1	1.5	2	3	6	7			
10	14							_	40	-	50	64	90	130				٠,	7	9			
14	18	1	18	23	28	- 1	33	39	45	-	60	77	108	150	1	2	3	3	ı ′	Ľ			
18	24	_		20	.,	-	41	47	54	63	73	98	136	188	1.5	2	3	4	8	12			
24	30	by 4	22	28	35	41	48	55	64	75	88	118	160	218	1.3	1	,	'	ı °	12			
30	40	ped	26	7.	43	48	60	68	80	94	112	148	200	274	1.5	3	4	5	9	14			
40	50	increased		34	43	54	70	81	97	114	136	180	242	325	1.5	,	'	,	,	.*			
50	65	1-	32	41	53	66	87	102	122	144	172	226	300	405	2	3	5	6	11	16			
65	80	90.00	32	43	59	75	102	120	146	174	210	274	360	480	1 *	,	'	°		10			
80	100	S	37	51	71	91	124	146	178	214	258	335	445	585	2	4	5	7	13	19			
100	120	grades above	31	54	79	104	144	172	210	254	310	400	525	690	1 *		,	Ĺ		17			
120	140	Į,	43	63	92	122	170	202	248	300	365	470	620	800					15				
140	160	Se n		65	100	134	190	228	280	340	415	535	700	900	3	4	6	7		23			
160	180	deviation		68	108	146	210	252	310	380	465	600	780	1000	1								
180	200	de		77	122	166	266	284	350	425	520	670	880	1150					17				
200	225	Same	50	80	130	180	258	310	385	470	575	740	960	1250	3	4	6	9		26			
225	250	N.		84	140	196	284	340	425	520	640	820	1050	1350									
250	280]	56	94	158	218	315	385	475	580	710	920	1200	1550	4	4	7	9	20	29			
280	315		-	98	170	240	350	425	525	650	790	1000	1300	1700			Ĺ.,						
315	355]	62	108	190	268	390	475	590	730	900	1150	1500	1800	4	5	7	11	21	32			
355	400]		114	208	294	435	530	660	820	1000	1300	1650	2100	Ì	Ĺ	L.		-				
400	450		68	126	232	330	490	595	740	920	1100	1450	1850	2400	5	5	7	13	23	34			
450	500			132	252	360	540	660	820	1000	1250	1600	2100	2600	L.								
Gr	ade		_		6 to 16																		
500	560	1	78	150	280	400	600	1															
560	630	1		155	310	450	660	Į															
630	710	1	88	175	340	500	740																
710	800	1		185	380	560	840		In det	erminin	g K. M	, N up	to Gra	de 8 an	d P to 2	ZC up t	to Grad	le 7, ad	d the A	value			
800	900	1	100	210	430	620	940		appropr	iate to													
900	1000	1		220	470	680	1050	,	ES = -	14.													
1000	1120		120	250	520	780	1150	1															

260

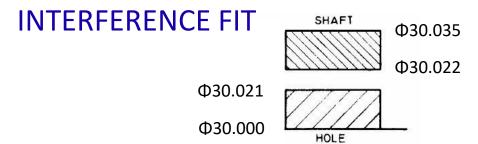
580

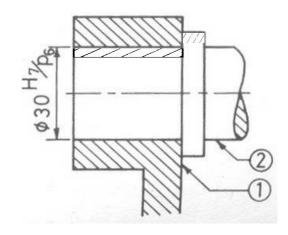
840

Adapted from: Metrology & Measurement By Bewoor

https://books.google.com.sa/books?id=2ck0AwAAQBAJ&pg=SA6-PA13&lpg=SA6-PA13&dq=fundamental+deviation+selection+fits+IT&source=bl&ots=ZO-M02NqbP&sig=ofRGWezbxKzJe9uW9zwxVZRZPdk&hl=en&sa=X&redir_esc=y#v=onepage&q=fundamental%20deviation%20selection%20fits%20IT&f=false

Example


Determine which type of fit is presented by H7/p6? For basic size of 30 mm determine the dimensions of the hole and the shaft for the given fit. (Fit: 30 H7/p6)


Capital H means basic hole system and **Lower** deviation = zero

 $\mbox{H7}\,$: Tol Grade 7 for basic size 30 mean 21μ variation

p6 : Tol Grade 6 for basic size 30 means 13μ variation (p means lower deviation is 22 μ)

Fit: 60 H8/e6

Example

Creating a Clearance Fit using The Basic Hole System

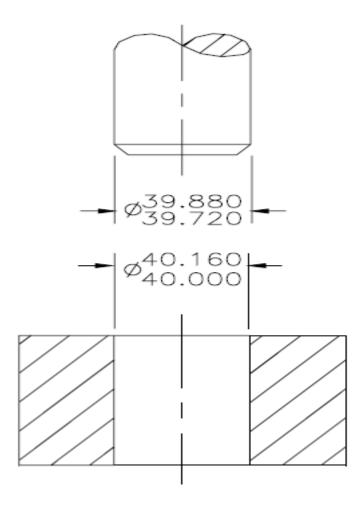
Given the following fit $\Phi 40 - H11/c11$

From table for hole diameter = 40 and H11 we find

Upper deviation = $+160 \mu m$ & Lower deviation = 0

From table for shaft diameter = 40 and c11 we find

Upper deviation = $-120 \,\mu m$ & Lower deviation = $-280 \,\mu m$


Calculations of dimension limits for hole and shaft

- Maximum hole diameter = 40 + 0.16 = 40.16 mm
- Minimum hole diameter = 40 + 0 = 40 mm
- Maximum shaft diameter = 40 +(-120) = 39.88 mm
- Minimum shaft diameter = 40 + (-280) = 39.72 mm

Maximum clearance = Maximum hole diameter – Minimum shaft diameter = 40.16 - 39.72 = 0.44 mm

Minimum clearance = Minimum hole diameter – Maximum shaft diameter

$$= 40 - 39.88 = 0.12 \text{ mm}$$

Problem 1: For a given fit of 50 H7/g8, answer the following questions:

- Which fit system it represents?
- Draw sketches to show the fit.
- calculate the shaft and hole dimensions.
- What are the values of the maximum and minimum clearances, and maximum and minimum interferences?

Problem 2: For a given fit of 45 G7/h6, answer the following questions:

- Which fit system it represents?
- Draw sketches to show the fit.
- Calculate the shaft and hole dimensions.
- What are the values of the maximum and minimum clearances, and maximum and minimum interferences?

Problem 3: For a given fit of 30 H6/p7, answer the following questions:

- Which fit system it represents?
- Draw sketches to show the fit.
- Calculate the shaft and hole dimensions.
- What are the values of the maximum and minimum clearances, and maximum and minimum interferences?

Problem 4: For a given fit of 50 H8/f7, answer the following questions:

- Which fit system it represents?
- Draw sketches to show the fit.
- Calculate the shaft and hole dimensions.
- What are the values of the maximum and minimum clearances, and maximum and minimum interferences?

Problem 5: For a given fit of 50 F7/h8, answer the following questions:

- Which fit system it represents?
- Draw sketches to show the fit.
- Calculate the shaft and hole dimensions.
- What are the values of the maximum and minimum clearances, and maximum and minimum interferences?