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Chapter 1

Real Numbers

Supremum and Infimum

Bounded Sets

A subset A ⊂ R is:

� bounded above if there exists K ∈ R such that x ≤ K for all x ∈ A;

� bounded below if there exists K ∈ R such that x ≥ K for all x ∈ A;

� bounded if it is both bounded above and bounded below.

Remarks.

1. A is bounded if and only if there exists M ≥ 0 such that |x| ≤M for all x ∈ A.

2. A sequence is bounded above (resp. below) if and only if the set of its values is bounded above (resp.
below).

Supremum and Infimum

Let A ⊂ R.
� The supremum sup(A) is the least upper bound of A:

1. sup(A) is an upper bound of A;

2. if K ′ is any other upper bound of A, then sup(A) ≤ K ′.

� The infimum inf(A) is the greatest lower bound, defined analogously.

If they exist, sup(A) and inf(A) are unique.

Theorem 1 Every nonempty subset A ⊂ R that is bounded above (resp. below) has a supremum
(resp. infimum).

Examples

1. Closed interval: sup([a, b]) = b, inf([a, b]) = a.

2. Open interval: sup((a, b)) = b, inf((a, b)) = a. Proof: b is an upper bound. If K is any upper bound,
take xn = b− 2−n(b− a) ∈ (a, b). Then xn ≤ K and xn → b, so b ≤ K.

3. A =
{

n
n+1 : n ∈ N

}
: sup(A) = 1.

4. Example 9.10: A =
{

n2

2n : n ∈ N
}
, sup(A) = 9

8 because n2

2n ≤ 1 < 9
8 for n ̸= 3, and 32

2·3 = 9
8 ∈ A.
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Maximum and Minimum

If sup(A) ∈ A, it is called the maximum of A; if inf(A) ∈ A, it is called the minimum of A.
In any case, there exists a sequence (xn) ⊂ A with xn → sup(A), and a sequence (yn) ⊂ A with

yn → inf(A). If A is unbounded above (resp. below), we write sup(A) = +∞ (resp. inf(A) = −∞).

Limit Superior and Limit Inferior

Definition 2 For a sequence (an)n∈N:

lim sup
n→∞

an := lim
n→∞

(
sup
k≥n

ak

)
, lim inf

n→∞
an := lim

n→∞

(
inf
k≥n

ak

)
.

Remark. (supk≥n ak) is decreasing (or +∞), (infk≥n ak) is increasing (or −∞). Thus, lim sup an and
lim inf an always exist in R ∪ {±∞}.

Examples

1. an = (−1)n
(
1 + 1

n

)
:

lim sup
n→∞

an = 1, lim inf
n→∞

an = −1.

2. an = n: lim sup an = +∞, lim inf an = +∞.

Theorem 3 (Characterization of lim sup) Let a ∈ R. Then:

lim sup
n→∞

an = a

if and only if, for every ε > 0:

(i) an < a+ ε for all but finitely many n,

(ii) an > a− ε for infinitely many n.

Analogously: lim infn→∞ an = a iff, for every ε > 0:

(i) an > a− ε for all but finitely many n,

(ii) an < a+ ε for infinitely many n.



Chapter 2

The Riemann Integral

1. Partition and Refinement of an Interval

Let [a, b] be a closed and bounded interval with a < b. A partition P of [a, b] is a finite ordered set of points

P = {x0, x1, . . . , xn}, a = x0 < x1 < · · · < xn = b,

which subdivides [a, b] into the n subintervals

[xk−1, xk], k = 1, 2, . . . , n.

These subintervals are pairwise disjoint in their interiors and their union is [a, b].

x
a x1 x2 x3 x4 b

[x0, x1] [x1, x2] [x2, x3] [x3, x4] [x4, x5]

Figure 2.1: Partition P of [a, b] into subintervals.

Let
P = {x0, . . . , xn} with a = x0 < · · · < xn = b.

A partition Q of [a, b] is called a refinement of P if P ⊆ Q; that is, every point of P also appears in Q, and
Q may contain additional points inside the subintervals determined by P .

Example

Suppose
P = {a, x1, x2, b}, a < x1 < x2 < b,

and we insert three additional points

q1 ∈ (a, x1), q2 ∈ (x1, x2), q3 ∈ (x2, b).

Then the refinement Q is
Q = P ∪ {q1, q2, q3} = {a, q1, x1, q2, x2, q3, b},

listed in strictly increasing order.
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x
a x1 x2 b

[a, x1] [x1, x2] [x2, b]

q1 q2 q3

Figure 2.2: Refinement Q of P by inserting q1, q2, and q3.

2. Lower and Upper Sums

Definition 4 (Lower and Upper Sums) Let f : [a, b] → R be a bounded function and P =
{x0, x1, . . . , xn} a partition of [a, b]. For each subinterval [xk−1, xk], define:

mk := inf{f(x) | x ∈ [xk−1, xk]}, Mk := sup{f(x) | x ∈ [xk−1, xk]}.

Then the lower sum of f with respect to P is:

L(f, P ) =
n∑

k=1

mk · (xk − xk−1),

and the upper sum is:

U(f, P ) =

n∑
k=1

Mk · (xk − xk−1).

3. Properties of Riemann Sums

Lemma 5 (Properties of Lower and Upper Sums) Let f : [a, b] → R be a bounded function.
Then:

1. For every partition P ,
L(f, P ) ≤ U(f, P ).

2. If Q is a refinement of P , then

L(f, P ) ≤ L(f,Q) and U(f, P ) ≥ U(f,Q).

3. For any two partitions P1, P2,
L(f, P1) ≤ U(f, P2).

Proof.

1. Lower sum is always less than or equal to upper sum.
For each subinterval [xk−1, xk], we define:

mk := inf{f(x) : x ∈ [xk−1, xk]}, Mk := sup{f(x) : x ∈ [xk−1, xk]}.

Since mk ≤Mk for all k, it follows that:

L(f, P ) =

n∑
k=1

mk∆xk ≤
n∑

k=1

Mk∆xk = U(f, P ).

Example: Let f(x) = x2 on [0, 1], and let P = {0, 0.5, 1}. Then:

L(f, P ) = 02 ·0.5+(0.5)2 ·0.5 = 0+0.125 = 0.125, U(f, P ) = (0.5)2 ·0.5+(1)2 ·0.5 = 0.125+0.5 = 0.625.
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So L(f, P ) < U(f, P ).

2. Refining increases lower sum and decreases upper sum.
A refinement Q of P adds points to subdivide the interval more finely. The infimum over a smaller
subinterval is at least as large as over the larger one (because we’re minimizing over fewer values), and
similarly, the supremum over a smaller subinterval is at most as large.

Hence:
L(f,Q) ≥ L(f, P ), U(f,Q) ≤ U(f, P ).

Example: Use the same f(x) = x2 on [0, 1], but refine P = {0, 0.5, 1} to Q = {0, 0.25, 0.5, 0.75, 1}. You
will find:

L(f,Q) > L(f, P ), U(f,Q) < U(f, P ).

3. Lower sum of one partition is less than upper sum of another.
Let R = P1 ∪ P2, which is a common refinement of both P1 and P2. Then, by part (2):

L(f, P1) ≤ L(f,R) ≤ U(f,R) ≤ U(f, P2),

so:
L(f, P1) ≤ U(f, P2).

Example: Let P1 = {0, 0.5, 1}, P2 = {0, 0.25, 1}. Their union is R = {0, 0.25, 0.5, 1}. Again using
f(x) = x2, you can compute and verify the inequality numerically:

L(f, P1) ≤ L(f,R) ≤ U(f,R) ≤ U(f, P2).

Definition 6 A bounded function f : [a, b] → R is said to be Riemann integrable (or simply
integrable) if its lower integral

L(f) = sup{L(f, P ) : P is a partition of [a, b]}

coincides with its upper integral

U(f) = inf{U(f, P ) : P is a partition of [a, b]}.

The common value of L(f) and U(f) is called the Riemann integral of f over the interval [a, b],
and is denoted by ∫ b

a

f or more explicitly

∫ b

a

f(x) dx.
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x

f(x)

0 1 2 3 4 5 6

f(x) =
x2

6

Lower sum

Upper sum

Figure 2.3: Lower and upper sums for the function f(x) = x2

6 on [0, 6].

Intuitively, a bounded function f is Riemann integrable if we can approximate the area under its graph from
below (using lower sums) and from above (using upper sums) in such a way that both approximations can
be made arbitrarily close to each other by refining the partition.

In the figure above:

� The green rectangles represent the lower sum L(f, P ), constructed using the minimum value of f on
each subinterval.

� The red translucent rectangles represent the upper sum U(f, P ), constructed using the maximum
value of f on each subinterval.

� The blue curve shows the graph of the function f(x) = x2

6 .

As the partition becomes finer (i.e., we divide [a, b] into smaller subintervals), the lower and upper
rectangles better approximate the area under the curve. The difference between the total areas of the upper
and lower sums decreases.

This leads to the following fundamental characterization of Riemann integrability:

A bounded function f is Riemann integrable on [a, b] if and only if for every ε > 0, there exists
a partition P of [a, b] such that:

U(f, P )− L(f, P ) < ε.

This ensures that all upper and lower sums are squeezed around a single unique value — the Riemann
integral of the function.

Lemma 7 A bounded function f : [a, b] → R is Riemann integrable if and only if for every ε > 0,
there exists a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Example 8 (Direct applications of the lemma) We illustrate the lemma with two explicit examples.



11

(a) Constant function: Let f : [a, b] → R be defined by f(x) = c, where c ∈ R is constant.

Since f is constant, on every subinterval [xk−1, xk] of any partition P , the infimum and supremum
satisfy:

mk =Mk = c.

Therefore, both the lower sum and the upper sum are equal:

L(f, P ) =

n∑
k=1

mk∆xk = c(b− a), U(f, P ) =

n∑
k=1

Mk∆xk = c(b− a).

It follows that

U(f, P )− L(f, P ) = 0 < ε for all ε > 0,

so the lemma is satisfied trivially. Thus, f is Riemann integrable and its integral is:∫ b

a

f(x) dx =

∫ b

a

c dx = c(b− a).

(b) Quadratic function: Let f : [0, 1] → R be defined by f(x) = x2.

We construct a sequence of uniform partitions:

Pn =

{
0,

1

n
,
2

n
, . . . ,

n

n
= 1

}
, n ∈ N.

Each subinterval has width ∆x = 1
n . On the interval

[
k−1
n , kn

]
, the function f(x) = x2 is increasing,

so:

mk =

(
k − 1

n

)2

, Mk =

(
k

n

)2

.

The lower and upper sums are:

L(f, Pn) =

n∑
k=1

(
k − 1

n

)2

· 1
n
=

1

n3

n∑
k=1

(k − 1)2 =
1

n3
· (n− 1)n(2n− 1)

6
,

U(f, Pn) =

n∑
k=1

(
k

n

)2

· 1
n
=

1

n3

n∑
k=1

k2 =
1

n3
· n(n+ 1)(2n+ 1)

6
.

Therefore, the difference between the upper and lower sums is:

U(f, Pn)− L(f, Pn) =
1

n3

(
n(n+ 1)(2n+ 1)− (n− 1)n(2n− 1)

6

)
.

This expression tends to 0 as n→ ∞, hence for every ε > 0, there exists n ∈ N such that

U(f, Pn)− L(f, Pn) < ε.

By the lemma, f(x) = x2 is Riemann integrable on [0, 1], and we have:∫ 1

0

f(x) dx = lim
n→∞

L(f, Pn) = lim
n→∞

U(f, Pn) =
1

3
.
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Theorem 9 Every monotone function f : [a, b] → R is Riemann integrable.

Proof. Suppose f is monotone increasing on [a, b]. Then f is bounded, since

f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b].

Let ε > 0 be given. We want to find a partition P such that U(f, P )− L(f, P ) < ε. Choose δ > 0 such
that

δ(f(b)− f(a)) < ε.

Now select a partition P = {x0, x1, . . . , xn} such that the width of every subinterval satisfies:

xk − xk−1 < δ for all k = 1, . . . , n.

Since f is increasing, on each subinterval [xk−1, xk] we have:

mk = f(xk−1), Mk = f(xk),

so the difference between the upper and lower sums becomes:

U(f, P )− L(f, P ) =

n∑
k=1

(Mk −mk) (xk − xk−1) =

n∑
k=1

(f(xk)− f(xk−1)) (xk − xk−1).

Using the fact that xk − xk−1 < δ, we estimate:

U(f, P )− L(f, P ) ≤ δ

n∑
k=1

(f(xk)− f(xk−1)) = δ(f(b)− f(a)) < ε.

Hence, by the integrability criterion (Lemma), f is Riemann integrable.

Theorem 10 Every continuous function f : [a, b] → R is Riemann integrable.

Proof. Since f is continuous on the closed interval [a, b], which is compact, the Extreme Value Theorem
guarantees that f is bounded and attains its maximum and minimum on each subinterval of any partition.
Furthermore, by the Uniform Continuity Theorem, f is uniformly continuous on [a, b]. Therefore, for
any ε > 0, there exists δ > 0 such that:

|x− y| < δ ⇒ |f(x)− f(y)| < ε

b− a
.

Let P = {x0, x1, . . . , xn} be a partition of [a, b] such that:

xk − xk−1 < δ for all k = 1, . . . , n.

On each subinterval [xk−1, xk], the function f attains both its maximum Mk and minimum mk (by
continuity), and we have:

Mk −mk <
ε

b− a
.

Thus,

U(f, P )− L(f, P ) =

n∑
k=1

(Mk −mk)(xk − xk−1) <
ε

b− a

n∑
k=1

(xk − xk−1) =
ε

b− a
(b− a) = ε.

Hence, by the integrability criterion (Lemma 7.4), f is Riemann integrable.

Generalization: Even though continuity guarantees integrability, the converse is not true. A function can
be Riemann integrable without being continuous everywhere.
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Theorem 11 (Generalization) Let f : [a, b] → R be bounded and have only finitely many points
of discontinuity. Then f is Riemann integrable.

Sketch of proof. Let D = {c1, c2, . . . , cm} ⊂ [a, b] be the (finite) set of discontinuities of f . Around each
ci, construct an interval of length less than δ/m such that the total contribution to the upper-lower sum
difference over these intervals is less than ε/2. On the complement of these intervals, f is continuous, so we
apply the previous theorem to choose a partition on that region giving error less than ε/2. Combining both
partitions yields a global partition P such that U(f, P )− L(f, P ) < ε.

Example 12 (Discontinuous but integrable vs non-integrable) This example illustrates how the na-
ture and number of discontinuities affect integrability.

(a) Integrable with one discontinuity: Define f : [−1, 1] → R by

f(x) =

{
1, x = 0,

0, x ̸= 0.

This function is discontinuous only at a single point x = 0, and is zero elsewhere. For any partition
that isolates a small interval around 0, say Pn = {−1,− 1

2n ,
1
2n , 1}, we have:

L(f, Pn) = 0, U(f, Pn) =
1

n
→ 0.

Hence, ∫ 1

−1

f(x) dx = 0,

and f is integrable even though discontinuous at one point.

(b) Not integrable: Define f : [0, 1] → R by:

f(x) =

{
1, x ∈ Q,
0, x ∈ R \Q.

This function is known as the Dirichlet function and is discontinuous at every point in [0, 1]. On
every subinterval of any partition:

inf f = 0, sup f = 1,

so:

L(f, P ) = 0, U(f, P ) = 1 for all P.

Therefore,

U(f, P )− L(f, P ) = 1 ̸→ 0,

and f is not Riemann integrable.

Theorem 13 Let f : [a, b] → R be bounded and let c ∈ (a, b). Then f is integrable on [a, b] if and
only if f is integrable on both [a, c] and [c, b]. In that case:∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.
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Remark 14 If f is integrable on [a, b], we define:∫ b

a

f = −
∫ a

b

f.

Also, for any c ∈ [a, b], we define: ∫ c

c

f = 0.

Then, for any three points a, b, c ∈ I, where I ⊆ R is a compact interval and f : I → R is integrable, we
have: ∫ b

a

f +

∫ c

b

f =

∫ c

a

f.

We leave the verification as an exercise.

Theorem 15 (Linearity, Order, and Absolute Value Properties of the Riemann Integral)
Suppose f and g are Riemann integrable on [a, b], and let k ∈ R. Then:

1. The function f + g is integrable, and∫ b

a

(f + g)(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

2. The function kf is integrable, and∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx.

3. If f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

4. The function |f | is integrable, and∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx.

Proof. We prove parts (1) and (4). Parts (2) and (3) follow from similar arguments and are left as exercises.

(1) Linearity of the integral. Let f and g be integrable on [a, b], and let P be any partition of [a, b] into
subintervals [xk−1, xk], k = 1, . . . , n.

Define:

mf
k = inf

x∈[xk−1,xk]
f(x), Mf

k = sup
x∈[xk−1,xk]

f(x),

and similarly for g, and for f + g:

mf+g
k = inf

x∈[xk−1,xk]
(f(x) + g(x)), Mf+g

k = sup
x∈[xk−1,xk]

(f(x) + g(x)).

From basic properties of infima and suprema over sets:

mf
k +mg

k ≤ mf+g
k , Mf+g

k ≤Mf
k +Mg

k .
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Multiplying by the subinterval length ∆xk = xk − xk−1, and summing over all k, we obtain:

L(f, P ) + L(g, P ) ≤ L(f + g, P ), U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Let ε > 0. Since f and g are integrable, there exist partitions P1 and P2 such that:

U(f, P1)− L(f, P1) <
ε

2
, U(g, P2)− L(g, P2) <

ε

2
.

Let P = P1 ∪ P2, a common refinement. Then using monotonicity of upper and lower sums under
refinement:

U(f, P ) ≤ U(f, P1), L(f, P ) ≥ L(f, P1), and similarly for g.

Then:
U(f + g, P ) ≤ U(f, P ) + U(g, P ) ≤ U(f, P1) + U(g, P2) < U(f) + U(g) + ε,

L(f + g, P ) ≥ L(f, P ) + L(g, P ) ≥ L(f, P1) + L(g, P2) > L(f) + L(g)− ε.

Thus:
U(f + g) ≤ U(f) + U(g), L(f + g) ≥ L(f) + L(g),

and since:
L(f + g) ≤ U(f + g),

we conclude that:

L(f + g) = U(f + g) =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

So f + g is integrable and its integral is the sum of the integrals.

(4) Integrability of |f | and inequality.
First, note that since f is integrable, it is bounded, say |f(x)| ≤M for all x ∈ [a, b]. Let P be a partition

of [a, b]. Define:

m
|f |
k = inf

x∈[xk−1,xk]
|f(x)|, M

|f |
k = sup

x∈[xk−1,xk]

|f(x)|.

Since |f(x)| is Lipschitz continuous with respect to f(x) (triangle inequality), we have:

M
|f |
k −m

|f |
k ≤Mf

k −mf
k .

Summing over all subintervals gives:

U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P ).

Now, since f is integrable, for any ε > 0, there exists a partition P such that:

U(f, P )− L(f, P ) < ε ⇒ U(|f |, P )− L(|f |, P ) < ε.

So |f | is also integrable.
To prove the inequality: ∣∣∣∣∣

∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx,

observe that for all x ∈ [a, b]:
−|f(x)| ≤ f(x) ≤ |f(x)|.

Integrating all parts and using the order property (proved in part 3), we get:

−
∫ b

a

|f(x)| dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx,

which implies: ∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx.
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Riemann Sums

Let f : [a, b] → R be a function, and let

a = x0 < x1 < · · · < xn = b

be a partition of the interval [a, b]. For each k ∈ {1, . . . , n}, choose a point ξk ∈ [xk−1, xk], called a sample
point (or tag). We denote the collection of partition points and sample points by:

Z :=
(
(xk)0≤k≤n, (ξk)1≤k≤n

)
.

Definition 16 (Riemann Sum) The Riemann sum of f with respect to Z is defined as:

S(Z, f) :=

n∑
k=1

f(ξk) (xk − xk−1).

Geometrically, this is the integral of a step function that interpolates f at the sample points ξk.

Definition 17 (Mesh of a Partition) The mesh size (or fineness) of Z is defined by:

∥Z∥ := max
1≤k≤n

(xk − xk−1).

Theorem 18 Let f : [a, b] → R be Riemann integrable. Then for every ε > 0, there exists δ > 0 such
that for every choice of partition and sample points Z with ∥Z∥ ≤ δ, we have:∣∣∣∣∣

∫ b

a

f(x) dx− S(Z, f)

∣∣∣∣∣ ≤ ε.

Equivalently,

lim
∥Z∥→0

S(Z, f) =

∫ b

a

f(x) dx.

Proof. Let φ,ψ be step functions such that φ ≤ f ≤ ψ. Then for all partitions Z:

S(Z,φ) ≤ S(Z, f) ≤ S(Z,ψ).

Thus, it suffices to prove the theorem for step functions.
Suppose f is a step function with respect to the partition:

a = t0 < t1 < · · · < tm = b.

Since f is bounded, let:
M := sup{|f(x)| : x ∈ [a, b]} <∞.

Let Z be any partition with sample points, and define a step function F ∈ T [a, b] by:

F (a) = f(a), F (x) = f(ξk) for xk−1 < x ≤ xk.

Then:

S(Z, f) =

∫ b

a

F (x) dx.

Hence: ∣∣∣∣∣
∫ b

a

f(x) dx− S(Z, f)

∣∣∣∣∣ ≤
∫ b

a

|f(x)− F (x)| dx.
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The functions f and F agree on all subintervals (xk−1, xk) that do not contain any partition point tj . At
most 2m subintervals differ, and their total length is at most 2m∥Z∥. Since |f(x)− F (x)| ≤ 2M , we have:∫ b

a

|f(x)− F (x)| dx ≤ 4mM∥Z∥.

As ∥Z∥ → 0, this expression tends to 0, proving the claim.

Example 18.4

We compute: ∫ a

0

x dx, (a > 0)

using Riemann sums.
For n ≥ 1, choose the equally spaced partition:

xk :=
ka

n
, k = 0, 1, . . . , n,

with mesh size a
n . Take ξk = xk as sample points. The Riemann sum is:

Sn =

n∑
k=1

ka

n
· a
n
=
a2

n2

n∑
k=1

k =
a2

n2
· n(n+ 1)

2
=
a2

2

(
1 +

1

n

)
.

Taking the limit as n→ ∞: ∫ a

0

x dx = lim
n→∞

Sn =
a2

2
.

This corresponds to the area of a right triangle with base a and height a.

4.The Fundamental Theorem of Calculus

This central theorem states that the operations of differentiation and integration are, in a sense, inverses of
each other.

Theorem 19 (Fundamental Theorem of Calculus)

1. Let f : [a, b] → R be integrable and let F : [a, b] → R be differentiable with F ′(x) = f(x) for all
x ∈ [a, b]. Then ∫ b

a

f = F (b)− F (a).

2. Let g : [a, b] → R be integrable and define

G(x) :=

∫ x

a

g(t) dt, x ∈ [a, b].

Then G is continuous on [a, b]. Moreover, if g is continuous at c ∈ [a, b], then G is differentiable
at c, and

G′(c) = g(c).

In part (1), the function F is called an antiderivative of f . In part (2), the function G is called the
indefinite integral of g.

Remark 20 Not every derivative is continuous . However, Theorem 19 guarantees that every continuous
function is the derivative of some function.
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Proof of Theorem 19. (1) Let P = {x0, x1, . . . , xn} be a partition of [a, b]. By the Mean Value Theorem,
for each interval [xk−1, xk], there exists tk ∈ (xk−1, xk) such that

F (xk)− F (xk−1) = F ′(tk)(xk − xk−1) = f(tk)(xk − xk−1).

Since mk ≤ f(tk) ≤Mk, we get

L(f, P ) ≤
n∑

k=1

f(tk)(xk − xk−1) ≤ U(f, P ).

The sum
∑n

k=1 f(tk)(xk − xk−1) is a telescoping sum equal to F (b)− F (a), hence∫ b

a

f = F (b)− F (a).

(2) Suppose |g(x)| ≤M on [a, b]. For any x, y ∈ [a, b],

|G(x)−G(y)| =
∣∣∣∣∫ x

a

g −
∫ y

a

g

∣∣∣∣ = ∣∣∣∣∫ x

y

g

∣∣∣∣ ≤ ∣∣∣∣∫ x

y

|g|
∣∣∣∣ ≤M |x− y|.

This shows that G is uniformly continuous.
Now suppose g is continuous at c ∈ [a, b]. Then for x ̸= c:

G(x)−G(c)

x− c
=

1

x− c

∫ x

c

g(t) dt.

Given ε > 0, by continuity of g at c, there exists δ > 0 such that |g(t)− g(c)| < ε whenever |t− c| < δ. Then
for 0 < |x− c| < δ: ∣∣∣∣G(x)−G(c)

x− c
− g(c)

∣∣∣∣ = ∣∣∣∣ 1

x− c

∫ x

c

(g(t)− g(c)) dt

∣∣∣∣ ≤ ε.

Hence G′(c) = g(c).

Remark 21 Computing integrals directly from the definition is usually not feasible in practice. The power
of the Fundamental Theorem lies in allowing us to compute definite integrals using antiderivatives.

Theorem 22 (Mean Value Theorem for Integrals) If g : [a, b] → R is continuous, then there
exists c ∈ (a, b) such that ∫ b

a

g = (b− a)g(c).

Proof. Apply the Mean Value Theorem to the function x 7→
∫ x

a
g, which by the Fundamental Theorem of

Calculus is an antiderivative of g.

Improper Integrals

In this section, we study improper integrals, which arise in two main situations:

� One of the integration limits is infinite,

� The function becomes unbounded (e.g., has a vertical asymptote) at a boundary point.

We will consider these two cases in detail.

Case 1: Integration over an Infinite Interval
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Definition 23 Let f : [a,∞) → R be a function that is Riemann integrable over every finite interval
[a,R], for a < R <∞. If the limit

lim
R→∞

∫ R

a

f(x) dx

exists and is finite, then the improper integral is said to converge, and we define∫ ∞

a

f(x) dx := lim
R→∞

∫ R

a

f(x) dx.

Similarly, for a function f : (−∞, a] → R, we define∫ a

−∞
f(x) dx := lim

R→−∞

∫ a

R

f(x) dx,

provided the limit exists.

Example

Consider the integral ∫ ∞

1

1

xs
dx.

We compute: ∫ R

1

1

xs
dx =


1

s− 1

(
1− 1

Rs−1

)
, s ̸= 1,

logR, s = 1.

Taking the limit as R→ ∞, we get:

∫ ∞

1

1

xs
dx =


1

s− 1
, if s > 1,

diverges, if s ≤ 1.

Case 2: The Function is Unbounded at an Endpoint

Definition 24 Let f : (a, b] → R be a function that is Riemann integrable over every interval [a+ε, b],
for 0 < ε < b− a. If the limit

lim
ε↘0

∫ b

a+ε

f(x) dx

exists and is finite, then the improper integral is said to converge, and we define∫ b

a

f(x) dx := lim
ε↘0

∫ b

a+ε

f(x) dx.

Example

Let us evaluate ∫ 1

0

1

xs
dx.

For s ̸= 1, we compute: ∫ 1

ε

1

xs
dx =

1

1− s

(
1− ε1−s

)
.
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Now take the limit as ε→ 0+:

lim
ε→0+

ε1−s =

{
0, s < 1,

∞, s > 1.

Hence, ∫ 1

0

1

xs
dx =


1

1− s
, if s < 1,

diverges, if s ≥ 1.

We now consider the general case of improper integrals over open intervals.

Definition 25 Let f : (a, b) → R, where a ∈ R ∪ {−∞} and b ∈ R ∪ {∞}, be a function that is
Riemann integrable over every compact subinterval [α, β] ⊂ (a, b). Let c ∈ (a, b) be arbitrary. If both
of the improper integrals∫ c

a

f(x) dx := lim
α↘a

∫ c

α

f(x) dx,

∫ b

c

f(x) dx := lim
β↗b

∫ β

c

f(x) dx

converge, then the integral over the full interval is called convergent, and we define:∫ b

a

f(x) dx :=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Note that this definition is independent of the choice of the intermediate point c ∈ (a, b).

Examples

Example 1

According to previous examples, the integral ∫ ∞

0

1

xs
dx

diverges for all s ∈ R.

Example 2

The integral ∫ 1

−1

1√
1− x2

dx

converges. We compute:∫ 1

−1

1√
1− x2

dx = lim
ε↘0

∫ 0

−1+ε

1√
1− x2

dx+ lim
ε↘0

∫ 1−ε

0

1√
1− x2

dx

= − lim
ε↘0

sin−1(−1 + ε) + lim
ε↘0

sin−1(1− ε)

= −(−π
2 ) +

π
2 = π.

Example 3

The integral ∫ ∞

−∞

1

1 + x2
dx
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also converges: ∫ ∞

−∞

1

1 + x2
dx = lim

R→∞

∫ 0

−R

1

1 + x2
dx+ lim

R→∞

∫ R

0

1

1 + x2
dx

= − lim
R→∞

tan−1(−R) + lim
R→∞

tan−1(R)

= −(−π
2 ) +

π
2 = π.

Example 4: Evaluation of the Dirichlet Integral

We evaluate the improper integral: ∫ ∞

0

sinx

x
dx.

Although the integrand is undefined at x = 0, we extend it continuously by defining:

sinx

x

∣∣
x=0

:= lim
x→0

sinx

x
= 1.

This makes the function continuous on [0,∞). We define the sine integral function:

Si(x) :=

∫ x

0

sin t

t
dt.

The function Si(x) is continuous for all x ≥ 0, although it cannot be written using elementary functions.
The integrand sin x

x changes sign on each interval [nπ, (n+ 1)π], and we define:

an :=

∣∣∣∣∣
∫ (n+1)π

nπ

sinx

x
dx

∣∣∣∣∣ .
Then (an) is a decreasing sequence with an → 0, and:

Si(nπ) =

n−1∑
k=0

(−1)kak.

By the Leibniz criterion (alternating series test), this sum converges, so:∫ ∞

0

sinx

x
dx = lim

n→∞
Si(nπ)

exists.
To evaluate the limit, we consider:

Si

(
λπ

2

)
=

∫ π/2

0

sin(λx)

x
dx,

by the substitution t = λx.
Define the auxiliary function:

g(x) :=

{
1
x − 1

sin x , x ̸= 0,

0, x = 0.

Then g is continuous on [0, π/2], and we decompose the integrand:

sin(λx)

x
=

sin(λx)

sinx
+ sin(λx) · g(x).

We now use the following key result:
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Theorem 26 (Riemann’s Lemma) Let f ∈ C1([a, b]). Then:

lim
|k|→∞

∫ b

a

f(x) sin(kx) dx = 0.

Proof. Let F (k) :=
∫ b

a
f(x) sin(kx) dx. For k ̸= 0, we integrate by parts:

F (k) = −f(x) cos(kx)
k

∣∣∣b
a
+

1

k

∫ b

a

f ′(x) cos(kx) dx.

If |f(x)| ≤M and |f ′(x)| ≤M , then:

|F (k)| ≤ 2M

|k|
+
M(b− a)

|k|
=

2M +M(b− a)

|k|
→ 0 as |k| → ∞.

We apply this lemma with f(x) = g(x) ∈ C1([0, π/2]), which gives:

lim
λ→∞

∫ π/2

0

sin(λx) · g(x) dx = 0.

Hence,

lim
λ→∞

∫ π/2

0

sin(λx)

x
dx = lim

λ→∞

∫ π/2

0

sin(λx)

sinx
dx.

We now evaluate the remaining limit. For every integer n ≥ 1, the following identity holds:

sin((2n+ 1)x)

sinx
= 1 + 2

n∑
k=1

cos(2kx).

Integrating term-by-term over [0, π/2], and noting that each cos(2kx) integrates to zero, we get:∫ π/2

0

sin((2n+ 1)x)

sinx
dx =

∫ π/2

0

1 dx =
π

2
.

Taking the limit n→ ∞, we conclude: ∫ ∞

0

sinx

x
dx =

π

2
. ■

When all functions in a sequence share the same domain D ⊂ R, convergence of a function sequence can
be studied using the concept of pointwise convergence. That is, we say fn(x) → f(x) as n → ∞ for each
x ∈ D.

However, pointwise convergence alone is often insufficient when we want to deduce properties of the limit
function f from the approximating functions fn. In many cases, we require the stronger notion of uniform
convergence, which roughly means that the convergence occurs at the same rate for all x ∈ D.

For example, uniform convergence ensures that if all functions fn are continuous, then the limit function
f is also continuous. It also plays a crucial role in determining when we can interchange limits with differ-
entiation or integration. Power series provide many important examples of uniformly convergent function
sequences.
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Sequences of functions

Definition

Let D ⊂ R, and let fn : D → R be a sequence of functions.

(a) The sequence (fn) converges pointwise to a function f : D → C if, for every x ∈ D, the sequence
fn(x) → f(x). That is:

∀x ∈ K, ∀ε > 0 ∃N = N(x, ε) such that |fn(x)− f(x)| < ε ∀n ≥ N.

(b) The sequence (fn) converges uniformly to a function f : D → C if:

∀ε > 0 ∃N = N(ε) such that |fn(x)− f(x)| < ε ∀x ∈ D, ∀n ≥ N.

Remark:

Uniform convergence implies pointwise convergence, but not vice versa. The key difference is that for uniform
convergence, N depends only on ε, not on the specific point x.

Example: A sequence of functions that converges pointwise but not uniformly

Let (fn) be a sequence of functions defined on [0, 1] by

fn(x) =

1− nx, 0 ≤ x ≤ 1
n ,

0, 1
n ≤ x ≤ 1 .

We will prove that:

1. fn → f pointwise, where

f(x) =

1, x = 0,

0, 0 < x ≤ 1,

2. The convergence is not uniform on [0, 1].

Pointwise convergence.
Fix x ∈ [0, 1]. We distinguish two cases:

� If x = 0: For all n ∈ N, fn(0) = 1. Hence

lim
n→∞

fn(0) = 1 = f(0).

23
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� If x > 0: By the Archimedean property, there exists N ∈ N such that

N ≥ 1

x
⇒ 1

N
≤ x.

For every n ≥ N , we have 1
n ≤ 1

N ≤ x, and by definition of fn,

fn(x) = 0.

Therefore, the sequence (fn(x)) is eventually zero and

lim
n→∞

fn(x) = 0 = f(x).

We have shown that fn → f pointwise on [0, 1].
The convergence is not uniform.
Recall the definition: fn → f uniformly on [0, 1] if

∀ε > 0, ∃N ∈ N : ∀n ≥ N, ∀x ∈ [0, 1], |fn(x)− f(x)| < ε.

We will show that this statement is false by proving its negation:

∃ε > 0 : ∀N ∈ N, ∃n ≥ N, ∃x ∈ [0, 1], |fn(x)− f(x)| ≥ ε.

Take ε = 1
3 . Let N ∈ N be arbitrary. Choose n ≥ N and consider the point

x =
2

3n
> 0.

Since x ≤ 1
n , we are in the first branch of fn:

fn(x) = 1− nx = 1− 2

3
=

1

3
.

Moreover, f(x) = 0 for every x > 0. Thus

|fn(x)− f(x)| = |fn(x)| =
1

3
= ε.

We have found, for every N , some n ≥ N and some x ∈ [0, 1] for which the error does not go below ε.
Conclusion. The sequence (fn) converges pointwise to f on [0, 1], but the convergence is not uniform.

Uniform Convergence and Continuity

Theorem 27 Let D ⊂ R and let fn : D → R be a sequence of continuous functions that converges
uniformly to a function f : D → C. Then f is also continuous.
In other words: the limit of a uniformly convergent sequence of continuous functions is itself contin-
uous.

Proof. Let x ∈ D. We aim to show that f is continuous at x, i.e., for every ε > 0, there exists δ > 0 such
that

|f(x)− f(x′)| < ε for all x′ ∈ D with |x− x′| < δ.

Since (fn) converges uniformly to f , there exists N ∈ N such that

|fN (ξ)− f(ξ)| < ε

3
for all ξ ∈ D.
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Because fN is continuous at x, there exists δ > 0 such that

|fN (x)− fN (x′)| < ε

3
whenever |x− x′| < δ.

Then for such x′ ∈ K, we estimate:

|f(x)− f(x′)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (x′)|+ |fN (x′)− f(x′)|

<
ε

3
+
ε

3
+
ε

3
= ε.

This proves that f is continuous at x. Since x was arbitrary, f is continuous on D.

Remark. If a sequence of continuous functions converges only pointwise, then the limit function need not
be continuous.

Example

(a) Consider the sequence of functions fn : [0, 1] → R defined by

fn(x) = xn.

We determine its pointwise limit f :

f(x) =

0, 0 ≤ x < 1,

1, x = 1 .

Indeed, if 0 ≤ x < 1, then xn → 0 as n→ ∞, while fn(1) = 1n = 1 for all n.

The convergence fn → f is not uniform on [0, 1]. Recall that uniform convergence would require:

∀ε > 0, ∃N : n ≥ N =⇒ |fn(x)− f(x)| < ε for all x ∈ [0, 1].

Take ε = 1
2 . For every N , choose

x =

(
1

2

)1/N

∈ (0, 1),

so that for n = N ,

fN (x) = xN =
1

2
.

Hence,

|fN (x)− f(x)| = 1

2
= ε,

showing that the condition for uniform convergence fails.

Furthermore, even though each fn is continuous on [0, 1], the pointwise limit function f is not con-
tinuous at x = 1. This illustrates that pointwise convergence of continuous functions does not, in
general, preserve continuity.
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x

y

fn(x) = xn

Figure 3.1: Pointwise convergence of fn(x) = xn to a discontinuous function f .

Theorem 28 Suppose (fn) is a sequence of differentiable functions on [a, b] which converges at some
point x0 ∈ [a, b]. If the sequence (f ′n) is uniformly convergent on [a, b], then (fn) is also uniformly
convergent on [a, b] to a function f , which is differentiable on [a, b], and:

f ′n → f ′.

Example

Consider the sequence of functions gn : R → R defined by

gn(x) = x 1+ 1
2n−1 = x · 2n−1

√
x.

We study its pointwise limit and differentiability.
Pointwise limit
For each x ∈ R:

gn(x) =


x 1+ 1

2n−1 , x > 0,

0, x = 0,

x · (−x)
1

2n−1 , x < 0 .

We consider three cases:
- **Case 1: x > 0** x

1
2n−1 → 1 as n→ ∞. Hence:

lim
n→∞

gn(x) = x.

- **Case 2: x = 0** gn(0) = 0 for all n, so:

lim
n→∞

gn(0) = 0.

- **Case 3: x < 0** We have:
gn(x) = x(−x)

1
2n−1 = −|x|(−x)

1
2n−1−1.

Since (−x)
1

2n−1 → 1, it follows that:
lim

n→∞
gn(x) = −x = |x|.
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Combining all cases:

g(x) =


x, x > 0,

0, x = 0,

−x, x < 0,

i.e., g(x) = |x|.

Differentiability of the pointwise limit
Each gn is differentiable on R. The limit function g(x) = |x| is not differentiable at x = 0, because:

g′−(0) = lim
h→0−

|h| − 0

h
= −1, g′+(0) = lim

h→0+

|h| − 0

h
= 1.

Since g′−(0) ̸= g′+(0), the derivative does not exist at x = 0.

x

y

gn(x)

Figure 3.2: Pointwise convergence of gn(x) = x · 2n−1
√
x to g(x) = |x|.

Exercise 29 Find the limit of the sequence fn(x) =
xn

1+xn on the interval [0, 2] and determine whether the
convergence is uniform.

Proof.
We analyze the pointwise limit of fn(x) for different values of x ∈ [0, 2].

� For x = 0:

fn(0) =
0n

1 + 0n
= 0 for all n.

Hence, limn→∞ fn(0) = 0.

� For x ∈ (0, 1): As n→ ∞, xn → 0 for x ∈ (0, 1), so:

lim
n→∞

fn(x) = lim
n→∞

xn

1 + xn
= 0.

� For x = 1:

fn(1) =
1n

1 + 1n
=

1

2
for all n,

so limn→∞ fn(1) =
1
2 .

� For x ∈ (1, 2]: As n→ ∞, xn → ∞ for x > 1, so:

lim
n→∞

fn(x) = lim
n→∞

xn

1 + xn
= 1.
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Thus, the pointwise limit function f(x) of the sequence fn(x) on [0, 2] is:

f(x) =


0 if x ∈ [0, 1),
1
2 if x = 1,

1 if x ∈ (1, 2].

The convergence is not uniform on [0, 2].

Proposition 30 (Cauchy Criterion for Uniform Convergence) Let D ⊆ R and (fn) be a sequence of
functions fn : D → R. The sequence (fn) converges uniformly over D to a function f : D → R if
and only if for every ε > 0, there exists N ∈ N such that for all m,n ≥ N , we have:

sup
x∈D

|fn(x)− fm(x)| < ε.

Proof. We prove the implications separately.
( ⇒ ):

Fix ε > 0. Since fn
u−→ f on D, there exists N ∈ N such that for all n ≥ N and x ∈ D, we have:

|fn(x)− f(x)| < ε

4
.

Thus, if m,n ≥ N , for all x ∈ D, by the triangle inequality, we have:

|fm(x)− fn(x)| = |fm(x)− f(x) + f(x)− fn(x)| ≤ |fm(x)− f(x)|+ |fn(x)− f(x)| ≤ ε

4
+
ε

4
=
ε

2
,

and taking the supremum over all x ∈ D, we get:

sup
x∈X

|fm(x)− fn(x)| ≤
ε

2
< ε,

for any m,n ≥ N , which is what we wanted.
( ⇐ ):

Assume that for every ε̃ > 0, there exists Ñ ∈ N such that:

sup
x∈X

|fn(x)− fm(x)| < ε̃ for all m,n ≥ Ñ .

This means that for every x ∈ D, we have:

|fn(x)− fm(x)| ≤ sup
x∈D

|fn(x)− fm(x)| < ε̃.

Thus, for each x ∈ D, the real sequence (fn(x)) is Cauchy, and hence convergent. The sequence of functions
(fn) converges pointwise to some function f : D → R.

We now show that the pointwise convergence fn
pw−−→ f is actually uniform. Fix ε > 0. By our assumption,

there exists N ∈ N such that for all m,n ≥ N and x ∈ D, we have:

|fn(x)− fm(x)| ≤ sup
x∈D

|fn(x)− fm(x)| < ε

2
.

By fixing n, we take the limit as m → ∞. Since (fm) converges pointwise to f , for all x ∈ X, we have
fm(x) → f(x) as m→ ∞. Using limits and preserving inequalities, we obtain:

lim
m→∞

|fn(x)− fm(x)| = |fn(x)− lim
m→∞

fm(x)| = |fn(x)− f(x)|,

for all x ∈ D. Taking the supremum over x ∈ D, we get:

sup
x∈X

|fn(x)− f(x)| ≤ ε

2
< ε,

for all n ≥ N . Therefore, we conclude that fn
u−→ f on D.
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Theorem 31 Let X ⊆ R and (fn) be a sequence of functions fn : X → R that converges uniformly
over X to a function f : X → R. Assume that for x0 ∈ X, both limx→x0

f(x) and limx→x0
fn(x) for

all n ∈ N exist. Then:

lim
x→x0

(
lim

n→∞
fn(x)

)
= lim

n→∞

(
lim

x→x0

fn(x)

)
.

Proof. First, note that since the sequence (fn) converges uniformly to f , this convergence is also pointwise,
meaning f(x) = limn→∞ fn(x) for all x ∈ X. Therefore, we want to prove the equality:

lim
x→x0

f(x) = lim
n→∞

(
lim

x→x0

fn(x)

)
.

Let pn = limx→x0
fn(x) for each n ∈ N, and let p = limx→x0

f(x). Proving this equation is equivalent to
showing the convergence of the real sequence pn → p.

Fix ε > 0. Since (fn) converges uniformly to f , there exists N ∈ N such that for all n ≥ N , we have:

|fn(x)− f(x)| < ε

2
for any x ∈ X.

Now, take the limit as x → x0 on both sides. Since limits preserve weak inequalities (as seen in Exercise
9.10), we get:

lim
x→x0

|fn(x)− f(x)| ≤ ε

2
< ε.

By applying the algebra of limits, we then have:

|pn − p| =
∣∣∣∣ limx→x0

fn(x)− lim
x→x0

f(x)

∣∣∣∣ = ∣∣∣∣ limx→x0

(fn(x)− f(x))

∣∣∣∣ = lim
x→x0

|fn(x)− f(x)| < ε.

Thus, for all n ≥ N , we have |pn − p| < ε, which is what we wanted to prove. Therefore

lim
x→x0

(
lim
n→∞

fn(x)
)
= lim

n→∞

(
lim

x→x0

fn(x)

)
.

As a consequence, knowing that the functions in (fn) are continuous everywhere guarantees that their
uniform limit is also continuous everywhere.

Theorem 32 Suppose fn ∈ R(a, b) for each n ∈ N. If fn
u−→ f on [a, b], then f ∈ R(a, b) and:∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.

Proof. Let ε > 0. To prove that f ∈ R(a, b), we need to show there exists a partition P such that:

U(f, P )− L(f, P ) < Cε,

where C is independent of ε.
Since fn converges uniformly to f , we can find a positive integer N such that:

n ≥ N =⇒ fn(x)− ε < f(x) < fn(x) + ε for all x ∈ [a, b].

Since fN ∈ R(a, b), there exists a partition P = {x0, x1, . . . , xn} of [a, b] such that:

U(fN , P )− L(fN , P ) < ε.

But, since fN (x)− ε < f(x) < fN (x) + ε for all x ∈ P , we have:

L(fN , P )− ε(b− a) ≤ L(f, P ),



30 CHAPTER 3. SEQUENCES OF FUNCTIONS

U(f, P ) ≤ U(fN , P ) + ε(b− a).

Hence,
U(f, P )− L(f, P ) ≤ U(fN , P )− L(fN , P ) + 2ε(b− a) < ε+ 2ε(b− a) = Cε,

where C = 1 + 2(b− a), so f ∈ R(a, b).
Furthermore, we have: ∣∣∣∣∣

∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|fn(x)− f(x)| dx,

≤
∫ b

a

sup
x∈[a,b]

|fn(x)− f(x)| dx ≤ (b− a) sup
x∈[a,b]

|fn(x)− f(x)|.

The uniform convergence of (fn) now ensures that:

sup
x∈[a,b]

|fn(x)− f(x)| → 0 as n→ ∞.
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Real Series

Convergent Series

Definition 33 (Convergent Series) A real series
∑∞

j=1 aj is called a convergent series if the se-
quence of its partial sums (sn) converges. We define the value of the series as the limit of its partial
sums. In other words, if

lim
n→∞

sn = s,

we assign the value s to the series:

∞∑
j=1

aj = lim
n→∞

n∑
j=1

aj = lim
n→∞

sn = s.

Otherwise, if the sequence of the partial sums (sn) diverges, the series
∑∞

n=1 an is called a divergent
series.

Consider the series
∑∞

j=1
1

j(j+1) . The terms of this series can be rewritten as:

1

j(j + 1)
=

1

j
− 1

j + 1
, for every j ∈ N.

Thus, the series can be expressed as:

∞∑
j=1

1

j(j + 1)
=

∞∑
j=1

(
1

j
− 1

j + 1

)
.

Now, considering the sequence of partial sums (sn) for this series, many terms cancel out due to the
nature of the expression. Specifically, we have:

sn =

n∑
j=1

(
1

j
− 1

j + 1

)
= 1− 1

2
+

1

2
− 1

3
+ · · ·+ 1

n
− 1

n+ 1
= 1− 1

n+ 1
.

Applying the limit to the sequence of partial sums, we obtain:

lim
n→∞

sn = 1− lim
n→∞

1

n+ 1
= 1.

Thus, the sequence of partial sums converges, and we conclude:

∞∑
j=1

1

j(j + 1)
= lim

n→∞
sn = 1.

31
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In general, a real series that can be written in the form
∑∞

j=1(f(j)−f(j+1)) for some function f : N → R
is known as a telescoping series. The partial sums of such a series simplify to:

sn = f(1)− f(n+ 1), for all n ∈ N,

which makes the series easier to analyze due to the cancellation of terms.

Proposition 34 If the real series
∑∞

j=1 aj converges, then limj→∞ aj = 0.

Proof. Since the series converges, by definition, the sequence of partial sums sn =
∑n

j=1 aj also converges,
say sn → s ∈ R. Note that an = sn − sn−1. Taking the limit as n → ∞ on both sides and applying the
algebra of limits, we get:

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s− s = 0.

Thus, we have shown that limn→∞ an = 0, completing the proof.

Proposition 35 Let
∑∞

j=1 aj and
∑∞

j=1 bj be convergent real series. Then:

1. For any λ ∈ R, the series
∑∞

j=1 λaj converges, and its sum is equal to λ
∑∞

j=1 aj.

2. The series
∑∞

j=1(aj + bj) converges, and its sum is equal to
∑∞

j=1 aj +
∑∞

j=1 bj.

Since the convergence of a series is determined by its limiting behavior, we can safely ignore or add any finite
number of terms at the beginning of the series without affecting its convergence. This leads to the following
proposition:

Proposition 36 Let
∑∞

j=1 aj be a real series.

1. If there exists N ∈ N such that the series
∑∞

j=N aj converges, then the series
∑∞

j=1 aj also
converges, and its sum is given by

∞∑
j=1

aj =

N−1∑
j=1

aj +

∞∑
j=N

aj .

2. If the series
∑∞

j=1 aj converges, then for any N ∈ N, the series
∑∞

j=N aj also converges.

Proof. We prove each assertion separately.

1. For n ≥ N , consider the sequence of partial sums (tn) where tn =
∑n

j=N aj . Let (sn) be the sequence

of partial sums where sn =
∑n

j=1 aj . For n ≥ N , we have

sn =

N−1∑
j=1

aj + tn = K + tn,

where K =
∑N−1

j=1 aj ∈ R is a real constant. Since (tn) converges as n → ∞, by the algebra of limits,
we conclude that (sn) also converges. Moreover, we have

∞∑
j=1

aj = lim
n→∞

sn = lim
n→∞

(K + tn) = K + lim
n→∞

tn =

N−1∑
j=1

aj +

∞∑
j=N

aj .
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2. Fix N ∈ N and for n ≥ N , consider the sequence of partial sums (tn) where tn =
∑n

j=N aj . Let (sn)

be the sequence of partial sums for the series
∑∞

j=1 aj where sn =
∑n

j=1 aj . Then, for any n ≥ N , we
have

tn = sn −
N−1∑
j=1

aj = sn −K,

where K =
∑N−1

j=1 aj ∈ R is a real constant. Since (sn) converges, by the algebra of limits, we conclude
that the sequence (tn) also converges.

Absolute and Conditional Convergence

Proposition 37 (Cauchy Criterion for Convergence of a Series) The real series
∑∞

j=1 aj
converges if and only if for every ϵ > 0, there exists an N ∈ N such that for every n > m ≥ N ,
we have:

|sn − sm| = |am+1 + am+2 + · · ·+ an| < ϵ.

Definition 38 (Absolute Convergence) A real series
∑∞

j=1 aj is said to be absolutely convergent

if the corresponding series of absolute values,
∑∞

j=1 |aj |, converges.

Definition 39 (Conditional Convergence) A real series
∑∞

j=1 aj is called conditionally conver-

gent if
∑∞

j=1 aj converges but
∑∞

j=1 |aj | diverges to infinity.

An important distinction between absolutely convergent and conditionally convergent series is that the
terms of an absolutely convergent series can be rearranged without changing the value of the series. However,
in the case of a conditionally convergent series, the terms can be rearranged in such a way that the rearranged
series converges to any real number in R or even diverges to ±∞. This result is known as the Riemann
rearrangement theorem.

Alternating Series

To illustrate an example of a conditionally convergent series, we define alternating series. As the name
suggests, an alternating series is a real series where the terms alternate in sign.

Definition 40 (Alternating Series) A real series is called alternating if it takes one of the follow-
ing forms:

∞∑
j=1

(−1)jbj or

∞∑
j=1

(−1)j−1bj ,

where bj > 0 for all j ∈ N.

Theorem 41 (Alternating Series Test) An alternating series of the form
∑∞

j=1(−1)jbj or∑∞
j=1(−1)j−1bj, with bj > 0, converges if the terms (bj) are decreasing and bj → 0.

Proof. Without loss of generality (WLOG), consider the alternating series of the form
∑∞

j=1(−1)j−1bj ,
where the first term in the series is positive. Let (sn) denote the sequence of partial sums. We analyze the
subsequences of even-indexed and odd-indexed partial sums, namely (s2n) and (s2n−1).
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For the subsequence of even-indexed partial sums, by grouping some consecutive terms together, we have:

s2n = b1 − b2 + b3 − b4 + · · ·+ b2n−1 − b2n = b1 − (b2 − b3)− · · · − (b2n−2 − b2n−1)− b2n ≤ b1,

since bj ≥ bj+1 for all j ∈ N. Additionally, we observe that:

s2(n+1) − s2n = −b2n+2 + b2n+1 ≥ 0,

which implies that s2(n+1) ≥ s2n for all n ∈ N. Thus, the subsequence of even-indexed partial sums (s2n) is
increasing and bounded above. By the monotone convergence theorem, the subsequence (s2n) converges.

Using similar arguments, we can show that the subsequence of odd-indexed partial sums (s2n−1) is
bounded below and decreasing. Therefore, by the monotone convergence theorem, the subsequence (s2n−1)
also converges.

Furthermore, since −b2n = s2n − s2n−1, taking the limit as n → ∞ and applying the algebra of limits,
we obtain:

0 = − lim
n→∞

b2n = lim
n→∞

(s2n − s2n−1) = lim
n→∞

s2n − lim
n→∞

s2n−1.

Thus, limn→∞ s2n = limn→∞ s2n−1, say s. Finally, by Exercise 5.7(a), the entire sequence of partial sums
(sn) converges to the same limit s. Hence, the series converges.

Comparison Tests

For real sequences, we have seen that limits preserve weak inequalities, as demonstrated by the sandwich
lemma. These results can help us compare or bound the limits of a sequence with those of commonly known
sequences. We now extend this idea to series. By comparing series that converge or diverge, we can apply
these standard examples to test the behavior of other series.

Direct Comparison Test

The first convergence test is the direct comparison test for series. The idea is simple and intuitive: suppose
we have two series with non-negative terms such that one series is term-wise larger than the other. If the
series with the larger terms converges, then the series with the smaller terms must also converge. Similarly,
if the series with the smaller terms diverges, the series with the larger terms must diverge as well. We state
the following proposition:

Proposition 42 (Direct Comparison Test) Let
∑∞

j=1 aj and
∑∞

j=1 bj be two real series such that
0 ≤ aj ≤ bj for all j ∈ N.

1. If the series
∑∞

j=1 bj converges, then the series
∑∞

j=1 aj also converges.

2. If the series
∑∞

j=1 aj diverges to ∞, then the series
∑∞

j=1 bj diverges to ∞ as well.

Proof. Let sn =
∑n

j=1 aj and tn =
∑n

j=1 bj be the sequences of partial sums for the series
∑∞

j=1 aj and∑∞
j=1 bj , respectively. Since aj , bj ≥ 0, both sequences (sn) and (tn) are increasing. Moreover, the condition

0 ≤ aj ≤ bj implies that 0 ≤ sn ≤ tn for all n ∈ N.
We now prove the two assertions separately.

1. Since the series
∑∞

j=1 bj converges, the sequence (tn) is bounded, say tn ≤ M for all n ∈ N and some
M > 0. Thus, sn ≤ tn ≤M for every n ∈ N. By the boundedness of (sn), the sequence (sn) must also
converge, and therefore the series

∑∞
j=1 aj converges.

2. Since
∑∞

j=1 aj diverges to ∞, the sequence (sn) diverges to ∞. As sn ≤ tn for all n ∈ N, the sequence

(tn) must also diverge to ∞. Therefore, the series
∑∞

j=1 bj diverges to ∞.
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Proposition 43 (Limit Comparison Test) Let
∑∞

j=1 aj and
∑∞

j=1 bj be two real series such that
aj ≥ 0 and bj > 0 for all j ∈ N. Suppose that

lim
j→∞

aj
bj

= L

for some 0 < L <∞. Then, either both series converge or both series diverge. In other words:

∞∑
j=1

aj converges ⇔
∞∑
j=1

bj converges.

Proof. Since limj→∞
aj

bj
= L, for ϵ = L

2 > 0, there exists N ∈ N such that∣∣∣∣ajbj − L

∣∣∣∣ < L

2
for all j ≥ N.

Equivalently, for any j ≥ N , we have:
L

2
bj < aj <

3L

2
bj .

We now prove the two implications separately:

� (⇒):
Assume that the series

∑∞
j=1 aj converges. Therefore, the series

2
L

∑∞
j=1 aj =

∑∞
j=1

2
Laj also converges

by Proposition 7.2.8. Since 0 < bj <
2
Laj for all j ≥ N , by the direct comparison test, the series∑∞

j=N bj converges. Finally, by Proposition 7.2.9, the full series
∑∞

j=1 bj converges.

� (⇐):
Similarly, suppose that the series

∑∞
j=1 bj converges. Since 0 ≤ aj <

3L
2 bj for all j ≥ N , and the series∑∞

j=N
3L
2 bj converges, the series

∑∞
j=N aj also converges by the direct comparison test. Therefore, the

full series
∑∞

j=1 aj converges as well.

Theorem 44 (Ratio Test) Let
∑∞

j=1 aj be a real series such that aj ̸= 0 for all j ∈ N. Let

L = limj→∞

∣∣∣aj+1

aj

∣∣∣ ≥ 0.

1. If L < 1, then the series converges absolutely.

2. If L > 1, then the series diverges.

Proof. We prove the assertions separately.

1. Suppose that limj→∞

∣∣∣aj+1

aj

∣∣∣ = L < 1. Then, for ϵ = 1−L
2 > 0, there exists an N ∈ N such that∣∣∣∣an+1

an
− L

∣∣∣∣ < 1− L

2
for all n ≥ N.

This implies that ∣∣∣∣an+1

an

∣∣∣∣ < 1 + L

2
for all n ≥ N.

Denote r = 1+L
2 < 1, so that |an+1| < r |an| for all n ≥ N . By induction, we can show that

|ak+N | < rk |aN | for all k ∈ N.
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Let us compare the tail of the series
∑∞

j=N+1 |aj | =
∑∞

k=1 |ak+N | with the geometric series
∑∞

k=1 r
k |aN |.

Clearly, the geometric series converges since r < 1. By the direct comparison test, since |ak+N | <
rk |aN | for all k ∈ N, the tail of the series

∑∞
j=N+1 |aj | also converges. Proposition 7.2.9 then implies

that the entire series
∑∞

j=1 |aj | converges, meaning the series converges absolutely.

2. Suppose that limj→∞

∣∣∣aj+1

aj

∣∣∣ = L > 1. By a similar argument as in the previous case, if we choose

ϵ = L−1
2 > 0, we can show that there exists N ∈ N such that

1 + L

2
<

∣∣∣∣an+1

an

∣∣∣∣ for all n ≥ N.

Denote r = 1+L
2 > 1, so that 0 < |aN | < rk |aN | < |ak+N | for all k ∈ N. Since rk |aN | → ∞, we have

|ak+N | → ∞ as well. This implies that limj→∞ |aj | ≠ 0 and, by Lemma 5.9.3, limj→∞ aj ̸= 0. Thus,
the series

∑∞
j=1 aj cannot converge by Proposition 7.2.5.
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Series of Functions

Let {fn}∞n=1 be a sequence of real-valued functions, where each fn : D → R. A series of functions is the
formal infinite sum:

∞∑
n=1

fn(x).

The n-th partial sum of this series is the function:

sn(x) =

n∑
k=1

fk(x), x ∈ D.

We define the sum of the series at a point x ∈ D as the pointwise limit:

∞∑
n=1

fn(x) = lim
n→∞

sn(x).

Definition 45 (Domain of Convergence) The domain of convergence of the series∑∞
n=1 fn(x) is the set:

Dconv =

{
x ∈ D

∣∣∣∣∣
∞∑

n=1

fn(x) converges

}
.

Examples

1. Geometric Series:
∞∑

n=1

xn

Converges for |x| < 1. So:
Dconv = (−1, 1).

2. Factorial Series:
∞∑

n=0

n!xn

Using the ratio test: ∣∣∣∣ (n+ 1)!xn+1

n!xn

∣∣∣∣ = (n+ 1)|x| → ∞ as n→ ∞.

So the series diverges for all x ̸= 0, and:

Dconv = {0}.

37
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3. Power of Index Series:
∞∑

n=1

nx

Set x = −p, then the series becomes:
∞∑

n=1

1

np
,

which converges if and only if p > 1, i.e., x < −1. Hence:

Dconv = (−∞,−1).

Uniform Convergence of Function Series

Definition 46 (Uniform Convergence) The series
∑∞

n=1 fn with partial sums sn converges uni-
formly to a function s : D → R if:

∀ε > 0, ∃N ∈ N such that n ≥ N ⇒ sup
x∈D

|sn(x)− s(x)| < ε.

We denote this as sn
u−→ s.

Proposition 47 (Characterization of Uniform Convergence) The series
∑∞

n=1 fn converges
uniformly to s on D if and only if:

sup
x∈D

|sn(x)− s(x)| → 0 as n→ ∞.

Theorem 48 (Weierstrass M-Test) Let {fn} be a sequence of functions fn : D → R. Suppose
there exist constants Mn ≥ 0 such that:

1. ∀n, supx∈D |fn(x)| ≤Mn, and

2. The series
∑∞

n=1Mn converges.

Then
∑∞

n=1 fn converges uniformly on D, and:

sup
x∈D

∣∣∣∣∣
∞∑

n=1

fn(x)

∣∣∣∣∣ ≤
∞∑

n=1

Mn.

Example 49 Consider the series:
∞∑

n=1

n sin(nx)

en
, x ∈ R.

We note:

sup
x∈R

∣∣∣∣n sin(nx)en

∣∣∣∣ ≤ n

en
.

Since
∑∞

n=1
n
en converges, the Weierstrass M -test implies that the function series converges uniformly on R.



39

Dirichlet’s Test for Uniform Convergence

Theorem 50 (Dirichlet’s Test) Let {fn} and {gn} be sequences of real-valued functions defined
on a common domain D ⊆ R, with:

fn, gn : D → R.

Suppose:

1. The partial sums Sn(x) =
∑n

k=1 fk(x) are uniformly bounded on D, i.e., there exists M > 0
such that:

|Sn(x)| ≤M for all x ∈ D and all n ∈ N.

2. The sequence {gn(x)} is monotonic in n for every x ∈ D.

3. {gn(x)} converges pointwise to 0 on D.

Then the series
∑∞

n=1 fn(x)gn(x) converges uniformly on D.

Example 51 Consider the function series:

∞∑
n=0

(−1)nx3n+1

3n+ 1
, x ∈ [0, 1].

We define:

fn(x) = (−1)n, gn(x) =
x3n+1

3n+ 1
.

Then:

� The partial sums
∑n

k=0(−1)k are bounded by 1.

� {gn(x)} is decreasing for each fixed x ∈ [0, 1].

� gn(x) → 0 uniformly on [0, 1] since:

sup
x∈[0,1]

|gn(x)| =
1

3n+ 1
→ 0.

Therefore, by Dirichlet’s Test, the series converges uniformly on [0, 1].

Abel’s Test for Uniform Convergence

Theorem 52 (Abel’s Test) Let {fn} and {gn} be sequences of real-valued functions defined on D,
with:

fn, gn : D → R.

Suppose:

1. The series
∑∞

n=1 fn(x) converges uniformly on D.

2. The sequence {gn(x)} is uniformly bounded and monotonic in n for each x ∈ D, i.e., there
exists M > 0 such that:

|gn(x)| ≤M for all x ∈ D and all n ∈ N.

Then the series
∑∞

n=1 fn(x)gn(x) converges uniformly on D.
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Example 53 Let:

fn(x) =
xn

n
, gn(x) = (−1)n, for x ∈ [0, 1].

�

∑∞
n=1

xn

n converges uniformly on [0, 1] (this is the Taylor series of − log(1 − x), and it converges
uniformly on [0, a] for any a < 1).

� The sequence gn(x) = (−1)n is bounded and monotonic (since it oscillates and is fixed in absolute
value).

Hence, by Abel’s Test, the series
∑∞

n=1
xn

n (−1)n converges uniformly on [0, a] for any a < 1.
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Lebesuge Integral
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Lecture 1: Outer measure

The length ℓ(I) of an open interval I ⊂ R is defined as:

ℓ(I) =


b− a if I = (a, b) for some a < b ∈ R,
0 if I = ∅,
∞ if I = (−∞, a) or I = (a,∞),

∞ if I = (−∞,∞).

This notion of length can be extended to a finite or infinite disjoint union of open intervals. Suppose

A =
⋃
n

In, with In ∩ Im = ∅ for n ̸= m,

then the total length of A is defined as:

ℓ(A) =
∑
n

ℓ(In),

where ℓ(A) = ∞ if the series diverges—this includes the case where at least one In is unbounded.

Definition 54 The outer measure of a set A ⊂ R, denoted m∗(A), is defined by:

m∗(A) = inf

{ ∞∑
k=1

ℓ(Ik) : A ⊂
∞⋃
k=1

Ik, Ik are open intervals in R

}
.

This means:

� We look at all possible countable collections of open intervals I1, I2, I3, . . . that cover the set A.

� For each such collection, we calculate the total length:

∞∑
k=1

ℓ(Ik).

� The outer measure m∗(A) is the smallest possible total length (i.e., the infimum over all such
sums).

Let’s calculate the outer measure of the closed interval A = [0, 1].

� To do this, we cover [0, 1] using open intervals. One simple choice is to take a slightly larger open
interval that contains all of [0, 1]. For any small ε > 0, let:

I1 = (−ε, 1 + ε), and set I2 = I3 = · · · = ∅.

� The total length of this cover is:

∞∑
k=1

ℓ(Ik) = ℓ(I1) = (1 + ε)− (−ε) = 1 + 2ε.

� Since ε can be made arbitrarily small, we take the infimum over all such covers:

m∗([0, 1]) ≤ inf{1 + 2ε : ε > 0} = 1.
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To prove the opposite inequality, let I1, I2, . . . be a countable collection of open intervals such that:

[0, 1] ⊂
∞⋃
k=1

Ik.

By the Heine–Borel Theorem, there exists a finite subcover; that is, there exists n ∈ N such that:

[0, 1] ⊂ I1 ∪ · · · ∪ In.

We will now show by induction on n that this implies:

n∑
k=1

ℓ(Ik) ≥ 1.

Since this finite sum is a lower bound for the total infinite sum, it follows that:

∞∑
k=1

ℓ(Ik) ≥
n∑

k=1

ℓ(Ik) ≥ 1.

Thus, for every such cover:
m∗([0, 1]) ≥ 1.

Combining both inequalities, we conclude:

m∗([0, 1]) = 1.

R
A = [0, 1]

I1 = (−ε, 1 + ε)

This example shows how outer measure works: we cover the set with open intervals and try to minimize the
total length. Since every subset A ⊂ R can be covered by a countable union of bounded open intervals, and
since all interval lengths are nonnegative (or infinite), the outer measure m∗(A) is always well-defined. If
every covering gives an infinite total length, then m∗(A) = ∞.

Properties of Outer Measure

� Countable Sets Have Zero Measure:

If A ⊂ R is countable (finite or infinite), then:

m∗(A) = 0.

Why? Let A = {a1, a2, a3, . . . }. For any ε > 0, surround each point an with an open interval:

In =
(
an − ε

2n+1
, an +

ε

2n+1

)
, so ℓ(In) =

ε

2n
.

These intervals cover A, and the total length is:

∞∑
n=1

ℓ(In) =

∞∑
n=1

ε

2n
= ε.

Since ε can be made arbitrarily small, the outer measure must be zero:

m∗(A) = 0.

Examples: Finite sets and Q ∩ [0, 1] are countable, so they have outer measure zero.
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� Monotonicity: If A ⊂ B, then:
m∗(A) ≤ m∗(B).

Why? Any collection of open intervals that covers B also covers A. Since outer measure is defined as
the smallest such total length, the measure of A can’t exceed that of B.

R

A

B
I1 I2

Interpretation:

– The red intervals cover B (green), so they also cover A (blue).

– The total length needed to cover A is at most the length needed to cover B.

� Countable Subadditivity:

For any sequence of sets E1, E2, E3, · · · ⊂ R:

m∗

( ∞⋃
k=1

Ek

)
≤

∞∑
k=1

m∗(Ek).

Example 55 Let Q ∩ [0, 1] = {q1, q2, q3, . . . }, and set Ek = {qk}. Then:

– m∗(Ek) = 0 for all k,

–
∑
m∗(Ek) = 0,

–
⋃
Ek = Q ∩ [0, 1], so:

m∗

( ∞⋃
k=1

Ek

)
= 0.

Here, we get equality.

Now consider A = Q ∩ [0, 1] and B = [0, 1] \Q. Then:

– A ∪B = [0, 1], and A ∩B = ∅,
– m∗(A) = 0, m∗(B) = 1,

– So:
m∗(A ∪B) = 1 = m∗(A) +m∗(B).

Again, we have equality, but this is not always true.

Important: Outer measure is not always additive! Even for disjoint sets A and B, it can happen
that:

m∗(A ∪B) ̸= m∗(A) +m∗(B).

So while outer measure is always countably subadditive, it is not generally countably additive.
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Lecture 2: σ-algebra

Definition 56 (Sigma-Algebra and Measurable Space) Let X be a set, and let S be a collection
of subsets of X.
We say that S is a σ-algebra on X if it satisfies the following:

� ∅ ∈ S (the empty set is included),

� If E ∈ S, then the complement X \ E ∈ S,

� If E1, E2, E3, · · · ∈ S, then the union
∞⋃
k=1

Ek ∈ S

(closed under countable unions).

If S is a σ-algebra on X, then the pair (X,S) is called a measurable space.

Example 57

� {∅, X}: the smallest possible σ-algebra on X,

� P(X): the power set of X, containing all subsets — the largest possible σ-algebra,

� The collection of all subsets E ⊆ X such that either E is countable or X \ E is countable.

Proposition 58 Let S be a σ-algebra on a set X. Then:

(a) X ∈ S

(b) If D,E ∈ S, then:
D ∪ E ∈ S, D ∩ E ∈ S, D \ E ∈ S

(c) If E1, E2, E3, · · · ∈ S, then:
∞⋂
k=1

Ek ∈ S

Proof. (a) Since ∅ ∈ S (by definition), and X = X \ ∅, closure under complements gives X ∈ S.

(b) Suppose D,E ∈ S. Then:

� D ∪ E ∈ S because S is closed under countable unions.

� For D ∩ E, use De Morgan’s law:

X \ (D ∩ E) = (X \D) ∪ (X \ E)

The right-hand side is in S, so the left-hand side is too. Taking its complement shows D ∩ E ∈ S.

� For D \ E, note that:
D \ E = D ∩ (X \ E)

Both sets on the right are in S, so their intersection is too.

(c) Let E1, E2, · · · ∈ S. Then by De Morgan’s law:

X \

( ∞⋂
k=1

Ek

)
=

∞⋃
k=1

(X \ Ek)
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Since each X \ Ek ∈ S and S is closed under countable unions, the right-hand side is in S. Taking the
complement, we conclude:

∞⋂
k=1

Ek ∈ S

Borel σ-Algebra on R

Definition 59 The Borel σ-algebra on R, denoted by B(R), is the smallest σ-algebra that contains
all open intervals (a, b), where a, b ∈ R.

� It includes many familiar sets in real analysis: open, closed, half-open intervals, countable sets, and
more.

� It is the foundation for defining measures (like Lebesgue measure) on subsets of R.

� Any set in B(R) is called a Borel set.

Examples of Borel Sets:

� Open intervals: (a, b) ∈ B(R) by definition.

� Half-open intervals:

[a, b) =

∞⋂
k=1

(
a− 1

k
, b

)
.

Since each interval on the right is open, and Borel sets are closed under countable intersections,
[a, b) ∈ B(R).

� Unbounded intervals:

(a,∞) =

∞⋃
k=1

(a+ k, a+ k + 1).

� Closed intervals:
[a, b] = R \ ((−∞, a) ∪ (b,∞)).

Since open sets are Borel, so are their complements.

� Countable sets: Any countable set, like the rationals in [0, 1], is Borel. For example:

B = {x1, x2, x3, . . . }, B =

∞⋃
k=1

{xk},

where each {xk} is a closed set.

� Continuity sets of functions: If f : R → R, then the set where f is continuous is a Borel set,
because it can be written as a countable intersection of open sets.

How is the Borel σ-algebra built?

� Start with all open intervals (a, b),

� Add all their complements to get closed sets,

� Then include all countable unions and intersections of those sets.

The Borel σ-algebra is large enough to cover most useful sets in analysis, but not all subsets of R. Some sets
are too “wild” to be Borel and require Lebesgue theory to handle.
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Measure

Definition 60 Let S be a σ-algebra on a set X. A function

µ : S → [0,∞]

is called a measure if it satisfies the following properties:

1. Empty Set Has Zero Measure:
µ(∅) = 0.

2. Countable Additivity (or σ-Additivity):

If {En}∞n=1 is a countable collection of pairwise disjoint sets in S (i.e., Ei ∩Ej = ∅ for i ̸= j),
then:

µ

( ∞⋃
n=1

En

)
=

∞∑
n=1

µ(En).

A triple (X,S, µ) is called a measure space.

Let’s explore several types of measures to better understand what a measure is and what properties it
must satisfy.

(i) Counting Measure (Finite Case):

Define a function µ on all subsets of R by:

µ(E) =

{
Number of elements in E, if E is finite,

∞, if E is infinite.

� This measure simply counts how many elements are in a set.

� If the set is infinite (for example, the set of all natural numbers), we define its measure to be ∞.

� For instance:
µ({1, 2, 4}) = 3, µ(N) = ∞.

Why this is a measure:

� µ(∅) = 0, which satisfies the null empty set property.

� For any countable collection of disjoint finite sets E1, E2, . . ., we have:

µ

( ∞⋃
n=1

En

)
=

∞∑
n=1

µ(En),

because union just adds up all the elements with no overlap.

(ii) Dirac Measure at a Point c ∈ R:
Define:

µc(E) =

{
1, if c ∈ E,

0, if c /∈ E.

Explanation:

� This measure concentrates all the ”mass” at a single point c.

� Think of placing a unit of ”weight” only at point c. Any set containing c will have measure 1;
otherwise, 0.
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� For example:
µ5([4, 6]) = 1, µ5((0, 4)) = 0.

Why this is a measure:

� µc(∅) = 0 since c /∈ ∅.
� For disjoint sets E1, E2, . . ., only one of them (at most) can contain c, so:

µc

( ∞⋃
n=1

En

)
=

∞∑
n=1

µc(En),

which is either 1 or 0 depending on whether c ∈
⋃
En.

(iii) Weighted Dirac Measures (Discrete Probability Model):

Let c1, c2, · · · ∈ R be points, and p1, p2, · · · ≥ 0 be corresponding weights (think of probabilities or
masses). Define:

µ(E) =
∑

{i:ci∈E}

pi.

Explanation:

� Each point ci has a fixed weight pi ≥ 0.

� To measure a set E, we sum up all the weights of those ci that lie in E.

� Example:
If c1 = 1, p1 = 0.3; c2 = 2, p2 = 0.7; then µ({1, 2}) = 1.

Why this is a measure:

� µ(∅) = 0, because none of the ci are in ∅.
� Countable additivity holds: if E1, E2, . . . are disjoint, the weights of points in each are disjoint
too, so:

µ

( ∞⋃
n=1

En

)
=

∞∑
n=1

µ(En).

Note: This kind of measure is used in probability theory to model discrete random variables with
weighted outcomes.

(iv) Define a set function µ by:

µ(E) =

{
0, if E is finite,

∞, if E is infinite.

Why this fails to be a measure:

� It satisfies µ(∅) = 0, and is finitely additive, meaning:

µ(E1 ∪ E2) = µ(E1) + µ(E2),

when E1, E2 are disjoint and finite.

� However, it is not countably additive. For example, take the disjoint sets:

En = {n}, n = 1, 2, 3, . . .

Then each µ(En) = 0, so:
∞∑

n=1

µ(En) = 0.
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But their union is the infinite set N, so:

µ

( ∞⋃
n=1

En

)
= µ(N) = ∞.

This contradicts countable additivity.
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Lecture 3: Lebesgue measure

Lebesgue Measurable Sets

Definition 61 A set E ⊂ R is called Lebesgue measurable if, for every subset A ⊂ R, the following
equality holds:

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec),

where:

� m∗(·) denotes the outer measure, and

� Ec = R \ E is the complement of E.

This condition is known as the Carathéodory criterion.

The intuition behind this definition is that a Lebesgue measurable set E splits any other set A ⊂ R into two
disjoint parts—A∩E and A∩Ec—in a way that preserves the total outer measure. That is, measuring the
parts separately and adding the results gives exactly the same outer measure as measuring the whole set A
directly.

From the properties of outer measure, we always have the inequality:

m∗(A) ≤ m∗(A ∩ E) +m∗(A ∩ Ec),

since A ⊂ (A ∩ E) ∪ (A ∩ Ec) and outer measure is countably subadditive.

Therefore, to verify that E is measurable, we only need to check the reverse inequality:

m∗(A ∩ E) +m∗(A ∩ Ec) ≤ m∗(A) for all A ⊂ R.

If this inequality holds, then equality follows automatically from the previous inequality, and E is Lebesgue
measurable.

Summary: A set E ⊂ R is Lebesgue measurable if splitting any set A using E and its
complement does not increase the outer measure. This ensures that E behaves well with
respect to measure and integration.

Properties of Measurable Sets

� The empty set ∅ and the real line R are measurable.

Why? For any set A ⊂ R:

A ∩ ∅ = ∅, A ∩ ∅c = A ⇒ m∗(A) = 0 +m∗(A).

Similarly, for E = R:

A ∩ R = A, A ∩ Rc = ∅ ⇒ m∗(A) = m∗(A) + 0.

� A set is measurable if and only if its complement is measurable.

Why? If E is measurable, then for all A ⊂ R:

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).

This expression is symmetric in E and Ec, so Ec is also measurable.
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� Every set of outer measure zero is measurable.

Why? If m∗(E) = 0, then for any A ⊂ R:

m∗(A ∩ E) ≤ m∗(E) = 0 ⇒ m∗(A ∩ E) = 0.

Hence,

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).

So E satisfies the measurability condition.

� The union of two measurable sets is measurable.

Why? Let E,F ∈ M, and let A ⊂ R. Define:

A1 = A ∩ E, A2 = A ∩ Ec ∩ F, A3 = A ∩ Ec ∩ F c.

These three parts are disjoint and cover A, and since E and F are measurable:

m∗(A) = m∗(A1) +m∗(A2) +m∗(A3).

Notice:

A ∩ (E ∪ F ) = A1 ∪A2, A ∩ (E ∪ F )c = A3,

so:

m∗(A) = m∗(A ∩ (E ∪ F )) +m∗(A ∩ (E ∪ F )c),

and thus E ∪ F is measurable.

� The interval (a,∞) is measurable for any a ∈ R.
Why? Let A ⊂ R. Define:

A1 = A ∩ (a,∞), A2 = A ∩ (−∞, a].

These cover A, and are disjoint:

A = A1 ∪A2, A1 ∩A2 = ∅.

If m∗(A) = ∞, then the inequality

m∗(A1) +m∗(A2) ≤ m∗(A)

holds trivially. Otherwise, for any ε > 0, choose an open cover {In} of A such that:∑
ℓ(In) ≤ m∗(A) + ε.

Define:

Jn = In ∩ (a,∞), Kn = In ∩ (−∞, a].

Then A1 ⊂
⋃
Jn, A2 ⊂

⋃
Kn, and:

ℓ(In) = ℓ(Jn) + ℓ(Kn) ⇒
∑

ℓ(Jn) +
∑

ℓ(Kn) =
∑

ℓ(In).

Therefore:

m∗(A1) +m∗(A2) ≤ m∗(A) + ε.

Letting ε→ 0, we conclude:

m∗(A) = m∗(A1) +m∗(A2),

proving that (a,∞) is measurable.
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Theorem 62 The collection of Lebesgue measurable sets M is a σ-algebra.

Proof. We have already established that:

� M contains ∅ and R,

� M is closed under complements,

� M is closed under finite unions.

Now let E1, E2, · · · ∈ M be a countable collection of pairwise disjoint measurable sets, and define:

Fn =

n⋃
i=1

Ei, F =

∞⋃
i=1

Ei.

Since each Fn is a finite union of measurable sets, Fn ∈ M for all n. For any A ⊂ R, we have:

m∗(A) = lim
n→∞

[m∗(A ∩ Fn) +m∗(A ∩ F c
n)] .

As Fn ↑ F , we get:
lim
n→∞

m∗(A ∩ Fn) = m∗(A ∩ F ),

and since A ∩ F c
n ↓ A ∩ F c, we also have:

lim
n→∞

m∗(A ∩ F c
n) = m∗(A ∩ F c).

Thus:
m∗(A) = m∗(A ∩ F ) +m∗(A ∩ F c),

which shows F ∈ M. Therefore, M is closed under countable unions, and hence is a σ-algebra.

Theorem 63 The Borel σ-algebra B is contained in the collection of Lebesgue measurable sets M,
i.e., B ⊂ M.

Proof. We previously showed that every interval of the form (a,∞) is measurable.
Now consider an open interval of the form (−∞, b). Observe that:

(−∞, b) =

∞⋃
n=1

(
−∞, b− 1

n

)
,

and since each (b − 1
n ,∞) is measurable, their complements (−∞, b − 1

n ) are also measurable. Therefore,
(−∞, b) is measurable as a countable union of measurable sets.

Consequently, any open interval (a, b) can be written as:

(a, b) = (a,∞) ∩ (−∞, b),

which is an intersection of two measurable sets, and hence also measurable.
Since any open set in R can be written as a countable union of open intervals, and M is a σ-algebra, it

follows that all open sets are measurable.
Therefore, the Borel σ-algebra B, which is generated by open intervals, is a subset of M.
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Theorem 64 The restriction of the outer measure m∗ to the collection M of Lebesgue measurable
sets defines a measure. That is,

m := m∗|M
is a measure on the measurable space (R,M).

(R,M,m)

is called the Lebesgue measure space.

Idea of the Proof. To prove that m is a measure, we must verify the two key properties of a measure:

1. m(∅) = 0,

2. Countable additivity: For any disjoint collection {Ei}∞i=1 ⊂ M,

m

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

m(Ei).

Since m = m∗ on M, and m∗(∅) = 0, the first property is automatically satisfied.
Now we focus on countable additivity.
Let {Ei}∞i=1 be a disjoint family of measurable sets. We want to show:

m∗

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

m∗(Ei).

Step 1: Lower bound (using monotonicity and finite additivity).
For any n ∈ N, we have

m∗

( ∞⋃
i=1

Ei

)
≥ m∗

(
n⋃

i=1

Ei

)
=

n∑
i=1

m∗(Ei),

because the sets Ei are disjoint and measurable.
Taking the limit as n→ ∞ gives:

m∗

( ∞⋃
i=1

Ei

)
≥

∞∑
i=1

m∗(Ei).

Step 2: Upper bound (using subadditivity of m∗).
By the definition of outer measure and countable subadditivity:

m∗

( ∞⋃
i=1

Ei

)
≤

∞∑
i=1

m∗(Ei).

Conclusion: Since we have both inequalities (≤ and ≥, equality holds:

m∗

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

m∗(Ei).

Therefore, m is countably additive on M, so it is indeed a measure.

Key Remark: Although the outer measure m∗ is defined on all subsets of R, it is not
countably additive in general. However, when restricted to the collection M of Lebesgue
measurable sets, it becomes a proper measure. Importantly, M contains all Borel sets, which
are sufficient for most practical applications in analysis .
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Theorem 65 Then the following properties hold:

(a) Monotonicity: If E,F ∈ M with E ⊂ F , then

m(E) ≤ m(F ).

(b) Countable Sub-additivity: For any countable collection {En}∞n=1 ⊂ M,

m

( ∞⋃
n=1

En

)
≤

∞∑
n=1

m(En).

(c) Continuity from Below: If E1 ⊂ E2 ⊂ · · · (increasing sequence), then

m

( ∞⋃
n=1

En

)
= lim

n→∞
m(En).

(d) Continuity from Above: If E1 ⊃ E2 ⊃ · · · (decreasing sequence) and m(Ek) < ∞ for some
k, then

m

( ∞⋂
n=1

En

)
= lim

n→∞
m(En).

We prove each property individually.

(a) Monotonicity: Suppose E ⊂ F . Then the set difference F \ E ∈ M, and the sets E and F \ E are
disjoint. Since E ∪ (F \ E) = F , we get:

m(F ) = m(E) +m(F \ E) ≥ m(E).

(b) Countable Sub-additivity: Let {En} be any sequence of measurable sets. Define:

F1 = E1, Fn = En \
n−1⋃
k=1

Ek (n ≥ 2).

Then the Fn are disjoint, and:
∞⋃

n=1

En =

∞⋃
n=1

Fn.

Thus:

m

( ∞⋃
n=1

En

)
=

∞∑
n=1

m(Fn) ≤
∞∑

n=1

m(En).

(c) Continuity from Below: Let E1 ⊂ E2 ⊂ · · ·, and set:

E =

∞⋃
n=1

En.

Define A1 = E1, and An = En \ En−1 for n ≥ 2. Then E =
⊔∞

n=1An, so:

m(E) =

∞∑
n=1

m(An), and m(Ek) =

k∑
n=1

m(An).

Hence,
lim
k→∞

m(Ek) = m(E).
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(d) Continuity from Above: Let E1 ⊃ E2 ⊃ · · ·, and assume m(Ek) <∞ for some k. Let:

E =

∞⋂
n=1

En =

∞⋂
n=k

En,

and set An = Ek \ En. Then An ⊂ An+1 and:

Ek \ E =

∞⋃
n=k

An.

By continuity from below:
m(Ek \ E) = lim

n→∞
m(Ek \ En).

Therefore:
lim

n→∞
m(En) = m(Ek)− lim

n→∞
m(Ek \ En) = m(E).
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Lecture 4: Lebesgue Measurable Function

Definition 66 Let f : E → R be a function, where E ⊆ R is a measurable set.
We say that f is Lebesgue measurable (or simply measurable) if for every real number α ∈ R,
the set

{x ∈ E : f(x) > α}

belongs to M; that is, it is a measurable set.

We now present several examples to illustrate the concept of measurable functions. In each case, we
examine whether the set {x ∈ R : f(x) > α} belongs to M (e.g., Lebesgue measurable set). If this condition
holds for every α ∈ R, then f is measurable.

1. Constant function: Let f(x) ≡ c, a constant function for some c ∈ R. Consider the set

{x ∈ R : f(x) > α}.

- If α ≥ c, then f(x) > α is never true, so the set is empty: ∅. - If α < c, then f(x) > α for all x ∈ R,
so the set is R.
Since both ∅ and R are elements of M, this shows that constant functions are always measurable .

2. Continuous functions: Let f : R → R be a continuous function. For any α ∈ R, the set

{x ∈ R : f(x) > α}

is an open set, because the preimage of an open interval (α,∞) under a continuous function is open.
Since every open set is a Borel set, it follows that every continuous function is Borel measurable.

3. Characteristic function of a measurable set: If E,F ⊂ R are two measurable sets, then the
indicator function χF : E → R, defined by

χF (x) =

{
1, x ∈ F,

0, x /∈ F,

is measurable.

This can be verified by direct computation. For any α ∈ R, the preimage χ−1
F ((α,∞]) is given by

{x ∈ R : χF (x) > α} =


∅, α > 1,

E ∩ F, 0 ≤ α < 1,

E, α < 0.

Since E and F are measurable, each of these preimages is measurable, thus making χF measurable.

4. Monotone functions: Let f : R → R be any monotone increasing function, and let α ∈ R.
Then the set

{x ∈ R : f(x) > α}

is one of the following:

� a right-open half-line of the form {x ∈ R : x > γ},
� a right-closed half-line {x ∈ R : x ≥ γ},
� the entire real line R, or
� the empty set ∅,

Conclusion. These examples illustrate that the class of measurable functions includes:
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� all continuous functions,

� all characteristic functions of measurable sets,

� and all monotone functions.

Remark. The collection of measurable functions is closed under arithmetic operations (addition, subtrac-
tion, scalar multiplication, etc.), pointwise limits, and taking absolute values. This makes them very useful
in integration theory and probability.

Theorem 67 Let E ⊂ R be measurable, and suppose f, g : E → R are two measurable functions,
and let c ∈ R be a constant. Then the following functions are also measurable:

cf, f2, f + g, f · g, |f |.

Proof. We verify measurability for each case:

1. Scalar multiplication: Assume c > 0 (the case c < 0 is similar and c = 0 is trivial). For any α ∈ R,
we have:

{x ∈ R : cf(x) > α} = {x ∈ R : f(x) > α/c}.

Since f is measurable, the right-hand side is in M, hence cf is measurable.

2. Square function: Assume α > 0 (for α ≤ 0, the set {f2 > α} is either R or empty, and thus
measurable). Then:

{x ∈ R : f2(x) > α} = {x ∈ R : f(x) >
√
α} ∪ {x ∈ R : f(x) < −

√
α}.

Both sets on the right are measurable since f is measurable. Therefore, f2 is measurable.

3. Sum f + g: Fix α ∈ R. For each rational number r ∈ Q, define:

Sr = {x ∈ R : f(x) > r} ∩ {x ∈ R : g(x) > α− r}.

Each set Sr ∈ M, since f and g are measurable. Moreover,

{x ∈ R : f(x) + g(x) > α} =
⋃
r∈Q

Sr,

which is a countable union of measurable sets, hence measurable. Thus f + g is measurable.

4. Product f · g: Using the identity:

f · g =
1

4

[
(f + g)2 − (f − g)2

]
,

and since sums, differences, and squares of measurable functions are measurable (as shown above), it
follows that f · g is measurable.

5. Absolute value: For α > 0, we write:

{x ∈ R : |f(x)| > α} = {x ∈ R : f(x) > α} ∪ {x ∈ R : f(x) < −α}.

Each set on the right is measurable, hence |f | is measurable.

Suppose f is a function. We define the positive part f+ and the negative part f− of f as functions from
Ω to [0,∞] as follows:

f+(x) =

{
f(x) if f(x) ≥ 0,

0 if f(x) < 0,
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and

f−(x) =

{
0 if f(x) ≥ 0,

−f(x) if f(x) < 0.

Note that
f = f+ − f−, |f | = f+ + f−.

Theorem 68 The function f is measurable if and only if f+ and f− are both measurable.

In dealing with sequences of measurable functions, it is often convenient to consider operations such
as suprema, infima, lim sup, lim inf, and pointwise limits. These operations naturally lead us to consider
functions that may take infinite values. Therefore, it is useful—and often necessary—to allow functions to
take values in the extended real line, that is, to take the values +∞ and −∞ in addition to the usual real
values.

We denote the set of extended real numbers by:

R := R ∪ {−∞,+∞}.

Definition 69 (Measurable Extended Real-Valued Function) Let f : E → R, where E ⊆ R
is a measurable set and R = R ∪ {−∞,+∞} denotes the extended real line.
We say that f is measurable (with respect to a σ-algebra M) if the following conditions are satisfied:

� For every α ∈ R, the set
{x ∈ E : f(x) > α} ∈ M.

� The sets
{x ∈ E : f(x) = +∞} and {x ∈ E : f(x) = −∞}

also belong to M.

Definition 70 Let E ⊂ R be a measurable set. A statement P (x) is said to hold almost everywhere
(a.e.) on E if

m({x ∈ E : P (x) does not hold}) = 0.

In other words, the set where P (x) does not hold has measure zero. Note that any set with outer
measure zero also has measure zero, so using m∗ instead of m in this definition would yield the same
statement.

Theorem 71 If two functions f, g : E → [−∞,∞] satisfy f = g almost everywhere on E, and f is
measurable, then g is also measurable.

In other words, modifying a measurable function on a set of measure zero does not affect its measurability.
Proof. Let N = {x ∈ E : f(x) ̸= g(x)}. By assumption, N has outer measure zero, so m(N) = 0. For any
α ∈ R, define

Nα = {x ∈ N : g(x) > α} ⊂ N,

which also has measure zero since m∗(Nα) ≤ m∗(N) = 0.
Now, for each α ∈ R, we can express the preimage g−1((α,∞]) as

g−1((α,∞]) =
(
f−1((α,∞]) \N

)
∪Nα.

Since f is measurable, f−1((α,∞]) is measurable, and both N and Nα have measure zero. Thus, g−1((α,∞])
is a union of measurable sets, making it measurable as well. This proves that g is measurable.



59

Corollary 72 If f and g are measurable, then the sets {x : f(x) < g(x)}, {x : f(x) ≤ g(x)}, and {x :
f(x) = g(x)} are also measurable.

Theorem 73 Let {fn(x)} be a sequence of measurable functions. Then the functions

inf
n
fn(x), sup

n
fn(x), lim inf

n→∞
fn(x), and lim sup

n→∞
fn(x)

are all measurable.

Proof. Define g(x) = supn fn(x) and let a ∈ R. Then we can express the set {x : g(x) ≤ a} as

{x : g(x) ≤ a} =

∞⋂
n=1

{x : fn(x) ≤ a}.

This set is measurable, as it is the countable intersection of measurable sets, each {x : fn(x) ≤ a} being
measurable by the measurability of fn.

Now, let h(x) = lim supn→∞ fn(x). For h(x) ≤ a (where a ∈ R), it is true if and only if for every n ∈ N,
there exists m ≥ n such that fm(x) ≤ a. This can be written as

{x : h(x) ≤ a} =

∞⋂
n=1

∞⋃
m=n

{x : fm(x) ≤ a},

which is measurable as it is a countable intersection of countable unions of measurable sets.
The arguments for infn fn and lim infn→∞ fn follow similarly and are left as an exercise.
A function is called a simple function if it takes only a finite number of values and can be written as

a finite linear combination of characteristic functions of measurable sets:

f(x) =

N∑
i=1

aiχAi
(x), where Ai ∈ M.

Here, χA(x) is the characteristic function of the set A, defined by:

χA(x) =

{
1, if x ∈ A,

0, otherwise.

Example: Let
f(x) = 2χ[0,2)(x) + 4χ[2,4)(x) + 1χ[4,5)(x).

Then f is a simple function defined on [0, 5], taking the values 2, 4, and 1 over disjoint intervals.

0 2 4 5

1

2

4

x

f
(x
)
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Theorem 74 If f : Ω → [0,∞] is a Lebesgue measurable function, then there exists a sequence of
non-negative simple functions (φn) such that:

(i) φn+1(x) ≥ φn(x) for all n ∈ N and x ∈ Ω,

(ii) limn→∞ φn(x) = f(x) for all x ∈ Ω.

We write φn ↑ f to denote that φn increases to f .

For each n ∈ N, define the sets:

Fn,i = f−1

([
i− 1

2n
,
i

2n

))
, i ∈ {1, 2, . . . , n2n},

Fn,∞ = f−1([n,∞]) ∪ f−1({∞}),

and the simple function

φn =

n2n∑
i=1

i− 1

2n
χFn,i + nχFn,∞ .

Each φn is measurable because each interval
[
i−1
2n ,

i
2n

)
and [n,∞) is a Borel set.

(i) For any x ∈ Fn,i, we have i−1
2n ≤ f(x) < i

2n . Then either: - i−1
2n ≤ f(x) < 2i−1

2n+1 , so x ∈ Fn+1,2i−1 and

φn+1(x) =
i−1
2n = φn(x), -

2i−1
2n+1 ≤ f(x) < i

2n , so x ∈ Fn+1,2i and φn+1(x) > φn(x).
(ii) If f(x) < N for some N ∈ N, then for all n ≥ N there is an integer i such that

i− 1

2n
≤ f(x) <

i

2n
,

which implies 0 ≤ f(x)− φn(x) <
1
2n . Hence φn(x) → f(x).
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Lecture 5: Lebesgue Integral of Nonnegative Measurable Functions

We often work with functions that can take the value +∞ and sets with infinite measure. For this reason,
we adopt the following conventions:

a+∞ = ∞+ a = ∞ for a ∈ [0,∞],

a · ∞ = ∞ · a = ∞ for a ∈ (0,∞],

0 · ∞ = ∞ · 0 = 0.

Integral of a Simple Function

Let f : E → [0,∞] be a simple measurable function, which means it takes only finitely many values. Suppose
these values are α1, . . . , αN . For each j = 1, . . . , N , define:

Aj = {x ∈ E : f(x) = αj}.

Then the Lebesgue integral of f over E is:

∫
E

f dm =

N∑
j=1

αj m(Aj).

Alternatively, if f is written as a sum of characteristic functions:

f =

n∑
i=1

aiχAi
,

then: ∫
E

f dm =

n∑
i=1

aim(Ai).

Example: Define the function f : R → R by:

f(x) =


2, if − 1 < x < 1,

3, if 3 < x < 7,

−1, if − 4 ≤ x < −3,

0, otherwise.

Then: ∫
R
f(x) dm = 2 · 2 + 3 · 4 + (−1) · 1 = 4 + 12− 1 = 15 .

Integral of a General Nonnegative Function

Let f : E → [0,∞] be any nonnegative measurable function. We define:∫
E

f dm = sup

{∫
E

φdm

∣∣∣∣ φ ∈ S+(E), 0 ≤ φ ≤ f

}
,

where S+(E) is the set of all nonnegative simple functions on E.
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Basic Properties

If f, g : E → [0,∞] are measurable, and λ ≥ 0, then:

� If f ≤ g, then
∫
E
f dm ≤

∫
E
g dm.

�

∫
E
λf dm = λ

∫
E
f dm.

� If F ⊂ E, then
∫
F
f dm =

∫
E
fχF dm.

� If m(E) = 0, then
∫
E
f dm = 0.

Monotone Convergence Theorem

Theorem 75 Let fn : E → [0,∞] be an increasing sequence of measurable functions (i.e., f1 ≤ f2 ≤
· · ·), and let f(x) = limn→∞ fn(x). Then:

lim
n→∞

∫
E

fn dm =

∫
E

f dm.

Idea of the proof: Since the sequence
∫
E
fn increases, its limit exists. Also, for any simple function

ϕ ≤ f , eventually fn ≥ ϕ, so: ∫
E

ϕ ≤ lim
n→∞

∫
E

fn.

Taking the supremum over all such ϕ, we get the reverse inequality and conclude:

lim
n→∞

∫
E

fn =

∫
E

f.

This theorem justifies interchanging limits and integrals for nonnegative functions that grow pointwise.
Note: Additivity of the integral over disjoint measurable subsets is not obvious and will be proved using

the Monotone Convergence Theorem.

Theorem 76 (Monotone Convergence Theorem) Let {fn} be a sequence of nonnegative mea-
surable functions in E such that f1 ≤ f2 ≤ . . . pointwise on E, and suppose fn → f pointwise on E
for some f (which will also be a measurable functions is measurable). Then

lim
n→∞

∫
E

fn dm =

∫
E

f dm.

Proof. Since f1 ≤ f2 ≤ · · ·, it follows that
∫
E
f1 ≤

∫
E
f2 ≤ · · ·. Thus,

∫
E
fn forms a nonnegative, increasing

sequence, which ensures that the limit limn→∞
∫
E
fn exists within the interval [0,∞]. Additionally, because

limn→∞ fn(x) = f(x) for each x, we know fn ≤ f for all n, implying that
∫
E
f (a finite value in [0,∞]) must

satisfy ∫
E

fn ≤
∫
E

f ⇒ lim
n→∞

∫
E

fn ≤
∫
E

f.

To establish the reverse inequality (i.e.,
∫
E
f ≤ limn→∞

∫
E
fn), we will show that

∫
E
ϕ ≤ limn→∞

∫
E
fn for

every simple function ϕ ≤ f , noting that eventually, fn will exceed ϕ.
Let ϵ ∈ (0, 1) be chosen as a “margin.” For any simple function ϕ =

∑m
j=1 ajχAj

with ϕ ≤ f , we define
the set

En = {x ∈ E : fn(x) ≥ (1− ϵ)ϕ(x)}.
Since (1− ϵ)ϕ(x) < f(x) for all x (strict inequality holds as ϵ is positive) and limn→∞ fn(x) = f(x), each x
must belong to some En. Thus, we have

∞⋃
n=1

En = E.
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Moreover, because f1 ≤ f2 ≤ · · ·, it follows that E1 ⊂ E2 ⊂ · · ·, so the sets En are nested by inclusion. Now,
observe that ∫

E

fn ≥
∫
En

fn ≥
∫
En

(1− ϵ)ϕ = (1− ϵ)

∫
En

ϕ = (1− ϵ)

m∑
j=1

ajm(Aj ∩ En),

since the inequality holds on En, and the sets Aj ∩ En are measurable and disjoint. As En increases to
E, the sets E1 ∩ Aj ⊂ E2 ∩ Aj ⊂ · · · expand to cover Aj . By the continuity of the Lebesgue measure, we
conclude that as n→ ∞,

m(Aj ∩ En) → m(Aj).

Taking limits on both sides (noting that we have a finite sum on the right) gives, for all ϵ ∈ (0, 1),

lim
n→∞

∫
E

fn ≥ lim
n→∞

(1− ϵ)

m∑
j=1

ajm(Aj ∩ En) = (1− ϵ)

m∑
j=1

ajm(Aj) = (1− ϵ)

∫
E

ϕ.

By letting ϵ → 0, we obtain the desired inequality
∫
E
ϕ ≤ limn→∞

∫
E
fn. Combining this with the initial

inequality completes the proof.

Theorem 77 (Fatou’s Lemma) Let {fn}∞n=1 be a sequence of nonnegative measurable functions
on a measurable set E. Then: ∫

E

lim inf
n→∞

fn dm ≤ lim inf
n→∞

∫
E

fn dm.

Proof. We begin by expressing the pointwise lim inf using the identity:

lim inf
n→∞

fn(x) = sup
n≥1

(
inf
k≥n

fk(x)

)
.

Define:
gn(x) := inf

k≥n
fk(x).

Then gn(x) is an increasing sequence of measurable functions (since gn(x) ≤ gn+1(x)) and:

lim
n→∞

gn(x) = lim inf
n→∞

fn(x).

Now apply the Monotone Convergence Theorem:∫
E

lim inf
n→∞

fn dm = lim
n→∞

∫
E

gn dm.

For each n, we know gn(x) ≤ fk(x) for all k ≥ n, so:∫
E

gn dm ≤
∫
E

fk dm for all k ≥ n.

Hence, ∫
E

gn dm ≤ inf
k≥n

∫
E

fk dm.

Now take the limit as n→ ∞ on both sides:

lim
n→∞

∫
E

gn dm ≤ lim
n→∞

inf
k≥n

∫
E

fk dm = lim inf
n→∞

∫
E

fn dm.

Putting it all together: ∫
E

lim inf
n→∞

fn dm ≤ lim inf
n→∞

∫
E

fn dm.

This completes the proof.
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Lebesgue Integrable Functions

Definition 78 (Lebesgue Integrable Function and Integral) Let E ⊂ R be a measurable set,
and let f : E → R be a measurable function. Define the positive and negative parts of f as

f+(x) = max(f(x), 0), f−(x) = max(−f(x), 0).

These are nonnegative measurable functions, and satisfy

f = f+ − f−, |f | = f+ + f−.

We say that f is Lebesgue integrable over E if∫
E

|f | dm =

∫
E

f+ dm+

∫
E

f− dm <∞.

In this case, the Lebesgue integral of f over E is defined as∫
E

fdm :=

∫
E

f+ dm−
∫
E

f− dm.

Proposition 79 Let f, g : E → R be Lebesgue integrable functions. Then:

1. For any scalar c ∈ R, the function cf is integrable, and∫
E

cf dm = c

∫
E

f dm.

2. The sum f + g is integrable, and∫
E

(f + g) dm =

∫
E

f dm+

∫
E

g dm.

3. If A,B ⊂ E are disjoint measurable subsets, then∫
A∪B

f dm =

∫
A

f dm+

∫
B

f dm.

Proof. (1) Since |cf | = |c| · |f | and f ∈ L1(E), we know |cf | ∈ L1(E), so cf is integrable. Linearity of the
integral gives: ∫

E

cf dm = c

∫
E

f dm.

(2) By the triangle inequality:

|f + g| ≤ |f |+ |g| ⇒
∫
E

|f + g| dm ≤
∫
E

|f | dm+

∫
E

|g| dm <∞,

so f + g ∈ L1(E). Using the decomposition f = f+ − f− and similarly for g, we get:

f + g = (f+ + g+)− (f− + g−),

and since all terms are nonnegative measurable functions, we apply linearity:∫
E

(f + g) dm =

∫
E

f+ dm+

∫
E

g+ dm−
∫
E

f− dm−
∫
E

g− dm =

∫
E

f dm+

∫
E

g dm.
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(3) Since A and B are disjoint,
χA∪B = χA + χB .

Hence,
fχA∪B = fχA + fχB ,

and since the product of a measurable function with an indicator function restricts the domain of integration:∫
A∪B

f dm =

∫
E

fχA∪B dm =

∫
E

fχA dm+

∫
E

fχB dm =

∫
A

f dm+

∫
B

f dm.

Proposition 80 Let f, g : E → R be measurable functions. Then:

1. If f is Lebesgue integrable, then ∣∣∣∣∫
E

f dm

∣∣∣∣ ≤ ∫
E

|f | dm.

2. If f = g almost everywhere and g ∈ L1(E), then f ∈ L1(E) and∫
E

f dm =

∫
E

g dm.

3. If f, g ∈ L1(E) and f(x) ≤ g(x) almost everywhere on E, then∫
E

f dm ≤
∫
E

g dm.

Proof. (1) Since f = f+ − f−, we have∣∣∣∣∫
E

f dm

∣∣∣∣ = ∣∣∣∣∫
E

f+ dm−
∫
E

f− dm

∣∣∣∣ ≤ ∫
E

f+ dm+

∫
E

f− dm.

Using the identity |f | = f+ + f−, it follows that∫
E

|f | dm =

∫
E

f+ dm+

∫
E

f− dm.

(2) Since f = g almost everywhere, we also have |f | = |g| almost everywhere. Thus,∫
E

|f | dm =

∫
E

|g| dm <∞,

so f is Lebesgue integralble. Also, f − g = 0 almost everywhere implies∣∣∣∣∫
E

f dm−
∫
E

g dm

∣∣∣∣ = ∣∣∣∣∫
E

(f − g) dm

∣∣∣∣ ≤ ∫
E

|f − g| dm = 0,

which gives
∫
E
f dm =

∫
E
g dm.

(3) Define the function

h(x) =

{
g(x)− f(x), if g(x) ≥ f(x),

0, otherwise.

Then h ≥ 0, measurable, and h = g − f almost everywhere. Therefore,∫
E

h dm =

∫
E

(g − f) dm =

∫
E

g dm−
∫
E

f dm ≥ 0,

which yields
∫
E
f dm ≤

∫
E
g dm.
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Theorem 81 (Dominated Convergence Theorem) Let g : E → [0,∞) be a Lebesgue integrable
function. Suppose {fn} is a sequence of measurable functions fn : E → R such that:

1. |fn(x)| ≤ g(x) almost everywhere on E, for all n ∈ N,

2. fn(x) → f(x) pointwise almost everywhere on E, for some function f : E → R.

Then f is Lebesgue integrable, and

lim
n→∞

∫
E

fn dm =

∫
E

f dm.

Proof. Since |fn| ≤ g and g is Lebesgue integrable, it follows that each fn is also Lebesgue integrable. The
pointwise limit f is measurable and satisfies |f | ≤ g, so f is also Lebesgue integrable.

We aim to prove:

lim
n→∞

∫
E

fn dm =

∫
E

f dm.

Apply Fatou’s Lemma to the nonnegative functions g − fn:∫
E

lim inf
n→∞

(g − fn) dm ≤ lim inf
n→∞

∫
E

(g − fn) dm.

Since fn → f pointwise, the left-hand side becomes
∫
E
(g − f) dm, yielding:∫

E

(g − f) dm ≤ lim inf
n→∞

(∫
E

g dm−
∫
E

fn dm

)
.

Rewriting this, we obtain:

lim sup
n→∞

∫
E

fn dm ≤
∫
E

f dm.

Similarly, apply Fatou’s Lemma to g + fn:∫
E

lim inf
n→∞

(g + fn) dm ≤ lim inf
n→∞

∫
E

(g + fn) dm,

which gives: ∫
E

(g + f) dm ≤ lim inf
n→∞

(∫
E

g dm+

∫
E

fn dm

)
.

Rearranging: ∫
E

f dm ≤ lim inf
n→∞

∫
E

fn dm.

Combining both inequalities:

lim sup
n→∞

∫
E

fn dm ≤
∫
E

f dm ≤ lim inf
n→∞

∫
E

fn dm.

Since lim inf ≤ lim sup always holds, we conclude:

lim
n→∞

∫
E

fn dm =

∫
E

f dm.
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Proposition 82 Let (fn) be a bounded sequence of measurable functions on a set E with finite
measure m(E) < ∞. If fn → f almost everywhere on E, then the limit function f is Lebesgue
integrable and

lim
n→∞

∫
E

fn dm =

∫
E

f dm.

Proof. Assume there exists a constant M > 0 such that |fn(x)| ≤ M for all x ∈ E and all n. Define
g(x) = M , which is clearly Lebesgue integrable on E since m(E) < ∞. Then |fn(x)| ≤ g(x) for all n, and
fn → f almost everywhere. The Dominated Convergence Theorem applies and yields the result. ■

Theorem 83 (Term-by-Term Integration of a Series) Let {fn} be a sequence of measurable
functions on a measurable set E. Then:

(i) The series of integrals of absolute values satisfies:∫
E

( ∞∑
n=1

|fn|

)
dm =

∞∑
n=1

∫
E

|fn| dm.

Both sides may be infinite, or both are finite and equal.

(ii) If the right-hand side is finite, then each fn is Lebesgue integrable, the series

∞∑
n=1

fn(x)

converges almost everywhere on E, and the sum defines a Lebesgue integrable function F . More-
over, ∫

E

( ∞∑
n=1

fn

)
dm =

∞∑
n=1

∫
E

fn dm.

Proof. (i) Define the function

G(x) :=

∞∑
n=1

|fn(x)|.

Since |fn(x)| ≥ 0, the sequence of partial sums is increasing. By the Monotone Convergence Theorem:∫
E

Gdm =

∞∑
n=1

∫
E

|fn| dm.

(ii) If G is Lebesgue integrable, then G(x) < ∞ almost everywhere, so the series
∑∞

n=1 fn(x) converges
almost everywhere. Let F (x) =

∑∞
n=1 fn(x) denote the pointwise sum, and define the partial sums

Fn(x) =

n∑
k=1

fk(x).

Then Fn(x) → F (x) almost everywhere and

|Fn(x)| ≤
n∑

k=1

|fk(x)| ≤ G(x).

Thus, by the Dominated Convergence Theorem:∫
E

F dm = lim
n→∞

∫
E

Fn dm = lim
n→∞

n∑
k=1

∫
E

fk dm =

∞∑
k=1

∫
E

fk dm.
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This example illustrates that **the class of Lebesgue integrable functions is strictly larger** than the
class of Riemann integrable functions:

R(a, b) ⊊ L1(a, b).

Riemann and Lebesgue Integrals

We now explore an important question: When is a function Riemann integrable? And how does this relate
to Lebesgue integrability?

Theorem 84 (Characterization of Riemann Integrability) Let f : [a, b] → R be a bounded
function. Then f is Riemann integrable if and only if it is continuous almost everywhere on [a, b];
that is,

f ∈ R[a, b] ⇐⇒ m
(
{x ∈ [a, b] : f is not continuous at x}

)
= 0.

Intuition: A bounded function can be Riemann integrated as long as its discontinuities are ”rare”—specifically,
they must form a set of measure zero. If the function is continuous almost everywhere, the Riemann integral
exists.

Key Fact: If f is Riemann integrable on [a, b], then:

� f is measurable,

� f is Lebesgue integrable,

� and the integrals are equal: ∫ b

a

f(x) dx =

∫
[a,b]

f dm.

We previously defined the notation
∫ b

a
f to mean the Riemann integral of f . However, since the Riemann

and Lebesgue integrals agree for Riemann integrable functions , we now redefine the expression∫ b

a

f(x)dx

to denote the Lebesgue integral.

Definition 85 (Lebesgue Integral Notation) Let f : (a, b) → R be a Lebesgue measurable func-
tion. Then:

�

∫ b

a
f(x) dx or

∫ b

a
f denotes the Lebesgue integral over (a, b),∫ b

a

f(x)dx :=

∫
(a,b)

f dm,

where m is the Lebesgue measure.

� If a > b, we define the integral as ∫ b

a

f := −
∫ a

b

f,

so that useful properties like ∫ b

a

f =

∫ c

a

f +

∫ b

c

f

hold for any a < c < b.

Conclusion: Riemann integrable functions are also Lebesgue integrable. But the opposite is not always
true — some functions can be Lebesgue integrable but not Riemann integrable.
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Example 86 (Lebesgue Integrable, Not Riemann Integrable) Define:

f(x) =

{
1, if x ∈ Q ∩ [0, 1],

0, if x ∈ [0, 1] \Q.

This function is not Riemann integrable because it is discontinuous at every point in [0, 1]. But it is Lebesgue
integrable, and we have: ∫ 1

0

f(x) dx = 0.

Improper Integrals

One advantage of the Lebesgue integral over the Riemann integral is that it can be defined over unbounded
domains, as long as the function is measurable.

However, this does not guarantee that the integral is finite. For example, consider the constant function:

f(x) = 1 for all x ∈ R.

This function is measurable, but its Lebesgue integral over R diverges:∫
R
f(x) dx =

∫
R
1 dx = ∞.

Thus, f is not Lebesgue integrable on R.
In contrast, the Riemann integral is only defined on bounded intervals. To handle unbounded domains

or functions, it must be extended using limits, leading to the concept of improper integrals.
On bounded intervals, if a function is Riemann integrable, then its Riemann and Lebesgue integrals agree.

But on unbounded, the agreement may break down. In many cases, a function that is improperly Riemann
integrable is also Lebesgue integrable. However, this is not always true. Below, we present examples that
illustrate when the two approaches agree and when they differ.

(i) Measurability of Improperly Riemann Integrable Functions

Suppose the improper integral ∫ ∞

a

f(x) dx

converges in the Riemann sense. Then f is Riemann integrable on every finite interval [a, b] for all b > a.
Since Riemann integrability implies Lebesgue integrability on compact intervals, it follows that f ∈ L1([a, b])
for all b > a.

Moreover, we can express f as the pointwise limit:

f(x) = lim
n→∞

f(x) · χ[a,n](x),

where χ[a,n] is the indicator function of the interval [a, n]. Each function f · χ[a,n] is measurable, and the
pointwise limit of measurable functions is measurable. Hence, f is measurable on [a,∞).

(ii) Nonnegative Functions and the Monotone Convergence Theorem

Suppose f ≥ 0 on [a,∞), and the improper Riemann integral∫ ∞

a

f(x) dx

converges. Define the sequence of functions fn = f · χ[a,n]. Then fn ↗ f pointwise, and by the Monotone
Convergence Theorem:∫

[a,∞)

f dm = lim
n→∞

∫
[a,n]

f dm = lim
n→∞

∫ n

a

f(x) dx =

∫ ∞

a

f(x) dx. (11.27)
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(iii) Lebesgue Integrability Implies Convergence of the Improper Riemann Integral

Assume f ∈ R(a, b) for all b > a, and that f ∈ L1([a,∞)). Then the improper Riemann integral
∫∞
a
f(x) dx

converges, and: ∫ ∞

a

f(x) dx =

∫
[a,∞)

f dm.

Proof. Let (bn) be a sequence such that bn → ∞, and define fn = f · χ[a,bn]. Then fn → f pointwise,
and |fn| ≤ |f | ∈ L1([a,∞)). By the Dominated Convergence Theorem:∫

[a,∞)

f dm = lim
n→∞

∫
[a,bn]

f dm = lim
n→∞

∫ bn

a

f(x) dx =

∫ ∞

a

f(x) dx.

(iv) Absolute Convergence Implies Agreement of Integrals

Suppose f ∈ R(a, b) for all b > a, and: ∫ ∞

a

|f(x)| dx <∞.

Then f ∈ L1([a,∞)), and by part (iii), the improper Riemann integral exists and:∫ ∞

a

f(x) dx =

∫
[a,∞)

f dm.

Conclusion

If both of the following improper integrals exist:∫ ∞

a

f(x) dx and

∫ ∞

a

|f(x)| dx,

then the Lebesgue integral
∫
[a,∞)

f dm also exists and agrees with the improper Riemann integral.

� The convergence of
∫∞
a
f(x) dx implies f ∈ R(a, b) for all b > a.

� The convergence of
∫∞
a

|f(x)| dx implies f ∈ L1([a,∞)).

Therefore, ∫ ∞

a

f(x) dx =

∫
[a,∞)

f dm.

Example 87 Consider some improper Riemann integrals and investigate whether they agree with the Lebesgue
integral.

1. Let consider the function f : (0, 1] → R defined by

f(x) =
1√
x
.

This function is improperly Riemann integrable over (0, 1] with a value of 2. We now demonstrate that it
is also Lebesgue integrable over this region with the same value. Since f is continuous, it is measurable, so
asking if it is Lebesgue integrable is valid.

To compute the Lebesgue integral, let us define a sequence of functions fn where fn : (0, 1] → R is given
by

fn = f · 1[ 1
n ,1].

Here, fn is a pointwise increasing sequence whose limit is f . By the Monotone Convergence Theorem (MCT),
we have: ∫

(0,1]

f dµ =

∫
(0,1]

lim
n→∞

fn dµ = lim
n→∞

∫
(0,1]

fn dµ = lim
n→∞

∫
[ 1
n ,1]

f dµ.
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For any n ∈ N, f is continuous on the compact domain
[
1
n , 1
]
, so the Lebesgue integral over this interval

equals the Riemann integral. Using the Fundamental Theorem of Calculus, we find∫
[ 1
n ,1]

f dµ =

∫ 1

1/n

1√
x
dx = 2− 2√

n
.

Substituting into the earlier limit, we obtain∫
(0,1]

f dµ = lim
n→∞

(
2− 2√

n

)
= 2 =

∫ 1

0

f(x) dx.

Thus, for this function, the improper Riemann integral agrees with the Lebesgue integral.
2. Consider the function f : [0,∞) → R defined by

f(x) =
sin(x)

x
for x ̸= 0, and f(0) = 1.

Since f is continuous, it is measurable. To compute its Lebesgue integral, we decompose it into positive and
negative parts. Define sets E and F where f is non-negative and non-positive, respectively:

E =
⋃
n∈N
n odd

[(n− 1)π, nπ], F =
⋃
n∈N

n even

[(n− 1)π, nπ].

The positive and negative parts of f are then given by:

f+(x) =
sin(x)

x
· 1E(x), f−(x) = − sin(x)

x
· 1F (x).

To evaluate the entire Lebesgue integral, we separately integrate these parts. Focusing on the positive part
f+, we split the domain into smaller compact intervals. Since f is continuous over each compact interval in
E (and hence Riemann integrable there), we can compute the Lebesgue integral as a Riemann integral. Since
sin(x) is non-negative over each interval in E, we have:∫

[0,∞)

f+ dµ =

∫
E

sin(x)

x
dx =

∑
n∈N
n odd

∫ nπ

(n−1)π

sin(x)

x
dx.

By approximating the lower bound of sin(x) over each interval, we find∫
[0,∞)

f+ dµ ≥
∑
n∈N
n odd

∫ nπ

(n−1)π

sin(x)

nπ
dx =

2

π

∞∑
n=1

1

2n− 1
.

However, this sum diverges to ∞ by comparison with the harmonic series. Similarly, the integral of the
negative part of f , namely

∫
[0,∞)

f− dµ, also diverges to ∞. Therefore, we encounter an indeterminate

∞−∞ case for the Lebesgue integral, implying that this function is not Lebesgue integrable.
On the other hand, if we use the Riemann integral, the unbounded domain requires us to apply the concept

of the improper Riemann integral. This improper integral can be defined as the limit of the integral function
I : [0,∞) → R, given by

I(t) =

∫ t

0

f(x) dx as t→ ∞.

For t > 1, we can apply integration by parts to compute I(t):

I(t) =

∫ 1

0

f(x) dx+

∫ t

1

sin(x)

x
dx.
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Applying integration by parts to the second integral, we get:

I(t) =

∫ 1

0

f(x) dx+

[
−cos(x)

x

]t
1

−
∫ t

1

cos(x)

x2
dx.

This simplifies to

I(t) =

∫ 1

0

f(x) dx− cos(t)

t
+ cos(1)−

∫ t

1

cos(x)

x2
dx.

We observe that the Riemann integral
∫ 1

0
f(x) dx exists because the integrand f is continuous over the

compact interval [0, 1]. Furthermore, the limits

lim
t→∞

cos(t)

t
= 0 and lim

t→∞

∫ t

1

cos(x)

x2
dx

both exist. To check the improper Riemann integrability of the function f : [1,∞) → R defined by

f(x) =
cos(x)

x2

over [1,∞), we note that this function has mixed signs, meaning we cannot directly apply the comparison test.
To proceed, we split f into its positive and negative parts. Specifically, we define f+ and f− : [1,∞) → R as
follows:

f+ = max(f, 0), f− = −min(f, 0),

so that f = f+ − f−.
Both f+ and f− are non-negative and continuous. We can therefore apply the direct comparison test to

f+. Observe that

0 ≤ f+(x) ≤ | cos(x)|
x2

≤ 1

x2
.

Since 1
x2 is improperly Riemann integrable over [1,∞), as shown in Example 16.4.4(3), it follows by direct

comparison that the improper integral ∫ ∞

1

f+(x) dx

exists. By a similar argument, the improper Riemann integral∫ ∞

1

f−(x) dx

also exists.
For any finite t > 1, we have ∫ t

1

f(x) dx =

∫ t

1

f+(x) dx−
∫ t

1

f−(x) dx.

Applying the algebra of limits, we get:∫ ∞

1

f(x) dx = lim
t→∞

∫ t

1

f(x) dx = lim
t→∞

(∫ t

1

f+(x) dx−
∫ t

1

f−(x) dx

)
.

This simplifies to ∫ ∞

1

f(x) dx = lim
t→∞

∫ t

1

f+(x) dx− lim
t→∞

∫ t

1

f−(x) dx,

which exists because both limits on the right-hand side exist.
Thus, we conclude that the function f is improperly Riemann integrable over [1,∞).
Therefore, by the algebra of limits, the improper integral

lim
t→∞

I(t) =

∫ ∞

0

f(x) dx

exists. Hence, the function f is Riemann integrable over R in the improper sense, even though it is not
Lebesgue integrable.
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The next step is to recall the Direct Comparison Test for Improper Riemann Integrals. Let I = [a,∞).
Suppose that f, g : I → R are continuous non-negative functions such that 0 ≤ f(x) ≤ g(x) for all x ∈ I.

1. If
∫∞
a
g(x) dx exists, then

∫∞
a
f(x) dx also exists.

2. If
∫∞
a
f(x) dx diverges, then

∫∞
a
g(x) dx also diverges.

A similar result can be proven for I = (−∞, a] and improper integrals over this domain.

Proof. We prove each assertion separately. Since f and g are continuous over [a,∞), these functions are
Riemann integrable over the interval [a, t] for any finite t > a.

1. Since f and g are non-negative, by the ordering property and additivity of integrals, for any t ≥ a we
have

∫ t

a

f(x) dx ≤
∫ t

a

g(x) dx ≤ lim
t→∞

∫ t

a

g(x) dx =

∫ ∞

a

g(x) dx.

Moreover, the integral function F (t) =
∫ t

a
f(x) dx on [a,∞) is an increasing function. Thus, the limit of F (t)

as t→ ∞ exists since F (t) is bounded by the finite number
∫∞
a
g(x) dx.

2. For any t ≥ a, we have the ordering

∫ t

a

f(x) dx ≤
∫ t

a

g(x) dx.

Taking the limit t → ∞ on both sides, since
∫∞
a
f(x) dx diverges, it must approach ∞. Thus, we conclude

that limt→∞
∫ t

a
g(x) dx = ∞, implying that

∫∞
a
g(x) dx also diverges.

Limit Comparison Test for Improper Riemann Integrals:
Let I = [a,∞). Suppose that f, g : I → R are continuous positive functions. Suppose further that

lim
x→∞

f(x)

g(x)
= L

for some 0 < L < ∞. Then either both improper Riemann integrals
∫∞
a
f(x) dx and

∫∞
a
g(x) dx exist, or

both diverge. In other words,

∫ ∞

a

f(x) dx exists ⇐⇒
∫ ∞

a

g(x) dx exists.

The idea behind the Limit Comparison Test is similar to the comparison test for series. If f and g exhibit
similar behavior asymptotically (up to a constant scale L) as x→ ∞, then the convergence or divergence of∫∞
a
f(x) dx is equivalent to that of

∫∞
a
g(x) dx.



74 CHAPTER 6. LEBESUGE INTEGRAL

Lecture 9: Examples

Example 88 Evaluate

lim
n→∞

∫ 1

0

nx

1 + n2x2
dx.

Solution. For each n ∈ N, define the sequence of functions

fn(x) =
nx

1 + n2x2
, x ∈ [0, 1].

Observe that as n → ∞, fn(x) converges pointwise to 0 for all x ∈ (0, 1], since the term n2x2 in the
denominator dominates as n becomes large, driving fn(x) towards 0. At x = 0, the function value is also 0
for all n, so fn(x) converges pointwise to 0.

To understand the behavior of fn(x) on [0, 1], we find the maximum value of fn(x). Taking the derivative,
we see that fn(x) attains its maximum at x = 1

n . Evaluating fn at this point, we get

fn

(
1

n

)
=

n · 1
n

1 + n2 ·
(
1
n

)2 =
1

2
.

Thus,

sup
x∈[0,1]

|fn(x)| =
1

2
,

showing that the convergence fn → 0 is not uniform on [0, 1].
Since the convergence is not uniform, we cannot interchange the limit and the integral directly using

properties of the Riemann integral. However, we can consider this as a Lebesgue integral and apply the
Bounded Convergence Theorem. Each fn(x) is bounded and measurable, and fn(x) → 0 pointwise. Thus, by
the Bounded Convergence Theorem,

lim
n→∞

∫ 1

0

fn(x) dx =

∫ 1

0

lim
n→∞

fn(x) dx =

∫ 1

0

0 dx = 0.

Example 89 In many problems, one often needs to use the following upper bound:(
1 +

x

n

)n
≤ ex

which holds for all
n ≥ 1 and x > −n.

This bound must be proved; one cannot simply refer to a calculus or advanced calculus text where this fact
may have been mentioned.

To prove it, we take the logarithm of both sides in the inequality and convert it as follows:

n ln
(
1 +

x

n

)
≤ x.

Define t = x
n + 1, then t > 0 due to the condition x > −n. The inequality becomes

ln t ≤ t− 1, ∀t > 0,

which is a well-known inequality that can be used here.
Additionally, with a bit more effort, we can show that the sequence

an =
(
1 +

x

n

)n
is monotonically increasing in n for all n satisfying x > −n. To prove this, we treat n as a continuous
variable and take the derivative:

dan
dn

= an

(
ln
(
1 +

x

n

)
− x

x+ n

)
.
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Since an > 0, we have dan

dn ≥ 0 if and only if

ln
(
1 +

x

n

)
≥ x

x+ n
,

or equivalently,
n

x+ n
ln
(
1 +

x

n

)
≤ x

x+ n
.

Simplifying further, we find that

ln
(
1 +

x

n

)
≤ x

x+ n
,

which implies the desired result for the monotonicity of an.
Evaluate

lim
n→∞

∫ n

0

(
1− x

n

)n
e−2x dx.

Proof. To express this limit as a Lebesgue integral, define the sequence of functions

fn(x) = χ[0,n](x) ·
(
1− x

n

)n
e−2x,

where χ[0,n](x) is the characteristic function of the interval [0, n]. This gives us∫ n

0

(
1− x

n

)n
e−2x dx =

∫
[0,∞)

fn(x) dµ.

Let’s analyze the behavior of fn(x) as n→ ∞. For a fixed x,(
1− x

n

)n
→ e−x as n→ ∞.

Therefore, fn(x) → e−x · e−2x = e−3x pointwise on [0,∞).
Since fn(x) converges pointwise to e−3x, and fn(x) ≤ e−x for all x ∈ [0,∞), we can apply the Dominated

Convergence Theorem, using g(x) = e−x as a dominating function, which is integrable over [0,∞). Thus,

lim
n→∞

∫
[0,∞)

fn(x) dµ =

∫
[0,∞)

lim
n→∞

fn(x) dµ =

∫
[0,∞)

e−3x dx.

Evaluating this integral, we have ∫
[0,∞)

e−3x dx =

[
−e

−3x

3

]∞
0

=
1

3
.

Thus,

lim
n→∞

∫ n

0

(
1− x

n

)n
e−2x dx =

1

3
.

Example 90 Prove that ∫ 1

0

(
log x

1− x

)2

dx = 2

∞∑
n=1

1

n2
.

Solution. For every x ∈ (−1, 1), we have the power series representation

1

1− x
=

∞∑
k=0

xn.

Differentiating both sides with respect to x, we obtain

1

(1− x)2
=

∞∑
n=1

nxn−1.
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We can now express the integral as∫ 1

0

(
log x

1− x

)2

dx =

∞∑
n=1

n

∫ 1

0

xn−1(log x)2 dx.

Let’s focus on evaluating each integral on the right-hand side.

When n = 1, the integral
∫ 1

0
(log x)2 dx is improper, as log x diverges at x = 0. For n > 1, however, the

integrals
∫ 1

0
xn−1(log x)2 dx are Riemann integrals. In both cases, we use integration by parts to evaluate the

integrals, employing L’Hôpital’s rule to handle any indeterminate forms.
Consider ∫ 1

0

xn−1(log x)2 dx.

Using integration by parts, set u = (log x)2 and dv = xn−1dx, giving du = 2 log x
x dx and v = xn

n . Then∫ 1

0

xn−1(log x)2 dx =
xn

n
(log x)2

∣∣∣∣1
0

−
∫ 1

0

2xn log x

n
dx.

Evaluating the boundary term, we find

xn

n
(log x)2

∣∣∣∣1
0

= 0.

This gives ∫ 1

0

xn−1(log x)2 dx = − 2

n

∫ 1

0

xn log x dx.

Applying integration by parts again to
∫ 1

0
xn log x dx, with u = log x and dv = xndx, we get du = 1

xdx and

v = xn+1

n+1 . Thus, ∫ 1

0

xn log x dx =
xn+1

n+ 1
log x

∣∣∣∣1
0

−
∫ 1

0

xn+1

n+ 1
· 1
x
dx.

The boundary term again vanishes, so we are left with∫ 1

0

xn log x dx = − 1

(n+ 1)2
.

Substituting back, we find ∫ 1

0

xn−1(log x)2 dx =
2

n3
.

Therefore, ∫ 1

0

(
log x

1− x

)2

dx =

∞∑
n=1

n · 2

n3
= 2

∞∑
n=1

1

n2
.

This completes the proof.

Example 91 Prove that ∫ 1

0

sinx log x dx =

∞∑
n=1

(−1)n

2n(2n)!
.

We start by expanding sinx as a power series:

sinx =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

Substituting this expansion into the integral, we get:∫ 1

0

sinx log x dx =

∫ 1

0

( ∞∑
k=0

(−1)kx2k+1

(2k + 1)!

)
log x dx.
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Next, we justify the interchange of the sum and integral by checking the absolute convergence:∫ 1

0

∞∑
k=0

∣∣∣∣ (−1)kx2k+1 log x

(2k + 1)!

∣∣∣∣ dx =

∞∑
k=0

1

(2k + 1)!

∫ 1

0

x2k+1| log x| dx.

We compute each integral
∫ 1

0
x2k+1 log x dx using integration by parts. Setting u = log x and dv = x2k+1 dx,

we find: ∫ 1

0

x2k+1 log x dx = − 1

(2k + 2)2
.

Thus ∫ 1

0

∞∑
k=0

∣∣∣∣ (−1)kx2k+1 log x

(2k + 1)!

∣∣∣∣ dx =

∞∑
k=0

1

(2k + 1)!(2k + 1)2
<∞.

By the Theorem of Term-by-Term Integration, we can interchange the sum and the integral:∫ 1

0

sinx log x dx =

∞∑
k=0

(−1)k

(2k + 1)!

∫ 1

0

x2k+1 log x dx.

=

∞∑
k=0

(−1)k

(2k + 1)!

(
− 1

(2k + 2)2

)
.

Simplifying, we obtain: ∫ 1

0

sinx log x dx =

∞∑
k=1

(−1)k

2k(2k)!
.


