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Chapter 1

Real Numbers

Supremum and Infimum

Bounded Sets
A subset A ⊂ R is:

• bounded above if there exists K ∈ R such that x ≤ K for all x ∈ A;

• bounded below if there exists K ∈ R such that x ≥ K for all x ∈ A;

• bounded if it is both bounded above and bounded below.

Remarks.

1. A is bounded if and only if there exists M ≥ 0 such that |x| ≤M for all x ∈ A.

2. A sequence is bounded above (resp. below) if and only if the set of its values is bounded
above (resp. below).

Supremum and Infimum
Let A ⊂ R.

• The supremum sup(A) is the least upper bound of A:

1. sup(A) is an upper bound of A;

2. if K ′ is any other upper bound of A, then sup(A) ≤ K ′.

• The infimum inf(A) is the greatest lower bound, defined analogously.

If they exist, sup(A) and inf(A) are unique.
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Examples
1. Closed interval: sup([a, b]) = b, inf([a, b]) = a.

2. Open interval: sup((a, b)) = b, inf((a, b)) = a. Proof: b is an upper bound. If K is
any upper bound, take xn = b − 2−n(b − a) ∈ (a, b). Then xn ≤ K and xn → b, so
b ≤ K.

3. A =
{

n
n+1 : n ∈ N

}
: sup(A) = 1.

4. A =
{
n2

2n : n ∈ N
}
, sup(A) = 9

8 because n2

2n ≤ 1 < 9
8 for n 6= 3, and 32

2·3 = 9
8 ∈ A.

Theorem 1 (ε-characterizations) Let A ⊂ R be nonempty and bounded above/below.

a) α = supA iff

(i) x ≤ α ∀x ∈ A and (ii) ∀ε > 0 ∃xε ∈ A : α− ε < xε ≤ α.

b) β = inf A iff

(i) β ≤ x ∀x ∈ A and (ii) ∀ε > 0 ∃yε ∈ A : β ≤ yε < β + ε.

Proof. We prove (a); (b) is analogous. (⇒) If α = supA, then (i) holds by definition. If (ii)
failed, there would be ε0 > 0 such that x ≤ α− ε0 for all x ∈ A, so α− ε0 would be an upper
bound—contradiction to leastness. (⇐) Assume (i)–(ii). Let U be any upper bound of A.
From (ii), α− ε < xε ≤ U for all ε > 0, hence α ≤ U . Thus α is the least upper bound.

Theorem 2 (Completeness Axiom) Every nonempty subset A ⊂ R that is bounded above
has a least upper bound supA ∈ R. Equivalently, every nonempty subset that is bounded below
has a greatest lower bound inf A ∈ R.

Remarks on the Completeness Axiom
• Failure in Q. The set A = {q ∈ Q : q2 < 2} is nonempty and bounded above in Q,

but it has no supremum in Q (its least upper bound in R is
√

2 /∈ Q).

• Approximating supA and inf A by points of A. If A 6= ∅ is bounded above, there
exists an increasing sequence (an) ⊂ A with an ↑ supA. Construction: choose an ∈ A
with supA − 1

n
< an ≤ supA and set sn = max{a1, . . . , an}. Then sn ∈ A, sn is

increasing, and sn → supA. Similarly, if A is bounded below, there exists a decreasing
(bn) ⊂ A with bn ↓ inf A.

• Unbounded sets and extended reals. If A is unbounded above (resp. below), we
set supA = +∞ (resp. inf A = −∞) in the extended real line R = R ∪ {±∞}.

• Maxima and minima. If supA ∈ A, then maxA := supA is the (unique) maximum
of A. If inf A ∈ A, then minA := inf A is the (unique) minimum of A.
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Basic consequences.

• Monotone Convergence for sequences. If (an) is monotone and bounded, then
(an) converges in R. Sketch: If an is increasing and bounded above, set L = sup{an :
n ∈ N}. Then for every ε > 0 there exists N with aN > L− ε, hence L− ε < an ≤ L
for all n ≥ N , so an → L.

• Riemann integral (existence of best bounds). For a bounded function f on
[a, b], define the lower and upper sums over a partition P by L(f, P ) and U(f, P ).
Completeness guarantees the numbers

L∗(f) = sup
P
L(f, P ), U∗(f) = inf

P
U(f, P )

exist in R. We call f Riemann integrable when L∗(f) = U∗(f), and this common value
is
∫ b
a f . Without completeness, these sup / inf might not exist, and the definition would

not be rigorous.

• Measure and Lebesgue integral (built from inf / sup). For an arbitrary set
E ⊂ R,

m∗(E) = inf
{ ∞∑
k=1
|Ik| : E ⊂

∞⋃
k=1

Ik, Ik intervals
}

exists by completeness. For a nonnegative measurable f ,∫
f dµ = sup

{∫
ϕdµ : 0 ≤ ϕ ≤ f, ϕ simple

}
also exists for the same reason. Thus both measure and integral rely essentially on the
least-upper-bound and greatest-lower-bound properties of R.

Conclusion. Completeness is not a cosmetic axiom: it is the structural feature of R that
ensures limits, integrals, and measure-theoretic constructions are well defined.

Limsup and Liminf of a Sequence

Limit points (subsequential limits) and Bolzano–Weierstrass
Definition 3 Let (an) be a real sequence and R := R ∪ {±∞}. A number L ∈ R is a limit
point (or subsequential limit) of (an) if some subsequence (ank

) satisfies ank
→ L.

Theorem 4 (Bolzano–Weierstrass) Every bounded sequence (an) ⊂ R has a convergent
subsequence. Equivalently, every bounded sequence has at least one real limit point.

Corollary 5 For a real sequence (an):

1. (an) is bounded ⇐⇒ all its limit points lie in R (i.e. no ±∞).

2. (an) converges in R to L ⇐⇒ it has exactly one limit point in R (and none at ±∞).
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3. If (an) is bounded, then the set of real limit points is nonempty and compact; moreover

lim sup
n→∞

an = sup Lim(an), lim inf
n→∞

an = inf Lim(an).

Proof sketch of Bolzano–Weierstrass. By boundedness, (an) lies in a compact inter-
val [m,M ]. The nested-interval (or bisection) argument produces a subsequence contained
in successively smaller closed intervals with lengths tending to 0; the unique point in the
intersection is the subsequential limit.

Definition 6 For a real sequence (an) define the tail sup/inf

bn := sup
k≥n

ak, cn := inf
k≥n

ak (n ∈ N).

Then (bn) is nonincreasing (possibly +∞) and (cn) is nondecreasing (possibly −∞), so the
limits

lim sup
n→∞

an := lim
n→∞

bn, lim inf
n→∞

an := lim
n→∞

cn

always exist in R.

Equivalently, if Lim(an) denotes the set of all (finite) limit points of (an) in R, then

lim sup
n→∞

an = sup Lim(an), lim inf
n→∞

an = inf Lim(an),

with the convention that sup ∅ = −∞ and inf ∅ = +∞ if there are no finite limit points.

Basic properties and characterizations
Theorem 7 Let (an) be a real sequence and set A := lim inf an, B := lim sup an (in R).

1. A ≤ B.

2. (an) converges in R to L iff A = B = L ∈ R.

3. (Quantified bounds) For x ∈ R:

• If x > B, then ∃N ∀n ≥ N : an ≤ x.
• If x < B, then ∀N ∃n ≥ N : an > x.
• If x < A, then ∃N ∀n ≥ N : an ≥ x.
• If x > A, then ∀N ∃n ≥ N : an < x.

4. (Epsilon–test for lim sup) If B ∈ R then lim sup an = B iff

∀ε > 0 :
(
∃N ∀n ≥ N : an < B + ε

)
and

(
∀N ∃n ≥ N : an > B − ε

)
.

(The analogous statement holds for lim inf.)
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Examples
1. an = (−1)n: lim sup an = 1, lim inf an = −1 (two limit points).

2. an = n: lim sup an = lim inf an = +∞ (diverges to +∞).

3. an = 1
n
: lim sup an = lim inf an = 0 (converges to 0).

4. an = (−1)n
(
1 + 1

n

)
: lim sup an = 1, lim inf an = −1.

Useful consequences
Proposition 8 If (bn)→ b > 0, then

lim inf
n→∞

(anbn) = b lim inf
n→∞

an, lim sup
n→∞

(anbn) = b lim sup
n→∞

an.

For b < 0 the equalities hold with liminf/limsup interchanged.

Exercise
1. Show that (an) is bounded above iff +∞ is not a (extended) limit point.

2. Prove Bolzano–Weierstrass: every bounded real sequence has a real limit point.

3. Decide whether the identities

lim sup(an + bn) = lim sup an + lim sup bn, lim sup(anbn) = (lim sup an)(lim sup bn)

hold in general; provide counterexamples if not.
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Proposition 9 (Ratio vs. Root for positive sequences) Let (an)n≥1 be a sequence of
positive real numbers. Then

lim inf
n→∞

an+1

an
≤ lim inf

n→∞
a1/n
n ≤ lim sup

n→∞
a1/n
n ≤ lim sup

n→∞

an+1

an
. (1.1)

Moreover, if limn→∞
an+1
an

exists in R, then limn→∞ a
1/n
n also exists in R and both limits are

equal.

Proof. The middle inequality in (??) is obvious.
Last inequality. Let λ := lim supn→∞ an+1

an
. If λ = ∞ there is nothing to prove. Assume

λ <∞. Fix ρ > λ. Then, for n large enough, an+1
an
≤ ρ, hence

an ≤ aNρ
n−N (n ≥ N).

It follows that
a1/n
n ≤ (aNρ−N)1/nρ −→ ρ (n→∞).

Thus lim supn→∞ a1/n
n ≤ ρ. Since ρ > λ was arbitrary, we obtain

lim sup
n→∞

a1/n
n ≤ λ.

First inequality. Let L := lim infn→∞ a1/n
n . Fix ε > 0. For n large enough we have

a1/n
n ≥ L− ε, i.e.,

an ≥ (L− ε)n.
Hence

an+1

an
≥ (L− ε)n+1

(L− ε)n = L− ε.

Taking lim inf on both sides yields

lim inf
n→∞

an+1

an
≥ L− ε.

Since ε > 0 is arbitrary, this shows

lim inf
n→∞

an+1

an
≥ lim inf

n→∞
a1/n
n .

Conclusion. If the limit limn→∞
an+1
an

= L ∈ R exists, then (??) forces lim inf a1/n
n =

lim sup a1/n
n = L, hence limn→∞ a

1/n
n = L.

Corollary 10 From (??) it follows that if

lim inf
n→∞

an+1

an
> 1,

then
lim inf
n→∞

a1/n
n > 1.

That is, the ratio divergence criterion implies the root divergence criterion.

Remark 11 By (??), whenever lim supn→∞ an+1
an

< 1, we also have lim supn→∞ a1/n
n < 1.

Hence there is no example of a sequence for which the ratio convergence criterion holds but
the root test does not.
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Real Series
Definition 12 (Convergent Series) A real series ∑∞j=1 aj is called a convergent series if
the sequence of its partial sums (sn) converges. We define the value of the series as the limit
of its partial sums. In other words, if

lim
n→∞

sn = s,

we assign the value s to the series:
∞∑
j=1

aj = lim
n→∞

n∑
j=1

aj = lim
n→∞

sn = s.

Otherwise, if the sequence of the partial sums (sn) diverges, the series ∑∞n=1 an is called a
divergent series.

Consider the series ∑∞j=1
1

j(j+1) . The terms of this series can be rewritten as:

1
j(j + 1) = 1

j
− 1
j + 1 , for every j ∈ N.

Thus, the series can be expressed as:
∞∑
j=1

1
j(j + 1) =

∞∑
j=1

(
1
j
− 1
j + 1

)
.

Now, considering the sequence of partial sums (sn) for this series, many terms cancel out
due to the nature of the expression. Specifically, we have:

sn =
n∑
j=1

(
1
j
− 1
j + 1

)
= 1− 1

2 + 1
2 −

1
3 + · · ·+ 1

n
− 1
n+ 1 = 1− 1

n+ 1 .

Applying the limit to the sequence of partial sums, we obtain:

lim
n→∞

sn = 1− lim
n→∞

1
n+ 1 = 1.

Thus, the sequence of partial sums converges, and we conclude:
∞∑
j=1

1
j(j + 1) = lim

n→∞
sn = 1.

In general, a real series that can be written in the form ∑∞
j=1(f(j)− f(j + 1)) for some

function f : N → R is known as a telescoping series. The partial sums of such a series
simplify to:

sn = f(1)− f(n+ 1), for all n ∈ N,

which makes the series easier to analyze due to the cancellation of terms.
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Proposition 13 If the real series ∑∞j=1 aj converges, then limj→∞ aj = 0.
Proof. Since the series converges, by definition, the sequence of partial sums sn = ∑n

j=1 aj
also converges, say sn → s ∈ R. Note that an = sn − sn−1. Taking the limit as n → ∞ on
both sides and applying the algebra of limits, we get:

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s− s = 0.

Thus, we have shown that limn→∞ an = 0, completing the proof.
Proposition 14 Let ∑∞j=1 aj and

∑∞
j=1 bj be convergent real series. Then:

1. For any λ ∈ R, the series ∑∞j=1 λaj converges, and its sum is equal to λ∑∞j=1 aj.

2. The series ∑∞j=1(aj + bj) converges, and its sum is equal to ∑∞j=1 aj +∑∞
j=1 bj.

Since the convergence of a series is determined by its limiting behavior, we can safely ignore or
add any finite number of terms at the beginning of the series without affecting its convergence.
This leads to the following proposition:
Proposition 15 Let ∑∞j=1 aj be a real series.

1. If there exists N ∈ N such that the series ∑∞j=N aj converges, then the series ∑∞j=1 aj
also converges, and its sum is given by

∞∑
j=1

aj =
N−1∑
j=1

aj +
∞∑
j=N

aj.

2. If the series ∑∞j=1 aj converges, then for any N ∈ N, the series ∑∞j=N aj also converges.
Proof. We prove each assertion separately.

1. For n ≥ N , consider the sequence of partial sums (tn) where tn = ∑n
j=N aj. Let (sn)

be the sequence of partial sums where sn = ∑n
j=1 aj. For n ≥ N , we have

sn =
N−1∑
j=1

aj + tn = K + tn,

where K = ∑N−1
j=1 aj ∈ R is a real constant. Since (tn) converges as n → ∞, by the

algebra of limits, we conclude that (sn) also converges. Moreover, we have
∞∑
j=1

aj = lim
n→∞

sn = lim
n→∞

(K + tn) = K + lim
n→∞

tn =
N−1∑
j=1

aj +
∞∑
j=N

aj.

2. Fix N ∈ N and for n ≥ N , consider the sequence of partial sums (tn) where tn =∑n
j=N aj. Let (sn) be the sequence of partial sums for the series ∑∞j=1 aj where sn =∑n
j=1 aj. Then, for any n ≥ N , we have

tn = sn −
N−1∑
j=1

aj = sn −K,

where K = ∑N−1
j=1 aj ∈ R is a real constant. Since (sn) converges, by the algebra of

limits, we conclude that the sequence (tn) also converges.
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Absolute and Conditional Convergence
Proposition 16 (Cauchy Criterion for Convergence of a Series) The real series∑∞j=1 aj
converges if and only if for every ε > 0, there exists an N ∈ N such that for every n > m ≥ N ,
we have:

|sn − sm| = |am+1 + am+2 + · · ·+ an| < ε.

Definition 17 (Absolute Convergence) A real series ∑∞j=1 aj is said to be absolutely
convergent if the corresponding series of absolute values, ∑∞j=1 |aj|, converges.

Definition 18 (Conditional Convergence) A real series ∑∞j=1 aj is called conditionally
convergent if ∑∞j=1 aj converges but

∑∞
j=1 |aj| diverges to infinity.

An important distinction between absolutely convergent and conditionally convergent
series is that the terms of an absolutely convergent series can be rearranged without changing
the value of the series. However, in the case of a conditionally convergent series, the terms
can be rearranged in such a way that the rearranged series converges to any real number in
R or even diverges to ±∞. This result is known as the Riemann rearrangement theorem.

Alternating Series
To illustrate an example of a conditionally convergent series, we define alternating series.
As the name suggests, an alternating series is a real series where the terms alternate in sign.

Definition 19 (Alternating Series) A real series is called alternating if it takes one of
the following forms:

∞∑
j=1

(−1)jbj or
∞∑
j=1

(−1)j−1bj,

where bj > 0 for all j ∈ N.

Theorem 20 (Alternating Series Test) An alternating series of the form ∑∞
j=1(−1)jbj

or ∑∞j=1(−1)j−1bj, with bj > 0, converges if the terms (bj) are decreasing and bj → 0.

Proof. Without loss of generality (WLOG), consider the alternating series of the form∑∞
j=1(−1)j−1bj, where the first term in the series is positive. Let (sn) denote the sequence of

partial sums. We analyze the subsequences of even-indexed and odd-indexed partial sums,
namely (s2n) and (s2n−1).

For the subsequence of even-indexed partial sums, by grouping some consecutive terms
together, we have:

s2n = b1 − b2 + b3 − b4 + · · ·+ b2n−1 − b2n = b1 − (b2 − b3)− · · · − (b2n−2 − b2n−1)− b2n ≤ b1,

since bj ≥ bj+1 for all j ∈ N. Additionally, we observe that:

s2(n+1) − s2n = −b2n+2 + b2n+1 ≥ 0,



14 CHAPTER 1. REAL NUMBERS

which implies that s2(n+1) ≥ s2n for all n ∈ N. Thus, the subsequence of even-indexed partial
sums (s2n) is increasing and bounded above. By the monotone convergence theorem, the
subsequence (s2n) converges.

Using similar arguments, we can show that the subsequence of odd-indexed partial sums
(s2n−1) is bounded below and decreasing. Therefore, by the monotone convergence theorem,
the subsequence (s2n−1) also converges.

Furthermore, since −b2n = s2n − s2n−1, taking the limit as n → ∞ and applying the
algebra of limits, we obtain:

0 = − lim
n→∞

b2n = lim
n→∞

(s2n − s2n−1) = lim
n→∞

s2n − lim
n→∞

s2n−1.

Thus, limn→∞ s2n = limn→∞ s2n−1, say s. Finally,it is the entire sequence of partial sums
(sn) converges to the same limit s. Hence, the series converges.

Comparison Tests
For real sequences, we have seen that limits preserve weak inequalities, as demonstrated by
the sandwich lemma. These results can help us compare or bound the limits of a sequence
with those of commonly known sequences. We now extend this idea to series. By comparing
series that converge or diverge, we can apply these standard examples to test the behavior
of other series.

Direct Comparison Test
The first convergence test is the direct comparison test for series. The idea is simple and
intuitive: suppose we have two series with non-negative terms such that one series is term-
wise larger than the other. If the series with the larger terms converges, then the series with
the smaller terms must also converge. Similarly, if the series with the smaller terms diverges,
the series with the larger terms must diverge as well. We state the following proposition:

Proposition 21 (Direct Comparison Test) Let ∑∞j=1 aj and ∑∞j=1 bj be two real series
such that 0 ≤ aj ≤ bj for all j ∈ N.

1. If the series ∑∞j=1 bj converges, then the series ∑∞j=1 aj also converges.

2. If the series ∑∞j=1 aj diverges to ∞, then the series ∑∞j=1 bj diverges to ∞ as well.

Proof. Let sn = ∑n
j=1 aj and tn = ∑n

j=1 bj be the sequences of partial sums for the se-
ries ∑∞j=1 aj and ∑∞

j=1 bj, respectively. Since aj, bj ≥ 0, both sequences (sn) and (tn) are
increasing. Moreover, the condition 0 ≤ aj ≤ bj implies that 0 ≤ sn ≤ tn for all n ∈ N.

We now prove the two assertions separately.

1. Since the series ∑∞j=1 bj converges, the sequence (tn) is bounded, say tn ≤ M for all
n ∈ N and some M > 0. Thus, sn ≤ tn ≤ M for every n ∈ N. By the boundedness of
(sn), the sequence (sn) must also converge, and therefore the series ∑∞j=1 aj converges.
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2. Since∑∞j=1 aj diverges to∞, the sequence (sn) diverges to∞. As sn ≤ tn for all n ∈ N,
the sequence (tn) must also diverge to ∞. Therefore, the series ∑∞j=1 bj diverges to ∞.

Proposition 22 (Limit Comparison Test) Let ∑∞j=1 aj and ∑∞
j=1 bj be two real series

such that aj ≥ 0 and bj > 0 for all j ∈ N. Suppose that

lim
j→∞

aj
bj

= L

for some 0 < L < ∞. Then, either both series converge or both series diverge. In other
words: ∞∑

j=1
aj converges ⇔

∞∑
j=1

bj converges.

Proof. Since limj→∞
aj

bj
= L, for ε = L

2 > 0, there exists N ∈ N such that
∣∣∣∣∣ajbj − L

∣∣∣∣∣ < L

2 for all j ≥ N.

Equivalently, for any j ≥ N , we have:

L

2 bj < aj <
3L
2 bj.

We now prove the two implications separately:

• (⇒):
Assume that the series ∑∞j=1 aj converges. Therefore, the series 2

L

∑∞
j=1 aj = ∑∞

j=1
2
L
aj

also converges by Proposition 7.2.8. Since 0 < bj <
2
L
aj for all j ≥ N , by the direct

comparison test, the series ∑∞j=N bj converges. Finally, by Proposition 7.2.9, the full
series ∑∞j=1 bj converges.

• (⇐):
Similarly, suppose that the series ∑∞j=1 bj converges. Since 0 ≤ aj <

3L
2 bj for all j ≥ N ,

and the series ∑∞j=N 3L
2 bj converges, the series ∑∞j=N aj also converges by the direct

comparison test. Therefore, the full series ∑∞j=1 aj converges as well.

Theorem 23 (Ratio Test) Let ∑∞j=1 aj be a real series such that aj 6= 0 for all j ∈ N. Let
L = limj→∞

∣∣∣aj+1
aj

∣∣∣ ≥ 0.

1. If L < 1, then the series converges absolutely.

2. If L > 1, then the series diverges.

Proof. We prove the assertions separately.
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1. Suppose that limj→∞

∣∣∣aj+1
aj

∣∣∣ = L < 1. Then, for ε = 1−L
2 > 0, there exists an N ∈ N

such that ∣∣∣∣an+1

an
− L

∣∣∣∣ < 1− L
2 for all n ≥ N.

This implies that ∣∣∣∣an+1

an

∣∣∣∣ < 1 + L

2 for all n ≥ N.

Denote r = 1+L
2 < 1, so that |an+1| < r |an| for all n ≥ N . By induction, we can show

that |ak+N | < rk |aN | for all k ∈ N.
Let us compare the tail of the series ∑∞j=N+1 |aj| = ∑∞

k=1 |ak+N | with the geometric
series ∑∞k=1 r

k |aN |. Clearly, the geometric series converges since r < 1. By the direct
comparison test, since |ak+N | < rk |aN | for all k ∈ N, the tail of the series ∑∞j=N+1 |aj|
also converges. Proposition 7.2.9 then implies that the entire series∑∞j=1 |aj| converges,
meaning the series converges absolutely.

2. Suppose that limj→∞

∣∣∣aj+1
aj

∣∣∣ = L > 1. By a similar argument as in the previous case, if
we choose ε = L−1

2 > 0, we can show that there exists N ∈ N such that

1 + L

2 <
∣∣∣∣an+1

an

∣∣∣∣ for all n ≥ N.

Denote r = 1+L
2 > 1, so that 0 < |aN | < rk |aN | < |ak+N | for all k ∈ N. Since

rk |aN | → ∞, we have |ak+N | → ∞ as well. This implies that limj→∞ |aj| 6= 0 and, by
Lemma 5.9.3, limj→∞ aj 6= 0. Thus, the series ∑∞j=1 aj cannot converge by Proposition
7.2.5.



Chapter 2

The Riemann Integral

1. Partition and Refinement of an Interval
Let [a, b] be a closed and bounded interval with a < b. A partition P of [a, b] is a finite
ordered set of points

P = {x0, x1, . . . , xn}, a = x0 < x1 < · · · < xn = b,

which subdivides [a, b] into the n subintervals
[xk−1, xk], k = 1, 2, . . . , n.

These subintervals are pairwise disjoint in their interiors and their union is [a, b].

x
a x1 x2 x3 x4 b

[x0, x1][x1, x2][x2, x3][x3, x4][x4, x5]

Figure 2.1: Partition P of [a, b] into subintervals.

Let
P = {x0, . . . , xn} with a = x0 < · · · < xn = b.

A partition Q of [a, b] is called a refinement of P if P ⊆ Q; that is, every point of P also
appears in Q, and Q may contain additional points inside the subintervals determined by P .

Example
Suppose

P = {a, x1, x2, b}, a < x1 < x2 < b,

and we insert three additional points
q1 ∈ (a, x1), q2 ∈ (x1, x2), q3 ∈ (x2, b).

Then the refinement Q is
Q = P ∪ {q1, q2, q3} = {a, q1, x1, q2, x2, q3, b},

listed in strictly increasing order.

17



18 CHAPTER 2. THE RIEMANN INTEGRAL

x
a x1 x2 b

[a, x1] [x1, x2] [x2, b]

q1 q2 q3

Figure 2.2: Refinement Q of P by inserting q1, q2, and q3.

2. Lower and Upper Sums
Definition 24 (Lower and Upper Sums) Let f : [a, b] → R be a bounded function and
P = {x0, x1, . . . , xn} a partition of [a, b]. For each subinterval [xk−1, xk], define:

mk := inf{f(x) | x ∈ [xk−1, xk]}, Mk := sup{f(x) | x ∈ [xk−1, xk]}.

Then the lower sum of f with respect to P is:

L(f, P ) =
n∑
k=1

mk · (xk − xk−1),

and the upper sum is:

U(f, P ) =
n∑
k=1

Mk · (xk − xk−1).

3. Properties of Riemann Sums
Lemma 25 (Properties of Lower and Upper Sums) Let f : [a, b] → R be a bounded
function. Then:

1. For every partition P ,
L(f, P ) ≤ U(f, P ).

2. If Q is a refinement of P , then

L(f, P ) ≤ L(f,Q) and U(f, P ) ≥ U(f,Q).

3. For any two partitions P1, P2,

L(f, P1) ≤ U(f, P2).

Proof.

1. Lower sum is always less than or equal to upper sum.
For each subinterval [xk−1, xk], we define:

mk := inf{f(x) : x ∈ [xk−1, xk]}, Mk := sup{f(x) : x ∈ [xk−1, xk]}.

Since mk ≤Mk for all k, it follows that:

L(f, P ) =
n∑
k=1

mk∆xk ≤
n∑
k=1

Mk∆xk = U(f, P ).
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Example: Let f(x) = x2 on [0, 1], and let P = {0, 0.5, 1}. Then:

L(f, P ) = 02·0.5+(0.5)2·0.5 = 0+0.125 = 0.125, U(f, P ) = (0.5)2·0.5+(1)2·0.5 = 0.125+0.5 = 0.625.

So L(f, P ) < U(f, P ).

2. Refining increases lower sum and decreases upper sum.
A refinement Q of P adds points to subdivide the interval more finely. The infimum
over a smaller subinterval is at least as large as over the larger one (because we’re
minimizing over fewer values), and similarly, the supremum over a smaller subinterval
is at most as large.
Hence:

L(f,Q) ≥ L(f, P ), U(f,Q) ≤ U(f, P ).

Example: Use the same f(x) = x2 on [0, 1], but refine P = {0, 0.5, 1} to Q =
{0, 0.25, 0.5, 0.75, 1}. You will find:

L(f,Q) > L(f, P ), U(f,Q) < U(f, P ).

3. Lower sum of one partition is less than upper sum of another.
Let R = P1 ∪P2, which is a common refinement of both P1 and P2. Then, by part (2):

L(f, P1) ≤ L(f,R) ≤ U(f,R) ≤ U(f, P2),

so:
L(f, P1) ≤ U(f, P2).

Example: Let P1 = {0, 0.5, 1}, P2 = {0, 0.25, 1}. Their union is R = {0, 0.25, 0.5, 1}.
Again using f(x) = x2, you can compute and verify the inequality numerically:

L(f, P1) ≤ L(f,R) ≤ U(f,R) ≤ U(f, P2).
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Chapter 3

The Riemann Integral

1. Partition and Refinement of an Interval
Let [a, b] be a closed and bounded interval with a < b. A partition P of [a, b] is a finite
ordered set of points

P = {x0, x1, . . . , xn}, a = x0 < x1 < · · · < xn = b,

which subdivides [a, b] into the n subintervals
[xk−1, xk], k = 1, 2, . . . , n.

These subintervals are pairwise disjoint in their interiors and their union is [a, b].

x
a x1 x2 x3 x4 b

[x0, x1][x1, x2][x2, x3][x3, x4][x4, x5]

Figure 3.1: Partition P of [a, b] into subintervals.

Let
P = {x0, . . . , xn} with a = x0 < · · · < xn = b.

A partition Q of [a, b] is called a refinement of P if P ⊆ Q; that is, every point of P also
appears in Q, and Q may contain additional points inside the subintervals determined by P .

Example
Suppose

P = {a, x1, x2, b}, a < x1 < x2 < b,

and we insert three additional points
q1 ∈ (a, x1), q2 ∈ (x1, x2), q3 ∈ (x2, b).

Then the refinement Q is
Q = P ∪ {q1, q2, q3} = {a, q1, x1, q2, x2, q3, b},

listed in strictly increasing order.

21
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x
a x1 x2 b

[a, x1] [x1, x2] [x2, b]

q1 q2 q3

Figure 3.2: Refinement Q of P by inserting q1, q2, and q3.

2. Lower and Upper Sums
Definition 26 (Lower and Upper Sums) Let f : [a, b] → R be a bounded function and
P = {x0, x1, . . . , xn} a partition of [a, b]. For each subinterval [xk−1, xk], define:

mk := inf{f(x) | x ∈ [xk−1, xk]}, Mk := sup{f(x) | x ∈ [xk−1, xk]}.

Then the lower sum of f with respect to P is:

L(f, P ) =
n∑
k=1

mk · (xk − xk−1),

and the upper sum is:

U(f, P ) =
n∑
k=1

Mk · (xk − xk−1).

3. Properties of Riemann Sums
Lemma 27 (Properties of Lower and Upper Sums) Let f : [a, b] → R be a bounded
function. Then:

1. For every partition P ,
L(f, P ) ≤ U(f, P ).

2. If Q is a refinement of P , then

L(f, P ) ≤ L(f,Q) and U(f, P ) ≥ U(f,Q).

3. For any two partitions P1, P2,

L(f, P1) ≤ U(f, P2).

Proof.

1. Lower sum is always less than or equal to upper sum.
For each subinterval [xk−1, xk], we define:

mk := inf{f(x) : x ∈ [xk−1, xk]}, Mk := sup{f(x) : x ∈ [xk−1, xk]}.

Since mk ≤Mk for all k, it follows that:

L(f, P ) =
n∑
k=1

mk∆xk ≤
n∑
k=1

Mk∆xk = U(f, P ).
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Example: Let f(x) = x2 on [0, 1], and let P = {0, 0.5, 1}. Then:

L(f, P ) = 02·0.5+(0.5)2·0.5 = 0+0.125 = 0.125, U(f, P ) = (0.5)2·0.5+(1)2·0.5 = 0.125+0.5 = 0.625.

So L(f, P ) < U(f, P ).

2. Refining increases lower sum and decreases upper sum.
A refinement Q of P adds points to subdivide the interval more finely. The infimum
over a smaller subinterval is at least as large as over the larger one (because we’re
minimizing over fewer values), and similarly, the supremum over a smaller subinterval
is at most as large.
Hence:

L(f,Q) ≥ L(f, P ), U(f,Q) ≤ U(f, P ).

Example: Use the same f(x) = x2 on [0, 1], but refine P = {0, 0.5, 1} to Q =
{0, 0.25, 0.5, 0.75, 1}. You will find:

L(f,Q) > L(f, P ), U(f,Q) < U(f, P ).

3. Lower sum of one partition is less than upper sum of another.
Let R = P1 ∪P2, which is a common refinement of both P1 and P2. Then, by part (2):

L(f, P1) ≤ L(f,R) ≤ U(f,R) ≤ U(f, P2),

so:
L(f, P1) ≤ U(f, P2).

Example: Let P1 = {0, 0.5, 1}, P2 = {0, 0.25, 1}. Their union is R = {0, 0.25, 0.5, 1}.
Again using f(x) = x2, you can compute and verify the inequality numerically:

L(f, P1) ≤ L(f,R) ≤ U(f,R) ≤ U(f, P2).
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Chapter 4

The Riemann Integral

1. Partition and Refinement of an Interval
Let [a, b] be a closed and bounded interval with a < b. A partition P of [a, b] is a finite
ordered set of points

P = {x0, x1, . . . , xn}, a = x0 < x1 < · · · < xn = b,

which subdivides [a, b] into the n subintervals
[xk−1, xk], k = 1, 2, . . . , n.

These subintervals are pairwise disjoint in their interiors and their union is [a, b].

x
a x1 x2 x3 x4 b

[x0, x1][x1, x2][x2, x3][x3, x4][x4, x5]

Figure 4.1: Partition P of [a, b] into subintervals.

Let
P = {x0, . . . , xn} with a = x0 < · · · < xn = b.

A partition Q of [a, b] is called a refinement of P if P ⊆ Q; that is, every point of P also
appears in Q, and Q may contain additional points inside the subintervals determined by P .

Example
Suppose

P = {a, x1, x2, b}, a < x1 < x2 < b,

and we insert three additional points
q1 ∈ (a, x1), q2 ∈ (x1, x2), q3 ∈ (x2, b).

Then the refinement Q is
Q = P ∪ {q1, q2, q3} = {a, q1, x1, q2, x2, q3, b},

listed in strictly increasing order.

25



26 CHAPTER 4. THE RIEMANN INTEGRAL

x
a x1 x2 b

[a, x1] [x1, x2] [x2, b]

q1 q2 q3

Figure 4.2: Refinement Q of P by inserting q1, q2, and q3.

2. Lower and Upper Sums
Definition 28 (Lower and Upper Sums) Let f : [a, b] → R be a bounded function and
P = {x0, x1, . . . , xn} a partition of [a, b]. For each subinterval [xk−1, xk], define:

mk := inf{f(x) | x ∈ [xk−1, xk]}, Mk := sup{f(x) | x ∈ [xk−1, xk]}.

Then the lower sum of f with respect to P is:

L(f, P ) =
n∑
k=1

mk · (xk − xk−1),

and the upper sum is:

U(f, P ) =
n∑
k=1

Mk · (xk − xk−1).

3. Properties of Riemann Sums
Lemma 29 (Properties of Lower and Upper Sums) Let f : [a, b] → R be a bounded
function. Then:

1. For every partition P ,
L(f, P ) ≤ U(f, P ).

2. If Q is a refinement of P , then

L(f, P ) ≤ L(f,Q) and U(f, P ) ≥ U(f,Q).

3. For any two partitions P1, P2,

L(f, P1) ≤ U(f, P2).

Proof.

1. Lower sum is always less than or equal to upper sum.
For each subinterval [xk−1, xk], we define:

mk := inf{f(x) : x ∈ [xk−1, xk]}, Mk := sup{f(x) : x ∈ [xk−1, xk]}.

Since mk ≤Mk for all k, it follows that:

L(f, P ) =
n∑
k=1

mk∆xk ≤
n∑
k=1

Mk∆xk = U(f, P ).
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Example: Let f(x) = x2 on [0, 1], and let P = {0, 0.5, 1}. Then:

L(f, P ) = 02·0.5+(0.5)2·0.5 = 0+0.125 = 0.125, U(f, P ) = (0.5)2·0.5+(1)2·0.5 = 0.125+0.5 = 0.625.

So L(f, P ) < U(f, P ).

2. Refining increases lower sum and decreases upper sum.
A refinement Q of P adds points to subdivide the interval more finely. The infimum
over a smaller subinterval is at least as large as over the larger one (because we’re
minimizing over fewer values), and similarly, the supremum over a smaller subinterval
is at most as large.
Hence:

L(f,Q) ≥ L(f, P ), U(f,Q) ≤ U(f, P ).

Example: Use the same f(x) = x2 on [0, 1], but refine P = {0, 0.5, 1} to Q =
{0, 0.25, 0.5, 0.75, 1}. You will find:

L(f,Q) > L(f, P ), U(f,Q) < U(f, P ).

3. Lower sum of one partition is less than upper sum of another.
Let R = P1 ∪P2, which is a common refinement of both P1 and P2. Then, by part (2):

L(f, P1) ≤ L(f,R) ≤ U(f,R) ≤ U(f, P2),

so:
L(f, P1) ≤ U(f, P2).

Example: Let P1 = {0, 0.5, 1}, P2 = {0, 0.25, 1}. Their union is R = {0, 0.25, 0.5, 1}.
Again using f(x) = x2, you can compute and verify the inequality numerically:

L(f, P1) ≤ L(f,R) ≤ U(f,R) ≤ U(f, P2).

Definition 30 Let f : [a, b]→ R be bounded.
1) Lower/upper integrals. Define

L(f) := sup{L(f, P ) : P a partition of [a, b] },
U(f) := inf{U(f, P ) : P a partition of [a, b] }.

Because f is bounded, the sets inside the sup and inf are nonempty and bounded, so by
completeness of R the numbers L(f) and U(f) exist. Always L(f) ≤ U(f).

2) Riemann integrability. We say f is Riemann integrable on [a, b] if L(f) = U(f).
In that case, the common value is the Riemann integral of f :∫ b

a
f(x) dx (also written

∫ b

a
f).
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x

f(x)

0 1 2 3 4 5 6

f(x) = x2

6

Lower sum

Upper sum

Figure 4.3: Lower and upper sums for the function f(x) = x2

6 on [0, 6].

Intuitively, a bounded function f is Riemann integrable if we can approximate the area
under its graph from below (using lower sums) and from above (using upper sums) in such
a way that both approximations can be made arbitrarily close to each other by refining the
partition.

In the figure above:

• The green rectangles represent the lower sum L(f, P ), constructed using the minimum
value of f on each subinterval.

• The red translucent rectangles represent the upper sum U(f, P ), constructed using
the maximum value of f on each subinterval.

• The blue curve shows the graph of the function f(x) = x2

6 .

As the partition becomes finer (i.e., we divide [a, b] into smaller subintervals), the lower
and upper rectangles better approximate the area under the curve. The difference between
the total areas of the upper and lower sums decreases.
This leads to the following fundamental characterization of Riemann integrability.
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Theorem 31 (ε–criterion) A bounded f is Riemann integrable on [a, b] iff for every ε > 0
there exists a partition P such that

U(f, P )− L(f, P ) < ε.

Equivalently, we can make lower and upper sums as close as we wish by choosing P fine
enough.

Proof sketch. (⇒) Assume f is Riemann integrable, and let I =
∫ b
a f(x) dx = L(f) =

U(f). Fix ε > 0. By the definitions of sup and inf, choose partitions P1, P2 such that

L(f, P1) > I − ε

2 and U(f, P2) < I + ε

2 .

Let P be any common refinement of P1 and P2 (e.g. take the union of their points). By
refinement monotonicity, L(f, P ) ≥ L(f, P1) and U(f, P ) ≤ U(f, P2), hence

U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1) < ε.

(⇐) Conversely, suppose that for every ε > 0 there exists a partition P with U(f, P )−
L(f, P ) < ε. Since L(f) = supQ L(f,Q) ≥ L(f, P ) and U(f) = infQ U(f,Q) ≤ U(f, P ), we
have

0 ≤ U(f)− L(f) ≤ U(f, P )− L(f, P ) < ε.

Letting ε→ 0 gives U(f) = L(f), so f is Riemann integrable.

Constant function. Let f : [a, b]→ R be the constant function f(x) ≡ c with c ∈ R. For
any partition P = {a = x0 < x1 < · · · < xn = b}, write ∆xk := xk−xk−1 and Ik := [xk−1, xk].
Then

mk := inf
Ik

f = Mk := sup
Ik

f = c (k = 1, . . . , n).

Thus the Riemann sums coincide:

L(f, P ) =
n∑
k=1

mk ∆xk = c
n∑
k=1

∆xk = c(b− a), U(f, P ) =
n∑
k=1

Mk ∆xk = c(b− a).

Hence U(f, P ) − L(f, P ) = 0 for every partition P , so the ε–criterion is trivially satisfied
and f is Riemann integrable. Since the common value is independent of P , we conclude∫ b

a
f(x) dx = c(b− a).

Corollary 32 Let f : [a, b] → R be bounded. For a partition P write U(f, P ) and L(f, P )
for the upper and lower Riemann sums. The following are equivalent:

(i) f is Riemann integrable on [a, b];

(ii) there exists a sequence of partitions (Pn) such that U(f, Pn)− L(f, Pn)→ 0.
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Moreover, whenever (ii) holds,∫ b

a
f(x) dx = lim

n→∞
L(f, Pn) = lim

n→∞
U(f, Pn).

Proof. Define the lower and upper integrals of f by

L(f) := sup{L(f, P ) : P a partition of [a, b]},
U(f) := inf{U(f, P ) : P a partition of [a, b]}.

Recall that f is Riemann integrable iff L(f) = U(f), in which case the common value equals∫ b
a f .
(i) ⇒ (ii). Assume f is Riemann integrable. Then for every ε > 0 there exists a partition
P with U(f, P ) − L(f, P ) < ε (ε-criterion). Choose Pn so that U(f, Pn) − L(f, Pn) < 1/n.
Then U(f, Pn)− L(f, Pn)→ 0.
(ii) ⇒ (i). Assume there exists (Pn) with U(f, Pn) − L(f, Pn) → 0. For every partition P
we have L(f, P ) ≤ L(f) ≤ U(f) ≤ U(f, P ), hence

L(f, Pn) ≤ L(f) ≤ U(f) ≤ U(f, Pn) for all n.

Therefore
0 ≤ U(f)− L(f) ≤ U(f, Pn)− L(f, Pn) −−−→

n→∞
0,

so U(f) = L(f). Thus f is Riemann integrable and∫ b

a
f = L(f) = U(f).

Moreover, L(f, Pn) ≤
∫ b
a f ≤ U(f, Pn) and U(f, Pn) − L(f, Pn) → 0 imply, by the squeeze

theorem,
lim
n→∞

L(f, Pn) =
∫ b

a
f = lim

n→∞
U(f, Pn).

Remark. If f is integrable and ‖Pn‖ → 0 , then necessarily U(f, Pn)−L(f, Pn)→ 0 and the
same conclusions hold.

We illustrate the above Corollary with the explicit example.
A partition P of [a, b] is uniform if all its subintervals have the same length. For n ∈ N

set
Pn =

{
a, a+ b−a

n
, a+ 2(b−a)

n
, . . . , a+ n(b−a)

n
= b

}
, ‖Pn‖ = b−a

n
.

Let f : [0, 1]→ R, f(x) = x2. For the uniform partitions

Pn =
{

0, 1
n
, 2
n
, . . . , n−1

n
, 1
}
, ∆x = 1

n
,

f is increasing on each Ik = [k−1
n
, k
n
], so

mk =
(
k−1
n

)2
, Mk =

(
k
n

)2
.
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Hence the Riemann sums are

L(f, Pn) = 1
n3

n∑
k=1

(k − 1)2 = (n− 1)n(2n− 1)
6n3 = 1

3 −
1

2n + 1
6n2 ,

U(f, Pn) = 1
n3

n∑
k=1

k2 = n(n+ 1)(2n+ 1)
6n3 = 1

3 + 1
2n + 1

6n2 .

Therefore
U(f, Pn)− L(f, Pn) = 1

n
−−−→
n→∞

0,

and, by the ε-criterion,∫ 1

0
x2 dx = lim

n→∞
L(f, Pn) = lim

n→∞
U(f, Pn) = 1

3 .

Theorem 33 Every monotone function f : [a, b]→ R is Riemann integrable.

Proof. Suppose f is monotone increasing on [a, b]. Then f is bounded, since

f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b].

Let ε > 0 be given. We want to find a partition P such that U(f, P ) − L(f, P ) < ε.
Choose δ > 0 such that

δ(f(b)− f(a)) < ε.

Now select a partition P = {x0, x1, . . . , xn} such that the width of every subinterval
satisfies:

xk − xk−1 < δ for all k = 1, . . . , n.

Since f is increasing, on each subinterval [xk−1, xk] we have:

mk = f(xk−1), Mk = f(xk),

so the difference between the upper and lower sums becomes:

U(f, P )− L(f, P ) =
n∑
k=1

(Mk −mk) (xk − xk−1) =
n∑
k=1

(f(xk)− f(xk−1)) (xk − xk−1).

Using the fact that xk − xk−1 < δ, we estimate:

U(f, P )− L(f, P ) ≤ δ
n∑
k=1

(f(xk)− f(xk−1)) = δ(f(b)− f(a)) < ε.

Hence, by the integrability criterion (Lemma), f is Riemann integrable.

Theorem 34 Every continuous function f : [a, b]→ R is Riemann integrable.
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Proof. Since f is continuous on the closed interval [a, b], which is compact, the Extreme
Value Theorem guarantees that f is bounded and attains its maximum and minimum on
each subinterval of any partition. Furthermore, by the Uniform Continuity Theorem, f
is uniformly continuous on [a, b]. Therefore, for any ε > 0, there exists δ > 0 such that:

|x− y| < δ ⇒ |f(x)− f(y)| < ε

b− a
.

Let P = {x0, x1, . . . , xn} be a partition of [a, b] such that:

xk − xk−1 < δ for all k = 1, . . . , n.

On each subinterval [xk−1, xk], the function f attains both its maximumMk and minimum
mk (by continuity), and we have:

Mk −mk <
ε

b− a
.

Thus,

U(f, P )− L(f, P ) =
n∑
k=1

(Mk −mk)(xk − xk−1) < ε

b− a

n∑
k=1

(xk − xk−1) = ε

b− a
(b− a) = ε.

Hence, by the ε-criterion f is Riemann integrable.

Generalization: Even though continuity guarantees integrability, the converse is not true.
A function can be Riemann integrable without being continuous everywhere.

Theorem 35 (Generalization) Let f : [a, b] → R be bounded and have only finitely
many points of discontinuity. Then f is Riemann integrable.

Sketch of proof. Let D = {c1, c2, . . . , cm} ⊂ [a, b] be the (finite) set of discontinuities of f .
Around each ci, construct an interval of length less than δ/m such that the total contribution
to the upper-lower sum difference over these intervals is less than ε/2. On the complement
of these intervals, f is continuous, so we apply the previous theorem to choose a partition on
that region giving error less than ε/2. Combining both partitions yields a global partition
P such that U(f, P )− L(f, P ) < ε.

Example 36 (Discontinuous but integrable vs non-integrable) This example illustrates
how the nature and number of discontinuities affect integrability.

(a) Integrable with one discontinuity:

Exercise 37 Define f : [−1, 1]→ R by

f(x) =

1, x = 0,
0, x 6= 0.

Show that f is Riemann integrable on [−1, 1] and compute
∫ 1

−1
f(x) dx.
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Solution 38 For each n ∈ N, consider the partition

Pn =
{
−1, − 1

2n ,
1

2n , 1
}
,

which produces the subintervals

I1 =
[
−1, − 1

2n

]
, I2 =

[
− 1

2n ,
1

2n

]
, I3 =

[
1

2n , 1
]
.

Since f ≡ 0 on [−1, 1] \ {0} and f(0) = 1, we have

sup
I1

f = sup
I3

f = 0, inf
I1
f = inf

I3
f = 0, sup

I2

f = 1, inf
I2
f = 0.

The lengths are
|I1| = 1− 1

2n , |I2| = 1
n
, |I3| = 1− 1

2n .

Therefore

L(f, Pn) =
∑

(inf f) |I| = 0, U(f, Pn) =
∑

(sup f) |I| = 1 · |I2| =
1
n
.

Integrability. Note that ‖Pn‖ = max{|I1|, |I2|, |I3|} = 1− 1
2n 6→ 0, but this is irrelevant:

the Darboux criterion only requires, for each ε > 0, some partition P with U(f, P ) −
L(f, P ) < ε. Given ε > 0, by the Archimedean property choose N ∈ N with 1/N < ε.
Then

U(f, PN)− L(f, PN) = 1
N
< ε,

so f is Riemann integrable on [−1, 1].

Value of the integral. For every n,

0 = L(f, Pn) ≤
∫ 1

−1
f(x) dx ≤ U(f, Pn) = 1

n
.

Letting n→∞ and using the squeeze theorem gives∫ 1

−1
f(x) dx = 0.

(b) Not integrable: Define f : [0, 1]→ R by:

f(x) =

1, x ∈ Q,
0, x ∈ R \Q.

This function is known as the Dirichlet function and is discontinuous at every point
in [0, 1]. On every subinterval of any partition:

inf f = 0, sup f = 1,
so:

L(f, P ) = 0, U(f, P ) = 1 for all P.
Therefore,

U(f, P )− L(f, P ) = 1 6→ 0,
and f is not Riemann integrable.
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Theorem 39 Let f : [a, b]→ R be bounded and let c ∈ (a, b). Then f is integrable on [a, b]
if and only if f is integrable on both [a, c] and [c, b]. In that case:∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Remark 40 If f is integrable on [a, b], we define:∫ b

a
f = −

∫ a

b
f.

Also, for any c ∈ [a, b], we define: ∫ c

c
f = 0.

Then, for any three points a, b, c ∈ I, where I ⊆ R is a compact interval and f : I → R is
integrable, we have: ∫ b

a
f +

∫ c

b
f =

∫ c

a
f.

We leave the verification as an exercise.
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Theorem 41 Suppose f and g are Riemann integrable on [a, b], and let k ∈ R. Then:

1. The function f + g is integrable, and∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

2. The function kf is integrable, and∫ b

a
kf(x) dx = k

∫ b

a
f(x) dx.

3. If f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

4. The function |f | is integrable, and∣∣∣∣∣
∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx.

Proof. We prove parts (1) and (4). Parts (2) and (3) follow from similar arguments and
are left as exercises.

(1) Linearity of the integral. Let f and g be integrable on [a, b], and let P be any
partition of [a, b] into subintervals [xk−1, xk], k = 1, . . . , n.

Define:
mf
k = inf

x∈[xk−1,xk]
f(x), M f

k = sup
x∈[xk−1,xk]

f(x),

and similarly for g, and for f + g:

mf+g
k = inf

x∈[xk−1,xk]
(f(x) + g(x)), M f+g

k = sup
x∈[xk−1,xk]

(f(x) + g(x)).

From basic properties of infima and suprema over sets:

mf
k +mg

k ≤ mf+g
k , M f+g

k ≤M f
k +M g

k .

Multiplying by the subinterval length ∆xk = xk − xk−1, and summing over all k, we
obtain:

L(f, P ) + L(g, P ) ≤ L(f + g, P ), U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Let ε > 0. Since f and g are integrable, there exist partitions P1 and P2 such that:

U(f, P1)− L(f, P1) < ε

2 , U(g, P2)− L(g, P2) < ε

2 .
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Let P = P1 ∪ P2, a common refinement. Then using monotonicity of upper and lower
sums under refinement:

U(f, P ) ≤ U(f, P1), L(f, P ) ≥ L(f, P1), and similarly for g.
Then:

U(f + g, P ) ≤ U(f, P ) + U(g, P ) ≤ U(f, P1) + U(g, P2) < U(f) + U(g) + ε,

L(f + g, P ) ≥ L(f, P ) + L(g, P ) ≥ L(f, P1) + L(g, P2) > L(f) + L(g)− ε.
Thus:

U(f + g) ≤ U(f) + U(g), L(f + g) ≥ L(f) + L(g),
and since:

L(f + g) ≤ U(f + g),
we conclude that:

L(f + g) = U(f + g) =
∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

So f + g is integrable and its integral is the sum of the integrals.
(4) Integrability of |f | and inequality.

First, note that since f is integrable, it is bounded, say |f(x)| ≤M for all x ∈ [a, b]. Let
P be a partition of [a, b]. Define:

m
|f |
k = inf

x∈[xk−1,xk]
|f(x)|, M

|f |
k = sup

x∈[xk−1,xk]
|f(x)|.

Since |f(x)| is Lipschitz continuous with respect to f(x) (triangle inequality), we have:

M
|f |
k −m

|f |
k ≤M f

k −m
f
k .

Summing over all subintervals gives:
U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P ).

Now, since f is integrable, for any ε > 0, there exists a partition P such that:
U(f, P )− L(f, P ) < ε ⇒ U(|f |, P )− L(|f |, P ) < ε.

So |f | is also integrable.
To prove the inequality: ∣∣∣∣∣

∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx,

observe that for all x ∈ [a, b]:
−|f(x)| ≤ f(x) ≤ |f(x)|.

Integrating all parts and using the order property (proved in part 3), we get:

−
∫ b

a
|f(x)| dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
|f(x)| dx,

which implies: ∣∣∣∣∣
∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx.
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Riemann Sums
Let f : [a, b]→ R be a function, and let

P = {x0, x1, . . . , xn}

be a partition of the interval [a, b]. For each k ∈ {1, . . . , n}, choose a point ξk ∈ [xk−1, xk],
ξ = (ξ1, . . . , ξ2) called a mark (or tag).

Definition 42 (Riemann Sum) The Riemann sum of f with respect to P and ξ is defined
as:

S(f, P, ξ) :=
n∑
k=1

f(ξk) (xk − xk−1).

Definition 43 (Norm of a Partition) The Norm of a partition P = {x0, x1, . . . , xn} is
defined by:

‖P‖ := max
1≤k≤n

(xk − xk−1).

Theorem 44 (Convergence of tagged Riemann sums) Let f : [a, b]→ R be Riemann
integrable. For a partition

P : a = x0 < x1 < · · · < xn = b, ‖P‖ := max
1≤k≤n

(xk − xk−1),

and any choice of tags ξ = (ξ1, . . . , ξn) with ξk ∈ [xk−1, xk], define the Riemann sum

S(f, P, ξ) :=
n∑
k=1

f(ξk) (xk − xk−1).

Then for every ε > 0 there exists δ > 0 such that for all partitions P with ‖P‖ ≤ δ and for
all choices of tags ξ, ∣∣∣∣∣

∫ b

a
f(x) dx− S(f, P, ξ)

∣∣∣∣∣ < ε.

Equivalently,

lim
‖P‖→0

S(f, P, ξ) =
∫ b

a
f(x) dx (uniformly in the choice of tags ξ).

Proof. Write U(f, P ) = ∑n
k=1(sup[xk−1,xk] f) (xk−xk−1) and L(f, P ) = ∑n

k=1(inf [xk−1,xk] f) (xk−
xk−1). For any tags ξ one has

L(f, P ) ≤ S(f, P, ξ) ≤ U(f, P ).

Since f is Riemann integrable, for every ε > 0 there exists δ > 0 such that ‖P‖ < δ ⇒
U(f, P )− L(f, P ) < ε. Combining the two displays gives∣∣∣S(f, P, ξ)−

∫ b
a f
∣∣∣ ≤ U(f, P )− L(f, P ) < ε,

as required.
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Example
Fix a > 0 and for n ∈ N take the uniform partition xk = ka

n
, k = 0, . . . , n, with right-endpoint

tags ξk = xk. Then

Sn =
n∑
k=1

f(ξk) (xk − xk−1) =
n∑
k=1

(
ka

n

)(
a

n

)
= a2

n2

n∑
k=1

k = a2

2

(
1 + 1

n

)
−−−→
n→∞

a2

2 .

Hence
∫ a

0
x dx = a2

2 .

Exercise 45 Let f ∈ R[a, b]. Show that

lim
n→∞

b− a
n

n∑
k=1

f

(
a+ k(b− a)

n

)
=
∫ b

a
f(x) dx.

Proof. Set ∆n = b−a
n

and xk = a+ k∆n. Then ‖Pn‖ = ∆n → 0 and

b− a
n

n∑
k=1

f

(
a+ k(b− a)

n

)
=

n∑
k=1

f(xk) ∆n = S
(
f, Pn, ξ

right
)
,

the right-endpoint Riemann sum (ξk = xk). By the theorem (with arbitrary tags), S(f, Pn, ξright)→∫ b
a f .

For the left-endpoint sums define (ξk = xk−1)

Ln := b− a
n

n−1∑
k=0

f

(
a+ k(b− a)

n

)
=

n∑
k=1

f(xk−1) ∆n, xk = a+ k∆n.

Then Ln →
∫ b

a
f as n→∞ as well. Illustration (f(x) = x on [0, 1]).

Ln = 1
n

n−1∑
k=0

k

n
= n− 1

2n −→ 1
2 =

∫ 1

0
x dx, Rn = 1

n

n∑
k=1

k

n
= n+ 1

2n −→ 1
2 .

Applications: write each limit as an integral (and evaluate).

1.
lim
n→∞

n∑
k=1

1
n+ k

= lim
n→∞

n∑
k=1

1
n

1
1 + k/n

=
∫ 1

0

dx

1 + x
= ln 2.

2.

lim
n→∞

n∑
k=1

k

n2 + k2 = lim
n→∞

n∑
k=1

1
n

(k/n)
1 + (k/n)2

=
∫ 1

0

x

1 + x2 dx

= 1
2 ln(1 + x2)

∣∣∣∣1
0

= 1
2 ln 2.
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4.The Fundamental Theorem of Calculus
This central theorem states that the operations of differentiation and integration are, in a
sense, inverses of each other.

Theorem 46 (Fundamental Theorem of Calculus)

1. Let f : [a, b]→ R be integrable and let F : [a, b]→ R be differentiable with F ′(x) = f(x)
for all x ∈ [a, b]. Then ∫ b

a
f = F (b)− F (a).

2. Let g : [a, b]→ R be integrable and define

G(x) :=
∫ x

a
g(t) dt, x ∈ [a, b].

Then G is continuous on [a, b]. Moreover, if g is continuous at c ∈ [a, b], then G is
differentiable at c, and

G′(c) = g(c).

In part (1), the function F is called an antiderivative of f .
Proof of Theorem ??. (1) Let P = {x0, x1, . . . , xn} be a partition of [a, b]. By the Mean
Value Theorem, for each interval [xk−1, xk], there exists tk ∈ (xk−1, xk) such that

F (xk)− F (xk−1) = F ′(tk)(xk − xk−1) = f(tk)(xk − xk−1).

Since mk ≤ f(tk) ≤Mk, we get

L(f, P ) ≤
n∑
k=1

f(tk)(xk − xk−1) ≤ U(f, P ).

The sum ∑n
k=1 f(tk)(xk − xk−1) is a telescoping sum equal to F (b)− F (a), hence∫ b

a
f = F (b)− F (a).

(2) Suppose |g(x)| ≤M on [a, b]. For any x, y ∈ [a, b],

|G(x)−G(y)| =
∣∣∣∣∫ x

a
g −

∫ y

a
g
∣∣∣∣ =

∣∣∣∣∫ x

y
g

∣∣∣∣ ≤ ∣∣∣∣∫ x

y
|g|
∣∣∣∣ ≤M |x− y|.

This shows that G is uniformly continuous.
Now suppose g is continuous at c ∈ [a, b]. Then for x 6= c:

G(x)−G(c)
x− c

= 1
x− c

∫ x

c
g(t) dt.

Given ε > 0, by continuity of g at c, there exists δ > 0 such that |g(t)− g(c)| < ε whenever
|t− c| < δ. Then for 0 < |x− c| < δ:∣∣∣∣∣G(x)−G(c)

x− c
− g(c)

∣∣∣∣∣ =
∣∣∣∣ 1
x− c

∫ x

c
(g(t)− g(c)) dt

∣∣∣∣ ≤ ε.

Hence G′(c) = g(c).
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Usual Antiderivatives

All antiderivatives are up to an additive constant +C.
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Integrand f(x) An antiderivative F (x) Conditions / Notes
Powers & logs

xn
xn+1

n+ 1 n 6= −1.
1
x

ln |x| x 6= 0.

(ax+ b)n (ax+ b)n+1

a(n+ 1) a 6= 0, n 6= −1.
1

ax+ b

1
a

ln |ax+ b| a 6= 0.

ln x x ln x− x x > 0.
Exponentials
ex ex

eax
1
a
eax a 6= 0.

ax
ax

ln a a > 0, a 6= 1.
Trigonometric
sin x − cosx
cosx sin x
tan x − ln | cosx| also ln | secx|.
cotx ln | sin x| also − ln | cscx|.
sec2 x tan x
csc2 x − cotx
secx tan x secx
cscx cotx − cscx
secx ln | secx+ tan x|
cscx ln | cscx− cotx|
Inverse trig (standard forms)

1√
1− x2

arcsin x Also
∫
− dx√

1− x2
= arccosx.

1
1 + x2 arctan x

1
a2 + x2

1
a

arctanx
a

a > 0.
1√

a2 − x2
arcsinx

a
a > 0, |x| < a.

1
x2 − a2

1
2a ln

∣∣∣∣x− ax+ a

∣∣∣∣ a > 0, x 6= ±a.

Hyperbolic
sinh x cosh x
cosh x sinh x
tanh x ln(cosh x)
sech2 x tanh x
csch2 x − coth x
sech x tanh x − sech x
csch x coth x − csch x
Inverse hyperbolic (log forms)

1√
x2 + 1

arsinh x = ln
(
x+
√
x2 + 1

)
1√

x2 − 1
arcosh |x| = ln

(
|x|+

√
x2 − 1

)
|x| > 1.

1
1− x2 artanh x = 1

2 ln1 + x

1− x |x| < 1.

Some useful composites
1

(x2 + a2)3/2
x

a2
√
x2 + a2

a 6= 0.
x

x2 + a2
1
2 ln(x2 + a2) a ∈ R.

x√
x2 + a2

√
x2 + a2 a ∈ R.

1
x2 + a2

1
a

arctanx
a

a > 0.

Linear change (chain rule)

F ′(ax+ b) 1
a
F (ax+ b) If F ′ is known; a 6= 0.



42 CHAPTER 4. THE RIEMANN INTEGRAL

Theorem 47 (Integration by Parts) Let f, g : [a, b] → R be differentiable on [a, b]. If f ′, g′ ∈
R([a, b]) (Riemann integrable), then∫ b

a
f(x) g′(x) dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′(x) g(x) dx. (8.20)

Proof. Let h = fg. By the product rule, h′ = f ′g+fg′. By the Fundamental Theorem of Calculus
and the assumed integrability of f ′, g′, we obtain

h(b)− h(a) =
∫ b

a
h′(x) dx =

∫ b

a

(
f ′(x)g(x) + f(x)g′(x)

)
dx.

Rearranging gives (??).

Example 48 Evaluate the integral

I =
∫ 1

0
xex dx.

Solution. We apply integration by parts with

f(x) = x, g′(x) = ex ⇒ f ′(x) = 1, g(x) = ex.

By Theorem ??,

I =
[
xex

]1
0
−
∫ 1

0
1 · ex dx = (1 · e1 − 0)− (e1 − e0).

Thus
I = e− (e− 1) = 1.

Theorem 49 (First Substitution Rule) Suppose ϕ is differentiable on [a, b] and its derivative
ϕ′(t) is continuous. If f is continuous on the range of ϕ, then

∫ b

a
f
(
ϕ(t)

)
ϕ′(t) dt =

∫ ϕ(b)

ϕ(a)
f(x) dx.

Example 50 Evaluate

I =
∫ π/2

0
sin2(t) cos(t) dt.

Solution. Let ϕ(t) = sin(t). Then ϕ′(t) = cos(t), and when t = 0, ϕ(0) = 0; when t = π
2 ,

ϕ(π2 ) = 1. Thus, by Theorem ??,

I =
∫ π/2

0
sin2(t) cos(t) dt =

∫ 1

0
x2 dx =

[
x3

3

]1
0

= 1
3 .

Theorem 51 (Second Substitution Rule) Let f : [a, b]→ R be continuous, and let ϕ : [α, β]→
[a, b] be differentiable with continuous derivative. Then∫ b

a
f(x) dx =

∫ β

α
f
(
ϕ(t)

)
ϕ′(t) dt.
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Example 52 Evaluate

I =
∫ 4

0

√
x dx.

Solution. Let ϕ(t) = t2, so that ϕ′(t) = 2t. When t = 0, ϕ(0) = 0; when t = 2, ϕ(2) = 4.
Thus, by Theorem ??,

I =
∫ 4

0

√
x dx =

∫ 2

0

√
t2 · 2t dt =

∫ 2

0
2t2 dt.

Since
√
t2 = t for t ≥ 0, we compute

I =
[

2
3 t

3
]2

0
= 16

3 .

Theorem 53 (Mean Value Theorem for Integrals) If g : [a, b]→ R is continuous, then there
exists c ∈ (a, b) such that ∫ b

a
g = (b− a)g(c).

Proof. Apply the Mean Value Theorem to the function x 7→
∫ x
a g, which by the Fundamental

Theorem of Calculus is an antiderivative of g.

Exercise 54 Suppose f is continuous on [0,∞) and limx→∞ f(x) = a. Show that

lim
x→∞

1
x

∫ x

0
f(t) dt = a.

Hint. Fix N large and use the mean value theorem for integrals on [N, x].

Proof. Fix ε > 0. Since limx→∞ f(x) = a, choose N so large that |f(t)− a| < ε for all t ≥ N . For
x > N , write

1
x

∫ x

0
f(t) dt = N

x

1
N

∫ N

0
f(t) dt + x−N

x

1
x−N

∫ x

N
f(t) dt.

By the mean value theorem for integrals (continuity of f), there exists ξx ∈ (N, x) such that
1

x−N

∫ x

N
f(t) dt = f(ξx).

Hence
1
x

∫ x

0
f(t) dt = N

x
mN + x−N

x
f(ξx), where mN := 1

N

∫ N

0
f(t) dt.

Subtract a and estimate:∣∣∣∣1x
∫ x

0
f(t) dt− a

∣∣∣∣ ≤ N

x
|mN | + x−N

x
|f(ξx)− a| + N

x
|a| ≤ N

x

(
|mN |+ |a|

)
+ ε,

because ξx ∈ (N, x) implies |f(ξx)− a| < ε. Letting x→∞, the first term tends to 0, so the whole
expression is ≤ ε in the limit. Since ε > 0 is arbitrary, the limit equals a.

Improper Integrals
In this section, we study improper integrals, which arise in two main situations:

• One of the integration limits is infinite,

• The function becomes unbounded (e.g., has a vertical asymptote) at a boundary point.

We will consider these two cases in detail.
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Case 1: Integration over an Infinite Interval
Definition 55 Let f : [a,∞) → R be a function that is Riemann integrable over every finite
interval [a,R], for a < R <∞. If the limit

lim
R→∞

∫ R

a
f(x) dx

exists and is finite, then the improper integral is said to converge, and we define

∫ ∞
a

f(x) dx := lim
R→∞

∫ R

a
f(x) dx.

Similarly, for a function f : (−∞, a]→ R, we define∫ a

−∞
f(x) dx := lim

R→−∞

∫ a

R
f(x) dx,

provided the limit exists.

Example

Consider the integral ∫ ∞
1

1
xs
dx.

We compute: ∫ R

1

1
xs
dx =


1

s− 1

(
1− 1

Rs−1

)
, s 6= 1,

logR, s = 1.

Taking the limit as R→∞, we get:

∫ ∞
1

1
xs
dx =


1

s− 1 , if s > 1,

diverges, if s ≤ 1.

Case 2: The Function is Unbounded at an Endpoint
Definition 56 Let f : (a, b] → R be a function that is Riemann integrable over every interval
[a+ ε, b], for 0 < ε < b− a. If the limit

lim
ε↘0

∫ b

a+ε
f(x) dx

exists and is finite, then the improper integral is said to converge, and we define

∫ b

a
f(x) dx := lim

ε↘0

∫ b

a+ε
f(x) dx.
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Example

Let us evaluate ∫ 1

0

1
xs
dx.

For s 6= 1, we compute: ∫ 1

ε

1
xs
dx = 1

1− s
(
1− ε1−s

)
.

Now take the limit as ε→ 0+:

lim
ε→0+

ε1−s =
{

0, s < 1,
∞, s > 1.

Hence, ∫ 1

0

1
xs
dx =


1

1− s, if s < 1,

diverges, if s ≥ 1.
We now consider the general case of improper integrals over open intervals.

Definition 57 Let f : (a, b) → R, where a ∈ R ∪ {−∞} and b ∈ R ∪ {∞}, be a function that is
Riemann integrable over every compact subinterval [α, β] ⊂ (a, b). Let c ∈ (a, b) be arbitrary. If
both of the improper integrals∫ c

a
f(x) dx := lim

α↘a

∫ c

α
f(x) dx,

∫ b

c
f(x) dx := lim

β↗b

∫ β

c
f(x) dx

converge, then the integral over the full interval is called convergent, and we define:∫ b

a
f(x) dx :=

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Note that this definition is independent of the choice of the intermediate point c ∈ (a, b).

Examples
Example 1

According to previous examples, the integral∫ ∞
0

1
xs
dx

diverges for all s ∈ R.

Example 2

The integral ∫ 1

−1

1√
1− x2

dx

converges. We compute:∫ 1

−1

1√
1− x2

dx = lim
ε↘0

∫ 0

−1+ε

1√
1− x2

dx+ lim
ε↘0

∫ 1−ε

0

1√
1− x2

dx

= − lim
ε↘0

sin−1(−1 + ε) + lim
ε↘0

sin−1(1− ε)

= −(−π
2 ) + π

2 = π.
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Example 3

The integral ∫ ∞
−∞

1
1 + x2 dx

also converges: ∫ ∞
−∞

1
1 + x2 dx = lim

R→∞

∫ 0

−R

1
1 + x2 dx+ lim

R→∞

∫ R

0

1
1 + x2 dx

= − lim
R→∞

tan−1(−R) + lim
R→∞

tan−1(R)

= −(−π
2 ) + π

2 = π.

Comparison Test for Improper Riemann Integrals.
Let I = [a,∞). Suppose that f, g : I → R are continuous non-negative functions such that
0 ≤ f(x) ≤ g(x) for all x ∈ I.

1. If
∫∞
a g(x) dx exists, then

∫∞
a f(x) dx also exists.

2. If
∫∞
a f(x) dx diverges, then

∫∞
a g(x) dx also diverges.

A similar result can be proven for I = (−∞, a] and improper integrals over this domain.
Proof. We prove each assertion separately. Since f and g are continuous over [a,∞), these
functions are Riemann integrable over the interval [a, t] for any finite t > a.

1. Since f and g are non-negative, by the ordering property and additivity of integrals, for any
t ≥ a we have ∫ t

a
f(x) dx ≤

∫ t

a
g(x) dx ≤ lim

t→∞

∫ t

a
g(x) dx =

∫ ∞
a

g(x) dx.

Moreover, the integral function F (t) =
∫ t
a f(x) dx on [a,∞) is an increasing function. Thus, the

limit of F (t) as t→∞ exists since F (t) is bounded by the finite number
∫∞
a g(x) dx.

2. For any t ≥ a, we have the ordering∫ t

a
f(x) dx ≤

∫ t

a
g(x) dx.

Taking the limit t → ∞ on both sides, since
∫∞
a f(x) dx diverges, it must approach ∞. Thus, we

conclude that limt→∞
∫ t
a g(x) dx =∞, implying that

∫∞
a g(x) dx also diverges.

Limit Comparison Test for Improper Riemann Integrals
Let I = [a,∞). Suppose that f, g : I → R are continuous positive functions. Suppose further that

lim
x→∞

f(x)
g(x) = L

for some 0 < L < ∞. Then either both improper Riemann integrals
∫∞
a f(x) dx and

∫∞
a g(x) dx

exist, or both diverge. In other words,∫ ∞
a

f(x) dx exists ⇐⇒
∫ ∞
a

g(x) dx exists.
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Theorem 58 (Integral Test) Suppose f : [1,∞)→ [0,∞) is decreasing and Riemann integrable
on [1, b] for all b > 1.

(i) The series
∑∞
n=1 f(n) is convergent if and only if the improper integral

∫∞
1 f(t) dt is conver-

gent.

(ii) If the series is convergent, then for every n ∈ N,

∫ ∞
n+1

f(t) dt ≤
∞∑

k=n+1
f(k) ≤

∫ ∞
n

f(t) dt.

Proof. (i) Since f is decreasing and integrable over [k − 1, k], we have

f(k) ≤
∫ k

k−1
f(t) dt ≤ f(k − 1) (k ≥ 2). (4.1)

Summing (??) from k = 2 to k = n gives

n∑
k=2

f(k) ≤
∫ n

1
f(t) dt ≤

n−1∑
k=1

f(k).

If
∑∞
k=1 f(k) converges, then the rightmost bound shows

∫ n
1 f is bounded above by the series’ sum;

hence
∫∞

1 f converges. Conversely, if
∫∞

1 f converges, then the leftmost bound shows the partial
sums

∑n
k=2 f(k) are bounded, and since f ≥ 0 they form an increasing sequence; thus

∑∞
k=1 f(k)

converges.
(ii) Summing (??) from k = n+ 1 to k = m (m > n) yields

m∑
k=n+1

f(k) ≤
∫ m

n
f(t) dt ≤

m−1∑
k=n

f(k).

Rewriting the middle term by shifting limits,
∫ m+1

n+1
f(t) dt ≤

m∑
k=n+1

f(k) ≤
∫ m

n
f(t) dt.

Letting m→∞ (and using (i) for existence of the improper integral) gives

∫ ∞
n+1

f(t) dt ≤
∞∑

k=n+1
f(k) ≤

∫ ∞
n

f(t) dt,

which proves (ii). �

Exercises: Improper Integrals
1. Evaluate the following improper integrals:
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(a)
∫ 1

0
log x dx

Solution. This is improper at x = 0. Integrate by parts (or use a known primitive):∫
log x dx = x log x− x+ C.

Hence ∫ 1

0
log x dx = lim

ε→0+

[
x log x− x

]1
ε

=
(
1 · 0− 1

)
− lim
ε→0+

(
ε log ε− ε

)
= −1,

since ε log ε→ 0 as ε→ 0+.

(b)
∫ 2

1

1
x log x dx

Solution. Improper at x = 1+. With u = log x, du = dx/x, so∫ 1
x log x dx =

∫ 1
u
du = log |u|+ C = log(log x) + C.

Thus ∫ 2

1

1
x log x dx = lim

ε→0+

[
log(log x)

]2
1+ε

= log(log 2)− lim
ε→0+

log(log(1 + ε)).

Since log(1 + ε) ∼ ε→ 0+, we have log(log(1 + ε))→ −∞, hence the integral∫ 2

1

1
x log x dx = +∞ (diverges).

(c)
∫ ∞
−∞

1
1 + x2 dx

Solution. Use arctan x:∫ ∞
−∞

1
1 + x2 dx =

[
arctan x

]∞
−∞

= π

2 −
(
−π2

)
= π.

(d)
∫ ∞

0

dx√
x (x+ 1)

Solution. Let x = t2 (t ≥ 0). Then dx = 2t dt and
√
x = t:∫ ∞

0

dx√
x (x+ 1) =

∫ ∞
0

2t dt
t (t2 + 1) = 2

∫ ∞
0

dt

t2 + 1 = 2
[
arctan t

]∞
0

= 2 · π2 = π.

(e)
∫ 2

−2

dx√
4− x2

Solution. Set x = 2 sin θ, dx = 2 cos θ dθ, and
√

4− x2 = 2 cos θ with θ ∈ [−π/2, π/2]:∫ 2

−2

dx√
4− x2

=
∫ π/2

−π/2

2 cos θ dθ
2 cos θ =

∫ π/2

−π/2
dθ = π.
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Exercise 59 Suppose f ∈ R(a, c) for all c > a (i.e. f is Riemann integrable on every finite interval
[a, c]). Prove the equivalence of the following statements:

(a) f has a convergent improper integral on [a,∞), i.e.∫ ∞
a

f(x) dx := lim
t→∞

∫ t

a
f(x) dx exists (as a finite real number).

(b) For every ε > 0 there exists N > a such that for all b, c > N ,∣∣∣∣∫ c

b
f(x) dx

∣∣∣∣ < ε.

Proof. Define the function of the upper limit

F (t) :=
∫ t

a
f(x) dx, t > a.

By assumption F (t) is well-defined for all t > a.

(a)⇒(b). Assume lim
t→∞

F (t) = L ∈ R. Let ε > 0. Then there exists N > a such that for all u > N ,

|F (u)− L| < ε/2.

Hence for any b, c > N ,∣∣∣∣∫ c

b
f(x) dx

∣∣∣∣ = |F (c)− F (b)| ≤ |F (c)− L|+ |F (b)− L| < ε/2 + ε/2 = ε.

Thus (b) holds.

(b)⇒(a). Assume (b). We show that
(
F (t)

)
t>a

is a Cauchy net (equivalently, the limit limt→∞ F (t)
exists). Fix ε > 0 and choose N as in (b). Then for all b, c > N ,

|F (c)− F (b)| =
∣∣∣∣∫ c

b
f(x) dx

∣∣∣∣ < ε.

Hence the values F (t) form a Cauchy family for large t, and since R is complete, there exists L ∈ R
with

lim
t→∞

F (t) = L.

By definition, this means the improper integral
∫ ∞
a

f(x) dx converges (to L). Thus (a) holds.

We have proved (a)⇐⇒ (b).

Exercise 60 Suppose f, g ∈ R(a, c) for all c > a, and |f(x)| ≤ g(x) for all x ∈ [a,∞). If∫ ∞
a

g(x) dx is convergent, prove that
∫ ∞
a

f(x) dx is also convergent. Use this to prove the existence

of the integral
∫ ∞

0

dx

1 + x4 .
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Proof. Assume |f | ≤ g on [a,∞) and
∫∞
a g <∞. By the Cauchy criterion for improper integrals,

for every ε > 0 there exists N > a such that for all b, c > N ,∣∣∣∣∫ c

b
g(x) dx

∣∣∣∣ =
∫ c

b
g(x) dx < ε.

Then, for all b, c > N , ∣∣∣∣∫ c

b
f(x) dx

∣∣∣∣ ≤ ∫ c

b
|f(x)| dx ≤

∫ c

b
g(x) dx < ε.

Hence
∫∞
a f(x) dx satisfies the Cauchy criterion and therefore converges. Moreover,

∫∞
a |f(x)| dx ≤∫∞

a g(x) dx <∞, so the convergence is absolute.

(Application to
∫ ∞

0

dx

1 + x4 ). Let f(x) = 1
1+x4 on (0,∞).

Near 0: f is continuous on [0, 1], hence Riemann integrable there.
On the tail [1,∞): For x ≥ 1,

0 ≤ 1
1 + x4 ≤

1
x4 =: g(x).

Since ∫ ∞
1

dx

x4 =
[
− 1

3x3

]∞
1

= 1
3 ,

the comparison above shows
∫∞

1
dx

1+x4 converges. Combining with integrability on [0, 1], we conclude∫ ∞
0

dx

1 + x4 exists (is finite).

Example 4: Evaluation of the Dirichlet Integral

We evaluate the improper integral: ∫ ∞
0

sin x
x

dx.

Although the integrand is undefined at x = 0, we extend it continuously by defining:

sin x
x

∣∣
x=0 := lim

x→0

sin x
x

= 1.

This makes the function continuous on [0,∞). We define the sine integral function:

Si(x) :=
∫ x

0

sin t
t

dt.

The function Si(x) is continuous for all x ≥ 0, although it cannot be written using elementary
functions.

The integrand sinx
x changes sign on each interval [nπ, (n+ 1)π], and we define:

an :=
∣∣∣∣∣
∫ (n+1)π

nπ

sin x
x

dx

∣∣∣∣∣ .
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Then (an) is a decreasing sequence with an → 0, and:

Si(nπ) =
n−1∑
k=0

(−1)kak.

By the Leibniz criterion (alternating series test), this sum converges, so:∫ ∞
0

sin x
x

dx = lim
n→∞

Si(nπ)

exists.
To evaluate the limit, we consider:

Si
(
λπ

2

)
=
∫ π/2

0

sin(λx)
x

dx,

by the substitution t = λx.
Define the auxiliary function:

g(x) :=
{ 1
x −

1
sinx , x 6= 0,

0, x = 0.

Then g is continuous on [0, π/2], and we decompose the integrand:

sin(λx)
x

= sin(λx)
sin x + sin(λx) · g(x).

We now use the following key result:

Theorem 61 (Riemann’s Lemma) Let f ∈ C1([a, b]). Then:

lim
|k|→∞

∫ b

a
f(x) sin(kx) dx = 0.

Proof. Let F (k) :=
∫ b
a f(x) sin(kx) dx. For k 6= 0, we integrate by parts:

F (k) = −f(x) cos(kx)
k

∣∣∣b
a

+ 1
k

∫ b

a
f ′(x) cos(kx) dx.

If |f(x)| ≤M and |f ′(x)| ≤M , then:

|F (k)| ≤ 2M
|k|

+ M(b− a)
|k|

= 2M +M(b− a)
|k|

→ 0 as |k| → ∞.

We apply this lemma with f(x) = g(x) ∈ C1([0, π/2]), which gives:

lim
λ→∞

∫ π/2

0
sin(λx) · g(x) dx = 0.

Hence,

lim
λ→∞

∫ π/2

0

sin(λx)
x

dx = lim
λ→∞

∫ π/2

0

sin(λx)
sin x dx.
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We now evaluate the remaining limit. For every integer n ≥ 1, the following identity holds:

sin((2n+ 1)x)
sin x = 1 + 2

n∑
k=1

cos(2kx).

Integrating term-by-term over [0, π/2], and noting that each cos(2kx) integrates to zero, we get:∫ π/2

0

sin((2n+ 1)x)
sin x dx =

∫ π/2

0
1 dx = π

2 .

Taking the limit n→∞, we conclude:∫ ∞
0

sin x
x

dx = π

2 . �

The Gamma Function
Definition 62 (Euler’s Integral Representation of the Gamma Function) For x > 0, the
Gamma function is defined by

Γ(x) :=
∫ ∞

0
tx−1e−t dt.

Convergence of the improper integral Γ(x) =
∫ ∞

0
tx−1e−t dt] We show carefully that the

integral converges for all x > 0 by splitting it at a convenient point (say 1):∫ ∞
0

tx−1e−t dt =
∫ 1

0
tx−1e−t dt︸ ︷︷ ︸

(∗)

+
∫ ∞

1
tx−1e−t dt︸ ︷︷ ︸

(∗∗)

.

The integral (∗). Since e−t ≤ 1 for all t ≥ 0,

0 ≤ tx−1e−t ≤ tx−1 (0 < t ≤ 1).

Hence, by comparison,∫ 1

0
tx−1e−t dt ≤

∫ 1

0
tx−1 dt =

[
tx

x

]1

0
= 1
x
<∞ iff x > 0.

This also shows the necessity of x > 0: for x ≤ 0, the model integral
∫ 1

0 t
x−1 dt diverges (the

exponent at t = 0 is ≤ −1).

The integral (∗∗). There are two standard (equivalent) ways to bound the tail.
Method A: Limit/comparison. Using the well-known limit

lim
t→∞

tx+1e−t = 0,

by the definition of a limit there exists T ≥ 1 such that

tx+1e−t ≤ 1 for all t ≥ T.
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Equivalently, for t ≥ T ,

e−t ≤ t−(x+1) ⇒ tx−1e−t ≤ tx−1 · t−(x+1) = t−2.

Therefore ∫ ∞
T

tx−1e−t dt ≤
∫ ∞
T

t−2 dt = 1
T
<∞.

The finite piece
∫ T

1 tx−1e−t dt is also finite because the integrand is continuous on [1, T ].
Method B: For any integer m ≥ 1, the series et =

∑∞
k=0

tk

k! implies

et ≥ tm

m! for all t ≥ 0 =⇒ e−t ≤ m! t−m.

Choose an integer m ≥ x+ 1. Then for t ≥ 1,

tx−1e−t ≤ m! tx−1−m ≤ m! t−2,

since x− 1−m ≤ −2. Hence∫ ∞
1

tx−1e−t dt ≤ m!
∫ ∞

1
t−2 dt = m! <∞.

Both (∗) and (∗∗) converge for x > 0, so the improper integral Γ(x) =
∫∞

0 tx−1e−t dt is finite
exactly for x > 0.

Theorem 63 (Functional Equation and Factorial Formula) For all x > 0,

Γ(x+ 1) = xΓ(x).

In particular, for all n ∈ N,
Γ(n+ 1) = n!.

Proof. Consider ∫ R

ε
txe−t dt for 0 < ε < R.

Integration by parts with u = tx, dv = e−tdt (hence du = xtx−1dt, v = −e−t) yields∫ R

ε
txe−t dt = −txe−t

∣∣∣t=R
t=ε

+ x

∫ R

ε
tx−1e−t dt.

Letting ε→ 0 andR→∞, the boundary terms vanish because limR→∞R
xe−R = 0 and limε→0 ε

xe−ε =
0. Thus,

Γ(x+ 1) = xΓ(x).

Moreover,
Γ(1) =

∫ ∞
0

e−t dt = 1,

so by iteration we obtain Γ(n+ 1) = n!.
Remark The Gamma function Γ : (0,∞) → R extends the factorial function to the positive

reals in the sense that Γ(n+1) = n! for integers n. The functional equation alone does not determine
Γ uniquely; an additional property such as logarithmic convexity is needed for full characterization.
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Exercises
Exercise 1. Let

f(x) =

1, x ∈ [0, 1
2),

0, x ∈ [1
2 , 1].

Show that f is Riemann integrable on [0, 1] and compute
∫ 1

0
f(x) dx.

Solution.
Fix ε > 0 and consider the partition

P =
{

0, 1
2 −

ε
2 ,

1
2 ,

1
2 + ε

2 , 1
}
.

On this partition, the only discrepancy between upper and lower sums occurs in the small interval
[1
2 −

ε
2 ,

1
2 ], where the function jumps from 1 to 0. Thus

L(P, f) = 1
2 −

ε
2 , U(P, f) = 1

2 .

Hence
0 ≤ U(P, f)− L(P, f) = ε

2 .

Therefore f is Riemann integrable.
Finally, by the squeeze theorem,

1
2 −

ε
2 ≤

∫ 1

0
f(x) dx ≤ 1

2 for all ε > 0.

Letting ε→ 0, we conclude ∫ 1

0
f(x) dx = 1

2 .

Exercise 2. Determine whether

f(x) =

x, x ∈ Q,

0, x /∈ Q,
x ∈ [0, 1],

is Riemann integrable on [0, 1].

Solution. Let P = {x0, . . . , xn} be a partition of [0, 1]. Since each interval [xk−1, xk] contains
irrational points, we always have

inf
[xk−1,xk]

f = 0,

so that

L(f, P ) =
n∑
k=1

inf
[xk−1,xk]

f (xk − xk−1) = 0 for all P ,

and therefore supP L(f, P ) = 0.
On the other hand, since rationals are dense, the supremum of f on [xk−1, xk] is attained

arbitrarily close to xk, hence
sup

[xk−1,xk]
f = xk,
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and thus
U(f, P ) =

n∑
k=1

xk(xk − xk−1).

A direct computation shows

xk(xk − xk−1) = 1
2(x2

k − x2
k−1) + 1

2(xk − xk−1)2,

and summing over all k yields

U(f, P ) = 1
2 + 1

2

n∑
k=1

(xk − xk−1)2.

If we denote ∆k = xk − xk−1 and ‖P‖ = maxk ∆k, then

0 ≤ U(f, P )− 1
2 = 1

2

n∑
k=1

∆2
k ≤ 1

2 ‖P‖
n∑
k=1

∆k = 1
2 ‖P‖.

Thus, whenever ‖P‖ < 2ε, we obtain

1
2 ≤ U(f, P ) ≤ 1

2 + ε.

It follows that
inf
P
U(f, P ) = 1

2 .

Collecting the results,
U(f) = 1

2 , L(f) = 0.

Since the upper and lower Riemann integrals differ, the function f is not Riemann integrable on
[0, 1].

Remark. Because f(x) = 0 on all irrationals and the rationals form a set of measure zero, the
Lebesgue integral exists and equals ∫ 1

0
f(x) dx = 0.

Exercise 3. Decide whether

f(x) =

2x, x ∈ [0, 1
2),

x− 2, x ∈ [1
2 , 1],

is Riemann integrable on [0, 1] using an explicit sequence of partitions Pn. Then compute
∫ 1

0
f(x) dx

.
For n ∈ N, set h = 1

2n and take

Pn = {0, h, 2h, . . . , 1
2 ,

1
2 + h, . . . , 1}, ‖Pn‖ = h→ 0.

No subinterval crosses the jump at x = 1
2 .

On [0, 1
2 ], f(x) = 2x is increasing, so on Ik = [(k − 1)h, kh] the minimum is 2(k − 1)h:

L
(
f, [0, 1

2 ], Pn
)

=
n∑
k=1

(
2(k − 1)h

)
· h = 2h2

n∑
k=1

(k − 1) = h2 n(n− 1)
1 = n− 1

4n .
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On [1
2 , 1], f(x) = x−2 is increasing, so on Jj = [1

2 +(j−1)h, 1
2 + jh] the minimum is −3

2 +(j−1)h:

L
(
f, [1

2 , 1], Pn
)

=
n∑
j=1

(
−3

2 + (j − 1)h
)
· h = −3n

2 h+ h2
n∑
j=1

(j − 1) = −3
4 + n− 1

8n .

Hence
L(f, Pn) = n− 1

4n − 3
4 + n− 1

8n = 3(n− 1)
8n − 3

4 .

On [0, 1
2 ], the maximum on Ik is 2kh:

U
(
f, [0, 1

2 ], Pn
)

=
n∑
k=1

(2kh) · h = 2h2
n∑
k=1

k = h2n(n+ 1) = n+ 1
4n .

On [1
2 , 1], the maximum on Jj is −3

2 + jh:

U
(
f, [1

2 , 1], Pn
)

=
n∑
j=1

(
−3

2 + jh
)
· h = −3n

2 h+ h2
n∑
j=1

j = −3
4 + n+ 1

8n .

Thus
U(f, Pn) = n+ 1

4n − 3
4 + n+ 1

8n = 3(n+ 1)
8n − 3

4 .

Note
U(f, Pn)− L(f, Pn) = 3(n+ 1)

8n − 3
4 −

(3(n− 1)
8n − 3

4
)

= 3
4n −−−→n→∞

0,

and
lim
n→∞

L(f, Pn) = 3
8 −

3
4 = −3

8 = lim
n→∞

U(f, Pn).

Since for all n,

L(f, Pn) ≤
∫ 1

0
f(x) dx ≤ U(f, Pn),

the squeeze theorem yields ∫ 1

0
f(x) dx = −3

8 .

Exercise 4. Suppose f, g : [a, b] → R and f(x) = g(x) for all x ∈ [a, b). If f ∈ R[a, b], prove that
g ∈ R[a, b] and ∫ b

a
g(x) dx =

∫ b

a
f(x) dx.

Solution. Both f and g are bounded, since they differ only at the single point b. Let M > 0
be such that |f(x)|, |g(x)| ≤M on [a, b].

Because f ∈ R[a, b], for any ε > 0 there exists a partition Q of [a, b] with

U(f,Q)− L(f,Q) < ε
2 .

Now refine Q by inserting b− δ for some δ > 0 to obtain a partition P . Refinement cannot increase
the gap, so

U(f, P )− L(f, P ) < ε
2 .



57

The only difference between f and g occurs on the final subinterval [b− δ, b]. On that interval,
the upper (resp. lower) sum of a bounded function h contributes at most Mδ in magnitude. Hence

|U(f, P )− U(g, P )| ≤ 2Mδ, |L(f, P )− L(g, P )| ≤ 2Mδ.

Choosing δ < ε
4M ensures that each difference is < ε

2 . Therefore

U(g, P )− L(g, P ) ≤ (U(f, P )− L(f, P )) + |U(g, P )− U(f, P )|+ |L(f, P )− L(g, P )| < ε.

Thus g ∈ R[a, b].
Finally, since integrals are trapped between upper and lower sums,

∣∣∣∫ b

a
f(x) dx−

∫ b

a
g(x) dx

∣∣∣ ≤ max
{
|U(f, P )− U(g, P )|, |L(f, P )− L(g, P )|

}
< ε.

As ε > 0 is arbitrary, we conclude ∫ b

a
f(x) dx =

∫ b

a
g(x) dx.

Remark. In general, if we modify the value of a Riemann integrable function at a finite set of
points, the function remains Riemann integrable and the value of the integral does not change. This
is because upper and lower sums depend only on suprema and infima over intervals, and changing
finitely many points cannot affect these values.

Example. Let

g(x) =


1, x = 0,
sin x
x

, x ∈ (0, 1],
f(x) =


A, x = 0 (A ∈ R),
sin x
x

, x ∈ (0, 1].

The function g is continuous on [0, 1], since

lim
x→0+

sin x
x

= 1 = g(0),

and therefore g ∈ R[0, 1]. Since f differs from g only at the single point x = 0, the remark applies,
giving ∫ 1

0
f(x) dx =

∫ 1

0
g(x) dx.

Thus the value of the integral is independent of the choice of A.

Exercise 5. Let f : [a, b] → R be continuous and f(x) ≥ 0 on [a, b]. If
∫ b

a
f(x) dx = 0, prove

that f(x) = 0 for all x ∈ [a, b].

Solution. Suppose, for contradiction, that there exists x0 ∈ [a, b] with f(x0) > 0. Set

m = 1
2f(x0) > 0.

By continuity of f at x0, for ε = m there exists δ > 0 such that

|x− x0| < δ =⇒ |f(x)− f(x0)| < m.
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From this inequality we obtain
f(x) > f(x0)−m = m,

so every point sufficiently close to x0 has f(x) ≥ m.
Now define

δ′ = min{δ, x0 − a, b− x0} > 0,

and set
I = [x0 − δ′, x0 + δ′].

Then I ⊆ [a, b] and f(x) ≥ m for all x ∈ I.
Next, introduce the auxiliary function

g(x) =

f(x), x ∈ I,

0, x /∈ I.

Clearly 0 ≤ g(x) ≤ f(x) on [a, b], so∫ b

a
f(x) dx ≥

∫ b

a
g(x) dx =

∫
I
f(x) dx.

But since f(x) ≥ m on I and |I| = 2δ′, we obtain∫
I
f(x) dx ≥

∫
I
mdx = m · |I| = 2mδ′ > 0.

Thus ∫ b

a
f(x) dx > 0,

contradicting the hypothesis
∫ b
a f(x) dx = 0.

Therefore no such x0 can exist, and the only possibility is that

f(x) = 0 for all x ∈ [a, b].

Counterexample (necessity of continuity). Consider

f(x) =

1, x = 0,

0, x ∈ (0, 1],

on the interval [0, 1]. Here f(x) ≥ 0 everywhere, but∫ 1

0
f(x) dx = 0,

since changing the value of a function at a single point does not affect the Riemann integral.
Nevertheless, f(0) = 1 6= 0, so the conclusion fails if continuity is dropped.

Counterexample (necessity of nonnegativity). Consider the continuous function

f(x) = sin(2πx), x ∈ [0, 1].
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It is continuous but changes sign: f(x) > 0 on (0, 1
2) and f(x) < 0 on (1

2 , 1). Computing the
integral, ∫ 1

0
sin(2πx) dx =

[
− 1

2π cos(2πx)
]1

0
= − 1

2π (cos(2π)− cos(0)) = 0.

Hence
∫ 1

0 f(x) dx = 0 but f 6≡ 0.

Exercise 6. Let f : [a, b]→ R be continuous. Assume that∫ b

a
f(x) g(x) dx = 0 for every g ∈ R(a, b).

Prove that f(x) = 0 for all x ∈ [a, b].

Solution. Since f is continuous, we know f ∈ R(a, b). Taking g = f in the hypothesis gives∫ b

a
f(x)2 dx = 0.

The function f2 is continuous and satisfies f2(x) ≥ 0 for all x ∈ [a, b]. Applying the result of
Exercise 5 to f2, we conclude that

f(x)2 = 0 for all x ∈ [a, b].

Hence f(x) = 0 identically on [a, b].

Remark (Hilbert space perspective). Consider the space R([0, 1]) of Riemann integrable
functions on [0, 1], equipped with the inner product

〈f, g〉 =
∫ 1

0
f(x)g(x) dx.

Exercise 6 shows that if f ∈ C([0, 1]) satisfies

〈f, g〉 = 0 for all g ∈ R([0, 1]),

then necessarily f ≡ 0. In other words, the orthogonal complement of the set of continuous functions
C([0, 1]) inside the inner product space R([0, 1]) is trivial:

C([0, 1])⊥ = {0}.

This means that continuous functions are “dense in the sense of orthogonality” within R([0, 1]):
no nonzero function can be orthogonal to all continuous test functions.

Definition 64 (Metric and Metric Space) Let X be a set. A function ρ : X ×X → [0,∞) is
called a metric on X if, for all x, y, z ∈ X,

(M1) Nonnegativity: ρ(x, y) ≥ 0.

(M2) Identity of indiscernibles: ρ(x, y) = 0 ⇐⇒ x = y.

(M3) Symmetry: ρ(x, y) = ρ(y, x).

(M4) Triangle inequality: ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

The pair (X, ρ) is then called a metric space.
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Exercise 7. Let C([a, b]) denote the space of real-valued continuous functions on [a, b]. For
f, g ∈ C([a, b]), define

ρ(f, g) :=
∫ b

a
|f(x)− g(x)| dx.

(i) ρ is a metric on C([a, b]) in the sense of (M1)–(M4).

(ii) Writing ‖h‖L1 :=
∫ b
a |h(x)| dx, we have ρ(f, g) = ‖f − g‖L1 ; i.e. ρ is the distance associated

with the L1–norm.

Proof. (M1) For each x, |f(x)− g(x)| ≥ 0, hence ρ(f, g) =
∫ b
a |f − g| dx ≥ 0.

(M2) If f = g, then |f − g| ≡ 0 and ρ(f, g) = 0. Conversely, if ρ(f, g) = 0 then φ := |f − g| ∈
C([a, b]), φ ≥ 0 and

∫ b
a φ = 0. If φ(x0) > 0 for some x0, continuity gives ε, δ > 0 with φ(x) ≥ ε on

(x0 − δ, x0 + δ) ∩ [a, b], whence∫ b

a
φ ≥ ε · length

(
(x0 − δ, x0 + δ) ∩ [a, b]

)
> 0,

a contradiction. Thus φ ≡ 0 and f = g.
(M3) |f − g| = |g − f | pointwise, so ρ(f, g) = ρ(g, f).
(M4) The pointwise triangle inequality gives |f − h| ≤ |f − g| + |g − h| on [a, b]. Integrating

and using linearity/monotonicity of the integral,

ρ(f, h) =
∫ b

a
|f − h| ≤

∫ b

a
|f − g|+

∫ b

a
|g − h| = ρ(f, g) + ρ(g, h).

This proves (i). For (ii), the equality ρ(f, g) = ‖f − g‖L1 is immediate from the definitions.
Exercise 8.
For n ∈ N, define fn : [0, 1]→ R by

fn(x) =


0, x ≤ 1

2 ,

n
(
x− 1

2

)
, 1

2 < x ≤ 1
2 + 1

n ,

1, x > 1
2 + 1

n .

Show that for all m,n,

ρ(fn, fm) =
∫ 1

0
|fn − fm| dx =

∣∣∣ 1
2m −

1
2n

∣∣∣ −−−−−→
n,m→∞

0.

Solution Assume n ≥ m and set t = x − 1
2 . Then fn and fm can differ only for t ∈ (0, 1

m ].
Split into two regions.

(1) t ∈ (0, 1
n ]: fn = nt, fm = mt, hence |fn − fm| = (n−m)t and

∫ 1/n

0
(n−m)t dt = n−m

2n2 .

(2) t ∈ ( 1
n ,

1
m ]: fn = 1, fm = mt, so |fn − fm| = 1−mt and

∫ 1/m

1/n
(1−mt) dt =

[
t− m

2 t
2
]1/m

1/n
= 1

2m −
1
n

+ m

2n2 .
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Adding the two contributions gives

ρ(fn, fm) = n−m
2n2 +

( 1
2m −

1
n

+ m

2n2

)
= 1

2m −
1

2n =
∣∣∣ 1
2m −

1
2n

∣∣∣.
Hence ρ(fn, fm)→ 0 as n,m→∞, so (fn) is Cauchy in the L1 metric.

Remark With the inner product 〈f, g〉 =
∫ 1

0 f(x)g(x) dx on R([0, 1]), Exercise from above
shows that the orthogonal complement of C([0, 1]) is trivial: C([0, 1])⊥ = {0}. On the other
hand, the metric space (C([0, 1]), ρ) is not complete: in Exercise from above, (fn) is Cauchy but
converges pointwise (and in L1) to the discontinuous step function 1(1/2, 1], which is not in C([0, 1]).
The completion of (C([0, 1]), ρ) is the Banach space L1([0, 1]) (functions modulo equality a.e.).

Exercise 9.

(a) lim
n→∞

n∑
k=1

1
n

cos
(kπ
n

)
=
∫ 1

0
cos(πx) dx = 1

π
sin(πx)

∣∣∣1
0

= 0.

(b) lim
n→∞

n∑
k=1

n

n2 + k2 = lim
n→∞

n∑
k=1

1
n

1
1 + (k/n)2 =

∫ 1

0

dx

1 + x2 = arctan x
∣∣∣1
0

= π

4 .

(c) lim
n→∞

∑2n
k=1 k

3

24n4 = lim
n→∞

( (2n)(2n+1)
2

)2
24n4 = lim

n→∞
n2(2n+ 1)2

24n4 = lim
n→∞

4 + 4
n + 1

n2

24 = 1
6 .

Exercise 10. Suppose f ∈ R(a, b) and c ∈ R. Define g : [a+ c, b+ c]→ R by

g(x) = f(x− c) (x ∈ [a+ c, b+ c]).

Show that g ∈ R(a+ c, b+ c) and ∫ b+c

a+c
g(x) dx =

∫ b

a
f(x) dx.

Solution Let P = {x0 < · · · < xn} be a partition of [a, b] and set Q = P +c = {yi := xi+c}ni=0,
a partition of [a+ c, b+ c]. For each i,

[yi−1, yi] = [xi−1 + c, xi + c], yi − yi−1 = xi − xi−1,

and since g(t) = f(t− c) the ranges on corresponding subintervals agree:

{g(t) : t ∈ [yi−1, yi]} = {f(s) : s ∈ [xi−1, xi]}.

Hence mg
i = mf

i and Mg
i = Mf

i , so

L(g,Q) =
n∑
i=1

mg
i (yi − yi−1) =

n∑
i=1

mf
i (xi − xi−1) = L(f, P ), U(g,Q) = U(f, P ).

Because f ∈ R(a, b), for every ε > 0 there is P with U(f, P ) − L(f, P ) < ε; the corresponding Q
then satisfies U(g,Q) − L(g,Q) < ε, so g ∈ R(a + c, b + c). Taking the supremum of lower sums
and infimum of upper sums over all partitions (equivalently, translating partitions back and forth)
yields ∫ b+c

a+c
g(x) dx =

∫ b

a
f(x) dx.
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Exercise 11. Prove that the improper integral∫ ∞
0

sin x
x

dx

exists, but that ∫ ∞
0

| sin x|
x

dx

does not.
Solution
As x→ 0, we have

sin x
x
→ 1.

Hence the integrand is continuous and bounded near 0, and therefore∫ 1

0

sin x
x

dx

converges.
Consider

I(A) =
∫ A

1

sin x
x

dx.

Integrating by parts, with u = 1/x and dv = sin x dx, we get

I(A) =
[
− cosx

x

]A
1
−
∫ A

1

cosx
x2 dx.

The first term tends to cos(1) as A → ∞ since cosA/A → 0, and the second term converges
absolutely because ∫ ∞

1

| cosx|
x2 dx <∞.

Therefore, limA→∞ I(A) exists, and the improper integral converges.
It is well known that ∫ ∞

0

sin x
x

dx = π

2 .

Divide the integral into intervals of length π:∫ ∞
0

| sin x|
x

dx =
∞∑
n=0

∫ (n+1)π

nπ

| sin x|
x

dx.

For x ∈ [nπ, (n+ 1)π], we have x ≤ (n+ 1)π, hence∫ (n+1)π

nπ

| sin x|
x

dx ≥ 1
(n+ 1)π

∫ (n+1)π

nπ
| sin x| dx.

But ∫ π

0
| sin x| dx = 2,

so ∫ (n+1)π

nπ

| sin x|
x

dx ≥ 2
(n+ 1)π .

Thus,
∞∑
n=1

∫ (n+1)π

nπ

| sin x|
x

dx ≥ 2
π

∞∑
n=1

1
n+ 1 .

The harmonic series diverges, so the given integral diverges to +∞.



Chapter 5

Uniform Convergence of Sequences of
Functions

In the mathematical literature, there are several different notions of convergence for sequences of
functions. In this chapter, we describe the two most important ones: pointwise convergence and
uniform convergence. (Other types also exist, such as L1-convergence, L2-convergence, etc.)

Uniform convergence
Definition 65 Let D ⊂ R, and let fn : D → R be a sequence of functions.

(a) We say that (fn) converges pointwise to a function f : D → R if, for every x ∈ D, the
sequence of real numbers fn(x) converges to f(x):

∀x ∈ D, ∀ε > 0, ∃N = N(x, ε) such that |fn(x)− f(x)| < ε ∀n ≥ N.

(b) We say that (fn) converges uniformly to f on D if:

∀ε > 0, ∃N = N(ε) such that |fn(x)− f(x)| < ε ∀x ∈ D, ∀n ≥ N.

In logical quantifiers:
Pointwise convergence:

∀x ∈ D ∀ε > 0 ∃N ∀n ≥ N : |f(x)− fn(x)| < ε,

or equivalently
∀ε > 0 ∀x ∈ D ∃N ∀n ≥ N : |f(x)− fn(x)| < ε.

Uniform convergence:

∀ε > 0 ∃N ∀x ∈ D ∀n ≥ N : |f(x)− fn(x)| < ε,

or equivalently
∀ε > 0 ∃N ∀n ≥ N : sup

x∈D
|f(x)− fn(x)| ≤ ε.

Note the dependence N = N(ε, x) in the pointwise case vs. N = N(ε) in the uniform case.
Uniform convergence always implies pointwise convergence; this is just the logical implication(

∃N ∀xB(x,N)
)
⇒

(
∀x ∃N B(x,N)

)
.

63



64 CHAPTER 5. UNIFORM CONVERGENCE OF SEQUENCES OF FUNCTIONS

Supremum Criterion
Theorem 66 (Sup–norm characterization of uniform convergence) Let (fn)n∈N be func-
tions fn : D → R and let f : D → R. Then fn → f uniformly on D if and only if

sup
x∈D
|fn(x)− f(x)| −−−→

n→∞
0.

Proof. (⇒) Assume fn → f uniformly on D. By definition, for every ε > 0 there exists N such
that for all n ≥ N and all x ∈ D, |fn(x)− f(x)| < ε. Taking the supremum over x ∈ D gives

sup
x∈D
|fn(x)− f(x)| ≤ ε for all n ≥ N,

hence supx∈D |fn − f | → 0.
(⇐) Conversely, suppose supx∈D |fn(x)− f(x)| → 0. Let ε > 0. Then there exists N such that

for all n ≥ N ,
sup
x∈D
|fn(x)− f(x)| < ε.

In particular, for every x ∈ D we have |fn(x)− f(x)| ≤ supy∈D |fn(y)− f(y)| < ε. This is precisely
the definition of uniform convergence.

Remark 67 Equivalently, writing ‖g‖∞,D := supx∈D |g(x)| (the sup–norm on D), the theorem
states:

fn
unif. on D−−−−−−−−→ f ⇐⇒ ‖fn − f‖∞,D → 0.

Examples
Example 1 (powers on different domains). Let D1 = [0, 1

2 ], D2 = [0, 1), D3 = [0, 1], and
fn(x) = xn. Set f(x) := limn→∞ fn(x) pointwise.
• On D1 and D2, f(x) = 0 for all x (since |x| < 1). Define

Mn(D) := sup
x∈D
|f(x)− fn(x)|.

On D1,
Mn(D1) = sup

0≤x≤1/2
xn = (1/2)n −→ 0,

so fn → f uniformly on D1.

• On D2,
Mn(D2) = sup

0≤x<1
xn = 1,

because xn → 1 as x ↑ 1 (the supremum is not attained). Hence no uniform convergence,
although fn → f pointwise.

• On D3, the pointwise limit is

f(x) =
{

0, 0 ≤ x < 1,
1, x = 1,

which is discontinuous. Uniform convergence fails again; in fact we have a quantitative
obstruction: taking xn := 1− 1

n ,

|f(xn)− fn(xn)| = (1− 1
n)n −→ e−1 > 0,

so Mn(D3) ≥ (1− 1
n)n 6→ 0.
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Example 2 . On D = [0, 1] define

fn(x) =
{

1− nx, 0 ≤ x < 1
n ,

0, 1
n ≤ x ≤ 1,

f(x) =
{

1, x = 0,
0, x > 0.

Then fn → f pointwise on [0, 1]. Moreover,

|f(x)− fn(x)| =
{

0, x = 0 or x ≥ 1
n ,

1− nx, 0 < x < 1
n ,

so
Mn([0, 1]) = sup

0<x<1/n
(1− nx) = 1,

(the supremum is approached as x ↓ 0 but not attained). Hence convergence is not uniform, and
the limit f is discontinuous despite each fn being continuous.

Exercise 68 Suppose fn → f uniformly on D and gn → g uniformly on D. Show (or give
counterexamples, where appropriate):

1. (fn + gn)→ f + g uniformly on D.

2. (fngn)→ fg uniformly on D (hint: assume boundedness or supply a counterexample).

Exercise 69 If fn converges uniformly to f on D and also uniformly to f on E, then it converges
uniformly to f on D ∪ E.

If fn : [a, b]→ R converges uniformly on (a, b) and the sequences (fn(a)) and (fn(b)) converge,
show that fn converges uniformly on [a, b].

Geometric Picture
For D ⊂ R and real f , the ε–band around the graph of f is

Gε(f) := {(x, y) ∈ D × R : |y − f(x)| < ε}.

Then fn → f uniformly iff for each ε > 0 there exists N such that for every n ≥ N , the graph of
fn is contained in Gε(f).

A Majorant Test for Uniform Convergence
Exercise 70 (Majorant criterion) If there exist numbers Mn ≥ 0 with Mn → 0 and

|f(x)− fn(x)| ≤Mn for all x ∈ D, n ∈ N,

then fn → f uniformly on D.

Exercise 71 Show that lim
n→∞

sin(nx)
n2 + x2 = 0 uniformly for x ∈ [0,∞).

Exercise 72 (Majorant criterion) If there exist numbers Mn ≥ 0 with Mn → 0 and

|f(x)− fn(x)| ≤Mn for all x ∈ D, n ∈ N,

then fn → f uniformly on D.
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Proof. Taking suprema over x ∈ D gives

sup
x∈D
|f(x)− fn(x)| ≤Mn (n ∈ N).

Since Mn → 0, it follows that supx∈D |f(x) − fn(x)| → 0. By the supremum criterion for uniform
convergence, fn → f uniformly on D.

Exercise 73 Show that lim
n→∞

sin(nx)
n2 + x2 = 0 uniformly for x ∈ [0,∞).

Proof. For every n ∈ N and x ≥ 0,∣∣∣∣ sin(nx)
n2 + x2

∣∣∣∣ ≤ 1
n2 + x2 ≤

1
n2 .

Hence
sup

x∈[0,∞)

∣∣∣∣ sin(nx)
n2 + x2

∣∣∣∣ ≤ 1
n2 −−−→n→∞

0,

so the convergence to 0 is uniform on [0,∞).

Detecting Failure of Uniform Convergence
Exercise 74 The following are equivalent for a sequence (fn) and a function f on D:

1. fn 6→ f uniformly on D.

2. There exist ε > 0, a sequence (xk) in D, and integers n1 < n2 < · · · such that |f(xk) −
fnk

(xk)| ≥ ε for all k.

3. There is a countable subset D1 ⊂ D such that fn 6→ f uniformly on D1.

Proof. (1)⇒ (2): Negating uniform convergence yields

∃ ε > 0 ∀N ∃n ≥ N ∃x ∈ D : |f(x)− fn(x)| ≥ ε.

Choose nk inductively with nk ≥ k and corresponding xk ∈ D so that |f(xk)− fnk
(xk)| ≥ ε. This

gives (2).
(2) ⇒ (3): Let D1 := {xk : k ∈ N} (countable). If the convergence were uniform on D1, then

supx∈D1 |f(x)− fn(x)| → 0, contradicting |f(xk)− fnk
(xk)| ≥ ε.

(3) ⇒ (1): If convergence were uniform on D, then a fortiori it would be uniform on every
subset, contradicting (3).

Exercise 75 Show that lim
n→∞

x cos(nx)
x+ n

= 0 pointwise on [0,∞) but not uniformly.

Proof. Pointwise: Fix x ≥ 0. Then∣∣∣∣x cos(nx)
x+ n

∣∣∣∣ ≤ x

x+ n
−−−→
n→∞

0,

so the limit is 0 for each x (and equals 0 trivially at x = 0).
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Not uniform: Take xn := nπ. Then cos(nxn) = cos(n2π) = 1, hence∣∣∣∣xn cos(nxn)
xn + n

∣∣∣∣ = nπ

nπ + n
= π

π + 1 .

Thus
sup

x∈[0,∞)

∣∣∣∣x cos(nx)
x+ n

∣∣∣∣ ≥ π

π + 1
for all n, so the suprema do not tend to 0; the convergence is not uniform.

Exercise 76 If there exists a sequence (xn) with limn→∞ |f(xn) − fn(xn)| = c 6= 0, then fn 6→ f
uniformly.

Proof. Uniform convergence implies supx∈D |f(x)−fn(x)| → 0, hence |f(xn)−fn(xn)| ≤ supx∈D |f(x)−
fn(x)| → 0. This contradicts limn→∞ |f(xn)− fn(xn)| = c 6= 0. Therefore the convergence cannot
be uniform.

Uniform Cauchy Criterion
Definition 77 A sequence (fn) on D satisfies the uniform Cauchy condition if for every ε > 0
there exists N such that for all n,m ≥ N ,

|fn(x)− fm(x)| < ε for every x ∈ D.

Equivalently,
∀ε > 0 ∃N ∀n,m ≥ N : sup

x∈D
|fn(x)− fm(x)| ≤ ε.

Theorem 78 (Uniform Cauchy criterion) A sequence (fn) converges uniformly on D to some
f if and only if it satisfies the uniform Cauchy condition.

Limitations of Pointwise Convergence
Pointwise convergence alone does not preserve important properties:

• It does not preserve continuity.

• It does not preserve limits.

• It does not preserve integrals.

• It does not preserve differentiability.

We illustrate this with detailed examples.

(a) Continuity is not preserved.
Consider the sequence fn(x) = xn on [0, 1]. Each fn is continuous, since it is a polynomial.
The pointwise limit is

f(x) =

0, 0 ≤ x < 1,

1, x = 1.
At x = 1, the limit jumps from 0 (approached from the left) to 1 at the endpoint. Hence f
is not continuous, even though every fn is continuous.
This shows that pointwise convergence does not guarantee preservation of continuity.
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(b) Limits are not preserved.

Again, let fn(x) = xn on (0, 1).

- For fixed x ∈ (0, 1), we have limn→∞ fn(x) = 0. - But if we first let x → 1−, then
limx→1− fn(x) = 1 for every n.

Now compare the two iterated limits:

lim
n→∞

(
lim
x→1−

fn(x)
)

= 1, lim
x→1−

(
lim
n→∞

fn(x)
)

= lim
x→1−

0 = 0.

Since these two results differ, the order of limits cannot be interchanged under pointwise
convergence.

(c) Integrals are not preserved.

Define

fn(x) =

n, 0 ≤ x ≤ 1
n ,

0, 1
n < x ≤ 1.

Then fn(x)→ 0 for every fixed x ∈ [0, 1]. Thus the pointwise limit is the zero function.

However, compute the integral:

∫ 1

0
fn(x) dx =

∫ 1/n

0
ndx = n · 1

n
= 1.

Therefore:

lim
n→∞

∫ 1

0
fn(x) dx = 1,

∫ 1

0
lim
n→∞

fn(x) dx =
∫ 1

0
0 dx = 0.

Since these are different, we see that pointwise convergence does not justify interchanging
limit and integration.

(d) Differentiability is not preserved.

Consider
fn(x) =

√
x2 + 1

n , x ∈ R.

Each fn is differentiable everywhere (being a smooth function).

The pointwise limit is
lim
n→∞

fn(x) = |x|.

But |x| is not differentiable at x = 0, because:

f ′−(0) = lim
h→0−

|h| − 0
h

= −1, f ′+(0) = lim
h→0+

|h| − 0
h

= 1.

Since the left and right derivatives differ, the derivative does not exist at 0.

Thus, differentiability is not preserved under pointwise convergence.
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Hereditary Theorems
We call a statement a hereditary theorem if a certain property possessed by all fn in the sequence
is “inherited” by the limit function f . Such properties include continuity, Riemann integrability,
differentiability, etc. Pointwise convergence is typically too weak to ensure inheritance (see section
above); uniform convergence has much better behavior. We begin with the prototype: continuity.
For analogous results concerning other properties, an additional issue appears, namely whether an
operation (integration or differentiation) can be interchanged with the limit.

Uniform Convergence and Continuity
Theorem 79 Let D ⊂ R and let fn : D → R be a sequence of continuous functions that converges
uniformly to a function f : D → R. Then f is also continuous.

In other words: the limit of a uniformly convergent sequence of continuous functions is itself
continuous.

Proof. Let x ∈ D. We aim to show that f is continuous at x, i.e., for every ε > 0, there exists
δ > 0 such that

|f(x)− f(x′)| < ε for all x′ ∈ D with |x− x′| < δ.

Since (fn) converges uniformly to f , there exists N ∈ N such that

|fN (ξ)− f(ξ)| < ε

3 for all ξ ∈ D.

Because fN is continuous at x, there exists δ > 0 such that

|fN (x)− fN (x′)| < ε

3 whenever |x− x′| < δ.

Then for such x′ ∈ K, we estimate:

|f(x)− f(x′)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (x′)|+ |fN (x′)− f(x′)|

<
ε

3 + ε

3 + ε

3 = ε.

This proves that f is continuous at x. Since x was arbitrary, f is continuous on D.
Let D be any set of R. For a bounded function h : D → R, write

‖h‖∞ := sup
x∈D
|h(x)|.

This gives a natural “distance” between two bounded functions:

ρ(f, g) := ‖f − g‖∞ = sup
x∈D
|f(x)− g(x)|.

Uniform convergence of fn to f is exactly saying ρ(fn, f)→ 0.
Let B(D) be all bounded functions on D, and let C(D) be those that are continuous .

Theorem 80 (Continuous limits stay continuous)

1. (Closedness) If fn ∈ C(D) and fn → f uniformly on D, then f is continuous. Equivalently:
C(D) contains all its uniform limits.
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2. (Completeness) If (fn) is uniformly Cauchy (i.e. for every ε > 0 there is N so that
supx |fn(x) − fm(x)| < ε for all m,n ≥ N) and each fn is continuous, then fn converges
uniformly to some continuous f . In short: every uniformly Cauchy sequence of continuous
functions has a continuous uniform limit.

Part (1) is the standard fact “uniform limit of continuous functions is continuous.” Part (2)
just says you don’t leave the world of continuous functions when taking uniform limits of good
approximations: uniform Cauchy ⇒ uniform convergence to a continuous function.

Uniform Convergence and Integrability
We recall some Riemann–integration notions for a bounded function f : [a, b] → R. A partition is
P = {x0, . . . , xn} with a = x0 < x1 < · · · < xn = b, and we write ∆xi := xi − xi−1. Set

mi := inf
x∈[xi−1,xi]

f(x), Mi := sup
x∈[xi−1,xi]

f(x), ωi := Mi −mi = sup
x,y∈[xi−1,xi]

|f(x)− f(y)|.

The lower and upper sums are

L(f, P ) :=
n∑
i=1

mi ∆xi, U(f, P ) :=
n∑
i=1

Mi ∆xi,

and they satisfy

U(f, P )− L(f, P ) =
n∑
i=1

ωi ∆xi, sup
P
L(f, P ) ≤ inf

P
U(f, P ).

The function f is Riemann integrable on [a, b] iff equality holds:∫ b

a
f(x) dx = sup

P
L(f, P ) = inf

P
U(f, P ).

Riemann’s criterion. f is integrable iff for every ε > 0 there exists a partition P with U(f, P )−
L(f, P ) < ε.

Every continuous function on [a, b] is Riemann integrable. Moreover, if f is integrable then so
is |f |, and ∣∣∣∫ b

a
f(x) dx

∣∣∣ ≤ ∫ b

a
|f(x)| dx ≤ (b− a) sup

x∈[a,b]
|f(x)|.

Theorem 81 (Hereditary theorem for integrability) Let [a, b] be a bounded interval. If (fn)
is a sequence of Riemann integrable functions on [a, b] that converges uniformly to f , then f is
Riemann integrable and

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
f(x) dx.

Proof. First, if each fn is continuous, then f is continuous and hence integrable. For the identity,
fix ε > 0. Uniform convergence gives N with |f − fn| ≤ ε on [a, b] for all n ≥ N , hence

∣∣∣ ∫ b

a
f −

∫ b

a
fn
∣∣∣ ≤ ∫ b

a
|f − fn| ≤ ε(b− a).
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For general (not necessarily continuous) fn, let ωi(g) be the oscillation of g on [xi−1, xi]. For any
partition P and any n,

ωi(f) ≤ 2 sup
[a,b]
|f − fn|+ ωi(fn).

Multiply by ∆xi and sum. Choose n so that sup |f − fn| < ε, and then a partition P with∑
i ωi(fn)∆xi < ε. Then

∑
i ωi(f)∆xi < ε(2(b − a) + 1), which ensures integrability of f by

Riemann’s criterion.

Complex-valued case. For f : [a, b] → C, define integrability componentwise via
∫ b
a f =∫ b

a <f + i
∫ b
a =f . The theorem remains valid.

Function space formulation. Let B([a, b]) be the (real or complex) vector space of all
bounded functions on [a, b], equipped with the sup norm

‖f‖∞ := sup
x∈[a,b]

|f(x)|,

and the associated (sup) metric

ρ(f, g) := ‖f − g‖∞ = sup
x∈[a,b]

|f(x)− g(x)|.

Let R([a, b]) ⊂ B([a, b]) denote the subspace of (Riemann) integrable functions.

Theorem 82 With respect to the metric ρ:

1. R([a, b]) is closed in B([a, b]).

2. (R([a, b]), ρ) is complete.

3. The linear functional I : R([a, b])→ K (with K = R or C) given by

I(f) :=
∫ b

a
f(x) dx

is continuous (indeed, Lipschitz), with

|I(f)− I(g)| =
∣∣∣ ∫ b

a
(f − g)

∣∣∣ ≤ ∫ b

a
|f − g| ≤ (b− a) ‖f − g‖∞ = (b− a) ρ(f, g).

Proof sketch. (1) If fn ∈ R([a, b]) and fn → f uniformly, then f is Riemann integrable and∫
fn →

∫
f. This is the standard “uniform limit preserves Riemann integrability” fact (prove via

upper/lower sums or via oscillations on a common partition). Hence R([a, b]) is closed in B([a, b]).
(2) B([a, b]) is complete under ρ (a ρ–Cauchy sequence converges uniformly to a bounded limit).

A closed subspace of a complete metric space is complete, so (1) implies (R([a, b]), ρ) is complete.
(3) The displayed inequality shows I is (b − a)–Lipschitz, hence continuous (and bounded) on

(R([a, b]), ρ).

Remark 83

• Density of continuous functions. Continuous functions are Riemann integrable, and are
dense in R([a, b]) under ρ (e.g. by approximating Riemann integrable f with step functions
and then smoothing). Thus C([a, b]) ‖·‖∞ = R([a, b]).
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• Characterization of Riemann integrability. A bounded f is Riemann integrable iff
the set of its discontinuities has Lebesgue measure zero (Lebesgue’s criterion). This gives a
practical test and clarifies why uniform limits of Riemann integrable functions stay integrable.

• Completeness comparison. (C([a, b]), ‖ · ‖∞) is also complete (a Banach space). We have
C([a, b]) ⊂ R([a, b]) ⊂ B([a, b]), with C([a, b]) and R([a, b]) both closed in B([a, b]).

• Operator norm of I. From the estimate above, ‖I‖ := sup‖f‖∞≤1
∣∣ ∫ b
a f
∣∣ ≤ b − a. In fact,

‖I‖ = b− a, attained by f ≡ 1.

• Non-example (bounded but not Riemann integrable). The Dirichlet function f =
1Q∩[a,b] is bounded but not in R([a, b]). It also shows R([a, b]) ( B([a, b]).

Three possibilities under nonuniform convergence. If fn are Riemann integrable and
fn → f pointwise but not uniformly, then any of the following can happen:

1. f is not Riemann integrable.

2. f is Riemann integrable but
∫
fn 6→

∫
f .

3. f is Riemann integrable and
∫
fn →

∫
f .

Example 84 (Case 1) Enumerate rationals in [0, 1] as (rk)k≥1 and set fn = 1{r1,...,rn}. Then
fn → f pointwise where f = 1Q∩[0,1], but f is not Riemann integrable (every upper sum is 1, every
lower sum is 0). Each fn is Riemann integrable.

Example 85 (Case 2) Let fn(x) = n for 0 < x ≤ 1/n and fn(0) = fn(x) = 0 for x > 1/n. Then
fn → 0 pointwise, each fn and f ≡ 0 are Riemann integrable, but

∫ 1
0 fn = 1 6→ 0.

Example 86 (Case 3) Let fn = 1(0,1/n] on [0, 1]. Then fn → 0 pointwise, each fn and f ≡ 0 are
Riemann integrable, and

∫ 1
0 fn = 1/n→ 0.

The dominated convergence theorem (Lebesgue) vastly strengthens the result above:

Uniform convergence and differentiability
For differentiability the hypotheses are subtler: we require uniform convergence of derivatives, plus
convergence at a single base point.

Theorem 87 (Hereditary theorem for differentiability) Let (fn) be differentiable on a bounded
interval [a, b] (right-derivative at a, left-derivative at b). Suppose (f ′n) converges uniformly on [a, b],
and for some x0 ∈ [a, b] the sequence (fn(x0)) converges. Then (fn) converges uniformly on [a, b]
to a differentiable f and f ′ = limn→∞ f

′
n on [a, b]. If each f ′n is continuous, then f ′ is continuous.

Sketch under fn ∈ C1 . Let g = lim f ′n (uniform limit, hence continuous). By the fundamental
theorem of calculus,

fn(x) = fn(x0) +
∫ x

x0
f ′n(t) dt.

The right-hand side converges as n→∞ by uniform convergence of f ′n (plus convergence of fn(x0)).
Define f(x) := lim fn(x). Then

f(x) = f(x0) +
∫ x

x0
g(t) dt,
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so f is differentiable with f ′ = g. Using the mean value estimate

|(f − fn)(x)− (f − fn)(a)| ≤ (b− a) sup
t∈[a,b]

|f ′(t)− f ′n(t)|,

and fn(a)→ f(a), we get supx |f(x)− fn(x)| → 0.
General proof idea. Define

φy,n(x) =


fn(x)− fn(y)

x− y
, x 6= y,

f ′n(y), x = y.

Each φy,n is continuous on [a, b]. By the mean value theorem and uniform convergence of f ′n,
the sequence (φy,n) is uniformly Cauchy, hence converges uniformly to a continuous φy. Using
fn(x) = (x−x0)φx0,n(x)+fn(x0) and convergence of fn(x0), one gets uniform convergence fn → f .
Finally φy(y) = limx→y φy(x) = lim f ′n(y), so f is differentiable with f ′ = lim f ′n; continuity of f ′
follows if f ′n are continuous and converge uniformly.

Remark 88 Without convergence of (fn(x0)) at some point, neither uniform nor pointwise con-
vergence of (fn) is guaranteed. Indeed, if (cn) is a divergent scalar sequence and gn = fn + cn, then
(g′n) = (f ′n) and the other hypotheses remain true, but (gn) cannot converge pointwise on [a, b] while
(fn) does.

Example 89 Let
fn(x) := x− sin(nx)

n2 , x ∈ [0, 1].

• Each fn is differentiable on [0, 1]. At x0 = 0, we have

fn(0) = 0− sin(0)
n2 = 0,

so (fn) converges at the point x0 = 0.

• Differentiating gives
f ′n(x) = 1− cos(nx)

n
.

• As n→∞, for each fixed x ∈ [0, 1],

f ′n(x) −→ 1.

To check uniform convergence, compute the uniform error:

sup
x∈[0,1]

∣∣f ′n(x)− 1
∣∣ = sup

x∈[0,1]

| cos(nx)|
n

.

Since | cos(nx)| ≤ 1 for all x, this gives

sup
x∈[0,1]

∣∣f ′n(x)− 1
∣∣ ≤ 1

n
−→ 0.

Hence (f ′n) converges uniformly on [0, 1] to the constant function 1.
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• By the theorem, the sequence (fn) converges uniformly to a function f . Let us determine f .
For fixed x,

fn(x) = x− sin(nx)
n2 .

Since | sin(nx)| ≤ 1, we have ∣∣∣∣sin(nx)
n2

∣∣∣∣ ≤ 1
n2 → 0.

Thus
lim
n→∞

fn(x) = x,

so the limit function is
f(x) = x.

The convergence is uniform because the error term is bounded uniformly in x by 1/n2.

Theorem 90 Let x ∈ D̂ and suppose fn
u−→ f on D \ {x}. If

lim
t→x

fn(t) = `n

exists for each n ∈ N, then

(i) (`n) is convergent,

(ii) lim
t→x

f(t) exists and coincides with lim
n→∞

`n, i.e.,

lim
n→∞

lim
t→x

fn(t) = lim
t→x

lim
n→∞

fn(t).

Proof. Let ε > 0. Since (fn) converges uniformly, it satisfies the Cauchy criterion, so there exists
N ∈ N such that

m,n ≥ N ⇒ |fn(t)− fm(t)| < ε for all t ∈ D \ {x}. (9.8)

Now let t→ x in (9.8), and recall that the absolute value is a continuous function to conclude that

m,n ≥ N ⇒ |`n − `m| ≤ ε, (9.9)

which implies that (`n) is a Cauchy sequence, and hence convergent. This proves (i).
To prove (ii), let ` = limn→∞ `n. Setting n = N and letting m→∞ in (9.8) yields

|fN (t)− f(t)| ≤ ε for all t ∈ D \ {x}, (9.10)

and in (9.9), it gives
|`N − `| ≤ ε. (9.11)

Since fN (t)→ `N as t→ x, there is a δ > 0 such that

t ∈ D \ {x}, |t− x| < δ ⇒ |fN (t)− `N | < ε. (9.12)

Using (9.10), (9.11), and (9.12), we obtain

|f(t)− `| ≤ |f(t)− fN (t)|+ |fN (t)− `N |+ |`N − `| < 3ε

for all t ∈ D \ {x} such that |t− x| < δ, which means limt→x f(t) = `.
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Corollary 91 Suppose fn
u−→ f on I. If, for each n ∈ N, fn is continuous at c ∈ I, then so is f .

Proof. We need only consider c ∈ I. In view of Theorem 8.6, we have

lim
t→c

f(t) = lim
n→∞

lim
t→c

fn(t) = lim
n→∞

fn(c) = f(c),

which proves that f is continuous at c.

Example 92 Let
fn(x) = x

1 + nx
, x ∈ [0, 1].

Then fn → f uniformly on [0, 1], where f(x) ≡ 0. At x0 = 0 we have

lim
x→0

(
lim
n→∞

fn(x)
)

= lim
x→0

f(x) = 0, lim
n→∞

(
lim
x→0

fn(x)
)

= lim
n→∞

0 = 0.

Thus both iterated limits coincide, illustrating the theorem.

Exercises
Practical guide to study uniform convergence (sequences (fn)).

1. Pointwise first. Compute f(x) := limn→∞ fn(x). If this fails anywhere, uniform conver-
gence is impossible.

2. A Majorant Test for Uniform Convergence. Define

Mn := sup
x∈X
|fn(x)− f(x)|.

Then fn → f uniformly ⇐⇒ Mn → 0.

3. Easy domination. If you can find numbers An ↓ 0 with

|fn(x)− f(x)| ≤ An (∀x ∈ X),

uniform convergence follows immediately.

4. Uniform Cauchy (when f is unknown). (fn) is uniformly convergent on X ⇐⇒

∀ε > 0 ∃N ∀m,n ≥ N : sup
x∈X
|fn(x)− fm(x)| < ε.

5. Test on a smaller set. If E ⊂ D and supx∈E |fn(x)− f(x)| 6→ 0, then uniform convergence
fails on D.

6. Witness to failure. To disprove uniform convergence, find ε > 0 and sequences (xk) ⊂ D,
nk ↑ ∞ with

|fnk
(xk)− f(xk)| ≥ ε (∀k).

7. Monotone + compact ⇒ Dini. On compact D, if each fn is continuous, fn → f pointwise
with f continuous, and (fn) is pointwise monotone in n, then fn → f uniformly (Dini).
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8. Uniform equicontinuity + pointwise ⇒ uniform (on compact D). If (fn) is equicon-
tinuous and uniformly bounded on compact D and fn → f pointwise, then fn → f uniformly
(Arzelà–Ascoli corollary).

9. Common bounding patterns.

• Factor out n–only pieces: |fn(x)− f(x)| ≤ an g(x) with an ↓ 0 and g bounded on D ⇒
uniform.

• Squeeze by maxima: If |fn − f | ≤ hn and ‖hn‖∞ → 0, done.

• Localize oscillations: If oscillations live on shrinking sets En with supx∈D\En
|fn−f | → 0

and also supx∈En
|fn − f | → 0, combine.

10. Uniform limits preserve structure. If fn are continuous (resp. uniformly continuous)
and fn → f uniformly on a metric space, then f is continuous (resp. uniformly continuous).

11. Interchanging limits (use only with uniformity).

• Integration: If fn are Riemann integrable on [a, b] and fn → f uniformly, then
∫ b
a fn →∫ b

a f .

• Differentiation: If f ′n converge uniformly and fn(x0) converges for some x0, then fn → f
uniformly and f ′ = lim f ′n.

Exercises
Ex 1.1 For fn(x) = xn on R: find the pointwise limit and decide on uniform convergence on relevant

domains.

Ex 1.2 For fn(x) = sin(nx)
nx

on (0, 1): find the pointwise limit and decide on uniform convergence
(also on [a, 1], 0 < a < 1).

Ex 1.3 For fn(x) = 1
nx+ 1 on (0, 1): find the pointwise limit and decide on uniform convergence

(also on [a, 1], 0 < a < 1).

Ex 1.4 For fn(x) = x

nx+ 1 on [0, 1]: find the pointwise limit and decide on uniform convergence.

Ex 1.5 For fn(x) = nx3

1 + nx
on [0, 1]: show fn → f pointwise and decide on uniform convergence.

Ex 1.6 For fn(x) = xn(1− x) on [0, 1]: pointwise limit and uniform convergence.

Ex 1.7 For fn(x) = xn(1− xn) on [0, 1]: pointwise limit and uniform convergence.

Ex 1.8 For

fn(x) =

nx, x ∈ [0, 1/n],
0, x ∈ (1/n, 1],

on [0, 1] :

pointwise limit and uniform convergence.
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Ex 1.9 For

fn(x) =


√
nx, x ∈ [0, 1/n],

0, x ∈ (1/n, 1],
on [0, 1] :

pointwise limit and uniform convergence.

Ex 1.10 If fn → f uniformly on D and on E, prove fn → f uniformly on D ∪ E.

Ex 1.11 If fn → f and gn → g uniformly on D, prove αfn+βgn → αf+βg uniformly for all α, β ∈ R.

Ex 1.12 If fn → f and gn → g uniformly on D, and each fn, gn is bounded on D, prove fngn → fg
uniformly. Give a counterexample if boundedness fails.

Ex 1.13 (Dini) On compactD ⊂ R, if (fn) is continuous, decreases pointwise to a continuous f , prove fn → f
uniformly. Show compactness is needed with fn(x) = xn on (0, 1).

Ex 1.14 For fn(x) = xn

1 + xn
on [0, 2]: pointwise limit and (non)uniform convergence.

Ex 1.15 Construct fn : [0, 1] → R, each discontinuous everywhere, with fn → f uniformly for a
continuous f .

Ex 1.16 Let ϕ ∈ C[0, 1] and fn(x) = ϕ(x)xn. Show fn converges uniformly on [0, 1] iff ϕ(1) = 0.
Deduce gn(x) = nx(1− x)n → 0 pointwise but not uniformly.

Ex 1.17 Define

fn(x) =


n2x, x ∈ [0, 1/n],
−n2(x− 2/n), x ∈ (1/n, 2/n],
0, x ∈ (2/n, 1],

on [0, 1]. Find the pointwise limit; decide uniform convergence; compare
∫
fn vs.

∫
lim fn.

Ex 1.18 For p > 0, fn(x) = nx

1 + n2xp
on [0, 1]: (a) for which p does fn → f uniformly? (b) For p = 2,

compute
∫ 1

0 fn →? and compare with
∫ 1

0 f .

Quick Checks
Ex 1.1 Pointwise: lim xn = 0 for |x| < 1; = 1 at x = 1; diverges for |x| > 1 or x = −1. Uniform:

Not uniform on (−1, 1) (since sup(−1,1) |xn| = 1) nor on (−1, 1] (limit discontinuous at 1).
Uniform on any [−a, a] with a < 1 since sup |xn| = an → 0. Trivially uniform on {1}.

Ex 1.2 Pointwise: | sin(nx)/(nx)| ≤ 1/(nx) → 0, so fn → 0. Uniform: Not on (0, 1) (take xn =
π/(2n) gives |fn(xn)| = 2/π). Uniform on [a, 1] for any a > 0 since sup[a,1] |fn| ≤ 1/(na)→ 0.

Ex 1.3 Pointwise: 1/(nx+ 1)→ 0. Uniform: Not on (0, 1) (at xn = 1/n, value = 1/2). Uniform on
[a, 1] for a > 0 since sup ≤ 1/(na+ 1)→ 0.

Ex 1.4 Pointwise: x/(nx+ 1)→ 0 on [0, 1]. Uniform: Yes. sup[0,1] x/(nx+ 1) = 1/(n+ 1)→ 0.

Ex 1.5 Pointwise: fn(x) = nx3

1 + nx
→ x2; at x = 0, 0. Uniform: Yes. |fn−x2| = x2

1 + nx
≤ 1
n+ 1 →

0.
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Ex 1.6 Pointwise: xn(1−x)→ 0 on [0, 1]. Uniform: Yes. max[0,1] x
n(1−x) =

(
n
n+1

)n 1
n+1 → e−1 ·0 =

0.

Ex 1.7 Pointwise: xn(1 − xn) → 0 on [0, 1]. Uniform: No. max fn = 1/4 (at xn = 1/2), so
sup |fn − 0| = 1/4 6→ 0.

Ex 1.8 Pointwise: → 0 on [0, 1]. Uniform: No. sup fn = fn(1/n) = 1 for all n.

Ex 1.9 Pointwise: → 0 on [0, 1]. Uniform: No. sup fn = fn(1/n) = 1 for all n.

Ex 1.10 For ε > 0, take N = max(ND, NE) from the two uniform convergences. Then supD∪E |fn −
f | < ε for n ≥ N .

Ex 1.11 For ε > 0, choose N = max(Nf , Ng) with supD |fn − f | < ε/(2(|α| + |β| + 1)) and similarly
for gn. Then supD |αfn + βgn − (αf + βg)| < ε.

Ex 1.12 If supD |fn| ≤M and supD |gn| ≤ K, then

sup
D
|fngn − fg| ≤ K sup

D
|fn − f |+ ‖f‖∞ sup

D
|gn − g| → 0.

Counterexample: On D = R, fn = gn = x+ 1/n converge uniformly to x, but |fngn − x2| =
|2x/n+ 1/n2| has unbounded supremum ⇒ not uniform.

Ex 1.13 (Dini) Compactness⇒ fn ↓ f with f continuous gives uniform convergence. Counterexample:
xn on (0, 1) is not uniform.

Ex 1.14 fn(x) = xn

1 + xn
→ 0 for x < 1, = 1/2 at x = 1, and → 1 for x > 1. Limit is discontinuous at

1; hence not uniform on [0, 2].

Ex 1.15 Let fn = 1Q∩[0,1]/n. Each fn is everywhere discontinuous, while sup |fn| = 1/n → 0; thus
fn → 0 uniformly (continuous limit).

Ex 1.16 fn(x) = ϕ(x)xn. Uniform iff ϕ(1) = 0: If uniform, limit must be continuous at 1, forcing
ϕ(1) = 0. Conversely, if ϕ(1) = 0, use continuity near 1 and geometric decay away from 1 to
get sup |fn| → 0. For gn(x) = nx(1 − x)n, sup gn = n

n+1

(
n
n+1

)n
→ 1/e 6= 0 ⇒ not uniform

(though pointwise → 0).

Ex 1.17 Pointwise fn → 0 on [0, 1]. Not uniform: sup |fn| = n → ∞. Moreover,
∫ 1

0 fn = 1 6→ 0 =∫ 1
0 lim fn (no interchange without uniform integrable control).

Ex 1.18 fn(x) = nx

1 + n2xp
on [0, 1]. Pointwise fn → 0 for all p > 0. Uniform:

• 0 < p < 2: uniform → 0 (max → 0).

• p = 2: not uniform; max fn = fn(1/n) = 1/2.

• p > 2: not uniform; sup fn →∞.

For p = 2,
∫ 1

0
fn = 1

2n2 ln(1 + n2)→ 0 =
∫ 1

0
0.
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Detailed Answers
Exercise 1. For each n ∈ N, let fn(x) = xn on R. Determine the pointwise limit of (fn) and
decide whether the convergence is uniform on the given domain.

Solution
Pointwise convergence
For fixed x ∈ R,

lim
n→∞

xn =


0, |x| < 1,
1, x = 1,
does not exist, x = −1 or |x| > 1.

Thus (fn) converges pointwise to 0 on (−1, 1), to 1 at x = 1, and fails to converge at x = −1 or
any |x| > 1.

Uniform convergence. Uniform convergence on a set E implies pointwise convergence on
E. Hence any set on which we can even hope for uniform convergence must be contained in the
pointwise–convergence set. Therefore, it suffices to study uniform convergence only on subsets of
(−1, 1] (in particular, sets containing −1 or any |x| > 1 are automatically excluded).

• On (−1, 1] the convergence is not uniform. The pointwise limit on (−1, 1] is

f(x) =
{

0, x ∈ [0, 1),
1, x = 1,

which is discontinuous at x = 1, whereas each fn is continuous. A uniform limit of continuous
functions must be continuous, so uniform convergence to f on (−1, 1] is impossible.

• On (−1, 1) the convergence is not uniform. We have

sup
x∈(−1,1)

|xn| = 1 for all n

(since values arbitrarily close to 1 occur as x→ 1−), so the suprema do not tend to 0.

• For any 0 < a < 1, the convergence is uniform on [−a, a]

sup
x∈[−a,a]

|xn| = an −−−→
n→∞

0,

so fn → 0 uniformly on [−a, a]. More generally, if E ⊂ (−1, 1) satisfies supx∈E |x| ≤ a < 1,
then supx∈E |xn| ≤ an → 0 and the convergence is uniform on E.

• On the singleton {1}, the convergence is trivially uniform (to the constant 1).

Exercise 2. For each n ∈ N, let fn(x) = sin(nx)
nx

on (0, 1). Determine the pointwise limit of
(fn) and decide whether the convergence is uniform on the given domain. Solution

Pointwise limit. For each fixed x ∈ (0, 1),∣∣∣∣sin(nx)
nx

∣∣∣∣ ≤ 1
nx
−−−→
n→∞

0,



80 CHAPTER 5. UNIFORM CONVERGENCE OF SEQUENCES OF FUNCTIONS

so fn(x)→ 0 pointwise on (0, 1).

Uniform convergence.
The convergence is not uniform on (0, 1). Take xn = π

2n ∈ (0, 1) for all large n. Then

∣∣fn(xn)
∣∣ = | sin(nxn)|

nxn
= 1
n · π/(2n) = 2

π
6→ 0,

so supx∈(0,1) |fn(x)| ≥ 2
π for all n.

Uniform convergence away from 0. Let 0 < a < 1. Then for every x ∈ [a, 1],∣∣∣∣sin(nx)
nx

∣∣∣∣ ≤ 1
na
.

Hence supx∈[a,1] |fn(x)| ≤ 1
na → 0, so fn → 0 uniformly on [a, 1]. More generally, if E ⊂ [a, 1] for

some 0 < a < 1, then

sup
x∈E

∣∣∣∣sin(nx)
nx

∣∣∣∣ ≤ 1
na
−−−→
n→∞

0,

so the convergence is uniform on every subset E ⊂ [a, ]) with 0 < a < 1.
Exercise 4. For each n ∈ N, let fn(x) = 1

nx+ 1 on (0, 1). Determine the pointwise limit of
(fn) and decide whether the convergence is uniform on the given domain.

Pointwise limit.
For every fixed x ∈ (0, 1),

fn(x) = 1
nx+ 1 −−−→n→∞

0,

so fn → 0 pointwise on (0, 1).

Non–uniform convergence on (0, 1). To show the convergence is not uniform, take the
sequence xn = 1

n ∈ (0, 1). Then

fn(xn) = 1
n · (1/n) + 1 = 1

2 .

Hence for every n,
sup

x∈(0,1)
|fn(x)− 0| ≥ |fn(xn)| = 1

2 6−→ 0,

so fn 9 0 uniformly on (0, 1).

Uniform convergence away from 0. If a ∈ (0, 1), then for x ∈ [a, 1],

0 ≤ fn(x) = 1
nx+ 1 ≤

1
na+ 1 −−−→n→∞

0,

so fn → 0 uniformly on [a, 1]. More generally, for any E ⊂ [a, 1] the convergence is uniform on E
with the same bound.

Exercise 5. For each n ∈ N, let fn(x) = x

nx+ 1 on [0, 1]. Determine the pointwise limit of
(fn) and decide whether the convergence is uniform on the given domain.

For every x ∈ [0, 1],
fn(x) = x

nx+ 1 −−−→n→∞
0,
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so fn → 0 pointwise on [0, 1].
Moreover, the convergence is uniform on [0, 1]. Indeed, for fixed n, the function x 7→ x

nx+ 1 is

increasing on [0, 1] (its derivative is 1
(nx+ 1)2 > 0), hence

sup
x∈[0,1]

∣∣∣ x

nx+ 1

∣∣∣ = 1
n+ 1 −−−→n→∞

0.

Thus sup[0,1] |fn − 0| → 0, proving uniform convergence.
Exercise 6.

fn(x) = nx3

1 + nx
, x ∈ [0, 1].

Pointwise limit: For x = 0, fn(0) = 0. For x > 0,

fn(x) = x2

x+ 1
n

−−−→
n→∞

x2,

so
f(x) = x2.

Uniform convergence: We must compute

sup
x∈[0,1]

∣∣fn(x)− x2∣∣.
Since fn(x) ≤ x2 for all x, we have

|fn(x)− x2| = x2 − fn(x).

Thus
x2 − fn(x) = x2 − nx3

1 + nx
= x2(1 + nx)− nx3

1 + nx
= x2

1 + nx
.

Hence
sup
x∈[0,1]

|fn(x)− x2| = sup
x∈[0,1]

x2

1 + nx
.

The function x2

1+nx is increasing in x ∈ [0, 1], so the maximum is at x = 1:

sup
x∈[0,1]

|fn(x)− x2| = 1
1 + n

.

Conclusion: Since
lim
n→∞

sup
x∈[0,1]

|fn(x)− x2| = lim
n→∞

1
n+ 1 = 0,

the convergence fn → f is uniform on [0, 1].
Exercise 7.

fn(x) = xn(1− x), x ∈ [0, 1].

Pointwise limit: For 0 ≤ x < 1, we have limn→∞ x
n = 0, hence

lim
n→∞

fn(x) = lim
n→∞

xn(1− x) = 0.
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At x = 1, fn(1) = 1n(0) = 0. Thus the pointwise limit function is

f(x) ≡ 0 on [0, 1].

Uniform convergence: We compute

sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1]

fn(x).

Since fn(0) = fn(1) = 0 and fn(x) ≥ 0 for all x, the maximum occurs at a critical point.
Differentiate:

f ′n(x) = nxn−1(1− x)− xn = xn−1(n− (n+ 1)x
)
.

Setting f ′n(x) = 0 gives the unique critical point

xn = n

n+ 1 .

At this point,
fn(xn) =

(
n

n+ 1

)n
· 1
n+ 1 .

Hence
sup
x∈[0,1]

|fn(x)− f(x)| =
(

n

n+ 1

)n
· 1
n+ 1 .

Asymptotics: Note that (
n

n+ 1

)n
=
(

1− 1
n+ 1

)n
−−−→
n→∞

e−1.

Therefore
sup
x∈[0,1]

|fn(x)− f(x)| −−−→
n→∞

0.

Since the supremum of the error tends to zero, the convergence is in fact uniform on [0, 1].
Exercise 8.

fn(x) = xn(1− xn), x ∈ [0, 1].

Pointwise limit: For 0 ≤ x < 1, xn → 0, hence fn(x)→ 0. At x = 1, fn(1) = 0. Thus,

f(x) ≡ 0 on [0, 1].

Uniform convergence: We have

sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1]

fn(x) = 1
4 , ∀n.

Since this supremum does not tend to 0, the convergence is not uniform. Exercise 8.

fn(x) = xn(1− xn), x ∈ [0, 1].

Pointwise limit: For 0 ≤ x < 1, we know xn → 0 as n→∞. Therefore

fn(x) = xn − x2n −→ 0.

At x = 1, we have
fn(1) = 1− 1 = 0.
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Thus, the pointwise limit function is

f(x) ≡ 0 on [0, 1].

Uniform convergence: We compute

sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1]

fn(x),

since f(x) = 0 and fn(x) ≥ 0.
Now

fn(x) = xn − x2n.

The derivative is
f ′n(x) = nxn−1(1− 2xn).

Hence f ′n(x) = 0 if and only if xn = 1
2 , which gives

xn =
(

1
2

)1/n
.

At this point,
fn(xn) = 1

2

(
1− 1

2

)
= 1

4 .

Therefore,
sup
x∈[0,1]

fn(x) = 1
4 , ∀n ∈ N.

Since
sup
x∈[0,1]

|fn(x)− f(x)| = 1
4 6−→ 0,

the sequence (fn) converges pointwise to f(x) = 0 but the convergence is not uniform.
Exercise 9.

fn(x) =

nx, x ∈ [0, 1/n],

0, x ∈ (1/n, 1].

Pointwise limit: - If x = 0, then fn(0) = 0 for all n. - If x > 0, then for sufficiently large n we
have x > 1/n, which implies fn(x) = 0. Hence

lim
n→∞

fn(x) = 0, ∀x ∈ [0, 1].

Thus the pointwise limit function is
f(x) ≡ 0.

Uniform convergence: We compute

sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1]

fn(x).

On [0, 1/n],
fn(x) = nx,

which is increasing in x. Its maximum is therefore attained at x = 1/n, giving

fn(1/n) = n · 1
n

= 1.
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On (1/n, 1], fn(x) = 0. Therefore

sup
x∈[0,1]

fn(x) = 1 for all n.

Conclusion: Since
sup
x∈[0,1]

|fn(x)− f(x)| = 1 6→ 0,

the convergence is not uniform.
Exercise 10.

fn(x) =


√
nx, x ∈ [0, 1/n],

0, x ∈ (1/n, 1].

Pointwise limit: At x = 0, clearly fn(0) =
√
n · 0 = 0 for all n. If x > 0, then for sufficiently

large n we have x > 1/n, which implies
fn(x) = 0.

Therefore
lim
n→∞

fn(x) = 0, ∀x ∈ [0, 1].

Thus, the pointwise limit function is
f(x) ≡ 0.

Uniform convergence: We compute

sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1]

fn(x),

since f(x) = 0 and fn(x) ≥ 0.
On the interval [0, 1/n], the function fn(x) =

√
nx is increasing in x. Hence the maximum is

attained at x = 1/n, giving
fn(1/n) =

√
n · 1

n = 1.

On (1/n, 1], we have fn(x) = 0. Therefore

sup
x∈[0,1]

fn(x) = 1, ∀n ∈ N.

Since
sup
x∈[0,1]

|fn(x)− f(x)| = 1 6−→ 0,

the convergence is not uniform.
Exercise 11. Suppose that (fn) converges uniformly to f on D and also converges uniformly

to f on E. Prove that (fn) converges uniformly to f on D ∪ E.
Solution. By definition of uniform convergence, for every ε > 0 there exists N1 ∈ N such that

n ≥ N1 =⇒ sup
x∈D
|fn(x)− f(x)| < ε.

Similarly, since fn → f uniformly on E, there exists N2 ∈ N such that

n ≥ N2 =⇒ sup
x∈E
|fn(x)− f(x)| < ε.
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Now set
N = max(N1, N2).

Then for every n ≥ N , we have simultaneously

sup
x∈D
|fn(x)− f(x)| < ε and sup

x∈E
|fn(x)− f(x)| < ε.

Therefore, for every x ∈ D ∪ E,

|fn(x)− f(x)| < ε.

This implies
sup

x∈D∪E
|fn(x)− f(x)| < ε.

Since ε > 0 was arbitrary, it follows that fn → f uniformly on D ∪ E.
Exercise 12. Suppose that (fn) converges uniformly to f on D and (gn) converges uniformly

to g on D. Prove that for all α, β ∈ R, we have

αfn + βgn
u−→ αf + βg on D.

Solution. Fix ε > 0.
Since fn

u−→ f on D, there exists N1 ∈ N such that

n ≥ N1 =⇒ sup
x∈D
|fn(x)− f(x)| < ε

2(|α|+ |β|+ 1) .

Similarly, since gn
u−→ g on D, there exists N2 ∈ N such that

n ≥ N2 =⇒ sup
x∈D
|gn(x)− g(x)| < ε

2(|α|+ |β|+ 1) .

Let
N = max(N1, N2).

Then for all n ≥ N and all x ∈ D,

|(αfn(x) + βgn(x))− (αf(x) + βg(x))| = |α(fn(x)− f(x)) + β(gn(x)− g(x))|
≤ |α| |fn(x)− f(x)|+ |β| |gn(x)− g(x)|

< (|α|+ |β|) · ε

2(|α|+ |β|+ 1)
< ε.

Taking the supremum over x ∈ D gives

sup
x∈D
|(αfn(x) + βgn(x))− (αf(x) + βg(x))| < ε.

Since ε > 0 was arbitrary, we conclude that

αfn + βgn
u−→ αf + βg on D.

Exercise 13. Suppose fn
u−→ f and gn

u−→ g on D. If each fn and each gn is bounded on D,
prove that (fngn) u−→ fg on D. Give an example where fn

u−→ f and gn
u−→ g on D but (fngn) does

not converge uniformly.
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Solution.
Proof under boundedness. Since each fn is bounded onD, the family {fn} is uniformly bounded.

Thus, there exists a constant M > 0 such that

|fn(x)| ≤M, ∀x ∈ D, ∀n ∈ N.

Similarly, since each gn is bounded, there exists K > 0 such that

|gn(x)| ≤ K, ∀x ∈ D, ∀n ∈ N.

For x ∈ D,

fn(x)gn(x)− f(x)g(x) = (fn(x)− f(x))gn(x) + f(x)(gn(x)− g(x)).

Taking absolute values,

|fn(x)gn(x)− f(x)g(x)| ≤ |fn(x)− f(x)| · |gn(x)|+ |f(x)| · |gn(x)− g(x)|.

Now take the supremum over x ∈ D:

sup
x∈D
|fn(x)gn(x)− f(x)g(x)| ≤ K · sup

x∈D
|fn(x)− f(x)|+ ‖f‖∞ · sup

x∈D
|gn(x)− g(x)|.

Since fn
u−→ f and gn

u−→ g, both suprema tend to 0. Therefore

fngn
u−→ fg on D.

Counterexample when boundedness is missing.
Let D = R, define

fn(x) = gn(x) = x+ 1
n
.

Then: - For each fixed x ∈ R, fn(x) → f(x) = x and gn(x) → g(x) = x, uniformly (because
|fn(x)− f(x)| = 1/n is independent of x). So fn

u−→ f and gn
u−→ g on R.

But their product is
fn(x)gn(x) =

(
x+ 1

n

)2
, fg(x) = x2.

Thus
|fn(x)gn(x)− f(x)g(x)| =

∣∣∣(x+ 1
n

)2
− x2

∣∣∣ =
∣∣∣2xn + 1

n2

∣∣∣.
For each fixed x, this tends to 0, so (fngn)(x)→ fg(x) pointwise. But

sup
x∈R

∣∣∣2xn + 1
n2

∣∣∣ =∞,

since x can be arbitrarily large. Hence convergence is not uniform.
Conclusion. If fn → f and gn → g uniformly and the sequences are uniformly bounded, then

fngn → fg uniformly. If boundedness is absent, uniform convergence of the product can fail, as
shown by the example above.

Exercise 15 (Dini’s Theorem). Let D be a compact set in R. Suppose (fn) is a sequence
of continuous functions on D such that

- fn+1(x) ≤ fn(x) for all x ∈ D and n ∈ N (monotone decreasing), - fn(x) → f(x) pointwise
for all x ∈ D, - f is continuous on D.
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Prove that fn → f uniformly on D. Show by the example fn(x) = xn on (0, 1) that compactness
is necessary.

Solution. Let ε > 0. For each c ∈ D, since fn(c)→ f(c), there exists Nc ∈ N with

n ≥ Nc ⇒ fn(c)− f(c) < ε
2 .

Because fn and f are continuous, the difference fn − f is continuous. Hence there exists δc > 0
such that

|x− c| < δc, x ∈ D ⇒ |(fn(x)− f(x))− (fn(c)− f(c))| < ε
2 .

Thus for n ≥ Nc and |x− c| < δc,

fn(x)− f(x) ≤ (fn(c)− f(c)) + ε
2 < ε.

The sets Ic = (c− δc, c+ δc)∩D form an open cover of D. Since D is compact, we can select a
finite subcover Ic1 , . . . , Icm . Let

N = max(Nc1 , . . . , Ncm).
Then for all n ≥ N and all x ∈ D, we have fn(x)− f(x) < ε. Because the sequence is decreasing,
fn(x) ≥ f(x), so

0 ≤ fn(x)− f(x) < ε.

Taking the supremum,
sup
x∈D
|fn(x)− f(x)| < ε, ∀n ≥ N,

which proves fn → f uniformly on D.
Counterexample. Take fn(x) = xn on (0, 1). For each x ∈ (0, 1), fn(x) → 0, so the limit

function is f ≡ 0. But
sup

x∈(0,1)
|fn(x)− 0| = sup

x∈(0,1)
xn = 1,

since xn → 1 as x→ 1− for all n. Thus the convergence is not uniform.
This shows that the compactness of D is essential.
Exercise 16. Find the pointwise limit of fn(x) = xn

1 + xn
on [0, 2], and determine whether the

convergence is uniform.
Pointwise limit.
- If 0 ≤ x < 1: then xn → 0, so

fn(x) = xn

1 + xn
−→ 0.

- If x = 1:
fn(1) = 1

2 ∀n.

- If 1 < x ≤ 2: then xn →∞, so

fn(x) = xn

1 + xn
−→ 1.

Thus the pointwise limit function is

f(x) =


0, 0 ≤ x < 1,
1
2 , x = 1,

1, 1 < x ≤ 2.
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Uniform convergence.
We check whether supx∈[0,2] |fn(x) − f(x)| → 0. Note that f is discontinuous at x = 1, while

each fn is continuous. But a sequence of continuous functions converging uniformly must converge
to a continuous limit. Therefore, uniform convergence on [0, 2] is impossible.

More explicitly: near x = 1, if x = 1− 1
n then fn(x) is close to 0, while if x = 1 + 1

n then fn(x)
is close to 1. So supx∈[0,2] |fn(x)− f(x)| ≥ 1

2 for all n, which shows the error does not vanish.
The pointwise limit is

f(x) =


0, 0 ≤ x < 1,
1
2 , x = 1,
1, 1 < x ≤ 2,

and the convergence is not uniform.
Exercise 18. Define a sequence fn : [0, 1] → R such that each fn is discontinuous at every

point of [0, 1], and yet (fn) converges uniformly to a continuous function on [0, 1].
Solution. For x ∈ [0, 1], let

fn(x) =


1
n , if x is rational,

0, if x is irrational.

- Each fn is discontinuous at every point of [0, 1], since rationals and irrationals are dense in
[0, 1] and the left/right limits oscillate between 0 and 1

n .
- For every x ∈ [0, 1], we have

lim
n→∞

fn(x) = 0.

Thus the pointwise limit function is
f(x) ≡ 0,

which is continuous on [0, 1].
- To check uniform convergence:

sup
x∈[0,1]

|fn(x)− 0| = sup
x∈[0,1]

fn(x) = 1
n
.

Since 1
n → 0, the convergence is uniform.

The sequence

fn(x) =
{ 1
n , x ∈ Q ∩ [0, 1],
0, x ∈ [0, 1] \Q

is discontinuous everywhere for each n, but converges uniformly to the continuous function f(x) ≡ 0.
Exercise 19. Let ϕ be a continuous function on [0, 1], and define

fn(x) = ϕ(x)xn, x ∈ [0, 1].

Show that (fn) converges uniformly if and only if ϕ(1) = 0. Deduce from this that

gn(x) = nx(1− x)n → 0 pointwise on [0, 1],

but not uniformly.
Solution.
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Step 1. Pointwise limit. For 0 ≤ x < 1, xn → 0 as n → ∞, hence fn(x) → 0. At x = 1,
fn(1) = ϕ(1) · 1n = ϕ(1). Thus the pointwise limit is

f(x) =

0, 0 ≤ x < 1,

ϕ(1), x = 1.

Step 2. Necessity of ϕ(1) = 0. If (fn) converges uniformly, then the limit function f must be
continuous on [0, 1] (as a uniform limit of continuous functions). But the function f above is
continuous at x = 1 if and only if ϕ(1) = 0. Therefore, uniform convergence implies ϕ(1) = 0.

Step 3. Sufficiency of ϕ(1) = 0. Assume ϕ(1) = 0. Since ϕ is continuous, for any ε > 0 there
exists δ > 0 such that

|x− 1| < δ =⇒ |ϕ(x)| < ε.

Now for x ∈ [0, 1− δ], we have

|fn(x)| ≤ ‖ϕ‖∞ (1− δ)n → 0.

For x ∈ (1− δ, 1], we have
|fn(x)| = |ϕ(x)|xn ≤ ε · 1 = ε.

Thus
sup
x∈[0,1]

|fn(x)| → 0,

which proves uniform convergence to 0.
Step 4. Deduction for gn(x) = nx(1− x)n.
We first note pointwise convergence: - If x = 0, then gn(0) = 0. - If 0 < x < 1, then (1−x)n → 0

exponentially fast, so nx(1−x)n → 0. - If x = 1, then gn(1) = 0. Hence gn(x)→ 0 for all x ∈ [0, 1].
To test uniform convergence, compute the maximum. Differentiate:

g′n(x) = n(1− x)n − n2x(1− x)n−1 = n(1− x)n−1((1− x)− nx
)
.

Setting g′n(x) = 0 gives 1− x = nx, i.e.

x = 1
n+ 1 .

At this point,
gn
(

1
n+1

)
= n

n+ 1

(
n

n+ 1

)n
.

As n→∞, (
n

n+ 1

)n
→ e−1,

n

n+ 1 → 1,

so
sup
x∈[0,1]

gn(x)→ 1
e
.

Thus
sup
x∈[0,1]

|gn(x)− 0| 6→ 0,

and the convergence is not uniform.
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- (fn) converges uniformly on [0, 1] if and only if ϕ(1) = 0. - The sequence gn(x) = nx(1− x)n

converges pointwise to 0 on [0, 1], but not uniformly, since sup gn = n
n+1

(
n
n+1

)n
→ 1

e 6= 0.
Exercise 20. Define fn : [0, 1]→ R by

fn(x) =


n2x, x ∈ [0, 1/n],

−n2(x− 2/n), x ∈ (1/n, 2/n],

0, x ∈ (2/n, 1].

Pointwise limit. If x > 0, then for large n we have x > 2/n, hence fn(x) = 0. At x = 0,
fn(0) = 0. Thus limn→∞ fn(x) = 0 for all x ∈ [0, 1]. Hence f = 0.

Uniform convergence. For each n, the maximum of fn occurs at x = 1/n:

fn(1/n) = n2 · 1
n

= n.

Thus
sup
x∈[0,1]

|fn(x)| = n→∞.

So (fn) does not converge uniformly to 0, even though the pointwise limit is 0.
Integral comparison. Compute∫ 1

0
fn(x) dx =

∫ 1/n

0
n2x dx+

∫ 2/n

1/n
−n2(x− 2/n) dx.

First term: ∫ 1/n

0
n2x dx = n2 · 1

2 ·
1
n2 = 1

2 .

Second term:∫ 2/n

1/n
−n2(x− 2/n) dx = −n2 ·

[1
2(x− 2/n)2

]2/n

1/n
= −n2 ·

(
0− 1

2 ·
1
n2

)
= 1

2 .

So ∫ 1

0
fn(x) dx = 1

2 + 1
2 = 1.

But ∫ 1

0
f(x) dx =

∫ 1

0
0 dx = 0.

We have lim fn = f = 0 pointwise, but

lim
n→∞

∫ 1

0
fn(x) dx = 1 6=

∫ 1

0
f(x) dx.

This shows how pointwise convergence (without uniform convergence) does not allow us to inter-
change limit and integral.

Exercise 21. Let p > 0 and define

fn(x) = nx

1 + n2xp
, x ∈ [0, 1].
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(a) For what values of p does (fn) converge uniformly on [0, 1] to a limit f? (b) If p = 2, does∫ 1

0
fn(x) dx −→

∫ 1

0
f(x) dx ?

Pointwise convergence.
Fix x ∈ [0, 1].
- If x = 0, then fn(0) = 0 for all n.
- If 0 < x ≤ 1, then for large n the denominator behaves like n2xp, so

fn(x) = nx

1 + n2xp
∼ nx

n2xp
= 1
nxp−1 .

If p > 1, the denominator has power n2, so the whole fraction goes to 0. If p = 1, then

fn(x) = nx

1 + n2x
≤ n

n2 = 1
n
→ 0.

If 0 < p < 1, then n2xp →∞ as n→∞ for each fixed x > 0, so again fn(x)→ 0.
Therefore in every case

lim
n→∞

fn(x) = 0, ∀x ∈ [0, 1].

So the pointwise limit is the zero function

f(x) ≡ 0 on [0, 1].

Uniform convergence .
We test whether

sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1]

fn(x)→ 0.

Thus the behavior of the maximum of fn determines uniform convergence.
Maximization of fn.
For x > 0, compute the derivative:

f ′n(x) = n(1 + n2xp)− (nx)(n2pxp−1)
(1 + n2xp)2 = n+ n3xp − n3pxp

(1 + n2xp)2 = n− (p− 1)n3xp

(1 + n2xp)2 .

So critical points satisfy
n− (p− 1)n3xp = 0.

- If p = 1, the numerator is always n > 0, so fn is increasing and maximum at x = 1.
- If p 6= 1, we get

xp = 1
(p− 1)n2 .

Case 1: 0 < p < 1. Here (p−1) < 0, so the numerator n− (p−1)n3xp is always positive, hence
fn increases on [0, 1]. Maximum at x = 1:

sup
x∈[0,1]

fn(x) = fn(1) = n

1 + n2 ∼
1
n
→ 0.

So convergence is uniform.
Case 2: p = 1. Then

fn(x) = nx

1 + n2x
.
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Maximum at x = 1, so
sup
x∈[0,1]

fn(x) = n

1 + n2 ∼
1
n
→ 0.

So convergence is uniform.
Case 3: 1 < p < 2. Critical point at

xn =
(

1
(p−1)n2

)1/p
.

Evaluate:
fn(xn) = nxn

1 + n2xpn
.

But n2xpn = 1
p−1 , so

fn(xn) = nxn
1 + 1/(p− 1) = nxn

p/(p− 1) .

Now
nxn = n ·

(
(p− 1)−1/pn−2/p) = (p− 1)−1/pn1−2/p.

Since 1 < p < 2, we have 1 − 2/p < 0, hence n1−2/p → 0. Thus fn(xn) → 0. Therefore
sup fn(x)→ 0, so convergence is uniform.

Case 4: p = 2. Critical point xn = 1/n. Then

fn(1/n) = n · (1/n)
1 + n2(1/n)2 = 1

2 .

So
sup fn(x) ≥ 1

2 , ∀n.

Therefore sup fn(x) 6→ 0; no uniform convergence.
Case 5: p > 2. At the maximizing point, nxn = (p − 1)−1/pn1−2/p, and now 1 − 2/p > 0, so

this tends to infinity. Thus fn(xn)→∞, so sup fn(x) 6→ 0; no uniform convergence.
- For 0 < p < 2, we have uniform convergence to f = 0.
- For p ≥ 2, convergence is pointwise to 0 but not uniform.
Integral when p = 2.
We compute

fn(x) = nx

1 + n2x2 .

Substitute u = nx, dx = du/n, limits x = 0→ 1 give u = 0→ n:∫ 1

0
fn(x) dx =

∫ 1

0

nx

1 + n2x2 dx = 1
n2

∫ n

0

u

1 + u2 du.

Now ∫ n

0

u

1 + u2 du = 1
2 ln(1 + n2).

So ∫ 1

0
fn(x) dx = 1

2n2 ln(1 + n2).

As n→∞,
ln(1 + n2)

2n2 → 0.
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Meanwhile the limit function f ≡ 0, so∫ 1

0
f(x) dx = 0.

Thus
lim
n→∞

∫ 1

0
fn(x) dx =

∫ 1

0
f(x) dx.

indicate any domain restrictions explicitly.
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Uniform Convergence for Series of Functions
Let D be a set and, for each n ∈ N, let fn : D → R be a function. As with numerical series, a series
of functions ∞∑

k=1
fk

has two related meanings:

(a) The sequence of partial sums (sn)n≥1 on D, where

sn(x) :=
n∑
k=1

fk(x).

(b) The sum function f : D → R defined by

f(x) := lim
n→∞

sn(x),

whenever the limit exists (pointwise or uniformly) on D.

Definition 93 With the notation above:

1. The series
∑∞
k=1 fk converges pointwise on D with sum f if the sequence (sn) converges

pointwise to f on D.

2. The series converges uniformly on X with sum f if (sn) converges uniformly to f on D.

When the sum function is clear from context, we simply say “
∑
fk converges uniformly on D.”

Supremum Criterion for Series
Proposition 94 (Supremum criterion for uniform convergence of series) The series

∑∞
k=1 fk

converges uniformly on D if and only if

1. it converges pointwise on D, and

2.
lim
n→∞

sup
x∈D

∣∣∣ ∞∑
k=n+1

fk(x)
∣∣∣ = 0.

Idea. Let sn =
∑n
k=1 fk and f = lim sn pointwise. Then f(x) − sn(x) =

∑∞
k=n+1 fk(x). The

stated limit is exactly the uniform version of ‖f − sn‖∞ → 0.
It is often convenient to write the tail

Rn(x) :=
∞∑

k=n+1
fk(x), Mn := sup

x∈X
|Rn(x)| ∈ [0,∞],

so that uniform convergence ⇐⇒Mn → 0.

Example 95 Let D = [0, 1
2 ] or D = [0, 1) and fk(x) = xk. Then

∑∞
k=1 fk(x) = x

1−x pointwise for

x ∈ [0, 1). The tail is Rn(x) = xn+1

1− x , which is increasing in x on [0, 1). Hence Mn = 2−(n+1) → 0

on [0, 1
2 ] (uniform convergence), while Mn =∞ on [0, 1) (no uniform convergence).
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Uniform Cauchy Criterion for Series
Theorem 96 (Uniform Cauchy criterion) The series

∑∞
k=1 fk converges uniformly on D if

and only if for every ε > 0 there exists N such that for all m > n ≥ N ,

∣∣∣ m∑
k=n+1

fk(x)
∣∣∣ < ε for all x ∈ D.

Weierstrass M-Test
Theorem 97 Let {fn} be a sequence of functions fn : D → R. Suppose there exist constants
Mn ≥ 0 such that:

1. ∀n, supx∈D |fn(x)| ≤Mn, and

2. The series
∑∞
n=1Mn converges.

Then
∑∞
n=1 fn converges uniformly on D, and:

sup
x∈D

∣∣∣∣∣
∞∑
n=1

fn(x)
∣∣∣∣∣ ≤

∞∑
n=1

Mn.

Example 98 Consider the series:

∞∑
n=1

n sin(nx)
en

, x ∈ R.

We note:
sup
x∈R

∣∣∣∣n sin(nx)
en

∣∣∣∣ ≤ n

en
.

Since
∑∞
n=1

n
en converges, the Weierstrass M -test implies that the function series converges uni-

formly on R.

Dirichlet’s Test for Uniform Convergence
Theorem 99 (Dirichlet’s Test) Let {fn} and {gn} be sequences of real-valued functions defined
on a common domain D ⊆ R, with:

fn, gn : D → R.

Suppose:

1. The partial sums Sn(x) =
∑n
k=1 fk(x) are uniformly bounded on D, i.e., there exists M > 0

such that:
|Sn(x)| ≤M for all x ∈ D and all n ∈ N.

2. The sequence {gn(x)} is monotonically decreasing in n for every x ∈ D.

3. {gn(x)} converges uniformly to 0 on D.

Then the series
∑∞
n=1 fn(x)gn(x) converges uniformly on D.
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Example 100 Consider the function series:

∞∑
n=0

(−1)nx3n+1

3n+ 1 , x ∈ [0, 1].

We define:

fn(x) = (−1)n, gn(x) = x3n+1

3n+ 1 .

Then:

• The partial sums
∑n
k=0(−1)k are bounded by 1.

• {gn(x)} is decreasing for each fixed x ∈ [0, 1].

• gn(x)→ 0 uniformly on [0, 1] since:

sup
x∈[0,1]

|gn(x)| = 1
3n+ 1 → 0.

Therefore, by Dirichlet’s Test, the series converges uniformly on [0, 1].

Abel’s Test for Uniform Convergence
Theorem 101 (Abel’s test for uniform convergence) Let {fn}n≥1 and {gn}n≥1 be real-valued
functions on a set D. Assume:

(A1) The series
∑∞
n=1 fn(x) converges uniformly on D.

(A2) The sequence {gn} is uniformly bounded and monotonically decreasing: there exists M > 0
such that supx∈D |gn(x)| ≤ M for all n, and for each fixed x ∈ D the numerical sequence
gn+1(x) ≤ gn(x) for each x ∈ D .

Then the series
∞∑
n=1

fn(x) gn(x) converges uniformly on D.

Example 102 The series
∞∑
n=1

(−1)n

n
xn

converges uniformly on [0, 1].

Write fn(x) = (−1)n

n
and gn(x) = xn for x ∈ [0, 1].

• The series
∑∞
n=1 fn(x) =

∑∞
n=1

(−1)n

n
converges (alternating series test), and since it does

not depend on x, it converges uniformly on [0, 1].

• For each fixed x ∈ [0, 1], the sequence (gn(x))n≥1 = (xn)n≥1 is uniformly bounded by 1 and
is nonincreasing in n (constant when x = 1, decreasing when 0 ≤ x < 1).
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By Abel’s test for uniform convergence (uniform limit of
∑
fn and a uniformly bounded sequence

gn that is decreasing in n for each x), the series
∞∑
n=1

fn(x) gn(x) =
∞∑
n=1

(−1)n

n
xn

converges uniformly on [0, 1].

Corollary 103 (Alternating uniform convergence) Suppose fn : D → [0,∞) satisfy fn+1(x) ≤
fn(x) for all n and x, and fn → 0 uniformly on D. Then the alternating series

∑∞
k=1(−1)kfk con-

verges uniformly on D.

Idea. For m > n, alternating partial sums are bounded by the next term:
∣∣∑m

k=n+1(−1)kfk(x)
∣∣ ≤

fn+1(x). Taking suprema and using uniform fn+1 → 0 gives the uniform Cauchy property.

Theorem 104 Let x be a cluster point of D and suppose limt→x fn(t) exists for each n ∈ N. If∑
fn converges uniformly on D \ {x}, then

lim
t→x

∞∑
n=1

fn(t) =
∞∑
n=1

lim
t→x

fn(t).

Consequently, if each fn is continuous at x, then so is the sum
∑∞
n=1 fn.

Theorem 105 Suppose fn ∈ R(a, b) for all n ∈ N. If
∑
fn converges uniformly on [a, b], then∑∞

n=1 fn ∈ R(a, b) and ∫ b

a

∞∑
n=1

fn(x) dx =
∞∑
n=1

∫ b

a
fn(x) dx.

Theorem 106 Let fn be differentiable on [a, b] for each n ∈ N, and suppose that the series
∑
fn(x0)

converges at some point x0 ∈ [a, b]. If the series
∑
f ′n(x) converges uniformly on [a, b], then

∑
fn

is also uniformly convergent on [a, b], its sum
∑∞
n=1 fn is differentiable on [a, b], and( ∞∑

n=1
fn

)′
(x) =

∞∑
n=1

f ′n(x), for all x ∈ [a, b].

Exercises
Practical guide to study uniform convergence of series ∑∞k=1 fk

1. Pointwise first. For each x ∈ D, check
∑
k fk(x) converges and identify the sum f(x) (or

detect divergence).

2. Tail–sup test. Define the tail Rn(x) :=
∑
k>n fk(x) and

Mn := sup
x∈D
|Rn(x)|.

Then
∑
fk converges uniformly on D ⇐⇒ Mn → 0.

3. Weierstrass M–test (fast sufficient). If ∃Mk ≥ 0 with |fk(x)| ≤Mk on D and
∑
kMk <

∞, then
∑
fk converges uniformly on D.
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4. Alternating (uniform) test. If fk ≥ 0, fk+1(x) ≤ fk(x) for all x ∈ D, and fk → 0
uniformly on D, then

∑
(−1)kfk converges uniformly.

5. Uniform Cauchy (when the sum is unknown). Uniform convergence ⇐⇒

∀ε > 0 ∃N ∀m > n ≥ N : sup
x∈D

∣∣∣ m∑
k=n+1

fk(x)
∣∣∣ < ε.

6. Domination patterns (quick wins).

• If |fk(x)| ≤ ak g(x) with
∑
ak converges and g bounded on D, apply the M–test with

Mk = ak‖g‖∞.
• If |Rn(x)| ≤ An on D and An → 0, then uniform convergence follows (tail–sup test).

7. Compactness. On compact D, if (fk) are continuous and the tails Rn are equicontinuous
with Rn → 0 pointwise, Dini-type arguments (monotone tails) or Arzelà–Ascoli corollaries
may upgrade to uniform convergence.

8. Interchange rules (need uniformity). If
∑
fk converges uniformly and each fk is Rie-

mann integrable on [a, b], then ∫ b

a

(∑
fk
)

=
∑∫ b

a
fk.

If
∑
f ′k converges uniformly on [a, b] and

∑
fk(x0) converges at some x0, then

∑
fk converges

uniformly and
(∑

fk
)′

=
∑
f ′k.

9. When M–test fails. Try Dirichlet/Abel–type criteria on x–dependent signs:

• Dirichlet (uniform flavor): if partial sums An(x) =
∑n
k=1 ak(x) are uniformly

bounded in x, and bk(x) ↓ 0 uniformly in x, then
∑
ak(x)bk(x) converges uniformly.

• Abel: combine bounded partial sums with uniformly bounded variation in the coeffi-
cient sequence.

10. Subset test (to disprove). If uniform convergence fails on some E ⊂ D, it fails on D. So
it suffices to find a “bad” subset where tails stay large.

Problems

Ex 2.1 Prove that lim
x→0

∞∑
n=0

e−n
3x2

2n = 2.

Ex 2.2 Show that ∫ π

0

∞∑
n=1

sin(nx)
n2 dx =

∞∑
n=1

2
(2n− 1)3 .

Ex 2.3 Compute:

(a)
∫ 2

1

∞∑
n=1

1
(n+ x)2 dx;
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(b)
∫ π

0

∞∑
n=1

n sin(nx)
en

dx.

Ex 2.4 Let fn(x) = xn(1− x) for x ∈ [0, 1].

(a) Show that
∑∞
n=1 fn does not converge uniformly on [0, 1].

(b) Decide whether
∫ 1

0

∞∑
n=1

fn(x) dx =
∞∑
n=1

∫ 1

0
fn(x) dx.

Ex 2.5

Ex 2.6 Let f(x) :=
∞∑
n=1

1
n3 + n4x2 on R. Show that

f ′(x) = −2x
∞∑
n=1

n4

(n3 + n4x2)2 .

Ex 2.7 Let fn(x) := 2nxe−nx2 for x ∈ R.

(a) For each A > δ > 0, prove that
∑∞
n=1 fn converges uniformly on [δ, A].

(b) Compute
∞∑
n=1

fn(x) for x >
√

ln 2.

Ex 2.8 Let fn(x) := (−1)n 1
nx

on (0,∞). Show that
∑∞
n=1 fn is continuous and differentiable on

(0,∞).

Ex 2.9 Let fn(x) := nx2

n3 + x3 .

(a) Show that
∑∞
n=1 fn does not converge uniformly on [0,∞).

(b) Show that
∑∞
n=1 fn is continuous on [0,∞).

Ex 2.10 Same as Ex 2.9 with fn(x) := nx

n3 + x3 .

Ex 2.11 Define fn : [0,∞)→ R by fn(x) := (n+ x)−2 sin(nx).

(a) Prove that
∑∞
n=1 fn converges pointwise on [0,∞) and write the sum as f(x) :=∑∞

n=1 fn(x).

(b) Prove that f : [0,∞)→ R is continuous.

Answers
Ex 2.1 Since 0 ≤ e−n3x2 ≤ 1 and

∑∞
n=0 2−n <∞, by dominated convergence

lim
x→0

∞∑
n=0

e−n
3x2

2n =
∞∑
n=0

lim
x→0

e−n
3x2

2n =
∞∑
n=0

1
2n = 2.
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Ex 2.2 Termwise integration is justified by Weierstrass M–test (since | sin(nx)|/n2 ≤ 1/n2):∫ π

0

∞∑
n=1

sin(nx)
n2 dx =

∞∑
n=1

1
n2

∫ π

0
sin(nx) dx =

∞∑
n=1

1− (−1)n

n3 =
∞∑
k=1

2
(2k − 1)3 .

Ex 2.3 (a) Since supx∈[1,2]
1

(n+x)2 ) ≤ 1
n2+1), we gey convergence uniform and we can interchange sum

and the integral:∫ 2

1

∞∑
n=1

1
(n+ x)2 dx =

∞∑
n=1

∫ 2

1

dx

(n+ x)2 =
∞∑
n=1

[
− 1
n+ x

]2
1

=
∞∑
n=1

( 1
n+ 1 −

1
n+ 2

)
= 1

2 .

(b) ∫ π

0

∞∑
n=1

n sin(nx)
en

dx =
∞∑
n=1

n

en
1− (−1)n

n
=
∞∑
k=0

2
e2k+1 = 2e−1

1− e−2 = 2e
e2 − 1 .

Ex 2.4 fn(x) = xn(1− x) on [0, 1]. For x ∈ [0, 1),
∞∑
n=1

fn(x) = (1− x)
∞∑
n=1

xn = x.

At x = 1, all terms are 0, so the pointwise sum is f(x) = x on [0, 1) and f(1) = 0 (discontin-
uous). Uniform convergence would preserve continuity, hence it fails on [0, 1]. Moreover,

∞∑
n=1

∫ 1

0
fn(x) dx =

∞∑
n=1

( 1
n+ 1 −

1
n+ 2

)
= 1

2 =
∫ 1

0
x dx =

∫ 1

0

( ∞∑
n=1

fn(x)
)
dx.

Ex 2.5

Ex 2.6 For each n,

d

dx

1
n3 + n4x2 = · d

dx

1
n3 + n4x2 = − 2xn4

(n3 + n4x2)2 = −2x n4

(n3 + n4x2)2 .

Uniform convergence of the derivative series on compact sets (compare with 2|x|/n2) justifies
termwise differentiation:

f ′(x) = −2x
∞∑
n=1

n4

(n3 + n4x2)2 .

Ex 2.7 Let fn(x) = 2nxe−nx2 .

(a) For A ≥ x ≥ δ >
√

ln(2),

fn(x) = x (2e−x2)n ≤ A (2e−δ2)n.

Thus
∑
fn converges uniformly on [δ, A] provided 2e−δ2

< 1, i.e. δ >
√

ln 2. (For
δ ≤
√

ln 2 the series diverges since the ratio ≥ 1.)
(b) For x >

√
ln 2,

∞∑
n=1

fn(x) = x
∞∑
n=1

(2e−x2)n = 2x e−x2

1− 2e−x2 .

For x =
√

ln 2 the terms are constant in n and the series diverges; for 0 < x <
√

ln 2 it
diverges geometrically; at x = 0 the sum is 0.



101

Ex 2.8 Fix a > 0 and write
∞∑
n=1

(−1)n 1
nx

=
∞∑
n=1

an bn(x), an := (−1)n, bn(x) := 1
nx
, x ∈ [a,∞).

The partial sums AN :=
∑N
n=1 an are uniformly bounded: |AN | ≤ 1 for all N . For each

x ≥ a, the sequence bn(x) is nonincreasing in n, and bn(x) → 0 as n → ∞. Moreover this
tends to 0 uniformly on [a,∞), since

sup
x≥a

bn(x) = 1
na
−−−→
n→∞

0.

We now invoke the uniform Dirichlet test: if (AN ) is bounded and bn(·) is nonincreasing
in n with bn → 0 uniformly on a set D, then

∑
anbn(·) converges uniformly on D. For

completeness, we sketch the proof. For p < q and x ∈ D, partial summation gives
q∑

n=p
anbn(x) = Aqbq+1(x)−Ap−1bp(x) +

q∑
n=p

An
(
bn(x)− bn+1(x)

)
.

Taking absolute values and using |An| ≤M (here M = 1) and the monotonicity of bn,∣∣∣ q∑
n=p

anbn(x)
∣∣∣ ≤M bq+1(x) +M bp(x) +M

q∑
n=p

(
bn(x)− bn+1(x)

)
≤ 2M bp(x).

Hence
sup

x∈[a,∞)

∣∣∣ q∑
n=p

anbn(x)
∣∣∣ ≤ 2M sup

x≥a
bp(x) = 2M

pa
−−−→
p→∞

0,

which is precisely the Cauchy criterion for uniform convergence on [a,∞).
Therefore

∑∞
n=1(−1)n/(nx) converges uniformly on every [a,∞). In particular, the sum f(x)

is continuous on each [a,∞); since a > 0 was arbitrary, f is continuous on (0,∞).

Ex 2.9 fn(x) = nx2

n3 + x3 ≥ 0.

(a) Let y = x/n. Then

sup
x≥0

fn(x) = sup
y≥0

y2

1 + y3 = 22/3

3 > 0

(attained at y = 3√2). Since supx fn(x) does not tend to 0, the series cannot converge
uniformly on [0,∞). (Indeed, tails are bounded below by a fixed positive amount
because the terms are nonnegative.)

(b) On each [0, A] and for n > A,

0 ≤ fn(x) ≤ nA2

n3 = A2

n2 ,

so
∑
fn converges uniformly on [0, A] by the M–test, hence the sum is continuous on

[0,∞).

Ex 2.10 fn(x) = nx

n3 + x3 .
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(a) With y = x/n,
sup
x≥0

fn(x) = sup
y≥0

y

1 + y3 = 1
3√4

> 0,

so no uniform convergence on [0,∞) (same positivity argument).
(b) On [0, A] and n > A,

0 ≤ fn(x) ≤ nA

n3 = A

n2 ,

hence uniform convergence on [0, A] and continuity of the sum on [0,∞).

Ex 2.11 fn(x) = (n+ x)−2 sin(nx) on [0,∞).

(a) Pointwise convergence for each fixed x ≥ 0. For x = 0 one has sin(n · 0) = 0, so
the series is identically 0. For x > 0 set an(x) := (n+ x)−2 and bn(x) := sin(nx). Then
an(x) ↓ 0 in n. The partial sums of bn(x) satisfy the classical bound (for x /∈ 2πZ)

N∑
k=1

sin(kx) =
sin
(
Nx
2
)

sin
( (N+1)x

2
)

sin(x/2) ,
∣∣∣ N∑
k=1

sin(kx)
∣∣∣ ≤ 1

2 | sin(x/2)| ,

and if x ∈ 2πZ then the partial sums are 0. Thus for each fixed x ≥ 0 the sequence(∑N
k=1 sin(kx)

)
N
is bounded. By Dirichlet’s test,

∑∞
n=1 an(x) sin(nx) converges for every

x ≥ 0.
(b) Uniform (absolute) convergence and continuity on [0,∞). For all x ≥ 0 and all

n ∈ N,
|fn(x)| = | sin(nx)|

(n+ x)2 ≤
1

(n+ x)2 ≤
1
n2 .

Since
∑∞
n=1

1
n2 < ∞, the Weierstrass M–test implies that

∑∞
n=1 fn(x) converges uni-

formly and absolutely on the whole [0,∞). Each fn is continuous on [0,∞), hence the
uniform limit

f(x) :=
∞∑
n=1

sin(nx)
(n+ x)2

is continuous on [0,∞).
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Power Series
A power series is a series of the form

∞∑
n=0

cn(x− x0)n (x ∈ R), (5.1)

where (cn)n≥0 ⊂ R are the coefficients. For each fixed x ∈ R the series in (??) may converge or
diverge. The set E ⊂ R of all x for which it converges is the domain of convergence; on E the sum
defines a function. Conversely, for a given function f on a set V ⊂ R one may ask whether f can
be represented as the sum of a power series whose domain of convergence contains V .

Radius of convergence (Cauchy–Hadamard)
Theorem 107 For the series (??) set

d := lim sup
n→∞

|cn|1/n, R := d−1 (
R := 0 if d =∞, R :=∞ if d = 0

)
.

Then:

1. If |x| < R, the series converges absolutely.

2. If |x| > R, the series diverges.

3. At the boundary points x = ±R (when 0 < R < ∞), either convergence or divergence may
occur; no general conclusion is possible.

Proof sketch. For x = x0 the series converges. For x 6= x0, apply the root test to an :=
cn(x− x0)n:

lim sup
n→∞

|an|1/n = lim sup
n→∞

(
|cn|1/n |x− x0|

)
= |x− x0| d =


0, d = 0,
∞, d =∞,
|x− x0|/R, d ∈ (0,∞).

The conclusions follow from the root test.
The number R ∈ [0,∞] is uniquely determined and is called the radius of convergence. The

series converges for |x− x0| < R and diverges for |x− x0| > R.

Exercise 108 Assume only finitely many cn are nonzero for large n, and that the limit λ :=
limn→∞ |cn+1|/|cn| exists in R. Define R from this d as above. Show that the conclusions of
Theorem ?? still hold (ratio-test version).

Examples
1. c0 := 0, cn := nn for n ≥ 1. Then d = ∞, hence R = 0. So

∑∞
n=1 n

nxn converges only at
x = 0.

2. cn := 1/n!. Then limn→∞ |cn+1|/|cn| = 0, so R =∞. The sum defines the entire function

exp(x) :=
∞∑
n=0

xn

n! (x ∈ R), (5.2)

with exp(0) = 1 and exp(1) = e.
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3. cn := 1 (the geometric series). Then R = 1. For |x| = 1 the series
∑∞
n=0 x

n diverges because
xn 9 0 as n→∞.

4. cn := 1/n (n ≥ 1). Then R = 1. At x = 1 the series diverges (harmonic series); at x = −1
it converges conditionally (alternating harmonic series). For real |x| = 1, these are the only
boundary points.

5. cn := 1/n2 (n ≥ 1). Then R = 1 and the series converges absolutely at x = ±1.

6. If cn = 0 for all n > N , the power series (??) terminates and is a polynomial
∑N
n=0 cnx

n; the
radius is R =∞.

Termwise differentiation on (−R,R)
Restrict to real x ∈ (−R,R) and define

f(x) :=
∞∑
n=0

cnx
n. (5.3)

Formally differentiating term by term suggests

g(x) =
∞∑
n=1

ncnx
n−1 =

∞∑
n=0

(n+ 1)cn+1x
n.

The next lemma ensures the same radius for the derived series.

Lemma 109 The power series
∑∞
n=0 cnx

n and
∑∞
n=0(n + 1)cn+1x

n have the same radius of con-
vergence.

Proof. By Cauchy–Hadamard, multiplying coefficients by n does not change the radius since
limn→∞ n

1/n = 1. An index shift also does not affect the radius.

Theorem 110 Let R > 0 be the radius of convergence of (??). Define f by (??) on (−R,R) and
g(x) :=

∑∞
n=0(n+ 1)cn+1x

n on (−R,R). Then f is differentiable on (−R,R) and f ′(x) = g(x) for
all x ∈ (−R,R). In particular, f is continuous on (−R,R).

Idea of proof. Fix x ∈ (−R,R) and choose ρ with |x| < ρ < R. For small |h| estimate∣∣∣∣f(x+ h)− f(x)
h

− g(x)
∣∣∣∣

by splitting into finitely many terms (whose difference quotients → 0) and a tail, bounded using∑
n|cn|ρn−1 <∞. Use Lemma ?? and the mean value estimate to conclude.

Corollary 111 On (−R,R) the function f is C∞ and, for p ∈ N,

f (p)(x) =
∞∑
n=0

(n+ 1)(n+ 2) · · · (n+ p) cn+p x
n. (5.4)

In particular,
f (p)(0) = p! cp. (5.5)
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Exercise 112 (Real Taylor formula on (−R,R)) Assume all cn ∈ R. Show that for each n ≥ 0
and x ∈ (−R,R) there exists θx ∈ (0, 1) such that

f(x) =
n∑
k=0

ckx
k + f (n+1)(θxx)

(n+ 1)! xn+1.

Remark 113 (Analytic vs. C∞) Equation (??) shows that a function given by a power series
on (−R,R) is completely determined by all of its derivatives at 0, and in fact by its values on any
smaller open interval (−δ, δ). There exist C∞ functions f with f (p)(0) = 0 for all p but f 6≡ 0;
such functions are not of the form (??). Functions representable by (??) are called analytic.

Cauchy product and products of power series
Definition 114 (Cauchy product) Given series

∑∞
n=0 an and

∑∞
n=0 bn in R, their Cauchy prod-

uct is the series
∑∞
n=0 cn with

cn :=
n∑
k=0

ak bn−k (n = 0, 1, 2, . . . ). (5.6)

Theorem 115 (Mertens, absolutely convergent case) If
∑
|an| < ∞ and

∑
|bn| < ∞ with

sums A and B, then the Cauchy product
∑
cn converges absolutely and

∑
cn = AB.

Theorem 116 Let
∑∞
n=0 anx

n and
∑∞
n=0 bnx

n be power series with radii of convergence R1, R2 >
0. Put R := min{R1, R2} and define cn by (??). Then for |x| < R,

( ∞∑
n=0

anx
n
)( ∞∑

n=0
bnx

n
)

=
∞∑
n=0

cnx
n,

and the product series has radius of convergence at least R.

Example 117 Multiplying the geometric series with itself yields

∞∑
n=0

(n+ 1)xn = 1
(1− x)2 (|x| < 1),

consistent with differentiating (1− x)−1.

Exercises
Ex 3.1. Determine the radius of convergence of

∑
anx

n, where

(a) an = 1
nn
, (b) an = nn

n! , (c) an = (n!)2

(2n)! , (d) an = n−
√
n, (e) an =

{
1, n = k2

0, otherwise.

Ex 3.2. Suppose 0 < b ≤ |an| < c for all n. Find the radius of convergence of
∑
anx

n.

Ex 3.3. Give a power series that converges on (−1, 1] and diverges at −1.
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Ex 3.4. If f(x) =
∑∞
n=0 anx

n is even on (−R,R), prove an = 0 for all odd n; if f is odd, prove an = 0
for all even n.

Ex 3.5. For which c > 0 is each series uniformly convergent on [−c, c]?

(a)
∑ xn

n1/n , (b)
∑

nxn, (c)
∑ 2n√

n!
xn

(d)
∑ (−1)n

5n(n+ 1) x
n, (e)

∑ x2
√
n (1 + nx2) , (f)

∑
xn(1− x).

Ex 3.6. Let 0 < R < ∞ be the radius of convergence of
∑
anx

n and k ∈ N. Find the radius of
convergence of

(a)
∑

(an)kxn, (b)
∑

anx
kn, (c)

∑
anx

nk.

Ex 3.7. Suppose
∑
anx

n and
∑
bnx

n have radii R1 and R2, respectively.

(a) If R1 6= R2, show
∑

(an+ bn)xn has radius min{R1, R2}. What can happen if R1 = R2?
(b) Show the radius of

∑
(anbn)xn is at least R1R2.

Ex 3.8. (a) If
∑
an converges, prove

∑ an
n+ 1 converges and

∫ 1

0

( ∞∑
n=0

anx
n
)
dx =

∞∑
n=0

an
n+ 1 .

(b) If
∑ an
n+ 1 converges, show the same identity holds (the integral may be improper).

Ex 3.9. Prove (1 + x)α is analytic on (−1, 1) for all α ∈ R with

(1 + x)α =
∞∑
n=0

(
α

n

)
xn,

(
α

0

)
= 1,

(
α

n

)
= α(α− 1) · · · (α− n+ 1)

n! .

Deduce xα is analytic on (0,∞) by writing xα = cα [1 + (x/c− 1)]α.

Ex 3.10. From the Taylor series of 1
1− x show

log(1− x) = −
∞∑
n=1

xn

n
, |x| < 1,

and deduce log 2 =
∞∑
n=1

1
n2n .

Ex 3.11. Differentiate 1
1− x =

∑∞
n=0 x

n about x = 0 to prove

1
(1− x)2 =

∞∑
n=1

nxn−1, |x| < 1.

Ex 3.12. Find the Taylor expansions of 1
2− x about x = 0 and x = 1, and give each radius of

convergence.
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Ex 3.13. Find the Taylor expansion of 1
x(2− x) about x = 1 and its radius of convergence.

Ex 3.14. Let f(x) =
∫ x

0
e−t

2
dt. Find its power series and evaluate limx→∞ f(x).

Ex 3.15. Let R be the radius of
∑
anx

n.

(a) If f(x) =
∑∞
n=0 anx

n ≡ 0 on (−R,R), prove an = 0 for all n.

(b) If f(ck) = 0 for a sequence (ck) of distinct points with ck → c ∈ (−R,R), prove an = 0
for all n.

Answers
Ans 3.1. Use Cauchy–Hadamard: R = (lim sup |an|1/n)−1.

(a) |an|1/n = n−1 → 0 ⇒ R =∞.

(b) an+1
an

=
(
1 + 1

n

)n
→ e ⇒ R = 1

e .

(c) an ∼
√
πn

4n ⇒ |an|1/n → 1
4 ⇒ R = 4.

(d) |an|1/n → 1 ⇒ R = 1.
(e) lim sup |an|1/n = 1 ⇒ R = 1.

Ans 3.2. b1/n ≤ |an|1/n ≤ c1/n → 1, hence lim sup |an|1/n = 1 and R = 1.

Ans 3.3.
∞∑
n=1

(−1)n

n
xn: at x = 1 the alternating harmonic converges; at x = −1 it becomes∑ 1

n (diverges).
Ans 3.4. f(−x) =

∑
an(−1)nxn. If f is even, f(−x) = f(x), hence an(1 − (−1)n) = 0, so

an = 0 for odd n. The odd case is analogous.
Ans 3.5.

(a) Uniform on [−c, c] ⇔ c < 1 (Weierstrass; at x = ±1 no conv.).
(b) Uniform on [−c, c] ⇔ c < 1 (

∑
n|x|n uniform for |x| ≤ c < 1).

(c) R =∞; uniform on every [−c, c] by
∑ 2n√

n!
cn <∞.

(d) Uniform on [−c, c] for c < 5 (majorant
∑

(c/5)n/(n+ 1)). Not uniform at c = 5.

(e) sup
|x|≤c

x2
√
n(1 + nx2) ≤

1
2n3/2 for large n;

∑
n−3/2<∞

⇒ uniform on all [−c, c].
(f)

∑
xn(1− x) = 1 for |x| < 1; diverges at x = −1. Uniform on [−c, c] ⇔ c < 1.

Ans 3.6. Let d = lim sup |an|1/n = 1/R.

(a) lim sup |(an)k|1/n = dk ⇒ Rnew = Rk; (b),(c)
∑

an(xk)n ⇒ |x| < R1/k.
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Ans 3.7. Let
∞∑
n=0

anx
n and

∞∑
n=0

bnx
n

be two power series with radii of convergence R1 and R2, respectively. By the Cauchy–Hadamard
formula,

1
R

= lim sup
n→∞

|cn|1/n

for any power series
∑
cnx

n.

(a) For the series
∑

(an + bn)xn, let

α = lim sup
n→∞

|an|1/n = 1
R1
, β = lim sup

n→∞
|bn|1/n = 1

R2
.

Then
1
R

= lim sup
n→∞

|an + bn|1/n ≤ max(α, β) = 1
min(R1, R2) .

Hence R ≥ min(R1, R2). If R1 6= R2, the term with the smaller radius dominates (If |x| > R1, then
the series

∑
anx

n diverges (by definition of R1), even though
∑

bnx
n may still converge (since

R2 > R1). ), and we obtain
R = min(R1, R2).

If R1 = R2, then R ≥ R1, and equality may be strict if cancellations occur. For example, if
an = (−1)n and bn = (−1)n+1, then R1 = R2 = 1 but R =∞.

R(
∑

(an + bn)xn) =

min{R1, R2}, R1 6= R2,

≥ R1 (possibly larger), R1 = R2.

(b) For the series
∑

(anbn)xn,

1
R

= lim sup
n→∞

|anbn|1/n = lim sup(|an|1/n|bn|1/n) ≤ (lim sup |an|1/n)(lim sup |bn|1/n) = 1
R1R2

.

Therefore,
R ≥ R1R2.

Ans 3.8.

(a) For 0 ≤ r < 1,
∫ 1

0
∑
an(rx)ndx =

∑
an

rn

n+1 . Let r ↑ 1 and use Abel/Dirichlet to pass to the
limit; also

∑ an
n+1 converges by Dirichlet.

(b) Same identity holds: define F (r) =
∑ anrn

n+1 , note F (r) =
∫ 1

0
∑
an(rx)ndx, then let r ↑ 1; the

LHS is an improper integral if necessary.

Ans 3.9. For |x| < 1, (1 + x)α =
∑∞
n=0

(α
n

)
xn by binomial series (ratio/root test). For xα, fix

c > 0 and write xα = cα[1 + (x/c− 1)]α; this gives a power series in (x− c) on (c− rad, c+ rad) ⊂
(0,∞), hence xα is analytic on (0,∞).
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Ans 3.10. Since 1
1− x =

∑∞
n=0 x

n for |x| < 1, integrate from 0 to x:

− log(1− x) =
∞∑
n=1

xn

n
, |x| < 1.

Set x = 1
2 to get log 2 =

∑∞
n=1

(−1)n

n
.

Ans 3.11. Differentiate
∑∞
n=0 x

n termwise: 1
(1− x)2 =

∑∞
n=1 nx

n−1, |x| < 1.

Ans 3.12. About 0: 1
2− x = 1

2 ·
1

1− x
2

=
∞∑
n=0

xn

2n+1 , radius 2. About 1: let h = x − 1, then

1
2− x = 1

1− h =
∑∞
n=0 h

n, radius 1.

Ans 3.13. Partial fractions: 1
x(2− x) = 1

2
(1
x

+ 1
2− x

)
. About x = 1 with h = x− 1:

1
x

= 1
1 + h

=
∞∑
n=0

(−1)nhn, 1
2− x = 1

1− h =
∞∑
n=0

hn.

Thus 1
x(2− x) =

∑∞
m=0 h

2m (all odd terms cancel). Radius is min{1, 1} = 1 (distance to nearest

pole 0 or 2).

Ans 3.14. e−t2 =
∑∞
n=0

(−1)n

n! t2n, so

f(x) =
∫ x

0
e−t

2
dt =

∞∑
n=0

(−1)n

n!(2n+ 1) x
2n+1 (entire power series).

Moreover lim
x→∞

f(x) =
√
π

2 (Gaussian integral).
Ans 3.15.

(a) An analytic function with all values 0 on an interval is identically 0; hence all Taylor coeffi-
cients an vanish.

(b) Zeros with an accumulation point inside the disc of convergence force the analytic function
to be identically 0; hence an = 0 for all n.
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Introduction to the Lebesgue Integral
This section presents a short but rigorous introduction to the Lebesgue integral on a bounded
interval in R, in comparison with the classical Riemann integral.

Let f : [a, b]→ R be a bounded function. We begin with the Riemann integral, which is defined
via partitions of the domain.

A partition of [a, b] is a finite collection of points

a = a0 < a1 < · · · < an = b.

Given such a partition, we define the following sums:

• The lower Riemann sum:

L(f, P ) :=
n∑
i=1

(ai − ai−1) inf
x∈[ai−1,ai]

f(x).

• The upper Riemann sum:

U(f, P ) :=
n∑
i=1

(ai − ai−1) sup
x∈[ai−1,ai]

f(x).

The function f is called Riemann integrable on [a, b] if

sup
P
L(f, P ) = inf

P
U(f, P ).

In this case, the common value is denoted by∫ b

a
f(x) dx

and called the Riemann integral of f .
The Lebesgue integral takes a completely different approach: instead of partitioning the domain

of f , we partition its range.
Let f : [a, b]→ [c, d) be bounded. Choose a partition Q of the range:

c = c0 < c1 < · · · < cn = d.

Define

L∗(f,Q) :=
n∑
i=1

ci−1m
(
f−1([ci−1, ci))

)
,

U∗(f,Q) :=
n∑
i=1

cim
(
f−1([ci−1, ci))

)
,

where m(·) denotes Lebesgue measure.
The function f is called Lebesgue integrable if

sup
Q
L∗(f,Q) = inf

Q
U∗(f,Q).
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The common value is the Lebesgue integral of f and is written∫
[a,b]

f dm.

If f is Riemann integrable on [a, b], then f is also Lebesgue integrable, and∫ b

a
f(x) dx =

∫
[a,b]

f dm.

The integral relies on the Lebesgue measure m(·), which we now define step by step.

1. If E ⊆ [a, b] is an interval, then m(E) is the length of the interval.

2. If E ⊆ [a, b] is open, then E can be written as a countable disjoint union of intervals:

E =
∞⊔
k=1

Ek, Ek ⊆ [a, b].

We define
m(E) :=

∞∑
k=1

m(Ek).

3. For an arbitrary set E ⊆ [a, b], the outer measure is defined as

me(E) := inf{m(U) : E ⊆ U, U open}.

4. A set E ⊆ [a, b] is called Lebesgue measurable if

me(E) +me([a, b] \ E) = b− a.

In this case, we define m(E) := me(E).

Remark 118 For a function f , the Lebesgue integral is well-defined whenever f−1([c′, d′]) is
Lebesgue measurable for every subinterval [c′, d′] ⊆ [c, d).

If {Ek} is a countable collection of pairwise disjoint Lebesgue-measurable sets, then

m
(⋃
k

Ek
)

=
∑
k

m(Ek).

The Lebesgue integral has several fundamental advantages over the Riemann integral:

1. More functions are integrable. Every Riemann integrable function is Lebesgue integrable,
but not conversely.

2. Handles unbounded cases. The definition extends naturally to unbounded functions and
unbounded domains.

3. Limit theorems. Under very general conditions (Dominated Convergence Theorem, Mono-
tone Convergence Theorem), one can interchange limit and integral:

lim
n→∞

∫
fn dm =

∫
lim
n→∞

fn dm.
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4. Generalization. Lebesgue integration applies to functions defined on arbitrary measure
spaces, not just subsets of R.

5. Normed spaces. The Lebesgue integral allows us to define the norms

‖f‖1 :=
∫ b

a
|f(x)| dm, ‖f‖2 :=

(∫ b

a
|f(x)|2 dm

)1/2

,

which are fundamental for Lp spaces and Hilbert space theory.

6. Probability and statistics. Lebesgue measure and integration provide the natural frame-
work for probability theory, where measurable sets correspond to events and integrals corre-
spond to expectations.
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Lecture 1: Outer measure
The length `(I) of an open interval I ⊂ R is defined as:

`(I) =


b− a if I = (a, b) for some a < b ∈ R,
0 if I = ∅,
∞ if I = (−∞, a) or I = (a,∞),
∞ if I = (−∞,∞).

This notion of length can be extended to a finite or infinite disjoint union of open intervals. Suppose

A =
⋃
n

In, with In ∩ Im = ∅ for n 6= m,

then the total length of A is defined as:

`(A) =
∑
n

`(In),

where `(A) =∞ if the series diverges—this includes the case where at least one In is unbounded.

Definition 119 The outer measure of a set A ⊂ R, denoted m∗(A), is defined by:

m∗(A) = inf
{ ∞∑
k=1

`(Ik) : A ⊂
∞⋃
k=1

Ik, Ik are open intervals in R
}
.

This means:

• We look at all possible countable collections of open intervals I1, I2, I3, . . . that cover the
set A.

• For each such collection, we calculate the total length:

∞∑
k=1

`(Ik).

• The outer measure m∗(A) is the smallest possible total length (i.e., the infimum over all
such sums).

Example 1.
m∗((a, b)) = ((`((a, b)) = b− a.

Recall that the Lebesgue outer measure of a set E ⊂ R is defined by

m∗(E) = inf
{ ∞∑
k=1

(bk − ak) : E ⊂
∞⋃
k=1

(ak, bk)
}
.

The interval (a, b) itself is a cover of (a, b), hence

m∗((a, b)) ≤ b− a.
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Let (a, b) ⊂
⋃∞
k=1(ak, bk) be any open cover. Since the cover must contain every point between

a and b, we have

b− a ≤ sup
k
bk − inf

k
ak ≤

∞∑
k=1

(bk − ak).

Taking the infimum over all such coverings yields

m∗((a, b)) ≥ b− a.

Combining the two inequalities, we obtain

m∗((a, b)) = b− a.

Example 2. Let’s calculate the outer measure of the closed interval A = [0, 1].

• To do this, we cover [0, 1] using open intervals. One simple choice is to take a slightly larger
open interval that contains all of [0, 1]. For any small ε > 0, let:

I1 = (−ε, 1 + ε), and set I2 = I3 = · · · = ∅.

• The total length of this cover is:
∞∑
k=1

`(Ik) = `(I1) = (1 + ε)− (−ε) = 1 + 2ε.

• Since ε can be made arbitrarily small, we take the infimum over all such covers:

m∗([0, 1]) ≤ inf{1 + 2ε : ε > 0} = 1.

To prove the opposite inequality, let I1, I2, . . . be a countable collection of open intervals such
that:

[0, 1] ⊂
∞⋃
k=1

Ik.

By the Heine–Borel Theorem, there exists a finite subcover; that is, there exists n ∈ N such that:

[0, 1] ⊂ I1 ∪ · · · ∪ In.

We can show by induction on n that this implies:
n∑
k=1

`(Ik) ≥ 1.

Since this finite sum is a lower bound for the total infinite sum, it follows that:
∞∑
k=1

`(Ik) ≥
n∑
k=1

`(Ik) ≥ 1.

Thus, for every such cover:
m∗([0, 1]) ≥ 1.

Combining both inequalities, we conclude:

m∗([0, 1]) = 1.
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R
A = [0, 1]

I1 = (−ε, 1 + ε)

This example shows how outer measure works: we cover the set with open intervals and try to
minimize the total length. Since every subset A ⊂ R can be covered by a countable union of bounded
open intervals, and since all interval lengths are nonnegative (or infinite), the outer measure m∗(A)
is always well-defined. If every covering gives an infinite total length, then m∗(A) =∞.

Properties of Outer Measure
• Countable Sets Have Zero Measure:

If A ⊂ R is countable (finite or infinite), then:

m∗(A) = 0.

Why? Let A = {a1, a2, a3, . . . }. For any ε > 0, surround each point an with an open interval:

In =
(
an −

ε

2n+1 , an + ε

2n+1

)
, so `(In) = ε

2n .

These intervals cover A, and the total length is:
∞∑
n=1

`(In) =
∞∑
n=1

ε

2n = ε.

Since ε can be made arbitrarily small, the outer measure must be zero:

m∗(A) = 0.

Examples: Finite sets and Q ∩ [0, 1] are countable, so they have outer measure zero.

• Monotonicity: If A ⊂ B, then:
m∗(A) ≤ m∗(B).

Why? Any collection of open intervals that covers B also covers A. Since outer measure is
defined as the smallest such total length, the measure of A can’t exceed that of B.

R
A

B
I1 I2

Interpretation:

– The red intervals cover B (green), so they also cover A (blue).
– The total length needed to cover A is at most the length needed to cover B.
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• Countable Subadditivity:
For any sequence of sets E1, E2, E3, · · · ⊂ R:

m∗
( ∞⋃
k=1

Ek

)
≤
∞∑
k=1

m∗(Ek).

Example 120 Let Q ∩ [0, 1] = {q1, q2, q3, . . . }, and set Ek = {qk}. Then:

– m∗(Ek) = 0 for all k,
–
∑
m∗(Ek) = 0,

–
⋃
Ek = Q ∩ [0, 1], so:

m∗
( ∞⋃
k=1

Ek

)
= 0.

Here, we get equality.

Now consider A = Q ∩ [0, 1] and B = [0, 1] \Q. Then:

– A ∪B = [0, 1], and A ∩B = ∅,
– m∗(A) = 0, m∗(B) = 1,
– So:

m∗(A ∪B) = 1 = m∗(A) +m∗(B).

Again, we have equality, but this is not always true.
Important: Outer measure is not always additive! Even for disjoint sets A and B, it can
happen that:

m∗(A ∪B) 6= m∗(A) +m∗(B).

So while outer measure is always countably subadditive, it is not generally countably
additive.

Exercises
Exercise 1. Compute the outer measure of the half-infinite interval [0,∞).

Solution. Since [0, n] ⊆ [0,∞) for every n ∈ N, by the monotonicity of the outer measure m∗
we have

m∗([0,∞)) ≥ m∗([0, n]).

But for any finite interval [0, n], the outer measure equals its length:

m∗([0, n]) = `([0, n]) = n.

Thus
m∗([0,∞)) ≥ n for all n ∈ N.

Since n can be made arbitrarily large, the only possibility is that

m∗([0,∞)) =∞.
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Exercise 2. For any interval I ⊆ R, its outer measure equals its length:

m∗([a, b]) = m∗((a, b)) = m∗([a, b)) = m∗((a, b]) = b−a, m∗((−∞, b)) = m∗((a,∞)) = m∗(R) =∞.

Closed interval
Fix a < b. For any ε > 0, [a, b] ⊂ (a − ε, b + ε) so m∗([a, b]) ≤ `((a − ε, b + ε)) = b − a + 2ε,

hence m∗([a, b]) ≤ b− a by letting ε ↓ 0. For the reverse inequality, let {Ik}∞k=1 be any open cover
of [a, b]. By Heine–Borel, there is a finite subcover [a, b] ⊂

⋃n
k=1 Ik, whence

b− a = `([a, b]) ≤
(̀ n⋃
k=1

Ik
)
≤

n∑
k=1

`(Ik) ≤
∞∑
k=1

`(Ik).

Taking the infimum over all open covers gives m∗([a, b]) ≥ b− a. Thus

m∗([a, b]) = b− a.

Half-open intervals and singletons. Use the inclusions [a, b) ⊂ (a − ε, b) and [a, b) ⊃
[a+ ε, b− ε] to get m∗([a, b)) = b− a; similarly for (a, b]. For a singleton {x}, {x} ⊂ (x− ε, x+ ε)
gives m∗({x}) ≤ 2ε for all ε > 0, hence m∗({x}) = 0.

Unbounded intervals.
For [0,∞), since [0, n] ⊂ [0,∞) for all n ∈ N, m∗([0,∞)) ≥ m∗([0, n]) = n, hence m∗([0,∞)) =

∞; the other unbounded cases are analogous.
Exercise 3. If {I1, I2, . . . , In} is a finite set of semi-open intervals that covers Q ∩ [0, 1], prove

that
n∑
i=1

`(Ii) ≥ 1.

Solution Since a finite union of intervals that covers Q∩ [0, 1] must also cover [0, 1] (otherwise
its complement would contain a nonempty interval, hence a rational not covered), we have

1 = `([0, 1]) ≤ `
(

n⋃
i=1

Ii

)
≤

n∑
i=1

`(Ii).

Thus
∑n
i=1 `(Ii) ≥ 1.

Exercise 4. Let m∗ denote the Lebesgue outer measure on R. Given m∗(E) = 0, prove that

m∗(E ∪ F ) = m∗(F ) for all F ⊂ R.

Solution By monotonicity of m∗, since F ⊂ E ∪ F ,

m∗(F ) ≤ m∗(E ∪ F ).

By subadditivity of m∗,

m∗(E ∪ F ) ≤ m∗(E) +m∗(F ) = 0 +m∗(F ) = m∗(F ).

Combining the two inequalities yields m∗(E ∪ F ) = m∗(F ).
Exercise 5. Given any E ⊂ R, prove that for all ε > 0 there exists an open set G with E ⊂ G
and m∗(G) ≤ m∗(E) + ε, where m∗ denotes Lebesgue outer measure.
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Solution If m∗(E) = ∞, the inequality is trivial, since m∗(G) ≤ ∞ = m∗(E) + ε for any
G ⊃ E. Assume m∗(E) <∞. By definition of outer measure,

m∗(E) = inf
{ ∞∑
k=1

`(Ik) : E ⊂
∞⋃
k=1

Ik, Ik intervals
}
.

Hence there exists a countable collection of (bounded) open intervals {Ik}∞k=1 with E ⊂
⋃
k Ik and

∞∑
k=1

`(Ik) < m∗(E) + ε.

Let G :=
⋃∞
k=1 Ik. Then G is open and E ⊂ G. By subadditivity and monotonicity of m∗,

m∗(G) ≤
∞∑
k=1

m∗(Ik) =
∞∑
k=1

`(Ik) ≤ m∗(E) + ε.

Therefore, for every ε > 0 there exists an open G ⊃ E with m∗(G) ≤ m∗(E) + ε.
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Lecture 2: σ-algebra
Definition 121 (Sigma-Algebra and Measurable Space) Let X be a set, and let S be a col-
lection of subsets of X.

We say that S is a σ-algebra on X if it satisfies the following:

• ∅ ∈ S (the empty set is included),

• If E ∈ S, then the complement X \ E ∈ S,

• If E1, E2, E3, · · · ∈ S, then the union
∞⋃
k=1

Ek ∈ S

(closed under countable unions).

If S is a σ-algebra on X, then the pair (X,S) is called a measurable space.

Example 122

• {∅, X}: the smallest possible σ-algebra on X,

• P(X): the power set of X, containing all subsets — the largest possible σ-algebra,

• The collection of all subsets E ⊆ X such that either E is countable or X \ E is countable.

Proposition 123 Let S be a σ-algebra on a set X. Then:

(a) X ∈ S

(b) If D,E ∈ S, then:
D ∪ E ∈ S, D ∩ E ∈ S, D \ E ∈ S

(c) If E1, E2, E3, · · · ∈ S, then:
∞⋂
k=1

Ek ∈ S

Proof. (a) Since ∅ ∈ S (by definition), and X = X \ ∅, closure under complements gives X ∈ S.

(b) Suppose D,E ∈ S. Then:

• D ∪ E ∈ S because S is closed under countable unions.

• For D ∩ E, use De Morgan’s law:

X \ (D ∩ E) = (X \D) ∪ (X \ E)

The right-hand side is in S, so the left-hand side is too. Taking its complement shows
D ∩ E ∈ S.

• For D \ E, note that:
D \ E = D ∩ (X \ E)

Both sets on the right are in S, so their intersection is too.
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(c) Let E1, E2, · · · ∈ S. Then by De Morgan’s law:

X \
( ∞⋂
k=1

Ek

)
=
∞⋃
k=1

(X \ Ek)

Since each X \Ek ∈ S and S is closed under countable unions, the right-hand side is in S. Taking
the complement, we conclude:

∞⋂
k=1

Ek ∈ S

Borel σ-Algebra on R
Definition 124 The Borel σ-algebra on R, denoted by B(R), is the smallest σ-algebra that con-
tains all open intervals (a, b), where a, b ∈ R.

• It includes many familiar sets in real analysis: open, closed, half-open intervals, countable
sets, and more.

• It is the foundation for defining measures (like Lebesgue measure) on subsets of R.

• Any set in B(R) is called a Borel set.

Examples of Borel Sets:

• Open intervals: (a, b) ∈ B(R) by definition.

• Half-open intervals:

[a, b) =
∞⋂
k=1

(
a− 1

k
, b

)
.

Since each interval on the right is open, and Borel sets are closed under countable intersec-
tions, [a, b) ∈ B(R).

• Unbounded intervals:
[a,∞) =

∞⋃
k=1

[a+ k, a+ k + 1).

• Closed intervals:
[a, b] = R \ ((−∞, a) ∪ (b,∞)).

Since open sets are Borel, so are their complements.

• Countable sets: Any countable set, like the rationals in [0, 1], is Borel. For example:

B = {x1, x2, x3, . . . }, B =
∞⋃
k=1
{xk},

where each {xk} is a closed set.
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• Continuity sets of functions: If f : R→ R, then the set where f is continuous is a Borel
set, because it can be written as a countable intersection of open sets.
Let

C(f) = {x ∈ R : f is continuous at x}.
By definition, f is continuous at x if and only if for every ε > 0 there exists δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

For each n ∈ N define

An =
∞⋃
k=1

{
x ∈ R : ∃δ > 1

k
such that |f(x)− f(y)| < 1

n
whenever |x− y| < δ

}
.

Intuitively, An consists of points where f oscillates by less than 1/n in some neighborhood
of radius at least 1/k. For each fixed k, define

En,k =
{
x ∈ R : ∃δ > 1

k
such that |f(x)− f(y)| < 1

n
whenever |x− y| < δ

}
,

so that An =
⋃∞
k=1En,k. Let x0 ∈ En,k; then there exists δ0 >

1
k such that

|f(x0)− f(y)| < 1
n

whenever |x0 − y| < δ0.

Set r = δ0−1/k
2 > 0. For any x ∈ (x0 − r, x0 + r) and any y satisfying |x− y| < r, we have

|x0 − y| ≤ |x0 − x|+ |x− y| < 2r = δ0 −
1
k
< δ0.

Hence y lies within (x0 − δ0, x0 + δ0), where |f(x0) − f(y)| < 1/n; therefore the same in-
equality holds for x with some δ′ = r > 1/k. This proves that every point x0 ∈ En,k has a
neighborhood contained in En,k, so En,k is open. Since An is a countable union of such open
sets, An is open as well.
A point x is a continuity point of f if and only if for every n there exists a neighborhood
where |f(x)− f(y)| < 1/n, that is,

C(f) =
∞⋂
n=1

An.

Each An being open, C(f) is a countable intersection of open sets. Since the Borel σ-algebra
is closed under countable unions and intersections of open sets, so we conclude that

C(f) is a Borel subset of R.

�

How is the Borel σ-algebra built?

• Start with all open intervals (a, b),

• Add all their complements to get closed sets,

• Then include all countable unions and intersections of those sets.

The Borel σ-algebra is large enough to cover most useful sets in analysis, but not all subsets of R.
Some sets are too “wild” to be Borel and require Lebesgue theory to handle.
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Exercice
Show that N, Z, Q, Qc are Borel sets.
Solution For any x ∈ R, the complement R \ {x} = (−∞, x) ∪ (x,∞) is open, hence {x} is closed
and therefore Borel. A countable union of Borel sets is Borel, so

N =
⋃
n∈N
{n}, Z =

⋃
n∈Z
{n}, Q =

⋃
q∈Q
{q}

are Borel (each is a countable union of singletons). Finally, Borel σ-algebras are closed under
complement, so Qc = R \ Q is Borel as well (equivalently, Qc =

⋂
q∈Q(R \ {q}) is a countable

intersection of open sets). Hence N,Z,Q,Qc ∈ B(R).

Conclusion. N, Z, Q, Qc ∈ B(R).



125

Measure
Definition 125 Let S be a σ-algebra on a set X. A function

µ : S → [0,∞]

is called a measure if it satisfies the following properties:

1. Empty Set Has Zero Measure:
µ(∅) = 0.

2. Countable Additivity (or σ-Additivity):
If {En}∞n=1 is a countable collection of pairwise disjoint sets in S (i.e., Ei∩Ej = ∅ for i 6= j),
then:

µ

( ∞⋃
n=1

En

)
=
∞∑
n=1

µ(En).

A triple (X,S, µ) is called a measure space.

Let’s explore several types of measures to better understand what a measure is and what
properties it must satisfy.

(i) Counting Measure (Finite Case):
Define a function µ on all subsets of R by:

µ(E) =
{
Number of elements in E, if E is finite,
∞, if E is infinite.

• This measure simply counts how many elements are in a set.
• If the set is infinite (for example, the set of all natural numbers), we define its measure

to be ∞.
• For instance:

µ({1, 2, 4}) = 3, µ(N) =∞.

Why this is a measure:

• µ(∅) = 0, which satisfies the null empty set property.
• For any countable collection of disjoint finite sets E1, E2, . . ., we have:

µ

( ∞⋃
n=1

En

)
=
∞∑
n=1

µ(En),

because union just adds up all the elements with no overlap.

(ii) Dirac Measure at a Point c ∈ R:
Define:

µc(E) =
{

1, if c ∈ E,
0, if c /∈ E.
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• This measure concentrates all the "mass" at a single point c.

• Think of placing a unit of "weight" only at point c. Any set containing c will have
measure 1; otherwise, 0.

• For example:
µ5([4, 6]) = 1, µ5((0, 4)) = 0.

Why this is a measure:

• µc(∅) = 0 since c /∈ ∅.

• For disjoint sets E1, E2, . . ., only one of them (at most) can contain c, so:

µc

( ∞⋃
n=1

En

)
=
∞∑
n=1

µc(En),

which is either 1 or 0 depending on whether c ∈
⋃
En.

(iii) Weighted Dirac Measures (Discrete Probability Model):
Let c1, c2, · · · ∈ R be points, and p1, p2, · · · ≥ 0 be corresponding weights (think of probabili-
ties or masses). Define:

µ(E) =
∑

{i:ci∈E}
pi.

• Each point ci has a fixed weight pi ≥ 0.

• To measure a set E, we sum up all the weights of those ci that lie in E.

• Example:
If c1 = 1, p1 = 0.3; c2 = 2, p2 = 0.7; then µ({1, 2}) = 1.

Why this is a measure:

• µ(∅) = 0, because none of the ci are in ∅.

• Countable additivity holds: if E1, E2, . . . are disjoint, the weights of points in each are
disjoint too, so:

µ

( ∞⋃
n=1

En

)
=
∞∑
n=1

µ(En).

Note: This kind of measure is used in probability theory to model discrete random variables
with weighted outcomes.

(iv) Define a set function µ by:

µ(E) =
{

0, if E is finite,
∞, if E is infinite.

Why this fails to be a measure:
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• It satisfies µ(∅) = 0, and is finitely additive, meaning:

µ(E1 ∪ E2) = µ(E1) + µ(E2),

when E1, E2 are disjoint and finite.
• However, it is not countably additive. For example, take the disjoint sets:

En = {n}, n = 1, 2, 3, . . .

Then each µ(En) = 0, so:
∞∑
n=1

µ(En) = 0.

But their union is the infinite set N, so:

µ

( ∞⋃
n=1

En

)
= µ(N) =∞.

This contradicts countable additivity.

Theorem 126 (Continuity from Below and Above for Outer Measure) Let (En)∞n=1 be a
sequence of subsets of R.

(a) If E1 ⊂ E2 ⊂ · · · and E =
⋃∞
n=1En, then

m∗(En) ↑ m∗(E), i.e. lim
n→∞

m∗(En) = m∗(E).

(b) If E1 ⊃ E2 ⊃ · · · and E =
⋂∞
n=1En, with m∗(E1) <∞, then

m∗(En) ↓ m∗(E), i.e. lim
n→∞

m∗(En) = m∗(E).

Proof. (a) Suppose E1 ⊂ E2 ⊂ · · · and E =
⋃∞
n=1En. Since outer measure is monotone, m∗(En)

is nondecreasing, so the limit L = limn→∞m
∗(En) exists (possibly infinite). Because each En ⊂ E,

we have m∗(En) ≤ m∗(E), hence L ≤ m∗(E). To prove the reverse inequality, let ε > 0. By
definition of m∗(E), there exists a countable collection of open intervals {Ik} such that

E ⊂
∞⋃
k=1

Ik, and
∞∑
k=1

`(Ik) < m∗(E) + ε.

Since E =
⋃
nEn, each En ⊂

⋃
k Ik, so

m∗(En) ≤
∞∑
k=1

`(Ik) ∀n.

Taking the limit as n→∞, we obtain

L = lim
n→∞

m∗(En) ≤
∞∑
k=1
|Ik|.

Because this holds for every such cover {Ik}, we have L ≤ m∗(E) + ε. Since ε > 0 was arbitrary,
we conclude L ≥ m∗(E). Hence,

lim
n→∞

m∗(En) = m∗(E).
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(b) Suppose E1 ⊃ E2 ⊃ · · · and E =
⋂∞
n=1En, with m∗(E1) <∞. Then the sequence (m∗(En))

is nonincreasing and bounded below by 0, so the limit L = limn→∞m
∗(En) exists. Since E ⊂ En

for all n, we have m∗(E) ≤ m∗(En), so m∗(E) ≤ L. To show the reverse inequality, fix ε > 0.
Because m∗(E1) is finite, there exists a countable collection of open intervals {Ik} such that

E1 ⊂
∞⋃
k=1

Ik, and
∞∑
k=1
|Ik| < m∗(E1) + ε.

For each n, the family {Ik} also covers En, hence m∗(En) ≤
∑
k |Ik|. The intersections En ↓ E

imply that the sets E1 \ En increase to E1 \ E. By continuity from below,

m∗(E1 \ E) = lim
n→∞

m∗(E1 \ En).

Using subadditivity and the fact that En ∪ (E1 \ En) = E1,

m∗(E1) ≤ m∗(En) +m∗(E1 \ En),

which gives m∗(E1)−m∗(E1 \ En) ≤ m∗(En). Letting n→∞ yields

m∗(E1)−m∗(E1 \ E) ≤ L.

Because E ⊂ E1, m∗(E1) = m∗(E) + m∗(E1 \ E) (additivity for disjoint sets in measurable E1),
and since E1 is measurable in the Lebesgue construction, we obtain m∗(E) ≥ L. Therefore,

lim
n→∞

m∗(En) = m∗(E).

�
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Lecture 3: Lebesgue measure
Lebesgue Measurable Sets
Definition 127 A set E ⊂ R is called Lebesgue measurable if, for every subset A ⊂ R, the
following equality holds:

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec),

where:

• m∗(·) denotes the outer measure, and

• Ec = R \ E is the complement of E.

This condition is known as the Carathéodory criterion.

The intuition behind this definition is that a Lebesgue measurable set E splits any other set A ⊂ R
into two disjoint parts—A∩E and A∩Ec—in a way that preserves the total outer measure. That
is, measuring the parts separately and adding the results gives exactly the same outer measure as
measuring the whole set A directly.
From the properties of outer measure, we always have the inequality:

m∗(A) ≤ m∗(A ∩ E) +m∗(A ∩ Ec),

since A ⊂ (A ∩ E) ∪ (A ∩ Ec) and outer measure is countably subadditive.
Therefore, to verify that E is measurable, we only need to check the reverse inequality:

m∗(A ∩ E) +m∗(A ∩ Ec) ≤ m∗(A) for all A ⊂ R.

If this inequality holds, then equality follows automatically from the previous inequality, and E is
Lebesgue measurable.

Summary: A set E ⊂ R is Lebesgue measurable if splitting any set A using E and
its complement does not increase the outer measure. This ensures that E behaves
well with respect to measure and integration.

Properties of Measurable Sets
• The empty set ∅ and the real line R are measurable.

Why? For any set A ⊂ R:

A ∩ ∅ = ∅, A ∩ ∅c = A ⇒ m∗(A) = 0 +m∗(A).

Similarly, for E = R:

A ∩ R = A, A ∩ Rc = ∅ ⇒ m∗(A) = m∗(A) + 0.

• A set is measurable if and only if its complement is measurable.
Why? If E is measurable, then for all A ⊂ R:

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).

This expression is symmetric in E and Ec, so Ec is also measurable.
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• Every set of outer measure zero is measurable.
Why? If m∗(E) = 0, then for any A ⊂ R:

m∗(A ∩ E) ≤ m∗(E) = 0 ⇒ m∗(A ∩ E) = 0.

Hence,
m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).

So E satisfies the measurability condition.

• The union of two measurable sets is measurable.
Let E,F ∈ M, where M denotes the collection of Lebesgue measurable subsets of R. We
want to show that E ∪ F ∈M.
By definition, a set S ⊂ R is measurable if for every A ⊂ R,

m∗(A) = m∗(A ∩ S) +m∗(A ∩ Sc).

We must prove this equality for S = E ∪ F .
Let A ⊂ R be arbitrary. We decompose A into three pairwise disjoint parts:

A1 = A ∩ E, A2 = A ∩ Ec ∩ F, A3 = A ∩ Ec ∩ F c.

Then
A = A1 ∪A2 ∪A3, Ai ∩Aj = ∅ for i 6= j.

"Apply measurability of E."
Since E is measurable, for the set A,

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec) = m∗(A1) +m∗(A ∩ Ec).

Note that A∩Ec = (A∩Ec ∩F )∪ (A∩Ec ∩F c) = A2 ∪A3, and these two sets are disjoint.
Therefore,

m∗(A ∩ Ec) = m∗(A2 ∪A3) = m∗(A2) +m∗(A3),

where we used the countable additivity of outer measure on disjoint measurable sets (A2, A3
are measurable. Why m∗(A1 ∪A2) = m∗(A1) +m∗(A2) ? m∗(A1 ∪A2) = m∗(A1 ∪A2 ∩F ) +
m∗(A1 ∪A2 ∩c F ) = m∗(A1) +m∗(A2).

• The interval (a,∞) is measurable for any a ∈ R.
Why? Let A ⊂ R. Define:

A1 = A ∩ (a,∞), A2 = A ∩ (−∞, a].

These cover A, and are disjoint:

A = A1 ∪A2, A1 ∩A2 = ∅.

If m∗(A) =∞, then the inequality

m∗(A1) +m∗(A2) ≤ m∗(A)
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holds trivially. Otherwise, for any ε > 0, choose an open cover {In} of A such that:∑
`(In) ≤ m∗(A) + ε.

Define:
Jn = In ∩ (a,∞), Kn = In ∩ (−∞, a].

Then A1 ⊂
⋃
Jn, A2 ⊂

⋃
Kn, and:

`(In) = `(Jn) + `(Kn)⇒
∑

`(Jn) +
∑

`(Kn) =
∑

`(In).

Therefore:
m∗(A1) +m∗(A2) ≤ m∗(A) + ε.

Letting ε→ 0, we conclude:

m∗(A) = m∗(A1) +m∗(A2),

proving that (a,∞) is measurable.

Theorem 128 The collection of Lebesgue measurable setsM is a σ-algebra.

Proof. We have already established that:

• ∅,R ∈M;

• if E ∈M, then Ec ∈M;

• if E1, E2 ∈M, then E1 ∪ E2 ∈M.

It remains to show thatM is closed under countable unions.

Let E1, E2, · · · ∈ M be pairwise disjoint, and define

Fn =
n⋃
i=1

Ei, F =
∞⋃
i=1

Ei.

Each Fn is measurable because finite unions of measurable sets are measurable, and Fn ↑ F .

We must prove that F ∈M; that is, for every A ⊂ R,

m∗(A) = m∗(A ∩ F ) +m∗(A ∩ F c).

The inequality
m∗(A) ≤ m∗(A ∩ F ) +m∗(A ∩ F c)

holds for every set F by subadditivity of m∗. Thus, we only need to establish the reverse inequality.

For each n, since Fn is measurable, we have

m∗(A) = m∗(A ∩ Fn) +m∗(A ∩ F cn). (1)

Because Fn ↑ F , we have A ∩ Fn ↑ A ∩ F , and because F cn ↓ F c, we have A ∩ F cn ↓ A ∩ F c.

Define
α = lim

n→∞
m∗(A ∩ Fn), β = lim

n→∞
m∗(A ∩ F cn).
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We will show that α = m∗(A ∩ F ) and β = m∗(A ∩ F c).

Since A ∩ Fn ↑ A ∩ F , by monotonicity,

m∗(A ∩ Fn) ≤ m∗(A ∩ F ),

so α ≤ m∗(A∩F ). Conversely, let ε > 0. Choose a countable collection of open intervals {Ik} such
that

A ∩ F ⊂
⋃
k

Ik, and
∑
k

|Ik| < m∗(A ∩ F ) + ε.

Since A ∩ F =
⋃
n(A ∩ Fn), for each n,

A ∩ Fn ⊂
⋃
k

Ik,

hence
m∗(A ∩ Fn) ≤

∑
k

|Ik| < m∗(A ∩ F ) + ε.

Taking limits and letting ε→ 0 gives

m∗(A ∩ F ) ≤ α.

Thus,
lim
n→∞

m∗(A ∩ Fn) = m∗(A ∩ F ). (2)

Step 2. Since A ∩ F cn ↓ A ∩ F c, we similarly obtain

lim
n→∞

m∗(A ∩ F cn) = m∗(A ∩ F c). (3)

Step 3. Taking limits in equation (1) and using (2) and (3) yields

m∗(A) = m∗(A ∩ F ) +m∗(A ∩ F c),

which shows F ∈M.

Step 4. For general (not necessarily disjoint) measurable sets Ei, define

E′1 = E1, E′2 = E2 \ E1, E′3 = E3 \ (E1 ∪ E2), etc.

Then E′i are pairwise disjoint, measurable, and
∞⋃
i=1

E′i =
∞⋃
i=1

Ei.

Thus, by the disjoint case,
⋃
iE
′
i ∈M, and so⋃

i

Ei ∈M.

Therefore,M is closed under countable unions, and hence is a σ-algebra.

Theorem 129 The Borel σ-algebra B is contained in the collection of Lebesgue measurable sets
M, i.e., B ⊂M.
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Proof. We previously showed that every interval of the form (a,∞) is measurable.
Now consider an open interval of the form (−∞, b). Observe that:

(−∞, b) =
∞⋃
n=1

(
−∞, b− 1

n

)
,

and since each (b − 1
n ,∞) is measurable, their complements (−∞, b − 1

n) are also measurable.
Therefore, (−∞, b) is measurable as a countable union of measurable sets.

Consequently, any open interval (a, b) can be written as:

(a, b) = (a,∞) ∩ (−∞, b),

which is an intersection of two measurable sets, and hence also measurable.
Since any open set in R can be written as a countable union of open intervals, and M is a

σ-algebra, it follows that all open sets are measurable.
Therefore, the Borel σ-algebra B, which is generated by open intervals, is a subset ofM.
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Theorem 130 The restriction of the outer measure m∗ to the collectionM of Lebesgue measurable
sets defines a measure. That is,

m := m∗|M
is a measure on the measurable space (R,M). The triple

(R,M,m)

is called the Lebesgue measure space.

Proof. Since m∗ is an outer measure, we have m∗(∅) = 0. Because m = m∗|M, it follows
immediately that m(∅) = 0. To verify that m is a measure, it remains to show that it is countably
additive onM.

Let {Ei}∞i=1 ⊂M be a countable family of pairwise disjoint measurable sets, and define

E =
∞⋃
i=1

Ei.

We must prove that

m∗(E) =
∞∑
i=1

m∗(Ei).

Since the sets Ei are disjoint and measurable, finite additivity holds for all n ∈ N:

m∗
(

n⋃
i=1

Ei

)
=

n∑
i=1

m∗(Ei).

The sequence of sets
⋃n
i=1Ei is increasing and converges to E. By the continuity from below

property of the outer measure,

m∗(E) = lim
n→∞

m∗
(

n⋃
i=1

Ei

)
= lim

n→∞

n∑
i=1

m∗(Ei) =
∞∑
i=1

m∗(Ei).

Thus, m∗ is countably additive on disjoint families of measurable sets. Since it is also monotone
and nonnegative, m = m∗|M satisfies all the axioms of a measure. Therefore, m defines a measure
on (R,M), called the Lebesgue measure.

Theorem 131 Then the following properties hold:

(a) Monotonicity: If E,F ∈M with E ⊂ F , then

m(E) ≤ m(F ).

(b) Countable Sub-additivity: For any countable collection {En}∞n=1 ⊂M,

m

( ∞⋃
n=1

En

)
≤
∞∑
n=1

m(En).

(c) Continuity from Below: If E1 ⊂ E2 ⊂ · · · (increasing sequence), then

m

( ∞⋃
n=1

En

)
= lim

n→∞
m(En).
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(d) Continuity from Above: If E1 ⊃ E2 ⊃ · · · (decreasing sequence) and m(Ek) < ∞ for
some k, then

m

( ∞⋂
n=1

En

)
= lim

n→∞
m(En).

We prove each property individually.

(a) Monotonicity: Suppose E ⊂ F . Then the set difference F \ E ∈ M, and the sets E and
F \ E are disjoint. Since E ∪ (F \ E) = F , we get:

m(F ) = m(E) +m(F \ E) ≥ m(E).

(b) Countable Sub-additivity: Let {En} be any sequence of measurable sets. Define:

F1 = E1, Fn = En \
n−1⋃
k=1

Ek (n ≥ 2).

Then the Fn are disjoint, and:
∞⋃
n=1

En =
∞⋃
n=1

Fn.

Thus:
m

( ∞⋃
n=1

En

)
=
∞∑
n=1

m(Fn) ≤
∞∑
n=1

m(En).

(c) Continuity from Below: Let E1 ⊂ E2 ⊂ · · ·, and set:

E =
∞⋃
n=1

En.

Define A1 = E1, and An = En \ En−1 for n ≥ 2. Then E =
⊔∞
n=1An, so:

m(E) =
∞∑
n=1

m(An), and m(Ek) =
k∑

n=1
m(An).

Hence,
lim
k→∞

m(Ek) = m(E).

(d) Continuity from Above: Let E1 ⊃ E2 ⊃ · · ·, and assume m(Ek) <∞ for some k. Let:

E =
∞⋂
n=1

En =
∞⋂
n=k

En,

and set An = Ek \ En. Then An ⊂ An+1 and:

Ek \ E =
∞⋃
n=k

An.

By continuity from below:

m(Ek \ E) = lim
n→∞

m(Ek \ En).

Therefore:
lim
n→∞

m(En) = m(Ek)− lim
n→∞

m(Ek \ En) = m(E).
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Exercise. Let (xi : i ∈ N) be a sequence of positive real numbers. Define µ on all E ⊂ R by

µ(E) =
∑
xi∈E

xi ∈ [0,∞].

Prove that µ is a measure on (R,P(R)).

Solution. First, µ(∅) =
∑
xi∈∅ xi = 0.

Let {Ek}∞k=1 be pairwise disjoint subsets of R and set E =
⋃∞
k=1Ek. Define Ak = { i ∈ N : xi ∈

Ek } and A = { i ∈ N : xi ∈ E }. Since the Ek are disjoint, the index sets Ak are pairwise disjoint
and

A =
∞⋃
k=1

Ak.

Hence, using that all xi ≥ 0 (so series are monotone and we may change the order of summation),

µ(E) =
∑
i∈A

xi =
∑

i∈
⋃

k
Ak

xi =
∞∑
k=1

∑
i∈Ak

xi =
∞∑
k=1

µ(Ek).

Therefore µ is (countably) additive on disjoint families, i.e., a measure on (R,P(R)).
Exercise. Let (X,M,m) be a measure space. For any E,F ∈M, prove that

m(E) +m(F ) = m(E ∪ F ) +m(E ∩ F ).

Solution. Observe the disjoint decompositions

E = (E \ F ) ∪̇ (E ∩ F ), F = (F \ E) ∪̇ (E ∩ F ),

and
E ∪ F = (E \ F ) ∪̇ (F \ E) ∪̇ (E ∩ F ).

By countable additivity (in particular, finite additivity) on disjoint unions,

m(E) = m(E \ F ) +m(E ∩ F ),
m(F ) = m(F \ E) +m(E ∩ F ),

m(E ∪ F ) = m(E \ F ) +m(F \ E) +m(E ∩ F ).

Adding the first two equalities gives

m(E) +m(F ) = m(E \ F ) +m(F \ E) + 2m(E ∩ F ) = m(E ∪ F ) +m(E ∩ F ),

which is the desired identity. (All quantities take values in [0,∞], so the equality holds in the
extended reals.)
Exercise. Let E ⊂ [0, 1] be the set of real numbers whose (some) decimal expansion contains no
digit 5. Prove that E is Lebesgue measurable and that m(E) = 0.

Background and idea. Every real number x ∈ [0, 1] admits a (possibly nonunique) decimal
expansion

x = 0.a1a2a3 · · · =
∞∑
k=1

ak 10−k, ak ∈ {0, 1, . . . , 9}.

The ambiguity (for example, 0.24999 . . . = 0.25) affects only countably many points, hence does
not influence Lebesgue measure. We define E as the subset of [0, 1] consisting of numbers whose
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decimal digits never equal 5. Since at each digit place there are 9 choices out of 10, one expects
the measure of E approaching zero. We now prove this formally.

Solution. For each n ∈ N, partition [0, 1) into the standard half-open base-10 subintervals of
length 10−n:

Ia1···an =
[ n∑
k=1

ak 10−k,
n∑
k=1

ak 10−k + 10−n
)
, ak ∈ {0, 1, . . . , 9}.

Each Ia1···an corresponds to all numbers in [0, 1) whose first n decimal digits are a1, . . . , an.

Among these intervals, keep only those whose digits avoid 5, i.e. ak ∈ {0, 1, 2, 3, 4, 6, 7, 8, 9} for
all k. There are 9n such intervals, each of length 10−n. Every x ∈ E must lie in one of them,
determined by its first n digits.

Hence, for each n,

E ⊂
⋃

a1,...,an∈{0,1,2,3,4,6,7,8,9}
Ia1···an ,

∑
`(Ia1···an) = 9n · 10−n =

( 9
10
)n
.

By definition of the Lebesgue outer measure m∗,

m∗(E) ≤
( 9

10
)n

for all n ∈ N.

Letting n → ∞ yields m∗(E) = 0. A set of outer measure zero is Lebesgue measurable and has
measure zero, so

E ∈M, m(E) = 0.

Exercise. Let (X,M,m) be a measure space and (En) a sequence inM. Prove that

m
(
lim inf
n→∞

En
)
≤ lim inf

n→∞
m(En).

Assuming there exists N with m(
⋃∞
i=N Ei) <∞, prove that

m
(
lim sup
n→∞

En
)
≥ lim sup

n→∞
m(En).

Solution. Recall

lim inf
n

En =
∞⋃
n=1

∞⋂
k=n

Ek, lim sup
n

En =
∞⋂
n=1

∞⋃
k=n

Ek.

(1) The lim inf inequality. Let An :=
⋂∞
k=nEk. Then (An) is increasing and An ⊂ Ej for all

j ≥ n. By continuity from below,

m
(
lim inf

n
En
)

= m

(⋃
n

An

)
= lim

n→∞
m(An).

By monotonicity, m(An) ≤ infj≥nm(Ej). Taking limits yields

m
(
lim inf

n
En
)
≤ lim

n→∞
inf
j≥n

m(Ej) = lim inf
n→∞

m(En).
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(2) The lim sup inequality under a finiteness assumption. Let Fn :=
⋃∞
k=nEk. Then (Fn) is

decreasing and, by hypothesis, m(FN ) <∞ for some N . Hence by continuity from above,

m

(
lim sup

n
En

)
= m

(⋂
n

Fn

)
= lim

n→∞
m(Fn).

Since Ek ⊂ Fn for all k ≥ n, monotonicity gives m(Fn) ≥ m(Ek) for each k ≥ n; thus m(Fn) ≥
supk≥nm(Ek). Taking limits,

m

(
lim sup

n
En

)
= lim

n→∞
m(Fn) ≥ lim

n→∞
sup
k≥n

m(Ek) = lim sup
n→∞

m(En).

Exercise. Let G be a nonempty open subset of R. Prove that m(G) > 0, where m denotes the
Lebesgue measure.

Solution. Since G is open and nonempty, there exists x ∈ G. Because G is open, there exists
ε > 0 such that the open interval

(x− ε, x+ ε) ⊂ G.

The Lebesgue measure of this interval is

m
(
(x− ε, x+ ε)

)
= 2ε > 0.

By monotonicity of measure,

m(G) ≥ m
(
(x− ε, x+ ε)

)
= 2ε > 0.

Hence every nonempty open subset of R has strictly positive Lebesgue measure.
Exercise. Let G be the collection of open sets in R and F the collection of closed sets in R. Denote
by Gδ the class of all countable intersections of open sets (i.e., G ∈ Gδ iff G =

⋂∞
i=1Gi for some

sequence (Gi) of open sets), and by Fσ the class of all countable unions of closed sets (i.e., F ∈ Fσ
iff F =

⋃∞
i=1 Fi for some sequence (Fi) of closed sets).

(a) Prove that all sets in Gδ and Fσ are Borel sets.

(b) Give an example of a set in Gδ, and one of a set in Fσ, such that neither set belongs to G ∪F .

(c) Prove that for every E ⊂ R there exists G ∈ Gδ with E ⊂ G and m∗(E) = m(G).

(d) If E is Lebesgue measurable, prove there exist G ∈ Gδ and F ∈ Fσ such that F ⊂ E ⊂ G
and m(G \ F ) = 0.

Solution.

(a) The Borel σ-algebra B is generated by G (equivalently by F). Since B is closed under
countable unions and intersections, any countable intersection of open sets (i.e., any G ∈ Gδ)
and any countable union of closed sets (i.e., any F ∈ Fσ) belong to B. Hence Gδ ∪ Fσ ⊂ B.

(b) Example in Fσ not open or closed: Q (or Q ∩ [0, 1]). Each singleton {q} is closed, so Q is a
countable union of closed sets, hence Fσ; Q is neither open nor closed in R.
Example in Gδ not open or closed: R \ Q (or ([0, 1] \ Q)). As the complement of an Fσ set,
it is a Gδ set; it is neither open nor closed.
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(c) If m∗(E) = ∞, take G = R (open, hence in Gδ), and m(G) = ∞ = m∗(E). Assume
m∗(E) <∞. By outer regularity of Lebesgue outer measure, for each n ∈ N there exists an
open set Gn ⊃ E with

m(Gn) ≤ m∗(E) + 1
n .

Choose G1 so that m(G1) <∞ (possible since m∗(E) <∞). Set

G :=
∞⋂
n=1

Gn ∈ Gδ, E ⊂ G.

Because (Gn) is a decreasing sequence of measurable sets with m(G1) <∞, continuity from
above gives

m(G) = lim
n→∞

m(Gn) = m∗(E).

(d) Since E is Lebesgue measurable, m(E) = m∗(E). By (c), there exists G ∈ Gδ with E ⊂ G
and m(G) = m(E), hence m(G \ E) = m(G)−m(E) = 0.
For the inner approximation, for each n ∈ N there exists a closed set Fn ⊂ E with

m(E \ Fn) ≤ 1
n .

(Inner regularity of Lebesgue measure.) Let F :=
⋃∞
n=1 Fn ∈ Fσ. Then F ⊂ E and (E \ Fn)

decreases to E \ F , with m(E \ F1) ≤ 1 <∞, so by continuity from above,

m(E \ F ) = lim
n→∞

m(E \ Fn) = 0.

Therefore F ⊂ E ⊂ G and

m(G \ F ) ≤ m(G \ E) +m(E \ F ) = 0.

Exercise. Let G be a nonempty open subset of R. Prove that m(G) > 0, where m denotes the
Lebesgue measure.

Solution. Since G is open and nonempty, there exists x ∈ G. Because G is open, there exists
ε > 0 such that the open interval

(x− ε, x+ ε) ⊂ G.

The Lebesgue measure of this interval is

m
(
(x− ε, x+ ε)

)
= 2ε > 0.

By monotonicity of measure,

m(G) ≥ m
(
(x− ε, x+ ε)

)
= 2ε > 0.

Hence every nonempty open subset of R has strictly positive Lebesgue measure.
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Lecture 4: Lebesgue Measurable Function
Definition 132 Let f : E → R be a function, where E ⊆ R is a measurable set.

We say that f is Lebesgue measurable (or simply measurable) if for every real number
α ∈ R, the set

{x ∈ E : f(x) > α}

belongs toM; that is, it is a measurable set.

We now present several examples to illustrate the concept of measurable functions. In each
case, we examine whether the set {x ∈ R : f(x) > α} belongs to M (e.g., Lebesgue measurable
set). If this condition holds for every α ∈ R, then f is measurable.

1. Constant function: Let f(x) ≡ c, a constant function for some c ∈ R. Consider the set

{x ∈ R : f(x) > α}.

- If α ≥ c, then f(x) > α is never true, so the set is empty: ∅. - If α < c, then f(x) > α for
all x ∈ R, so the set is R.
Since both ∅ and R are elements ofM, this shows that constant functions are always mea-
surable .

2. Continuous functions: Let f : R→ R be a continuous function. For any α ∈ R, the set

{x ∈ R : f(x) > α}

is an open set, because the preimage of an open interval (α,∞) under a continuous function
is open. Since every open set is a Borel set, it follows that every continuous function is Borel
measurable.

3. Characteristic function of a measurable set: If E,F ⊂ R are two measurable sets, then
the indicator function χF : E → R, defined by

χF (x) =
{

1, x ∈ F,
0, x /∈ F,

is measurable.
This can be verified by direct computation. For any α ∈ R, the preimage χ−1

F ((α,∞]) is
given by

{x ∈ R : χF (x) > α} =


∅, α > 1,
E ∩ F, 0 ≤ α < 1,
E, α < 0.

Since E and F are measurable, each of these preimages is measurable, thus making χF
measurable.

4. Monotone functions: Let f : R→ R be any monotone increasing function, and let α ∈ R.
Then the set

{x ∈ R : f(x) > α}

is one of the following:
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• a right-open half-line of the form {x ∈ R : x > γ},
• a right-closed half-line {x ∈ R : x ≥ γ},
• the entire real line R, or
• the empty set ∅,

Conclusion. These examples illustrate that the class of measurable functions includes:

• all continuous functions,
• all characteristic functions of measurable sets,
• and all monotone functions.

Remark. The collection of measurable functions is closed under arithmetic operations (addition,
subtraction, scalar multiplication, etc.), pointwise limits, and taking absolute values. This makes
them very useful in integration theory and probability.

Theorem 133 Let E ⊂ R be measurable, and suppose f, g : E → R are two measurable functions,
and let c ∈ R be a constant. Then the following functions are also measurable:

cf, f2, f + g, f · g, |f |.

Proof. We verify measurability for each case:

1. Scalar multiplication: Assume c > 0 (the case c < 0 is similar and c = 0 is trivial). For
any α ∈ R, we have:

{x ∈ R : cf(x) > α} = {x ∈ R : f(x) > α/c}.

Since f is measurable, the right-hand side is inM, hence cf is measurable.

2. Square function: Assume α > 0 (for α ≤ 0, the set {f2 > α} is either R or empty, and
thus measurable). Then:

{x ∈ R : f2(x) > α} = {x ∈ R : f(x) >
√
α} ∪ {x ∈ R : f(x) < −

√
α}.

Both sets on the right are measurable since f is measurable. Therefore, f2 is measurable.

3. Sum f + g: Fix α ∈ R. For each rational number r ∈ Q, define:

Sr = {x ∈ R : f(x) > r} ∩ {x ∈ R : g(x) > α− r}.

Each set Sr ∈M, since f and g are measurable. Moreover,

{x ∈ R : f(x) + g(x) > α} =
⋃
r∈Q

Sr,

which is a countable union of measurable sets, hence measurable. Thus f + g is measurable.

4. Product f · g: Using the identity:

f · g = 1
4
[
(f + g)2 − (f − g)2

]
,

and since sums, differences, and squares of measurable functions are measurable (as shown
above), it follows that f · g is measurable.
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5. Absolute value: For α > 0, we write:

{x ∈ R : |f(x)| > α} = {x ∈ R : f(x) > α} ∪ {x ∈ R : f(x) < −α}.

Each set on the right is measurable, hence |f | is measurable.

Suppose f is a function. We define the positive part f+ and the negative part f− of f as
functions from Ω to [0,∞] as follows:

f+(x) =
{
f(x) if f(x) ≥ 0,
0 if f(x) < 0,

and

f−(x) =
{

0 if f(x) ≥ 0,
−f(x) if f(x) < 0.

Note that
f = f+ − f−, |f | = f+ + f−.

Theorem 134 The function f is measurable if and only if f+ and f− are both measurable.

In dealing with sequences of measurable functions, it is often convenient to consider operations
such as suprema, infima, lim sup, lim inf, and pointwise limits. These operations naturally lead us
to consider functions that may take infinite values. Therefore, it is useful—and often necessary—to
allow functions to take values in the extended real line, that is, to take the values +∞ and −∞ in
addition to the usual real values.

We denote the set of extended real numbers by:

R := R ∪ {−∞,+∞}.

Definition 135 (Measurable Extended Real-Valued Function) Let f : E → R, where E ⊆
R is a measurable set and R = R ∪ {−∞,+∞} denotes the extended real line.

We say that f is measurable (with respect to a σ-algebra M) if the following conditions are
satisfied:

• For every α ∈ R, the set
{x ∈ E : f(x) > α} ∈ M.

• The sets
{x ∈ E : f(x) = +∞} and {x ∈ E : f(x) = −∞}

also belong toM.

Definition 136 Let E ⊂ R be a measurable set. A statement P (x) is said to hold almost every-
where (a.e.) on E if

m({x ∈ E : P (x) does not hold}) = 0.

In other words, the set where P (x) does not hold has measure zero. Note that any set with outer
measure zero also has measure zero, so using m∗ instead of m in this definition would yield the
same statement.
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Theorem 137 If two functions f, g : E → [−∞,∞] satisfy f = g almost everywhere on E, and f
is measurable, then g is also measurable.

In other words, modifying a measurable function on a set of measure zero does not affect its
measurability.
Proof. Let N = {x ∈ E : f(x) 6= g(x)}. By assumption, N has outer measure zero, so m(N) = 0.
For any α ∈ R, define

Nα = {x ∈ N : g(x) > α} ⊂ N,

which also has measure zero since m∗(Nα) ≤ m∗(N) = 0.
Now, for each α ∈ R, we can express the preimage g−1((α,∞]) as

g−1((α,∞]) =
(
f−1((α,∞]) \N

)
∪Nα.

Since f is measurable, f−1((α,∞]) is measurable, and both N and Nα have measure zero. Thus,
g−1((α,∞]) is a union of measurable sets, making it measurable as well. This proves that g is
measurable.

Corollary 138 If f and g are measurable, then the sets {x : f(x) < g(x)}, {x : f(x) ≤ g(x)}, and
{x : f(x) = g(x)} are also measurable.

Theorem 139 Let {fn(x)} be a sequence of measurable functions. Then the functions

inf
n
fn(x), sup

n
fn(x), lim inf

n→∞
fn(x), and lim sup

n→∞
fn(x)

are all measurable.

Proof. Define g(x) = supn fn(x) and let a ∈ R. Then we can express the set {x : g(x) ≤ a} as

{x : g(x) ≤ a} =
∞⋂
n=1
{x : fn(x) ≤ a}.

This set is measurable, as it is the countable intersection of measurable sets, each {x : fn(x) ≤ a}
being measurable by the measurability of fn.

Now, let h(x) = lim supn→∞ fn(x). For h(x) ≤ a (where a ∈ R), it is true if and only if for
every n ∈ N, there exists m ≥ n such that fm(x) ≤ a. This can be written as

{x : h(x) ≤ a} =
∞⋂
n=1

∞⋃
m=n
{x : fm(x) ≤ a},

which is measurable as it is a countable intersection of countable unions of measurable sets.
The arguments for infn fn and lim infn→∞ fn follow similarly and are left as an exercise.
A function is called a simple function if it takes only a finite number of values and can be

written as a finite linear combination of characteristic functions of measurable sets:

f(x) =
N∑
i=1

aiχAi(x), where Ai ∈M.

Here, χA(x) is the characteristic function of the set A, defined by:

χA(x) =
{

1, if x ∈ A,
0, otherwise.
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Example: Let
f(x) = 2χ[0,2)(x) + 4χ[2,4)(x) + 1χ[4,5)(x).

Then f is a simple function defined on [0, 5], taking the values 2, 4, and 1 over disjoint intervals.

0 2 4 5

1

2

4

x

f
(x

)
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Theorem 140 If f : Ω → [0,∞] is a Lebesgue measurable function, then there exists a sequence
of non-negative simple functions (ϕn) such that:

(i) ϕn+1(x) ≥ ϕn(x) for all n ∈ N and x ∈ Ω,

(ii) limn→∞ ϕn(x) = f(x) for all x ∈ Ω.

We write ϕn ↑ f to denote that ϕn increases to f .

For each n ∈ N, define the sets:

Fn,i = f−1
([
i− 1
2n ,

i

2n
))

, i ∈ {1, 2, . . . , n2n},

Fn,∞ = f−1([n,∞]) ∪ f−1({∞}),

and the simple function

ϕn =
n2n∑
i=1

i− 1
2n χFn,i + nχFn,∞ .

Each ϕn is measurable because each interval
[
i−1
2n ,

i
2n

)
and [n,∞) is a Borel set.

(i) For any x ∈ Fn,i, we have i−1
2n ≤ f(x) < i

2n . Then either: - i−1
2n ≤ f(x) < 2i−1

2n+1 , so
x ∈ Fn+1,2i−1 and ϕn+1(x) = i−1

2n = ϕn(x), - 2i−1
2n+1 ≤ f(x) < i

2n , so x ∈ Fn+1,2i and ϕn+1(x) > ϕn(x).
(ii) If f(x) < N for some N ∈ N, then for all n ≥ N there is an integer i such that

i− 1
2n ≤ f(x) < i

2n ,

which implies 0 ≤ f(x)− ϕn(x) < 1
2n . Hence ϕn(x)→ f(x).
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Lecture 5: Lebesgue Integral of Nonnegative Measur-
able Functions
We often work with functions that can take the value +∞ and sets with infinite measure. For this
reason, we adopt the following conventions:

a+∞ =∞+ a =∞ for a ∈ [0,∞],

a · ∞ =∞ · a =∞ for a ∈ (0,∞],

0 · ∞ =∞ · 0 = 0.

Integral of a Simple Function
Let f : E → [0,∞] be a simple measurable function, which means it takes only finitely many values.
Suppose these values are α1, . . . , αN . For each j = 1, . . . , N , define:

Aj = {x ∈ E : f(x) = αj}.

Then the Lebesgue integral of f over E is:∫
E
f dm =

N∑
j=1

αjm(Aj).

Alternatively, if f is written as a sum of characteristic functions:

f =
n∑
i=1

aiχAi ,

then: ∫
E
f dm =

n∑
i=1

aim(Ai).

Example: Define the function f : R→ R by:

f(x) =


2, if − 1 < x < 1,
3, if 3 < x < 7,
−1, if − 4 ≤ x < −3,
0, otherwise.

Then: ∫
R
f(x) dm = 2 · 2 + 3 · 4 + (−1) · 1 = 4 + 12− 1 = 15 .

Integral of a General Nonnegative Function
Let f : E → [0,∞] be any nonnegative measurable function. We define:∫

E
f dm = sup

{∫
E
ϕdm

∣∣∣∣ ϕ ∈ S+(E), 0 ≤ ϕ ≤ f
}
,

where S+(E) is the set of all nonnegative simple functions on E.
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Basic Properties
If f, g : E → [0,∞] are measurable, and λ ≥ 0, then:

• If f ≤ g, then
∫
E f dm ≤

∫
E g dm.

•
∫
E λf dm = λ

∫
E f dm.

• If F ⊂ E, then
∫
F f dm =

∫
E fχF dm.

• If m(E) = 0, then
∫
E f dm = 0.

Monotone Convergence Theorem
Theorem 141 Let fn : E → [0,∞] be an increasing sequence of measurable functions (i.e., f1 ≤
f2 ≤ · · ·), and let f(x) = limn→∞ fn(x). Then:

lim
n→∞

∫
E
fn dm =

∫
E
f dm.

Idea of the proof: Since the sequence
∫
E fn increases, its limit exists. Also, for any simple

function φ ≤ f , eventually fn ≥ φ, so: ∫
E
φ ≤ lim

n→∞

∫
E
fn.

Taking the supremum over all such φ, we get the reverse inequality and conclude:

lim
n→∞

∫
E
fn =

∫
E
f.

This theorem justifies interchanging limits and integrals for nonnegative functions that grow
pointwise.

Note: Additivity of the integral over disjoint measurable subsets is not obvious and will be
proved using the Monotone Convergence Theorem.

Theorem 142 (Monotone Convergence Theorem) Let {fn} be a sequence of nonnegative mea-
surable functions in E such that f1 ≤ f2 ≤ . . . pointwise on E, and suppose fn → f pointwise on
E for some f (which will also be a measurable functions is measurable). Then

lim
n→∞

∫
E
fn dm =

∫
E
f dm.

Proof. Since f1 ≤ f2 ≤ · · ·, it follows that
∫
E f1 ≤

∫
E f2 ≤ · · ·. Thus,

∫
E fn forms a nonnegative,

increasing sequence, which ensures that the limit limn→∞
∫
E fn exists within the interval [0,∞].

Additionally, because limn→∞ fn(x) = f(x) for each x, we know fn ≤ f for all n, implying that∫
E f (a finite value in [0,∞]) must satisfy∫

E
fn ≤

∫
E
f ⇒ lim

n→∞

∫
E
fn ≤

∫
E
f.

To establish the reverse inequality (i.e.,
∫
E f ≤ limn→∞

∫
E fn), we will show that

∫
E φ ≤ limn→∞

∫
E fn

for every simple function φ ≤ f , noting that eventually, fn will exceed φ.
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Let ε ∈ (0, 1) be chosen as a “margin.” For any simple function φ =
∑m
j=1 ajχAj with φ ≤ f , we

define the set
En = {x ∈ E : fn(x) ≥ (1− ε)φ(x)}.

Since (1− ε)φ(x) < f(x) for all x (strict inequality holds as ε is positive) and limn→∞ fn(x) = f(x),
each x must belong to some En. Thus, we have

∞⋃
n=1

En = E.

Moreover, because f1 ≤ f2 ≤ · · ·, it follows that E1 ⊂ E2 ⊂ · · ·, so the sets En are nested by
inclusion. Now, observe that∫

E
fn ≥

∫
En

fn ≥
∫
En

(1− ε)φ = (1− ε)
∫
En

φ = (1− ε)
m∑
j=1

ajm(Aj ∩ En),

since the inequality holds on En, and the sets Aj ∩En are measurable and disjoint. As En increases
to E, the sets E1 ∩ Aj ⊂ E2 ∩ Aj ⊂ · · · expand to cover Aj . By the continuity of the Lebesgue
measure, we conclude that as n→∞,

m(Aj ∩ En)→ m(Aj).

Taking limits on both sides (noting that we have a finite sum on the right) gives, for all ε ∈ (0, 1),

lim
n→∞

∫
E
fn ≥ lim

n→∞
(1− ε)

m∑
j=1

ajm(Aj ∩ En) = (1− ε)
m∑
j=1

ajm(Aj) = (1− ε)
∫
E
φ.

By letting ε→ 0, we obtain the desired inequality
∫
E φ ≤ limn→∞

∫
E fn. Combining this with the

initial inequality completes the proof.

Theorem 143 (Fatou’s Lemma) Let {fn}∞n=1 be a sequence of nonnegative measurable functions
on a measurable set E. Then: ∫

E
lim inf
n→∞

fn dm ≤ lim inf
n→∞

∫
E
fn dm.

Proof. We begin by expressing the pointwise lim inf using the identity:

lim inf
n→∞

fn(x) = sup
n≥1

(
inf
k≥n

fk(x)
)
.

Define:
gn(x) := inf

k≥n
fk(x).

Then gn(x) is an increasing sequence of measurable functions (since gn(x) ≤ gn+1(x)) and:

lim
n→∞

gn(x) = lim inf
n→∞

fn(x).

Now apply the Monotone Convergence Theorem:∫
E

lim inf
n→∞

fn dm = lim
n→∞

∫
E
gn dm.
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For each n, we know gn(x) ≤ fk(x) for all k ≥ n, so:

∫
E
gn dm ≤

∫
E
fk dm for all k ≥ n.

Hence,

∫
E
gn dm ≤ inf

k≥n

∫
E
fk dm.

Now take the limit as n→∞ on both sides:

lim
n→∞

∫
E
gn dm ≤ lim

n→∞
inf
k≥n

∫
E
fk dm = lim inf

n→∞

∫
E
fn dm.

Putting it all together:

∫
E

lim inf
n→∞

fn dm ≤ lim inf
n→∞

∫
E
fn dm.

This completes the proof.
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Lebesgue Integrable Functions
Definition 144 (Lebesgue Integrable Function and Integral) Let E ⊂ R be a measurable
set, and let f : E → R be a measurable function. Define the positive and negative parts of f as

f+(x) = max(f(x), 0), f−(x) = max(−f(x), 0).

These are nonnegative measurable functions, and satisfy

f = f+ − f−, |f | = f+ + f−.

We say that f is Lebesgue integrable over E if∫
E
|f | dm =

∫
E
f+ dm+

∫
E
f− dm <∞.

In this case, the Lebesgue integral of f over E is defined as∫
E
fdm :=

∫
E
f+ dm−

∫
E
f− dm.

Proposition 145 Let f, g : E → R be Lebesgue integrable functions. Then:

1. For any scalar c ∈ R, the function cf is integrable, and∫
E
cf dm = c

∫
E
f dm.

2. The sum f + g is integrable, and∫
E

(f + g) dm =
∫
E
f dm+

∫
E
g dm.

3. If A,B ⊂ E are disjoint measurable subsets, then∫
A∪B

f dm =
∫
A
f dm+

∫
B
f dm.

Proof. (1) Since |cf | = |c| · |f | and f ∈ L1(E), we know |cf | ∈ L1(E), so cf is integrable. Linearity
of the integral gives: ∫

E
cf dm = c

∫
E
f dm.

(2) By the triangle inequality:

|f + g| ≤ |f |+ |g| ⇒
∫
E
|f + g| dm ≤

∫
E
|f | dm+

∫
E
|g| dm <∞,

so f + g ∈ L1(E). Using the decomposition f = f+ − f− and similarly for g, we get:

f + g = (f+ + g+)− (f− + g−),

and since all terms are nonnegative measurable functions, we apply linearity:∫
E

(f + g) dm =
∫
E
f+ dm+

∫
E
g+ dm−

∫
E
f− dm−

∫
E
g− dm =

∫
E
f dm+

∫
E
g dm.
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(3) Since A and B are disjoint,
χA∪B = χA + χB.

Hence,
fχA∪B = fχA + fχB,

and since the product of a measurable function with an indicator function restricts the domain of
integration:∫

A∪B
f dm =

∫
E
fχA∪B dm =

∫
E
fχA dm+

∫
E
fχB dm =

∫
A
f dm+

∫
B
f dm.

Proposition 146 Let f, g : E → R be measurable functions. Then:

1. If f is Lebesgue integrable, then ∣∣∣∣∫
E
f dm

∣∣∣∣ ≤ ∫
E
|f | dm.

2. If f = g almost everywhere and g ∈ L1(E), then f ∈ L1(E) and∫
E
f dm =

∫
E
g dm.

3. If f, g ∈ L1(E) and f(x) ≤ g(x) almost everywhere on E, then∫
E
f dm ≤

∫
E
g dm.

Proof. (1) Since f = f+ − f−, we have∣∣∣∣∫
E
f dm

∣∣∣∣ =
∣∣∣∣∫
E
f+ dm−

∫
E
f− dm

∣∣∣∣ ≤ ∫
E
f+ dm+

∫
E
f− dm.

Using the identity |f | = f+ + f−, it follows that∫
E
|f | dm =

∫
E
f+ dm+

∫
E
f− dm.

(2) Since f = g almost everywhere, we also have |f | = |g| almost everywhere. Thus,∫
E
|f | dm =

∫
E
|g| dm <∞,

so f is Lebesgue integralble. Also, f − g = 0 almost everywhere implies∣∣∣∣∫
E
f dm−

∫
E
g dm

∣∣∣∣ =
∣∣∣∣∫
E

(f − g) dm
∣∣∣∣ ≤ ∫

E
|f − g| dm = 0,

which gives
∫
E f dm =

∫
E g dm.

(3) Define the function

h(x) =
{
g(x)− f(x), if g(x) ≥ f(x),
0, otherwise.

Then h ≥ 0, measurable, and h = g − f almost everywhere. Therefore,∫
E
h dm =

∫
E

(g − f) dm =
∫
E
g dm−

∫
E
f dm ≥ 0,

which yields
∫
E f dm ≤

∫
E g dm.
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Theorem 147 (Dominated Convergence Theorem) Let g : E → [0,∞) be a Lebesgue inte-
grable function. Suppose {fn} is a sequence of measurable functions fn : E → R such that:

1. |fn(x)| ≤ g(x) almost everywhere on E, for all n ∈ N,

2. fn(x)→ f(x) pointwise almost everywhere on E, for some function f : E → R.

Then f is Lebesgue integrable, and

lim
n→∞

∫
E
fn dm =

∫
E
f dm.

Proof. Since |fn| ≤ g and g is Lebesgue integrable, it follows that each fn is also Lebesgue
integrable. The pointwise limit f is measurable and satisfies |f | ≤ g, so f is also Lebesgue integrable.

We aim to prove:
lim
n→∞

∫
E
fn dm =

∫
E
f dm.

Apply Fatou’s Lemma to the nonnegative functions g − fn:∫
E

lim inf
n→∞

(g − fn) dm ≤ lim inf
n→∞

∫
E

(g − fn) dm.

Since fn → f pointwise, the left-hand side becomes
∫
E(g − f) dm, yielding:∫

E
(g − f) dm ≤ lim inf

n→∞

(∫
E
g dm−

∫
E
fn dm

)
.

Rewriting this, we obtain:
lim sup
n→∞

∫
E
fn dm ≤

∫
E
f dm.

Similarly, apply Fatou’s Lemma to g + fn:∫
E

lim inf
n→∞

(g + fn) dm ≤ lim inf
n→∞

∫
E

(g + fn) dm,

which gives: ∫
E

(g + f) dm ≤ lim inf
n→∞

(∫
E
g dm+

∫
E
fn dm

)
.

Rearranging: ∫
E
f dm ≤ lim inf

n→∞

∫
E
fn dm.

Combining both inequalities:

lim sup
n→∞

∫
E
fn dm ≤

∫
E
f dm ≤ lim inf

n→∞

∫
E
fn dm.

Since lim inf ≤ lim sup always holds, we conclude:

lim
n→∞

∫
E
fn dm =

∫
E
f dm.
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Proposition 148 Let (fn) be a bounded sequence of measurable functions on a set E with finite
measure m(E) < ∞. If fn → f almost everywhere on E, then the limit function f is Lebesgue
integrable and

lim
n→∞

∫
E
fn dm =

∫
E
f dm.

Proof. Assume there exists a constant M > 0 such that |fn(x)| ≤ M for all x ∈ E and all n.
Define g(x) = M , which is clearly Lebesgue integrable on E since m(E) <∞. Then |fn(x)| ≤ g(x)
for all n, and fn → f almost everywhere. The Dominated Convergence Theorem applies and yields
the result. �

Theorem 149 (Term-by-Term Integration of a Series) Let {fn} be a sequence of measurable
functions on a measurable set E. Then:
(i) The series of integrals of absolute values satisfies:∫

E

( ∞∑
n=1
|fn|

)
dm =

∞∑
n=1

∫
E
|fn| dm.

Both sides may be infinite, or both are finite and equal.

(ii) If the right-hand side is finite, then each fn is Lebesgue integrable, the series
∞∑
n=1

fn(x)

converges almost everywhere on E, and the sum defines a Lebesgue integrable function F .
Moreover, ∫

E

( ∞∑
n=1

fn

)
dm =

∞∑
n=1

∫
E
fn dm.

Proof. (i) Define the function

G(x) :=
∞∑
n=1
|fn(x)|.

Since |fn(x)| ≥ 0, the sequence of partial sums is increasing. By the Monotone Convergence
Theorem: ∫

E
Gdm =

∞∑
n=1

∫
E
|fn| dm.

(ii) If G is Lebesgue integrable, then G(x) < ∞ almost everywhere, so the series
∑∞
n=1 fn(x)

converges almost everywhere. Let F (x) =
∑∞
n=1 fn(x) denote the pointwise sum, and define the

partial sums

Fn(x) =
n∑
k=1

fk(x).

Then Fn(x)→ F (x) almost everywhere and

|Fn(x)| ≤
n∑
k=1
|fk(x)| ≤ G(x).

Thus, by the Dominated Convergence Theorem:∫
E
F dm = lim

n→∞

∫
E
Fn dm = lim

n→∞

n∑
k=1

∫
E
fk dm =

∞∑
k=1

∫
E
fk dm.
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Riemann and Lebesgue Integrals
We now explore an important question: When is a function Riemann integrable? And how does
this relate to Lebesgue integrability?

Theorem 150 (Characterization of Riemann Integrability) Let f : [a, b]→ R be a bounded
function. Then f is Riemann integrable if and only if it is continuous almost everywhere on [a, b];
that is,

f ∈ R[a, b] ⇐⇒ m
(
{x ∈ [a, b] : f is not continuous at x}

)
= 0.

Intuition: A bounded function can be Riemann integrated as long as its discontinuities are
"rare"—specifically, they must form a set of measure zero. If the function is continuous almost
everywhere, the Riemann integral exists.

Key Fact: If f is Riemann integrable on [a, b], then:

• f is measurable,

• f is Lebesgue integrable,

• and the integrals are equal: ∫ b

a
f(x) dx =

∫
[a,b]

f dm.

We previously defined the notation
∫ b
a f to mean the Riemann integral of f . However, since

the Riemann and Lebesgue integrals agree for Riemann integrable functions , we now redefine the
expression ∫ b

a
f(x)dx

to denote the Lebesgue integral.

Definition 151 (Lebesgue Integral Notation) Let f : (a, b) → R be a Lebesgue measurable
function. Then:

•
∫ b
a f(x) dx or

∫ b
a f denotes the Lebesgue integral over (a, b),∫ b

a
f(x)dx :=

∫
(a,b)

f dm,

where m is the Lebesgue measure.

• If a > b, we define the integral as ∫ b

a
f := −

∫ a

b
f,

so that useful properties like ∫ b

a
f =

∫ c

a
f +

∫ b

c
f

hold for any a < c < b.

Conclusion: Riemann integrable functions are also Lebesgue integrable. But the opposite is not
always true — some functions can be Lebesgue integrable but not Riemann integrable.
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Example 152 (Lebesgue Integrable, Not Riemann Integrable) Define:

f(x) =
{

1, if x ∈ Q ∩ [0, 1],
0, if x ∈ [0, 1] \Q.

This function is not Riemann integrable because it is discontinuous at every point in [0, 1]. But it
is Lebesgue integrable, and we have: ∫ 1

0
f(x) dx = 0.

Improper Integrals
One advantage of the Lebesgue integral over the Riemann integral is that it can be defined over
unbounded domains, as long as the function is measurable.

However, this does not guarantee that the integral is finite. For example, consider the constant
function:

f(x) = 1 for all x ∈ R.

This function is measurable, but its Lebesgue integral over R diverges:∫
R
f(x) dx =

∫
R

1 dx =∞.

Thus, f is not Lebesgue integrable on R.
In contrast, the Riemann integral is only defined on bounded intervals. To handle unbounded

domains or functions, it must be extended using limits, leading to the concept of improper inte-
grals.

On bounded intervals, if a function is Riemann integrable, then its Riemann and Lebesgue
integrals agree. But on unbounded, the agreement may break down. In many cases, a function
that is improperly Riemann integrable is also Lebesgue integrable. However, this is not always
true. Below, we present examples that illustrate when the two approaches agree and when they
differ.

(i) Measurability of Improperly Riemann Integrable Functions

Suppose the improper integral ∫ ∞
a

f(x) dx

converges in the Riemann sense. Then f is Riemann integrable on every finite interval [a, b] for all
b > a. Since Riemann integrability implies Lebesgue integrability on compact intervals, it follows
that f ∈ L1([a, b]) for all b > a.

Moreover, we can express f as the pointwise limit:

f(x) = lim
n→∞

f(x) · χ[a,n](x),

where χ[a,n] is the indicator function of the interval [a, n]. Each function f · χ[a,n] is measurable,
and the pointwise limit of measurable functions is measurable. Hence, f is measurable on [a,∞).
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(ii) Nonnegative Functions and the Monotone Convergence Theorem

Suppose f ≥ 0 on [a,∞), and the improper Riemann integral∫ ∞
a

f(x) dx

converges. Define the sequence of functions fn = f · χ[a,n]. Then fn ↗ f pointwise, and by the
Monotone Convergence Theorem:∫

[a,∞)
f dm = lim

n→∞

∫
[a,n]

f dm = lim
n→∞

∫ n

a
f(x) dx =

∫ ∞
a

f(x) dx. (11.27)

(iii) Lebesgue Integrability Implies Convergence of the Improper Riemann Inte-
gral

Assume f ∈ R(a, b) for all b > a, and that f ∈ L1([a,∞)). Then the improper Riemann integral∫∞
a f(x) dx converges, and: ∫ ∞

a
f(x) dx =

∫
[a,∞)

f dm.

Proof. Let (bn) be a sequence such that bn → ∞, and define fn = f · χ[a,bn]. Then fn → f
pointwise, and |fn| ≤ |f | ∈ L1([a,∞)). By the Dominated Convergence Theorem:∫

[a,∞)
f dm = lim

n→∞

∫
[a,∞)

fn dm = lim
n→∞

∫
[a,bn]

f dm = lim
n→∞

∫ bn

a
f(x) dx =

∫ ∞
a

f(x) dx.

(iv) Absolute Convergence Implies Agreement of Integrals

Suppose f ∈ R(a, b) for all b > a, and: ∫ ∞
a
|f(x)| dx <∞.

(as improper integral, we said that the improper integral absolutely convergent)
Then f ∈ L1([a,∞)), and ∫ ∞

a
f(x) dx =

∫
[a,∞)

f dm.

Conclusion

If both of the following improper integrals exist:∫ ∞
a

f(x) dx and
∫ ∞
a
|f(x)| dx,

then the Lebesgue integral
∫

[a,∞) f dm also exists and agrees with the improper Riemann integral.

• The convergence of
∫∞
a f(x) dx implies f ∈ R(a, b) for all b > a.

• The convergence of
∫∞
a |f(x)| dx implies f ∈ L1([a,∞)).

Therefore, ∫ ∞
a

f(x) dx =
∫

[a,∞)
f dm.
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Example 153 Consider some improper Riemann integrals and investigate whether they agree with
the Lebesgue integral.

1. Let consider the function f : (0, 1]→ R defined by

f(x) = 1√
x
.

This function is improperly Riemann integrable over (0, 1] with a value of 2. We now demonstrate
that it is also Lebesgue integrable over this region with the same value. Since f is continuous, it is
measurable, so asking if it is Lebesgue integrable is valid.

To compute the Lebesgue integral, let us define a sequence of functions fn where fn : (0, 1]→ R
is given by

fn = f · 1[ 1
n
,1].

Here, fn is a pointwise increasing sequence whose limit is f . By the Monotone Convergence Theo-
rem (MCT), we have:∫

(0,1]
f dµ =

∫
(0,1]

lim
n→∞

fn dµ = lim
n→∞

∫
(0,1]

fn dµ = lim
n→∞

∫
[ 1

n
,1]
f dµ.

For any n ∈ N, f is continuous on the compact domain
[

1
n , 1

]
, so the Lebesgue integral over this

interval equals the Riemann integral. Using the Fundamental Theorem of Calculus, we find∫
[ 1

n
,1]
f dµ =

∫ 1

1/n

1√
x
dx = 2− 2√

n
.

Substituting into the earlier limit, we obtain∫
(0,1]

f dµ = lim
n→∞

(
2− 2√

n

)
= 2 =

∫ 1

0
f(x) dx.

Thus, for this function, the improper Riemann integral agrees with the Lebesgue integral.
2. Consider the function f : [0,∞)→ R defined by

f(x) = sin(x)
x

for x 6= 0, and f(0) = 1.

Since f is continuous, it is measurable. To compute its Lebesgue integral, we decompose it into
positive and negative parts. Define sets E and F where f is non-negative and non-positive, respec-
tively:

E =
⋃
n∈N
n odd

[(n− 1)π, nπ], F =
⋃
n∈N
n even

[(n− 1)π, nπ].

The positive and negative parts of f are then given by:

f+(x) = sin(x)
x
· 1E(x), f−(x) = −sin(x)

x
· 1F (x).

To evaluate the entire Lebesgue integral, we separately integrate these parts. Focusing on the positive
part f+, we split the domain into smaller compact intervals. Since f is continuous over each
compact interval in E (and hence Riemann integrable there), we can compute the Lebesgue integral
as a Riemann integral. Since sin(x) is non-negative over each interval in E, we have:∫

[0,∞)
f+ dµ =

∫
E

sin(x)
x

dx =
∑
n∈N
n odd

∫ nπ

(n−1)π

sin(x)
x

dx.
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By approximating the lower bound of sin(x) over each interval, we find∫
[0,∞)

f+ dµ ≥
∑
n∈N
n odd

∫ nπ

(n−1)π

sin(x)
nπ

dx = 2
π

∞∑
n=1

1
2n− 1 .

However, this sum diverges to ∞ by comparison with the harmonic series. Similarly, the integral
of the negative part of f , namely

∫
[0,∞) f

− dµ, also diverges to ∞. Therefore, we encounter an
indeterminate ∞ −∞ case for the Lebesgue integral, implying that this function is not Lebesgue
integrable.

On the other hand, if we use the Riemann integral, the unbounded domain requires us to apply
the concept of the improper Riemann integral. This improper integral can be defined as the limit of
the integral function I : [0,∞)→ R, given by

I(t) =
∫ t

0
f(x) dx as t→∞.

For t > 1, we can apply integration by parts to compute I(t):

I(t) =
∫ 1

0
f(x) dx+

∫ t

1

sin(x)
x

dx.

Applying integration by parts to the second integral, we get:

I(t) =
∫ 1

0
f(x) dx+

[
−cos(x)

x

]t
1
−
∫ t

1

cos(x)
x2 dx.

This simplifies to

I(t) =
∫ 1

0
f(x) dx− cos(t)

t
+ cos(1)−

∫ t

1

cos(x)
x2 dx.

We observe that the Riemann integral
∫ 1

0 f(x) dx exists because the integrand f is continuous
over the compact interval [0, 1]. Furthermore, the limits

lim
t→∞

cos(t)
t

= 0 and lim
t→∞

∫ t

1

cos(x)
x2 dx

both exist. To check the improper Riemann integrability of the function f : [1,∞)→ R defined by

f(x) = cos(x)
x2

over [1,∞), we note that this function has mixed signs, meaning we cannot directly apply the
comparison test. To proceed, we split f into its positive and negative parts. Specifically, we define
f+ and f− : [1,∞)→ R as follows:

f+ = max(f, 0), f− = −min(f, 0),

so that f = f+ − f−.
Both f+ and f− are non-negative and continuous. We can therefore apply the direct comparison

test to f+. Observe that

0 ≤ f+(x) ≤ | cos(x)|
x2 ≤ 1

x2 .
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Since 1
x2 is improperly Riemann integrable over [1,∞), as shown in Example 16.4.4(3), it follows

by direct comparison that the improper integral

∫ ∞
1

f+(x) dx

exists. By a similar argument, the improper Riemann integral

∫ ∞
1

f−(x) dx

also exists.

For any finite t > 1, we have

∫ t

1
f(x) dx =

∫ t

1
f+(x) dx−

∫ t

1
f−(x) dx.

Applying the algebra of limits, we get:

∫ ∞
1

f(x) dx = lim
t→∞

∫ t

1
f(x) dx = lim

t→∞

(∫ t

1
f+(x) dx−

∫ t

1
f−(x) dx

)
.

This simplifies to

∫ ∞
1

f(x) dx = lim
t→∞

∫ t

1
f+(x) dx− lim

t→∞

∫ t

1
f−(x) dx,

which exists because both limits on the right-hand side exist.

Thus, we conclude that the function f is improperly Riemann integrable over [1,∞).

Therefore, by the algebra of limits, the improper integral

lim
t→∞

I(t) =
∫ ∞

0
f(x) dx

exists. Hence, the function f is Riemann integrable over R in the improper sense, even though it
is not Lebesgue integrable.
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Lecture 9: Examples
Example 154 Evaluate

lim
n→∞

∫ 1

0

nx

1 + n2x2 dx.

Solution. For each n ∈ N, define the sequence of functions

fn(x) = nx

1 + n2x2 , x ∈ [0, 1].

Observe that as n → ∞, fn(x) converges pointwise to 0 for all x ∈ (0, 1], since the term n2x2 in
the denominator dominates as n becomes large, driving fn(x) towards 0. At x = 0, the function
value is also 0 for all n, so fn(x) converges pointwise to 0.

To understand the behavior of fn(x) on [0, 1], we find the maximum value of fn(x). Taking the
derivative, we see that fn(x) attains its maximum at x = 1

n . Evaluating fn at this point, we get

fn

( 1
n

)
=

n · 1
n

1 + n2 ·
(

1
n

)2 = 1
2 .

Thus,
sup
x∈[0,1]

|fn(x)| = 1
2 ,

showing that the convergence fn → 0 is not uniform on [0, 1].
Since the convergence is not uniform, we cannot interchange the limit and the integral directly

using properties of the Riemann integral. However, we can consider this as a Lebesgue integral and
apply the Bounded Convergence Theorem. Each fn(x) is bounded and measurable, and fn(x) → 0
pointwise. Thus, by the Bounded Convergence Theorem,

lim
n→∞

∫ 1

0
fn(x) dx =

∫ 1

0
lim
n→∞

fn(x) dx =
∫ 1

0
0 dx = 0.

Example 155 In many problems, one often needs to use the following upper bound:(
1 + x

n

)n
≤ ex

which holds for all
n ≥ 1 and x > −n.

This bound must be proved; one cannot simply refer to a calculus or advanced calculus text where
this fact may have been mentioned.

To prove it, we take the logarithm of both sides in the inequality and convert it as follows:

n ln
(

1 + x

n

)
≤ x.

Define t = x
n + 1, then t > 0 due to the condition x > −n. The inequality becomes

ln t ≤ t− 1, ∀t > 0,

which is a well-known inequality that can be used here.
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Example Evaluate
lim
n→∞

∫ n

0

(
1− x

n

)n
e−2x dx.

Proof. To express this limit as a Lebesgue integral, define the sequence of functions

fn(x) = χ[0,n](x) ·
(

1− x

n

)n
e−2x,

where χ[0,n](x) is the characteristic function of the interval [0, n]. This gives us∫ n

0

(
1− x

n

)n
e−2x dx =

∫
[0,∞)

fn(x) dµ.

Let’s analyze the behavior of fn(x) as n→∞. For a fixed x,(
1− x

n

)n
→ e−x as n→∞.

Therefore, fn(x)→ e−x · e−2x = e−3x pointwise on [0,∞).
Since fn(x) converges pointwise to e−3x, and fn(x) ≤ e−x for all x ∈ [0,∞), we can apply the

Dominated Convergence Theorem, using g(x) = e−x as a dominating function, which is integrable
over [0,∞). Thus,

lim
n→∞

∫
[0,∞)

fn(x) dµ =
∫

[0,∞)
lim
n→∞

fn(x) dµ =
∫

[0,∞)
e−3x dx.

Evaluating this integral, we have∫
[0,∞)

e−3x dx =
[
−e
−3x

3

]∞
0

= 1
3 .

Thus,
lim
n→∞

∫ n

0

(
1− x

n

)n
e−2x dx = 1

3 .

Example 156 Prove that ∫ 1

0

( log x
1− x

)2
dx = 2

∞∑
n=1

1
n2 .

Solution. For every x ∈ (−1, 1), we have the power series representation

1
1− x =

∞∑
k=0

xn.

Differentiating both sides with respect to x, we obtain

1
(1− x)2 =

∞∑
n=1

nxn−1.

We can now express the integral as (Monotone Convergence Theorem to justify the interchange of
the integral and the sum) ∫ 1

0

( log x
1− x

)2
dx =

∞∑
n=1

n

∫ 1

0
xn−1(log x)2 dx.
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Let’s focus on evaluating each integral on the right-hand side.
When n = 1, the integral

∫ 1
0 (log x)2 dx is improper, as log x diverges at x = 0. For n > 1,

however, the integrals
∫ 1

0 x
n−1(log x)2 dx are Riemann integrals. In both cases, we use integration

by parts to evaluate the integrals, employing L’Hôpital’s rule to handle any indeterminate forms.
Consider (improper integral) ∫ 1

0
xn−1(log x)2 dx.

Using integration by parts, set u = (log x)2 and dv = xn−1dx, giving du = 2 log x
x dx and v = xn

n .
Then ∫ 1

0
xn−1(log x)2 dx = xn

n
(log x)2

∣∣∣∣1
0
−
∫ 1

0

2xn log x
n

dx.

Evaluating the boundary term, we find

xn

n
(log x)2

∣∣∣∣1
0

= 0.

This gives ∫ 1

0
xn−1(log x)2 dx = − 2

n

∫ 1

0
xn log x dx.

Applying integration by parts again to
∫ 1

0 x
n log x dx, with u = log x and dv = xndx, we get du =

1
xdx and v = xn+1

n+1 . Thus,

∫ 1

0
xn log x dx = xn+1

n+ 1 log x
∣∣∣∣∣
1

0
−
∫ 1

0

xn+1

n+ 1 ·
1
x
dx.

The boundary term again vanishes, so we are left with∫ 1

0
xn log x dx = − 1

(n+ 1)2 .

Substituting back, we find ∫ 1

0
xn−1(log x)2 dx = 2

n3 .

Therefore, ∫ 1

0

( log x
1− x

)2
dx =

∞∑
n=1

n · 2
n3 = 2

∞∑
n=1

1
n2 .

This completes the proof.

Example 157 Prove that ∫ 1

0
sin x log x dx =

∞∑
n=1

(−1)n

2n(2n)! .

We start by expanding sin x as a power series:

sin x =
∞∑
k=0

(−1)kx2k+1

(2k + 1)! .
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Substituting this expansion into the integral, we get:∫ 1

0
sin x log x dx =

∫ 1

0

( ∞∑
k=0

(−1)kx2k+1

(2k + 1)!

)
log x dx.

Next, we justify the interchange of the sum and integral by checking the absolute convergence:∫ 1

0

∞∑
k=0

∣∣∣∣∣(−1)kx2k+1 log x
(2k + 1)!

∣∣∣∣∣ dx =
∞∑
k=0

1
(2k + 1)!

∫ 1

0
x2k+1| log x| dx.

We compute each integral
∫ 1

0 x
2k+1 log x dx using integration by parts. Setting u = log x and dv =

x2k+1 dx, we find: ∫ 1

0
x2k+1 log x dx = − 1

(2k + 2)2 .

Thus ∫ 1

0

∞∑
k=0

∣∣∣∣∣(−1)kx2k+1 log x
(2k + 1)!

∣∣∣∣∣ dx =
∞∑
k=0

1
(2k + 1)!(2k + 1)2 <∞.

By the Theorem of Term-by-Term Integration, we can interchange the sum and the integral:∫ 1

0
sin x log x dx =

∞∑
k=0

(−1)k

(2k + 1)!

∫ 1

0
x2k+1 log x dx.

=
∞∑
k=0

(−1)k

(2k + 1)!

(
− 1

(2k + 2)2

)
.

Simplifying, we obtain: ∫ 1

0
sin x log x dx =

∞∑
k=1

(−1)k

2k(2k)! .

Exercises
Exercise 1. Evaluate

lim
n→∞

∫ n

0

(
1 + x

n

)n
e−2x dx.

Solution:
Let

In =
∫ n

0

(
1 + x

n

)n
e−2x dx.

As n→∞, (
1 + x

n

)n
→ ex,

so the integrand tends pointwise to
exe−2x = e−x.

Also, since (
1 + x

n

)n
= en ln(1+x/n) ≤ en(x/n) = ex,

we have
0 ≤

(
1 + x

n

)n
e−2x ≤ e−x,
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and e−x is integrable on [0,∞).
Hence, by the Dominated Convergence Theorem,

lim
n→∞

In =
∫ ∞

0
e−x dx =

[
−e−x

]∞
0 = 1.

Therefore,

lim
n→∞

∫ n

0

(
1 + x

n

)n
e−2x dx = 1.

Exercise 2. Prove that
lim
n→∞

∫ 1

0
fn(x) dx = 0,

where
(a) fn(x) = n

√
x

1 + n2x2 , (b) fn(x) = nx log x
1 + n2x2 .

Solution (a): For fn(x) = n
√
x

1 + n2x2 , we first observe that for each fixed x > 0,

lim
n→∞

fn(x) = lim
n→∞

n
√
x

1 + n2x2 = 0,

and fn(0) = 0. Hence fn(x)→ 0 pointwise on [0, 1].
Next, since 1 + n2x2 ≥ 1 + x2 for all n ≥ 1 and x ≥ 0,

0 ≤ fn(x) = n
√
x

1 + n2x2 ≤
n
√
x

1 + n2x2 ≤
√
x

1 + x2 =: g(x).

The function g(x) =
√
x

1 + x2 is continuous and integrable on [0, 1]. Since fn(x) → 0 pointwise and
0 ≤ fn(x) ≤ g(x), by the Dominated Convergence Theorem we have

lim
n→∞

∫ 1

0
fn(x) dx =

∫ 1

0
lim
n→∞

fn(x) dx =
∫ 1

0
0 dx = 0.

Therefore,

lim
n→∞

∫ 1

0

n
√
x

1 + n2x2 dx = 0.

Solution (b): For fn(x) = nx log x
1 + n2x2 , note that for each fixed x ∈ (0, 1],

lim
n→∞

fn(x) = lim
n→∞

nx log x
1 + n2x2 = 0,

and fn(0) = 0. Thus fn(x)→ 0 pointwise on [0, 1].
Also, for all x ∈ (0, 1],

|fn(x)| = nx| log x|
1 + n2x2 ≤

x| log x|
1 + x2 =: g(x).

The function g(x) = x| log x|
1 + x2 is continuous and integrable on [0, 1] since x| log x| → 0 as x → 0+.

Thus, |fn(x)| ≤ g(x) and fn(x)→ 0 pointwise, so by the Dominated Convergence Theorem,

lim
n→∞

∫ 1

0
fn(x) dx =

∫ 1

0
lim
n→∞

fn(x) dx = 0.
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Hence,

lim
n→∞

∫ 1

0

nx log x
1 + n2x2 dx = 0.

Exercise 4.
Evaluate lim

n→∞

∫ ∞
0

(
1 + x

n

)−n sin x
n

dx.

Define
fn(x) =

(
1 + x

n

)−n sin x
n

.

Use the substitution x = nt, dx = ndt:

In =
∫ ∞

0

(
1 + x

n

)−n sin x
n

dx =
∫ ∞

0
(1 + t)−n sin(nt) dt.

Define
gn(t) = (1 + t)−n sin(nt).

Since (1 + t)−n decreases in n,

|gn(t)| ≤ (1 + t)−2 for all n ≥ 2.

Because ∫ ∞
0

(1 + t)−2 dt = 1,

the function (1 + t)−2 is integrable on [0,∞).
Since

gn(t)→ 0 for every t > 0,

and
|gn(t)| ≤ (1 + t)−2 ∈ L1([0,∞)),

the dominated convergence theorem gives

lim
n→∞

∫ ∞
0

gn(t) dt =
∫ ∞

0
lim
n→∞

gn(t) dt = 0.

Therefore

lim
n→∞

∫ ∞
0

(
1 + x

n

)−n sin x
n

dx = 0.

Exercise 5. For every r > 0, show that

lim
n→∞

∫ n

0

(
1− x

n

)n
x r−1 dx =

∫ ∞
0

e−xx r−1 dx.

Define

fn(x) =


(

1− x

n

)n
x r−1, 0 ≤ x ≤ n,

0, x > n.

For each fixed x ≥ 0 we have(
1− x

n

)n
→ e−x, hence fn(x)→ e−xx r−1.
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Using the inequality 1− t ≤ e−t for t ≥ 0,

0 ≤ fn(x) ≤ e−xx r−1 for all x ≥ 0.

The function g(x) = e−xx r−1 belongs to L1([0,∞)), since∫ ∞
0

e−xx r−1 dx = Γ(r) <∞.

Thus {fn} is dominated by an integrable function and converges pointwise to f(x) = e−xx r−1. By
the dominated convergence theorem,

lim
n→∞

∫ ∞
0

fn(x) dx =
∫ ∞

0
f(x) dx.

Since fn(x) = 0 for x > n, this is the same as

lim
n→∞

∫ n

0

(
1− x

n

)n
xr−1 dx =

∫ ∞
0

e−xxr−1 dx.

To verify that ∫ ∞
0

e−xx r−1 dx <∞ for every r > 0,

we analyze the behavior of the integrand near 0 and near ∞.

near x = 0. On the interval [0, 1] we have e−x ≤ 1, and therefore

0 ≤ e−xxr−1 ≤ xr−1.

The integral ∫ 1

0
xr−1 dx = 1

r

is finite precisely when r > 0. Hence the integral∫ 1

0
e−xxr−1 dx

converges for every r > 0.

near ∞.
On the interval [1,∞) the exponential factor e−x dominates the polynomial growth of xr−1.

Indeed, for all x ≥ 1,
0 ≤ e−xxr−1 ≤ e−xxr.

The function e−xxr tends to 0 as x→∞ and is eventually decreasing. Moreover we may compare
the integrand with a pure exponential: for sufficiently large x,

xr ≤ ex/2,

and hence
e−xxr ≤ e−x/2.

Since ∫ ∞
1

e−x/2 dx = 2e−1/2 <∞,
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the comparison test yields ∫ ∞
1

e−xxr−1 dx <∞.

Both integrals ∫ 1

0
e−xxr−1 dx and

∫ ∞
1

e−xxr−1 dx

are finite for every r > 0, and therefore the full improper integral∫ ∞
0

e−xxr−1 dx

converges.
Thus the function g(x) = e−xx r−1 belongs to L1([0,∞)).
Exercise 5.

Exercise 158 Prove that∫ 1

0
(ex − 1)

( log x+ 1
x

)
dx =

∞∑
n=1

n2 + n+ 1
(n− 1)!(n2 + n)2 .

Proof. We begin with the expansion

ex − 1 =
∞∑
k=1

xk

k! , 0 ≤ x ≤ 1.

Therefore,

(ex − 1) log x+ 1
x

=
∞∑
k=1

xk−1(log x+ 1)
k! .

To justify interchanging sum and integral, it suffices (by Tonelli’s theorem) to show that

∞∑
k=1

1
k!

∫ 1

0

∣∣∣xk−1(log x+ 1)
∣∣∣ dx <∞.

For x ∈ (0, 1],
|xk−1(log x+ 1)| ≤ xk−1| log x|+ xk−1 ≤ | log x|+ 1,

since 0 < xk−1 ≤ 1. Hence,∫ 1

0
|xk−1(log x+ 1)| dx ≤

∫ 1

0
(| log x|+ 1) dx = 1 + 1 = 2.

Thus,
∞∑
k=1

1
k!

∫ 1

0
|xk−1(log x+ 1)| dx ≤

∞∑
k=1

2
k! = 2(e− 1) <∞.

Absolute integrability ensures we may interchange summation and integration:∫ 1

0
(ex − 1) log x+ 1

x
dx =

∞∑
k=1

1
k!

∫ 1

0
xk−1(log x+ 1) dx.
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We now compute the integrals. Standard formulas give∫ 1

0
xk−1 log x dx = − 1

k2 ,

∫ 1

0
xk−1 dx = 1

k
.

Thus, ∫ 1

0
xk−1(log x+ 1) dx = − 1

k2 + 1
k

= k2 + k + 1
k2(k + 1)2 .

Substituting, ∫ 1

0
(ex − 1) log x+ 1

x
dx =

∞∑
k=1

k2 + k + 1
k! k2(k + 1)2 .

Using (k − 1)! = k!/k, we rewrite:

k2 + k + 1
k! k2(k + 1)2 = k2 + k + 1

(k − 1)!(k2 + k)2 .

Renaming the index k = n completes the proof:∫ 1

0
(ex − 1) log x+ 1

x
dx =

∞∑
n=1

n2 + n+ 1
(n− 1)!(n2 + n)2 .

Exercise 7. Prove that ∫ 1

0

xp−1

1 + xq
dx =

∞∑
n=0

(−1)n

p+ nq
,

and conclude that
log 2 =

∞∑
n=0

(−1)n

1 + n
.

Proof. For 0 ≤ x < 1 we have the geometric expansion

1
1 + xq

=
∞∑
n=0

(−1)nxnq.

Define the N -th partial sum

SN (x) =
N∑
n=0

(−1)nxnq, RN (x) = 1
1 + xq

− SN (x).

A direct computation gives

RN (x) = (−1)N+1x(N+1)q

1 + xq
,

so
|RN (x)| ≤ x(N+1)q, 0 ≤ x ≤ 1.

Now consider the integral of the partial sum:

IN :=
∫ 1

0
xp−1SN (x) dx =

N∑
n=0

(−1)n
∫ 1

0
xp−1+nq dx =

N∑
n=0

(−1)n

p+ nq
.
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We must show that
lim
N→∞

IN =
∫ 1

0

xp−1

1 + xq
dx.

Since
xp−1

1 + xq
− xp−1SN (x) = xp−1RN (x),

we have the remainder estimate∣∣∣∣∣
∫ 1

0

(
xp−1

1 + xq
− xp−1SN (x)

)
dx

∣∣∣∣∣ ≤
∫ 1

0
xp−1|RN (x)| dx ≤

∫ 1

0
xp−1+(N+1)q dx.

The last integral is explicit:∫ 1

0
xp−1+(N+1)q dx = 1

p+ (N + 1)q .

Because p > 0 and q > 0, we have

1
p+ (N + 1)q −→ 0 as N →∞.

Thus
IN −→

∫ 1

0

xp−1

1 + xq
dx.

Since IN equals the partial sums of the series, we conclude∫ 1

0

xp−1

1 + xq
dx =

∞∑
n=0

(−1)n

p+ nq
.

For p = q = 1, this becomes ∫ 1

0

dx

1 + x
=
∞∑
n=0

(−1)n

1 + n
,

and since the integral equals log 2, we obtain

log 2 =
∞∑
n=0

(−1)n

n+ 1 .

Exercise 8. Prove that ∫ ∞
0

e−x cos
√
x dx =

∞∑
n=0

(−1)nn!
(2n)! .

Proof. We want to evaluate ∫ ∞
0

e−x cos
√
x dx.

Using the power–series expansion

cos
√
x =

∞∑
n=0

(−1)n xn

(2n)! ,
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we would like to interchange the sum and the integral. To justify this, we apply Tonelli’s theorem
to the series of absolute values. Consider∫ ∞

0

∞∑
n=0

∣∣∣∣e−x (−1)nxn

(2n)!

∣∣∣∣ dx.
All terms are nonnegative, and∫ ∞

0
e−x

xn

(2n)! dx = 1
(2n)!

∫ ∞
0

xne−x dx = n!
(2n)! .

Hence
∞∑
n=0

∫ ∞
0

e−x
xn

(2n)! dx =
∞∑
n=0

n!
(2n)! .

The series on the right converges . Therefore,∫ ∞
0

e−x
∞∑
n=0

(−1)n xn

(2n)! dx =
∞∑
n=0

(−1)n
∫ ∞

0
e−x

xn

(2n)! dx.

Now compute the inner integral: ∫ ∞
0

xne−x dx = n!.

Thus ∫ ∞
0

e−x cos
√
x dx =

∞∑
n=0

(−1)n n!
(2n)! .

This completes the proof.
Exercise. Prove that ∫ 1

0

(x log x)2

1 + x2 dx = 2
∞∑
n=1

(−1)n−1

(2n+ 1)3 .

Solution. For 0 ≤ x ≤ 1 the geometric series gives

1
1 + x2 =

∞∑
n=0

(−1)nx2n.

Thus formally
(x log x)2

1 + x2 =
∞∑
n=0

(−1)nx2n(x log x)2.

To justify interchanging the sum and the integral, we apply Tonelli’s theorem to the nonnegative
series

∞∑
n=0

x2n(x log x)2.

Tonelli requires the convergence of

∞∑
n=0

∫ 1

0
x2n(x log x)2 dx.
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We compute this integral:∫ 1

0
x2n(x log x)2 dx =

∫ 1

0
x2n+2(log x)2 dx = 2

(2n+ 3)3 .

Since ∞∑
n=0

2
(2n+ 3)3

converges (as a p-series with p = 3 > 1), Tonelli’s theorem applies, so we may interchange sum and
integral: ∫ 1

0

(x log x)2

1 + x2 dx =
∞∑
n=0

(−1)n
∫ 1

0
x2n+2(log x)2 dx.

Substituting the integral we computed,∫ 1

0

(x log x)2

1 + x2 dx =
∞∑
n=0

(−1)n 2
(2n+ 3)3 .

Reindex with n = m− 1:
2(−1)n

(2n+ 3)3 = 2(−1)m−1

(2m+ 1)3 .

Hence ∫ 1

0

(x log x)2

1 + x2 dx = 2
∞∑
m=1

(−1)m−1

(2m+ 1)3 ,

as required.
Exercise 9. Prove that

lim
t→0

∫ b

a
f(x) sin(tx) dx = 0 for every f ∈ L1(a, b).

Solution. For each t ∈ R define

Ft(x) = f(x) sin(tx), x ∈ (a, b).

Since sin(tx)→ 0 for every fixed x as t→ 0, we have

Ft(x) −→ 0 (t→ 0)

pointwise on (a, b).
Moreover,

|Ft(x)| = |f(x) sin(tx)| ≤ |f(x)| for all x ∈ (a, b), t ∈ R.

Because f ∈ L1(a, b), the function |f | is integrable on (a, b).
Thus the hypotheses of the Dominated Convergence Theorem are satisfied: pointwise conver-

gence to 0 and domination by an L1 function. Hence

lim
t→0

∫ b

a
f(x) sin(tx) dx =

∫ b

a
lim
t→0

f(x) sin(tx) dx =
∫ b

a
0 dx = 0.

This proves the desired limit.


