Lecture 7

File Input/Output
SR

Files

Storage of data in variables and arrays is temporary—the
data is lost when a local variable goes out of scope or
when the program terminates.

Computers use files for long-term retention of large
amounts of data, even after programs that create the data
terminate. We refer to data maintained in files as persistent
data, because the data exists beyond the duration of
program execution.

Computers store files on secondary storage devices such
as magnetic disks, optical disks and magnetic tapes.

Files

There are two general types of files you need to learn about: text files
and binary files...

« A text, or character-based, file stores information using ASCII
character representations. Text files can be viewed with a standard
editor or word processing program but cannot be manipulated
arithmetically without requiring special conversion routines.

« A binary file stores numerical values using the internal numeric
binary format specified by the language in use. A Java program can
read a binary file to get numeric data, manipulate the data
arithmetically, and write the data to a binary file without any
Intermediate conversions.

File Operations

4

‘There are three basic operations that you will need
to perform when working with disk files:

. Open the file for input or output.

o Process the file, by reading from or writing to
the file.

o Close the file.

The Class File

-+ Class F1 le useful for retrieving information
about files and directories from disk

« Objects of class F11e do not open files or
provide any file-processing capabilities

 File objects are used frequently with objects of
other Java. 10 classes to specify files or
directories to manipulate.

1.

Creating File Objects

To operate on a file, we must first create a File object (from java.io).

vides constructors:

Takes String specifying name and path (location of file on disk)

Opens the file sample.dat

File filename = new File(“sample.dat”); in the current directory.

2.

File filename = new File (“C:/SamplePrograms/test.dat”);

Opens the file test.dat in the directory C:\SamplePrograms using the
generic file separator / and providing the full pathname.

Takes two Strings, first specifying path and second specifying name of file

File filename = new File(String pathToName, String Name) ;

boolean canRead()

File Methods

Description

Returns true if a file is readable by the current application; false
otherwise.

 boolean canwrite()

Returns true if a file is writable by the current application; false
otherwise.

boolean exists()

Returns true if the name specified as the argument to the File
constructor is a file or directory in the specified path; false otherwise.

boolean isFile()

Returns true if the name specified as the argument to the File
constructor is a file; false otherwise.

boolean isbDirectory()

Returns true if the name specified as the argument to the File
constructor is a directory; false otherwise.

‘boolean isAbsolute()

Returns true if the arguments specified to the File constructor
indicate an absolute path to a file or directory; false otherwise.

String getAbsolutePath()

Returns a string with the absolute path of the file or directory.

String getName()

Returns a string with the name of the file or directory.

String getPath()

Returns a string with the path of the file or directory.

String getParent()

Returns a string with the parent directory of the file or directory (i.e.,
the directory in which the file or directory can be found).

Tong length()

Returns the length of the file, in bytes. If the Fi1e object represents a
directory, O is returned.

Tong lastModified()

Returns a platform-dependent representation of the time at which the
file or directory was last modified. The value returned is useful only for
comparison with other values returned by this method.

string[] 1istQ

Returns an array of strings representing the contents of a directory.
Returns nul1 if the File object does not represent a directory.

| | |

Some File Methods

(filename.exists()) {

(filename.isFile()) {

Toseeif filenameis

associated to a real file
correctly.

Toseeif filename is

associated to a file or not.
If false, it is a directory.

Textfile Input and Output

-~ o Instead of storing primitive data values as binary

data in a file, we can convert and store them as a
string data.

— This allows us to view the file content using any text editor

o To output data as a string to file, we use a
PrintWriter object.

e To input data from a textfile, we use FileReader and
BufferedReader classes

— From Java 5.0 (SDK 1.5), we can also use the Scanner class
for inputting textfiles

Sample Textfile Output

A test program to save data to a file using PrintWriter for high-level IO

java.io.*;
TestPrintWriter {
main (String|] args) [IOException {

//set up file and stream
File outFile = File("sample3.data");

PrintWriter PF = new PrintWriter(outFile);

//write values of primitive data types to the stream
PF.println(987654321);

PF.println("Hello, world."); . IR
PF orintln(t) We use println and print with
-prin SA ﬂzmvw PrintWriter. The print and
println methods convert
//output done, so close the stream primitive data types to strings
PF close C before writing to a file.
.) k

Sample Textfile Input

” To read the data from a text file, we use the FileReader and
BufferedReadder objects.

To read back from a text file:
- we need to associate a BufferedReader object to a file,

File inF = new File("sample3.data");
FileReader FR = new FileReader(inF);
BufferedReader BFR = new BufferedReader(FR);

- read data using the readLine method of BufferedReader,

String str;
str = BFR.readLine();

- convert the string to a primitive data type as necessary.

i = Integer.parselnt(str);

Sample Textfile Input

import java.io.*;
class TestBufferedReader {

public static void main (String|] args) throws IOException

{

//set up file and stream
File inF = new File("sample3.data");

FileReader FR = new FileReader(inF);
BufferedReader BFR = new BufferedReader(FR);

String str;
//get integer
str = BFR.readLine();
1 = Integer.parselnt(str);

//get long
str = BFR.readLine();
long 1 = Long.parseLong(str);

//get float
str = BFR.readLine();
float f = Float.parseFloat(str);

//get double

str = BFR.readLine();
double d = Double.parseDouble(str);

//get char
str = BFR.readLine();
char ¢ = str.charAt(0);

//get boolean

str = BFR.readLine();

Boolean boolObj = new Boolean(str);
boolean b = boolObj.booleanValue();

System.out.println(i);
System.out.println(l);
System.out.println(f);
System.out.println(d);
System.out.println(c);
System.out.println(b);

//input done, so close the stream

BFR.close();

