Zoo-352 Principles of genetics Lecture 4

Mitosis

Outlines:

- ✤ The types of cell division.
- The definition of mitosis.
- Significance of mitosis.
- ✤ The phases of mitotic division.
- The events of each phase during mitosis.
- Microscopic view for mitotic division phases.

The types of cell divisions:

- Binary fission (Amitosis): occurs only in prokaryotic cells.
- Mitosis: occurs in eukaryotic cells particularly in non-sex cells (somatic cells).
- 3. Meiosis: occurs in eukaryotic cells particularly in sex cells (germ cells; sperm or egg cells).

The definition of mitosis :

 Mitosis is a part of the cell cycle process by which chromosomes in a cell nucleus are separated into two identical sets of chromosomes, each in its own nucleus.

Significance of mitosis :

- 1) In multicellular organisms:
 - Mitosis produces more cells for growth and • repair of damaged cells or tissues (wound healing).
- 2) In unicellular organisms:
 - Mitosis is a type of asexual reproduction. •

4. Two daughter cells

Asexual reproduction in Amoeba

Wound healing

The steps of mitotic division:

- Mitosis (M phase) has two steps:
 - Karyokinesis: Division of the nucleus into 4 phases), followed by
 - 2. Cytokinesis: Division of the cytoplasm).

The phases of mitotic division:

- Karyokinesis of mitosis is divided into **four stages**: *prophase, metaphase, anaphase* and *telophase* (Greek: *pro-*, before; *meta-*, mid; *ana-*, back; *telo-*, end).
- The timing of the four stages varies from species to species and from organ to organ.

1- Prophase:

- The first stage of mitosis begins with the shorting and thickening of the chromosomes.
- Each chromosome is composed of two sister chromatids, which are identical double-stranded DNA molecules.
- The nuclear membrane breaks down and the nucleolus disappears.

Nuclear events during interphase and prophase of mitosis

- The centrosome divides and moves to opposite poles of the cell, around the nucleus.
- The newly divided centrosomes radiate microtubules, which are called spindle fibers.
- Microtubules also spread out from the centrosome in the opposite direction from the spindle itself, forming an aster microtubule.
- The second microtubules that attach to a kinetochore on a sister chromatid are called kinetochore microtubules.
- The third class of microtubules fail to attach to kinetochore are called polar microtubules.

The centrosome divides in prophase, and separate halves move to opposite poles of the cell

Cohesin:

- Cohesin is a protein complex that mediates the cohesion of sister chromatids.
- Cohesin in mitosis is made up of at least four different proteins (SMC1, SMC3, SCC1 (RAD21), and SCC3 (STAG1 and STAG2).
- Cohesin complexes connect the arms and centromere of sister chromatids at the early prophase.
- At the late prophase, the cohesin complexes holding the arms are released; however, the sister chromatids remain connects only at the centromere.

Meiosis cohesin subunits are marked with RED

2- Metaphase:

- The spindle fibers are form and each centromere attached to a kinetochore microtubule from each centrosome.
- The two centrosomes begin pulling the chromosomes towards opposite ends of the cell.
- The resulting tension causes the chromosomes to align along the metaphase plate.

The mitotic spindle fibers during metaphase

3- Anaphase:

- Anaphase begins with the two sister chromatids separating and moving toward opposite poles on the spindle fibers.
- The sister chromatids are joined together by cohesins.
- The degradation of cohesin at the centromere allowing the sister chromatids to separate.

The mitotic spindle fibers during anaphase

The kinetochore

Sister chromatid cohesion and separation

4- Telophase:

- In telophase, the cell reverses the steps of prophase to return to the interphase stage.
- The nuclear membrane reforms around each set of chromosomes and the nucleolus forms again. Then, cytokinesis takes place.

Telophase and interphase of mitosis

The difference between cytokinesis of animal and plant cells:

- In animals, cytokinesis is first apparent by constriction between the two poles (Figure 6).
- In plants, a cell plate grows in the approximate location of the metaphase plate.
- After completing cytokinesis, the daughter cells enter the G1 phase of the cell cycle.

(a) Cleavage of an animal cell

(b) Formation of a cell plate in a plant cell

FIGURE 3.9 Cytokinesis in animal and plant cells. (a) In an animal cell, cytokinesis involves the formation of a cleavage furrow. (b) In a plant cell, cytokinesis occurs via the formation of a cell plate between the two daughter cells.

Microscopic view for mitotic division phases in animal cells:

Interphase

Prophase

Metaphase

Anaphase

Telophase and cytokinesis

The phases of mitosis in a fish embryo cells

Microscopic view for mitotic division phases in plant cells:

(a) Interphase

(e) Anaphase

(b) Early prophase

(f) Telophase

(c) Late prophase

(g) Daughter cells

(d) Metaphase

The phases of mitosis in onion root tip cells

Quiz: Mitosis

- 1. The two major phases of mitosis are _____ and ____ .
- o karyokinesis, prophase
- o karyokinesis, cytokinesis
- o prophase, cytokinesis
- anaphase and telophase

- 2. The timing of the four stages of karyokinesis is consistent among different cell types.
- o True
- o False

- 3. During mitosis, cells replicate and divide _____.
- o genetic materials
- o centrioles
- o organelles
- o all above

- 4. The cohesin holding the chromosome centromere gets released at ____.
- early prophase
- o late prophase
- o anaphase
- o telophase