Chapter 2: Probability

Random Experiment:

Random experiment is an experiment we do not know its exact outcome in advance but we know the set of all possible outcomes.

The following situations are random experiments:

- Tossing a coin has two possibilities, head (H) or Tail (T).
- Tossing a die and observe the number appears on top.
- A football team plays two games and in each game either he wins (*W*) or be equal (*D*) or losses (*L*).

The Sample Space

- The set of all possible outcomes of a statistical experiment is called the sample space and is denoted by S or $\boldsymbol{\Omega}$.
- Each outcome (element or member) of the sample space *S* is called a sample point.
 If we are interested only in whether the number is even or odd, the sample space is simply

An event A is a subset of the sample space S. That is $A \subseteq S$.

 $\triangleright \phi \subseteq S$ is an event (φ is called the impossible event)

 \succ *S* \subseteq *S* is an event (*S* is called the sure event)

Experiment: Selecting a ball from a box containing 6 balls numbered 1,2,3,4,5 and 6.

This experiment has 6 possible outcomes

$$S = \{1, 2, 3, 4, 5, 6\}.$$

Consider the following events:

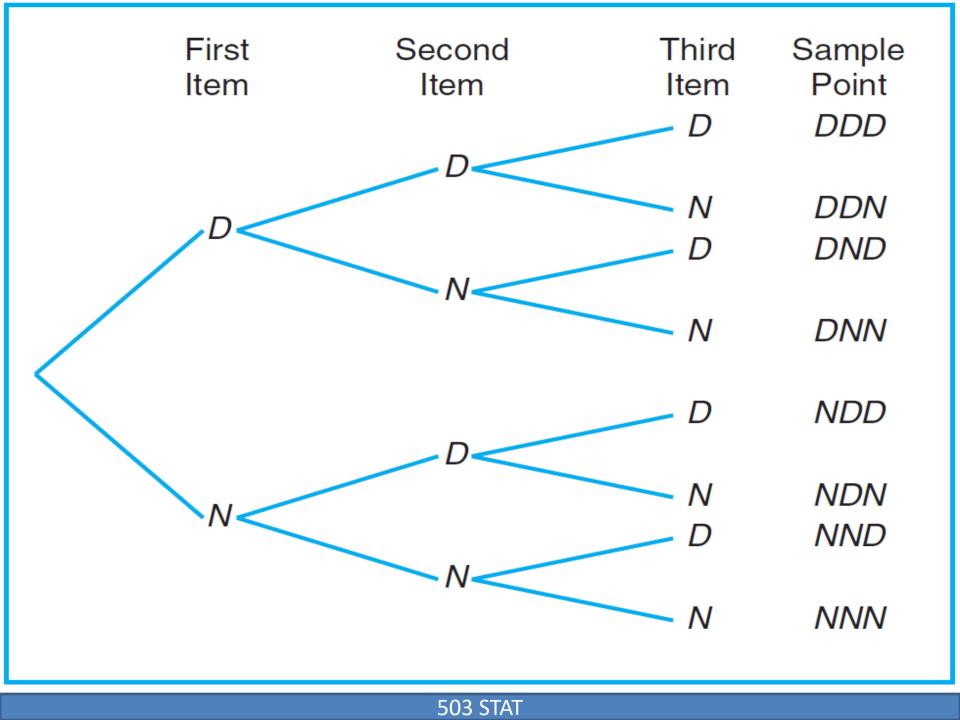
 E_1 =getting an event number = { 2, 4, 6 } $\subseteq \Omega$ E_2 =getting a number less than 4 = {1, 2, 3} $\subseteq \Omega$ E_3 =getting 1 or 3 = {1, 3} $\subseteq \Omega$ E_4 =getting an odd number = {1, 3, 5} $\subseteq \Omega$ E_5 =getting a negative number = $\{ \} = \phi \subseteq \Omega$ E_6 =getting a number less than 10 $= \{1, 2, 3, 4, 5, 6\} = \Omega \subseteq \Omega$

$n(\Omega) = \text{no. of outcomes (elements) in } \Omega$ n(E) = no. of outcomes (elements) in the event E

Experiment: Selecting 3 items from

manufacturing process; each item is inspected

and classified as defective (D) or nondefective (N).



This experiment has 8 possible outcomes

S={DDD,DDN,DND,DNN,NDD,NDN,NND,NNN}

Consider the following events:

- $A = \{ at least 2 defectives \} =$
- $\{DDD,DDN,DND,NDD\}\subseteq S$
- $B = \{ at most one defective \} =$
- $\{DNN,NDN,NND,NNN\}\subseteq S$
- $C = \{3 \text{ defectives}\} = \{DDD\} \subseteq S$

503 STAT

If an operation can be performed in n_1 ways, and if for each of these ways a second operation can be performed in n_2 ways, then the two operations can be performed together in $n_{1\times}n_2$ ways.

How many sample points are there in the sample space when a pair of dice is thrown once?

Solution:

The first die can land face-up in any one of $n_1 = 6$ ways. For each of these 6 ways, the second die can also land face-up in $n_2 = 6$ ways.

Therefore, the pair of dice can land in

$$n_1 \times n_2 = (6)(6) = 36$$
 possible ways.

503 STAT

If an operation can be performed in n_1 ways, and if for each of these ways a second operation can be performed in n_2 ways and for each of the first two a third operation can be performed in n_3 ways, and so forth, then the sequence of k operations can be performed in $n_1.n_2...n_k$ ways.

Example:

Sam is going to assemble a computer by himself. He has the choice of chips from two brands, a hard drive from four, memory from three, and an accessory bundle from five local stores. How many different ways can Sam order the parts?

Solution:

Since
$$n_1 = 2$$
, $n_2 = 4$, $n_3 = 3$, and $n_4 = 5$, there are

 $n_l \times n_2 \times n_3 \times n_4 = 2 \times 4 \times 3 \times 5 = 120$

different ways to order the parts.

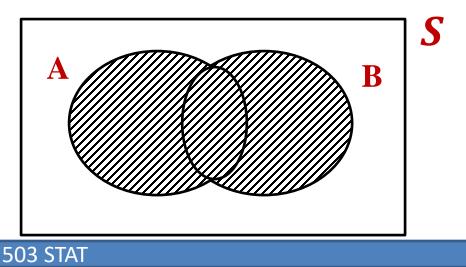
Some Operations on Events

Let A and B be two events defined on the sample space . S

Union: $A \cup B$

 $A \cup B$ Consists of all outcomes in A or in B or in both A and B.

$A \cup B = \{ \mathbf{x} \in S : \mathbf{x} \in A \text{ or } \mathbf{x} \in B \}$



 $A \cup B$ Occurs if A occurs, or B occurs,

or both A and B occur.

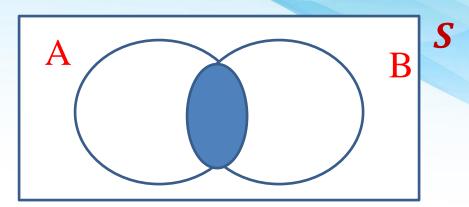
A and B occurs.

Let $A = \{a, b, c\}$ and $B = \{b, c, d, e\}$;

then $A \cup B = \{a, b, c, d, e\}.$

Intersection $A \cap B$

$A \cap B$ Consists of all outcomes in both A and B.



$A \cap B = AB = \{x \in S : x \in A \text{ and } x \in B\}$

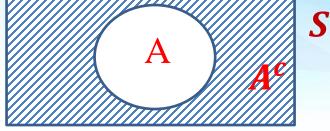
 $A \cap B$ Occurs if both A and B occur together.

Let $V = \{a, e, i, o, u\}$ and $C = \{l, r, s, t\}$;

then $V \cap C = \varphi$.

Complement A^c

 A^c is the complement of A. A^c consists of all outcomes of S but are not in A. A^c occurs if A does not.



$A^{c} \text{ or } A' \text{ or } \overline{A}$ $A^{c} = \{ \mathbf{x} \in S : \mathbf{x} \notin A \}$

Let $S = \{1, 2, 3, 4, 5, 6\}, A = \{1, 2, 4\}$

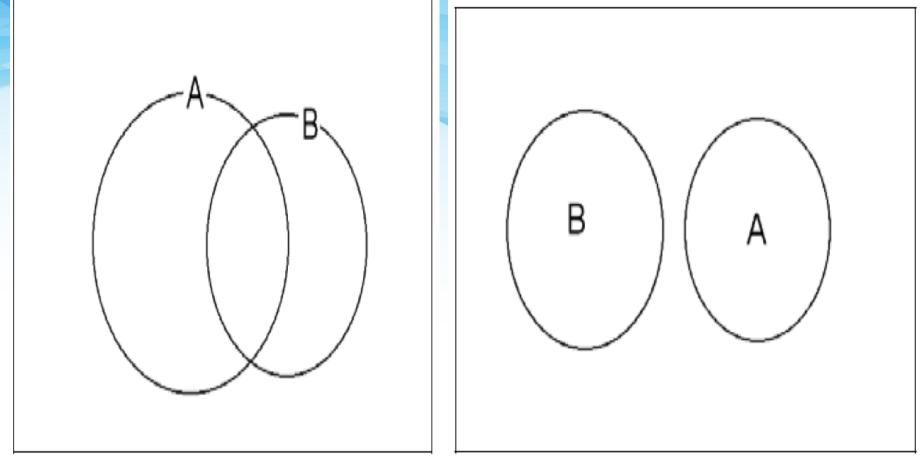
Then $A^c = \{3, 5, 6\}$

1. $A \cap \phi = \phi$. 2. $A \cup \phi = A$. 3. $A \cap A' = \phi$. 4. $A \cup A' = S$. 5. $S' = \phi$. 6. $\phi' = S$. 7. (A')' = A. 8. $(A \cap B)' = A' \cup B'$. 9. $(A \cup B)' = A' \cap B'$.

2.3 - 2.4(a) - 2.7 and 2.14 on page 42

Mutually Exclusive (Disjoint) Events

Two events *A* and *B* are mutually exclusive (or disjoint) if and only if $A \cap B = \varphi$; that is, *A* and *B* have no common elements (they do not occur together).



 $A \cap B \neq \phi$ A and B are not mutually exclusive

 $A \cap B = \phi$ A and B are mutually exclusive (disjoint)

503 STAT

In many problems, we are interested in the

number of ways of selecting r objects from n

objects without regard to order. These

selections are called combinations.

Notation: *n* factorial is denoted by *n*! and is defined by: $n!=n(n-1)(n-2)\cdots(2)(1)$ for $n \ge 1$ 0!=1

Example: 5! = (5)(4)(3)(2)(1) = 120

Theorem:

The number of different ways for selecting *r* objects from *n* distinct objects is denoted by $\binom{n}{r}$ and is given by:

$$\binom{n}{r} = \frac{n!}{r! (n-r)!};$$

$$r = 0, 1, 2, \dots, n$$

$\binom{n}{r}$ is read as "*n*" choose "*r*".

$$\binom{n}{n} = 1 \qquad \qquad \binom{n}{0} = 1 \qquad \qquad \binom{n}{r} = \binom{n}{n-r}$$

Example

If we have 10 equal-priority operations and only 4 operating rooms, in how many ways can we choose the 4 patients to be operated on first?

Answer:

n = 10 r = 4

The number of different ways for selecting 4 patients from 10 patients is

$$\binom{10}{4} = \frac{10!}{4! (10-4)!} = \frac{10!}{4! 6!} = \frac{(10)(9)(8) \cdots (2)(1)}{(4)(3)(2)(1) (6)(5)(4)(3)(2)(1)}$$

= 210 (different ways)

503 SIA

Probability of an Event

- ➤ To every point (outcome) in the sample space of an experiment S, we assign a weight (or probability), ranging from 0 to 1, such that the sum of all weights (probabilities) equals 1.
- The weight (or probability) of an outcome measures its likelihood (chance) of occurrence.
- ➤ To find the probability of an event A, we sum all probabilities of the sample points in A. This sum is called the probability of the event A and is denoted by P(A).

The probability of an event *A* is the sum of the weights (probabilities) of all sample points in *A*. Therefore,

1. $0 \le P(A) \le 1$ 2. P(S)=13. $P(\phi)=0$

A balanced coin is tossed twice. What is the probability that at least one head occurs?

Solution:

 $S = \{HH, HT, TH, TT\}$

 $A = \{ at least one head occurs \} = \{ HH, HT, TH \}$ Since the coin is balanced, the outcomes are equally likely; i.e., all outcomes have the same weight or probability.

Outcome	Weight	
	(Probability)	$4w = 1 \Leftrightarrow w = 1/4 = 0.25$
HH	P(HH) = w	P(HH)=P(HT)=P(TH)=P(TT)=0.25
HT	P(HT) = w	
TH	P(TH) = w	
TT	P(TT) = w	
sum	4w=1	

 $P(A) = P(\{at \ least \ one \ head \ occurs\}) = P(\{HH, HT, TH\})$ = P(HH) + P(HT) + P(TH)= 0.25 + 0.25 + 0.25= 0.75

Theorem

If an experiment has n(S) = N equally likely different outcomes, then the probability of the event *A* is:

$$P(A) = \frac{n(A)}{n(S)} = \frac{n(A)}{N} = \frac{no. of outcomes in A}{no. of outcomes in S}$$

Example

A mixture of candies consists of 6 mints, 4 toffees, and 3 chocolates. If a person makes a random selection of one of these candies, find the probability of getting:

- (a) a mint
- (b) a toffee or chocolate.

N	1 T	С	
e e	5 4	C 3	
	13		

Solution

Define the following events: $M = \{ getting a mint \}$ $T = \{ \text{getting a toffee} \}$ $C = \{ getting a chocolate \}$ **Experiment:** selecting a candy at random from 13 candies n(S) = no. of outcomes of the experiment of selecting a candy=13.

The outcomes of the experiment are equally likely because the selection is made at random. (a) $M = \{\text{getting a mint}\}$ n(M) = 6

 $P(M) = P(\{\text{getting a mint}\}) = \frac{n(M)}{n(S)} = \frac{6}{13}$

 $T \cup C = \{\text{getting a toffee or chocolate}\}$ (b) $n(T \cup C) =$ no. of different ways of selecting a toffee or a chocolate candy = no. of different ways of selecting a toffee candy + no. of different ways of selecting a chocolate candy

$$= 4 + 3 = 7$$

 $P(T \cup C) = P(\{\text{getting a toffee or chocolate}\}) = \frac{n(T \cup C)}{n(S)} = \frac{7}{13}$

Theorem:

If A and B are any two events, then:

$P(A \cup B) = P(A) + P(B) - P(A \cap B)$

If A and B are mutually exclusive

(disjoint) events, then:

 $P(A \cup B) = P(A) + P(B)$

If $A_1, A_2, ..., A_n$ are *n* mutually exclusive (disjoint) events, then: $P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$ $P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i)$

 $1) P(A) = P(A \cap B) + P(A \cap B^{c})$ $2)P(B) = P(A \cap B) + P(A^c \cap B)$ $3) P(A \cap B^c) = P(A) - P(A \cap B)$ $4) P(A^c \cap B) = P(B) - P(A \cap B)$ $5) P(A^c \cap B^c) = 1 - P(A \cup B)$ 6) $P(A \cup B) = P(A) + P(A^c \cap B)$

Example

The probability that Ahmad passes Mathematics is 2/3, and the probability that he passes English is 4/9. If the probability that he passes both courses is 1/4, what is the probability that he will: (a) pass at least one course?

(b) pass Mathematics and fail English?(c) fail both courses?

Solution:

Define the events: *M*={Ahmed passes Mathematics} *E*={Ahmed passes English} We know that P(M) = 2/3, P(E) = 4/9, and $P(M \cap E) = 1/4.$ (a) Probability of passing at least one course is: $P(M \cup E) = P(M) + P(E) - P(M \cap E)$ $\frac{2}{3} + \frac{4}{9} - \frac{1}{4} = \frac{31}{36}$

(b) Probability of passing Mathematics and failing English is: $P(M \cap E^{c}) = P(M) - P(M \cap E)$

$$\frac{2}{3} - \frac{1}{4} = \frac{5}{12}$$

(c) Probability of failing both courses is: $P(M^{c} \cap E^{c}) = 1 - P(M \cup E)$

$$1 - \frac{31}{36} = \frac{5}{36}$$

If A and A^c are complementary events, then:

$$P(A) + P(A^c) = 1$$

$\Leftrightarrow P(A^c) = 1 - P(A)$

Conditional Probability:

The probability of occurring an event *A* when it is known that some event *B* has occurred is called the conditional probability of *A* given *B* and is denoted P(A|B).

Definition

The conditional probability of the event A given the event B is defined by

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

; P(B) > 0

1.
$$P(A | B) = \frac{P(A \cap B)}{P(B)} =$$
$$= \frac{n(A \cap B)/n(S)}{n(B)/n(S)} = \frac{n(A \cap B)}{n(B)}$$
2.
$$P(B | A) = \frac{P(A \cap B)}{P(A)}$$
3.
$$P(A \cap B) = P(A)P(B | A)$$
$$= P(B)P(A | B)$$

Example:

339 physicians are classified as given in the table below. A physician is to be selected at random. (1) Find the probability that: (a) the selected physician is aged 40 - 49(b) the selected physician smokes occasionally (c) the selected physician is aged 40 - 49 and smokes

occasionally

(2) Find the probability that the selected physician is aged

40 – 49 given that the physician smokes occasionally.

Smoking Habbit						
	Daily	Occasionally	Not at all			
	(B_1)	(B_2)	(B_3)	Total		
20-29 (A_1)	31	9	7	47		
$30-39(A_2)$	110	30	49	189		
$40-49(A_3)$	29	21	29	79		
$50+(A_4)$	6	0	18	24		
Total	176	60	103	339		

Age

n(S) = 339 equally likely outcomes. Define the following events: A_3 = the selected physician is aged 40 – 49 B_2 = the selected physician smokes occasionally $A_3 \cap B_2$ = the selected physician is aged 40 – 49 and smokes occasionally

(1) (a)
$$A_3$$
 = the selected physician is aged 40 – 49
 $P(A_3) = \frac{n(A_3)}{n(S)} = \frac{79}{339} = 0.2330$

(b) B_2 = the selected physician smokes occasionally $P(B_2) = \frac{n(B_2)}{n(S)} = \frac{60}{339} = 0.1770$

(c) $A_3 \cap B_2$ = the selected physician is aged 40 – 49 and smokes occasionally. $P(A_3 \cap B_2) = \frac{n(A_3 \cap B_2)}{n(S)} = \frac{21}{339} = 0.06195$

(2)
$$A_3|B_2$$
 = the selected physician is aged 40 – 49 given that the
physician smokes occasionally
(i) $P(A_3|B_2) = \frac{P(A_3 \cap B_2)}{P(B_2)} = \frac{0.06195}{0.1770} = 0.35$

(ii)
$$P(A_3 | B_2) = \frac{n(A_3 \cap B_2)}{n(B_2)} = \frac{21}{60} = 0.35$$

(iii) We can use the restricted table directly:

$$P(A_3 \mid B_2) = \frac{21}{60} = 0.35$$

503 STAT

Notice that $P(A_3|B_2)=0.35 > P(A_3)=0.233$. The conditional probability does not equal unconditional probability; i.e., $P(A_3|B_2) \neq P(A_3)$! What does this mean?

 P(A|B) = P(A) means that knowing B has no effect on the probability of occurrence of A. In this case A is <u>independent</u> of B.

 P(A|B) > P(A) means that knowing B increases

the probability of occurrence of A.

➢ P(A|B) < P(A) means that knowing B decreases the probability of occurrence of A.

Independent Events

Definition:

Two events *A* and *B* are **independent** if and only if P(A|B) = P(A) and P(B|A) = P(B). Otherwise *A* and *B* are **dependent**.

Example:

In the previous example, we found that

 $P(A_3/B_2) \neq P(A_3)$

Therefore, the events A_3 and B_2 are dependent, i.e., they are not independent. Also, we can verify that $P(B_2/A_3) \neq P(B_2)$

If $P(A) \neq 0$ and $P(B) \neq 0$, then: $P(A \cap B) = P(A) P(B|A)$ = P(B) P(A|B)

Suppose we have a fuse box containing 20 fuses of which 5 are defective (D) and 15 are non-defective (N). If 2 fuses are selected at random and removed from the box in succession without replacing the first, what is the probability that both fuses are defective?

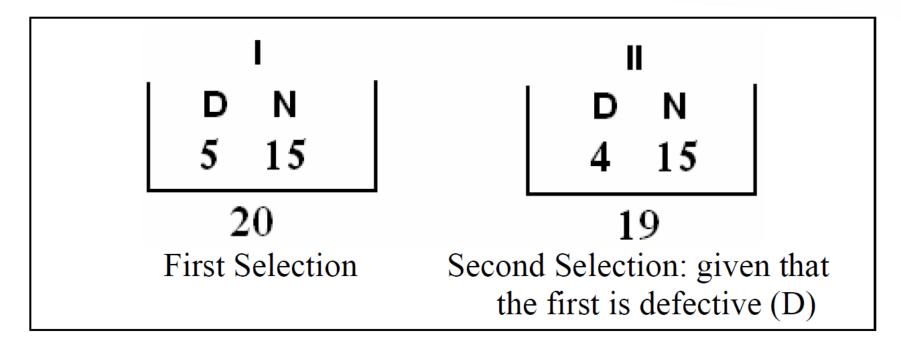
Define the following events: $A = \{ \text{the first fuse is defective} \}$ $B = \{ \text{the second fuse is defective} \}$ $A \cap B = \{ \text{the first fuse is defective and the second fuse is defective} \} = \{ \text{both fuses are defective} \}$

We need to calculate $P(A \cap B)$.

 $\frac{5}{20}$ P(A)P(B)19

$$P(A \cap B) = P(A) P(B|A)$$

= $\frac{5}{20} \times \frac{4}{19} = 0.052632$



503 STAT

Two events A and B are independent if and only if

$P(A \cap B) = P(A) P(B)$

(Multiplicative Rule for independent events)

Two events A and B are independent if one of the following conditions is satisfied: (i) P(A|B) = P(A) \Leftrightarrow (ii) P(B|A) = P(B) \Leftrightarrow (iii) $P(A \cap B) = P(A) P(B)$

Theorem (k = 3)

If A_1 , A_2 , A_3 are 3 events, then: $P(A_1 \cap A_2 \cap A_3) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 \cap A_2)$ If A_1 , A_2 , A_3 are 3 independent events, then: $P(A_1 \cap A_2 \cap A_3) = P(A_1) P(A_2) P(A_3)$

Definition:

The events $A_1, A_2, ...,$ and A_n constitute a partition of the sample space *S* if:

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n = S$$

$$A_i \cap A_j = \emptyset, \qquad \forall i \neq j$$

Theorem: (Total Probability)

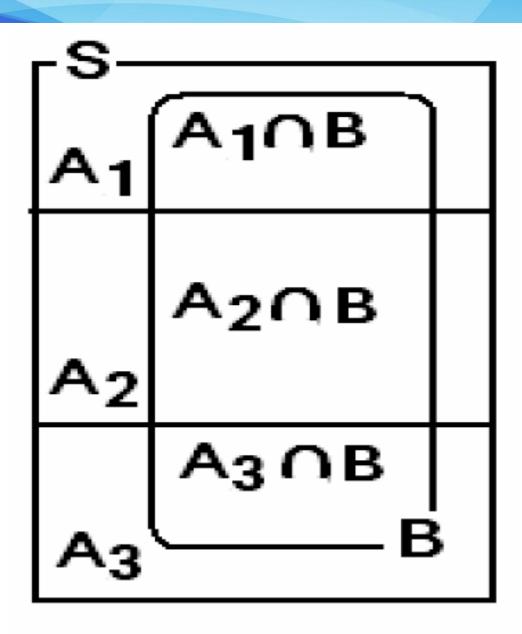
If the events $A_1, A_2, ..., and A_n$ constitute a partition

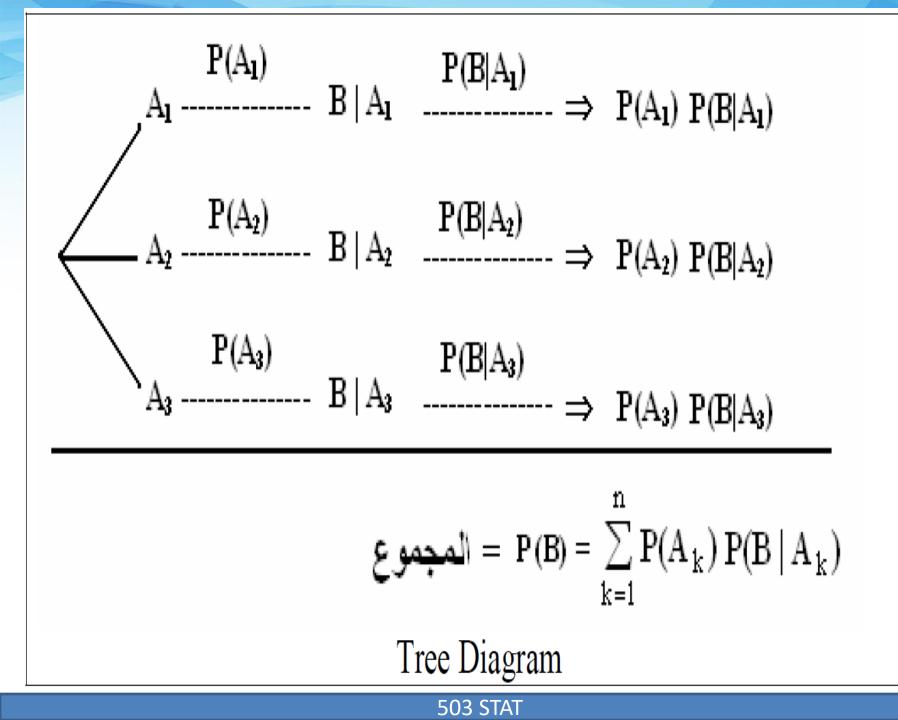
of the sample space S such that

$$P(A_k) \neq 0 \text{ for } k = 1, 2, ..., n,$$

then for any event *B*:

$$P(B) = \sum_{k=1}^{n} P(A_k \cap B) = \sum_{k=1}^{n} P(A_k) \cdot P(B/A_k)$$





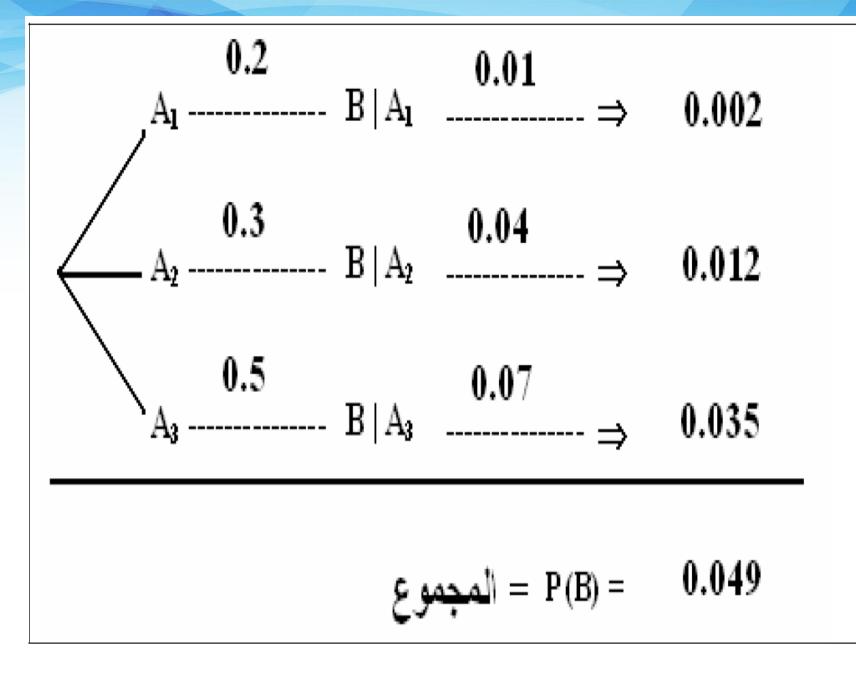
Three machines A_1 , A_2 and A_3 make 20%, 30%, and 50%, respectively, of the products. It is known that 1%, 4%, and 7% of the products made by each machine, respectively, are defective. If a finished product is randomly selected, what is the probability that it is defective?

- Define the following events:
- $B = \{$ the selected product is defective $\}$
- $A_1 = \{$ the selected product is made by machine $A_1 \}$
- $A_2 = \{$ the selected product is made by machine $A_2 \}$
- $A_3 = \{$ the selected product is made by machine $A_3 \}$

$$P(A_1) = \frac{20}{100} = 0.2; \quad P(B|A_1) = \frac{1}{100} = 0.01$$
$$P(A_2) = \frac{30}{100} = 0.3; \quad P(B|A_2) = \frac{4}{100} = 0.04$$
$$P(A_3) = \frac{50}{100} = 0.5; \quad P(B|A_3) = \frac{7}{100} = 0.07$$

$$P(B) = \sum_{k=1}^{3} P(A_k) P(B | A_k)$$

= P(A₁) P(B|A₁) + P(A₂) P(B|A₂) + P(A₃) P(B|A₃)
= 0.2×0.01 + 0.3×0.04 + 0.5×0.07
= 0.002 + 0.012 + 0.035
= 0.049



503 STAT

Another Example: see Example 2.41 page 74

Question:

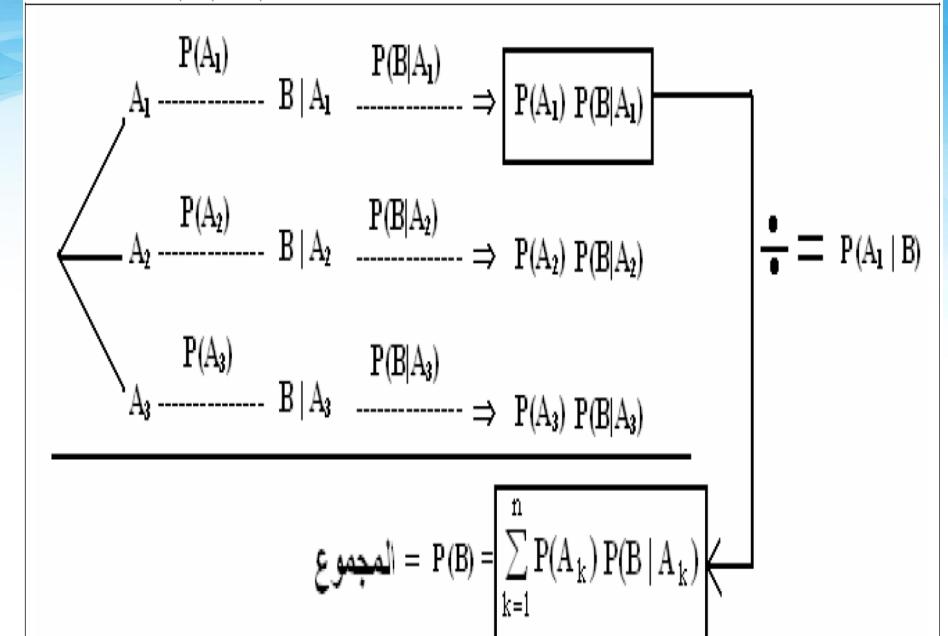
If it is known that the selected product is defective, what is the probability that it is made by machine A_1 ?

Answer:

 $P(A_1|B) = \frac{P(A_1 \cap B)}{P(B)} = \frac{P(A_1)P(B|A_1)}{P(B)} = \frac{0.2 \times 0.01}{0.049} = \frac{0.002}{0.049} = 0.0408$

This rule is called Bayes' rule.

If the events A_1, A_2, \ldots , and A_n constitute a partition of the sample space S such that $P(A_k) \neq 0$ for k=1, 2, ..., n, then for any event B such that $P(B) \neq 0$: $P(A_i \mid B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B \mid A_i)}{\sum_{k=1}^{n} P(A_k)P(B \mid A_k)} = \frac{P(A_i)P(B \mid A_i)}{P(B)}$ k=1 for i = 1, 2, ..., n.



503 STAT

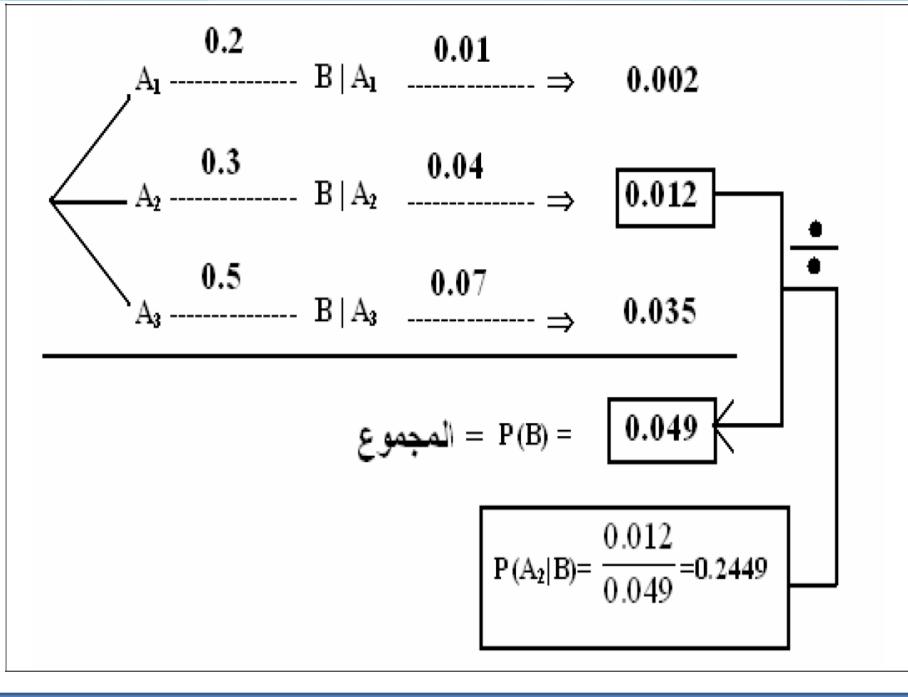
In the previous example, if it is known that the selected product is defective, what is the probability that it is made by: (a) machine A_2 ?

(b) machine A_3 ?

Solution:

(a)
$$P(A_2|B) = \frac{P(A_2)P(B|A_2)}{\sum_{k=1}^{n} P(A_k)P(B|A_k)} = \frac{P(A_2)P(B|A_2)}{P(B)}$$

= $\frac{0.3 \times 0.04}{0.049} = \frac{0.012}{0.049} = 0.2449$

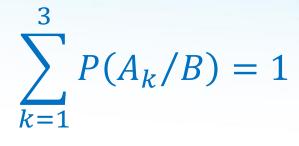


503 STAT

(b)
$$P(A_3|B) = \frac{P(A_3)P(B|A_3)}{\sum_{k=1}^{n} P(A_k)P(B|A_k)} = \frac{P(A_3)P(B|A_3)}{P(B)}$$

= $\frac{0.5 \times 0.07}{0.049} = \frac{0.035}{0.049} = 0.7142$

$P(A_1|B) = 0.0408, P(A_2|B) = 0.2449, P(A_3|B) = 0.7142$



If the selected product was found defective, we should check machine A_3 first, if it is ok, we should check machine A_2 , if it is ok, we should check machine A_1 .

Another Example: see Example 2.42 page 75

