Chapter 2: Probability

503 STAT



Random Experiment:

Random experiment IS an experiment
we do not know Its exact outcome In
advance but we know the set of all
possible outcomes.
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Examples™

The following situations are random experiments:

» Tossing a coin has two possibilities, head (H) or Tail
(T).

 Tossing a die and observe the number appears on
top.

A football team plays two games and in each game
either he wins (W) or be equal (D) or losses (L).
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Sample Space A

 The set of all possible outcomes of a
statistical experiment is called the sample
space and is denoted by S or 1.

» Each outcome (element or member) of the
sample space S Is called a sample point.

If we are interested only in whether the number Is
even or odd, the sample space Is simply

S={even,odd}



An event A Is a subset of the sample space S.
That Is ACS.

» @CS Is an event (¢ Is called the impossible
event)

» SCS s an event (S Is called the sure event)
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Experiment: Selecting a ball from a box
containing 6 balls numbered 1,2,3,4,5 and
6.

This experiment has 6 possible outcomes

$={1,2,3,4,5,6}.
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E,=getting an event number = 12,4,6}
E,=getting a number less than 4 =1{1, 2, 3
E;=gettinglor3 ={1,3}c O

E,=getting an odd number =1{1.

3
Es=getting a negative number = {

E¢=getting a number less than 10
={12.3,4,5,6}=Qc O
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" Notation

n(Q)=no. of outcomes (elements) in O
n(E)=no. of outcomes (elements) in the event £
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 ExamplE™ -

Experiment: Selecting 3 items from

manufacturing process; each item Is inspected
and classified as defective (D) or non-

defective (N).
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First Second Third Sample

ltem [tem l[tem Point
D DDD

D<
" < N DDN
D DND

N<
N DNN
D NDD

D<
N < N NDN
D NND
N<
N

NNN
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This experiment has 8 possible outcomes

S={DDD,DDN,DND,DNN,NDD,NDN,NND,NNN}
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- Consider

INng events: l I-

A={at least 2 defectives}=

{DDD,DDN,DND,NDD}CS
B={at most one defective}=
{DNN,NDN,NND,NNN}CS

C={3 defectives}= {DDD}<S



<

If an operation can be performed in n, ways, and if
for each of these ways a second operation can be
performed In n, ways, then the two operations can
be performed together in n,,n, ways.
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How many sample points are there in the sample
space when a pair of dice Is thrown once?

Solution:

The first die can land face-up in any one of n; = 6 ways.
For each of these 6 ways, the second die can also land

face-up in n, = 6 ways.

Therefore, the pair of dice can land In

n, Xn, = (6)(6) = 36 possible ways.




Rule (27"

If an operation can be performed In n,; ways,
and If for each of these ways a second operation
can be performed Iin n, ways and for each of
the first two a third operation can be performed
In ny ways, and so forth, then the sequence of
k operations can be performed In
n{. Ny ... N Ways.
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Exampler ™.
Sam Is going to assemble a computer by himself. He has the
choice of chips from two brands, a hard drive from four,

memory from three, and an accessory bundle from five local
stores. How many different ways can Sam order the parts?

Solution:
Since n1 = 2. no = 4. ng = 3, and ny = 5. there are
nygXnoXngxXng=2x4x3x5=120

different ways to order the parts.
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Some Opeérations on Events

Let A and B be two events defined on the sample
space . S
Union: AUB

A U B Consists of all outcomes in Aor in B or in
both A and B.

AUB = {x €S: xeAorxeB }
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< AUB Occurs-if A occurs, or B occurs,

or both A and B occur.
«* That 1Is AUB Occurs If at least one of

A and B occurs.
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" Example:

Let A={a, b, c}and B ={b, c, d, e};

thenA uB={a, b, c, d, e}.
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A N B Consists of all-outcomes in both A and B.
A@ B |

ANB =AB={x €S: xeA and xeB}

ANB Occurs If both A and B occur together.
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A
—

Example:

LetV={a, e io0 utandC={lr,s,t}

then V'N C = o.
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Ac consists of all outcomes of S but are not In A.

Acoccurs If A does not. % )

A“or A' or A4
A= (x €S xgd )

503 STAT



Example:

LetS={1, 2, 3, 4, 5, 6}, A={1,2,4}

Then A° ={35,6}
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Exercises

2.3—2.4(a) — 2.7 and 2.14 on page 42
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xelusive (Disjoint) Events

Two events A and B are mutually
exclusive (or disjoint) 1If and only if
ANB=¢; that 1s, A and B have no
common elements (they do not occur
together).
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B . @
AnB#0 AnB =1
A and B are not A and B are mutually

mutual

y exclusive
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In many problems, we are interested In the
number of ways of selecting r objects from n
objects without regard to order. These

selections are called combinations.
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Notation: 1 factorial 1s denoted by »! and 1s defined

by:
a=n(n-1)n-2)-2)1)  for n>1
0l=1

Example: 5'=(5)4)3)2)1)=120
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The number of different ways for selecting  objects from
n distinct objects 15 denoted by m and 1s given by:
I

i 7l
= } 7':0,1,2,.”,71
{r] il (n-7)!
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N
[ ] 1sread as “n “choose “r”.
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If we have 10 equal—priority operations and only 4
operating rooms, in how many ways can we choose
the 4 patients to be operated on first?

Answer:

=10 r=4
The number of different ways for selecting 4 patients from 10
patients 1s

{loJ: 00100 (10)(9)8)-- ()01
4) 40-4) 46t (4)6)2)1) (6)6)14)B3)2)0

=210 (different ways)




» To every point (outcome) In the sample space of an
experiment S, we assign a weight (or probability),
ranging from 0 to 1, such that the sum of all weights
(probabilities) equals 1.

» The weight (or probability) of an outcome measures Its
likelihood (chance) of occurrence.

» To find the probability of an event A, we sum all
probabilities of the sample points in A. This sum s
called the probability of the event A and is denoted by
P(A).
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Definitio

The probability of an event A'is the sum of the
welights (probabilities) of all sample points In
A. Therefore,

1. 0<P(4)<1
2. P(5)=1
3. Plg)=0
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A balanced coin Is tossed twice. What Is the
probability that at least one head occurs?

Solution:

S={HH, HT, TH, TT}

A = {at least one head occurs}={HH, HT, TH}
Since the coin Is balanced, the outcomes are equally

likely; 1.e., all outcomes have the same weight or
probability.
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Outcome | Weight A
(Probability) 4w=] & w=1/4=0.25
HH | P(HH) =w  p{H)=P(HT)=P(TH)=P(TT)=0.25
HT | P(HT)=w
TH | P(TH)=w
TT P(TT)=w
sum 4w=1

P(4) = P({at least one head occurs})=P({HH, HT, TH})
= P(HH) + P(HT) + P(TH)
=(.25+0.25+0.25
=(.75
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If an experiment has n(S) = N equally likely
different outcomes, then the probability of the event
Als:

n(A) n(A) no. of outcomes in A

n(S) N no. of outcomes in S

P(4) =
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Example”

A mixture of candies consists of 6 mints, 4 toffees,
and 3 chocolates. If a person makes a random
selection of one of these candies, find the
probability of getting:

(a) a mint

(b) a toffee or chocolate.

13



Solution |
Define the following events:

M = {getting a mint}

T = {getting a toffee}

C = {getting a chocolate}

Experiment: selecting a candy at random from 13

candies
n(S) =no. of outcomes of the experiment of

selecting a candy=13.
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The outcomes of the experiment are equally likely
because the selection Is made at random.

(a) M = {getting a mint}

n(M) =6

P(M )= P({getting a mint} )= };(M ) _6
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(b) TuC= {getting a toffee or chocolate | N
n(1uC) = no. of ditferent ways of selecting a toftee
or a chocolate candy
=10. of different ways of selecting a toffee
candy + no. of different ways of selecting a
chocolate candy

= 4+3=7

n(TUC)_ 7

n(S) 13
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P(TUC )= P({getting a toffee or chocolate } )=



S

Additive R

Theorem:
If A and B are any two events, then:

P(AUB)= P(A) + P(B) — P(ANB)
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Corollary 1:
If A and B are mutually exclusive
(disjoint) events, then:

P(AuB)= P(A) + P(B)

503 STAT



-

- Corol Iary&":‘ B

[f4), 4y, ..., 4, are nmutually excluswe (disjotnt) events, then:
PAUAu... Ud, 7 P(4)) +P(4y) +... + P(4))

P{,UIAI-]:%P( 4

i=l
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" Notes™==.

1)P(A) = P(ANnB) + P(An B°)
2)P(B) =P(ANB)+ P(A° N B)
3)P(ANB°) =P(A) — P(AN B)
4)P(A°NB) = P(B) — P(ANB)
5 P(A°NBf)=1—-P(AUB)
6) P(AU B)=P(A)+P(A° N B)
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Example ,
The probability that Ahmad passes
Mathematics I1s 2/3, and the probability that
he passes English Is 4/9. If the probability that
he passes both courses Is 1/4, what Is the
probability that he will:

(a) pass at least one course?

(b) pass Mathematics and fail English?

(c) fail both courses?

503 STAT



Solution: .

Define the events:

M={Ahmed passes Mathematics}

E={Ahmed passes English}

We know that P(M)=2/3,P(E)=4/9, and

P(MNE)=1/4

(a) Probability of passing at least one course is:
PIMUE)= P(M) + P(E) — P(IMNE)

2 4 1_31
3°9 4 36
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Enghshls

P(MNE®) = P(M) — P(Mn E)
2 1 5
374 12

(c) Probability of failing both courses is:
P(MCNE®)= 1 — P(MUE)

31 5

1 ——=—

36 36
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If A and A¢ are complementary events, then:
P(A)+ P(A°) =1

& P(AS) = 1 — P(A)
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Conditionah

The probability of occurring an event A when
It IS known that some event B has occurred iIs
called the conditional probability of A given B
and Is denoted P(A|B).

503 STAT



The conditional probability of the event A given
the event B Is defined by

P(AB):P(AmB)

P(B)

. P(B)>0
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&
’.
4

P(AnB
1. P(A|B)= 20 )
_ n(A~B)/n(S) (4~ B)
n(B)/n(S)  n(B)
P(ANB)
P(A)

3. P(AnB)=P(4) P(B| 4)
—=P(B) P(A| B)

2. P(B|A)=

503 STAT



339 physicians are classified as given in the table
below. A physician is to be selected at random.

(1) Find the probability that:

(a) the selected physician is aged 40 — 49

(b) the selected physician smokes occasionally

(c) the selected physician i1s aged 40 — 49 and
smokes

occasionally

(2) FInd the probability that the selected physician
IS aged

40 — 49 given that the physician smokes

occasionally.




Age
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Smoking Habbt

Dally  Occastonally | Notatall
(Bl) (BzJ (B:;) Total
0-29(4) | 3 ) T |4
30-39(4) | 110 ll 9 | 189
049(4) | 29 2l 9 |
0t (4) | 6 ) 1§ | A
Total 176 l 103 | 339




Solution:

(3)=339 equally likely outcomes,

Define the following events

A; = the selected physician 15 aged 40 - 49

B, = the selected physician smokes occastonally

Ay By = the selected physictan 15 aged 40 - 49 and smokes
occastonally
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(1) “(a) A5 = the selected physician 1s aged 40 — 490

P(4;)= )79 09330

n(S) 339

(b) B, = the selected physician smokes occasionally
P(B,)= 1By)_ 60 _ 1779
n(S) 339

(¢) A3 N B, = the selected physician 15 aged 40 — 49 and

smokes occasionally.
P(AmBz):”(Af““B2)= 2L 006195
| aS) 339
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(2) A31B, = the selected physician is aged 40 - 49 given that the
physician smokes occasionally

i) P4 Bz):P(A3 nB,) 006195 _ ..
~ P(B,) 01770

(i) P(4;|B,)= ilds 0 By) 21, s
‘ n(B,) 60

(111) We can use the restricted table directly:

21
P(A4; \Bz):@:OBS
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Notice that P(dy B, 70,33 > P(4; F0.233

The conditional probability does not equal unconditional
probabilty; 1., P(4;5y)  P(4s) | What does this mean’




» P(A|B) = P(A) means that knowing B has no
effect on the probability of occurrence of A. In

this case A Is independent of B.

» P(A|B) > P(A) means that knowing B Increases
the probability of occurrence of A.
» P(A|B) < P(A) means that knowing B decreases

the probability of occurrence of A.



Definition:

Two events A and B are independent if and only if
P(A|B) = P(A)and P(B|A) = P(B). Otherwise A
and B are dependent.
Example:
In the previous example, we found that
P(A3/B;) # P(43)
Therefore, the events A; and B, are dependent, I.e.,
they are not independent. Also, we can verify that
P(B,/A3) # P(B;)
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NI alicative Rule

Theorem:
If P(A) # 0and P(B) # 0, then:

P(ANB) = P(A) P(B|A)
= P(B) P(A|B)

503 STAT



Example ™

Suppose we have a fuse box containing 20
fuses of which 5 are defective (D) and 15 are
non-defective (N). If 2 fuses are selected at
random and removed from the box In
succession without replacing the first, what Is

the probability that both fuses are defective?

503 STAT



Solution:

Define the following events:

A = {the first fuse Is defective}

B = {the second fuse Is defective}

A N B ={the first fuse Is defective and the second
fuse is defective} = {both fuses are defective}

We need to calculate P(A N B).
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- P(4) = 25—0 ~_ P(B|A) = % '

P(AnB) = P(4) P(B|4)

-2 w4 —0052632

20 19

I Il
D N D N
5 15 4 15
20 19
First Selection Second Selection: given that
the first 1s defective (D)
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Theorem

Two events A and B are independent If and
only if
P(AnB) = P(A) P(B)

(Multiplicative Rule for independent events)
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Two events A and B are independent If one of
the following conditions is satisfied:
(1) P(A|B) = P(A)
& (i) P(B|A) = P(B)
& (i) P(ANB) = P(A) P(B)
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Theorem

[t 4}, 4y, A are 3 events, then:

P(Ain Ay nds )= Pldy) Pdy) 4)) P43 Ain 4y)
[t 4), 4, 45 are 3 independent events, then:
P(din Ay ndz)= P(4y) P(dy) P(d3)




Definition:

The events A4, A,,..., and A,, constitute a partition
of the sample space S If:

AizAl UA2UUAn=S

—-

Il
—

L

AiﬂAj=(D, Vl;t]
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Theorem: (Total Probabilit

If the events A4, A,,..., and A,, constitute a partition
of the sample space S such that
P(A,) #0fork=1,2,..,n,

then for any event B:

P(B) = z P(A, N B) = z P(A,).P(B/A})
k=1 k=1
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P(Ay)

P(BlAy)
Bl e -2 P(A) PBAY

P(BlAs)
Bl o -2 P(4) PBAY

Il

¢ yaaall = P(B)= I{EIP(AI{)P(B‘Ak)

Tree Diagram

B
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Example

Three machines A, A, and A; make 20%,
30%, and 50%, respectively, of the products.
It iIs known that 1%, 4%, and 7% of the
products made by each machine, respectively,
are defective. If a finished product Is
randomly selected, what Is the probability
that It 1s defective?
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Solution:"

Define the following events:

B = {the selected
A = {the selectec

A,= {the selected

product Is defective}

product is made by machine A}

product is made by machine A, }

A5 = {the selected product Is made by machine A5}
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P = 22 —02: PBU)- L 001
100 100
30
P(4,) = =0.3: P(B|4,)= = (.04
(49 g3 P
50
P(4,) = =0.5: P(B|4;)= =0.07
(45)= 22 =05; P(BIAy)= L

3
2. P(A)PBIAY)
P(B) = k=1

=P(4)) P(B|41) + P(42) P(B]4,) + P(43) P(5]4;)
=(0.2x0.01 +0.3x0.04 +0.5x0.07
=0.002 +0.012 + 0.035
=0.049
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0.2 0.01

L ——— BlA . = 0002
0.3 0.04

Ai --------------- E ‘ A} --------------- :} 0+012
0.5 0.07

| PY— Bl — 0.035

\E-M] — P(B} = 0¢049
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Another Example: see Example 2.41 page 74
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Question®

If it 1s known that the selected product is
defective, what Is the probability that It Is
made by machine A7

ANSWer:
P(4,B) - P(A;nB) _ P(A)P(BIA) _ 02x0.01 0002 _ 00408
P(B) P(B) 0.049  0.049

This rule is called Bayes' rule.
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S —

- (Baves' rule

[f the events 4;.4,,..., and 4, constitute a partition of the sample
space 3 such that P(4;)20 for k=1, 2, ..., n, then for any event B
such that P(B)0:

P(Al ‘B) — P(AimB): P(Ai)P(B‘Ai) P(Ai)P(B‘Ai)

O Thres)
k=1

for 1=1.2....n.
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PlAy) P(BA) |
Ao BIAY e 2| () PRI

My EBA .
g B 5 BAPEY) TS PAIB

P( P(B
Ay eomme Bl Py BB

fl

6 yiaal = P(B- EP(Ak)P(B A
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Example™

In the previous example, If 1t Is known that

\\,,

the selected product Is defective, what Is the
probability that it is made by:
(a) machine A,?

(b) machine A3?
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P(A,)P(B|A,) _P(A,)P(BJA,)

(a) P(42]B)=—
S P(A)P(B|A,) )
k=1
_03x0.04_0.012_ 510

0.049  0.049
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BlA,

0.04
B | ;31.1 R e 0.012

BlAs o o

0.002

0.035

ti ' —

§ sl = P(B)=

P(A|B)=

0012
0.049

=0.2449

B
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“(b) (A3\B) P(A;)P(B|A;) _P(A;)P(BJA;)

ZP( JPBIA) )
05><007 00350 149
0.049  0.049

503 STAT



-

P(A,|B) = 0.0408, P(4,|B) = 0.2449, P(A,|B) = 0.7142

3
Z P(A,/B) = 1
k=1

If the selected product was found defective, we
should check machine A5 first, If it Is ok, we should
check machine A,, If it is ok, we should check

machine A;.



Another Example: see Example 2.42 page 75
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