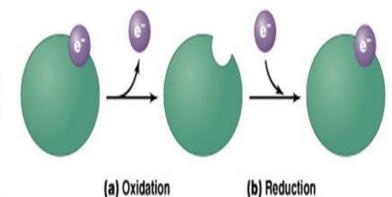
Oxidative stress and Antioxidants


Oxidative Stress in Malaria

Basics of Redox Chemistry

Term Definition

Oxidation Gain in oxygen Loss of hydrogen

Loss of electrons

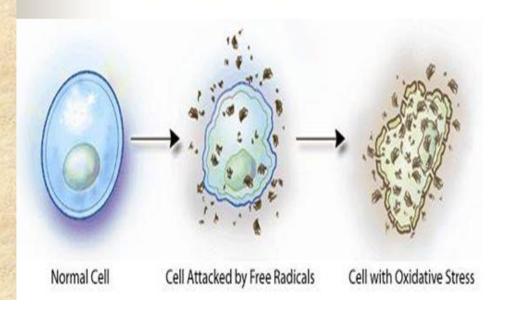
Reduction Loss of oxygen Gain of hydrogen Gain of electrons

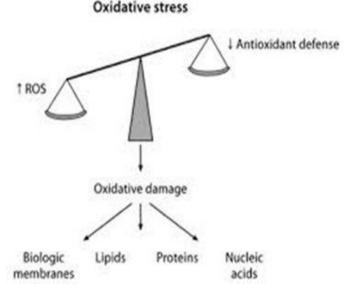
Oxidant

Oxidizes another chemical by taking electrons, hydrogen, or by adding oxygen

Reductant

Reduces another chemical by supplying electrons, hydrogen, or by removing oxygen

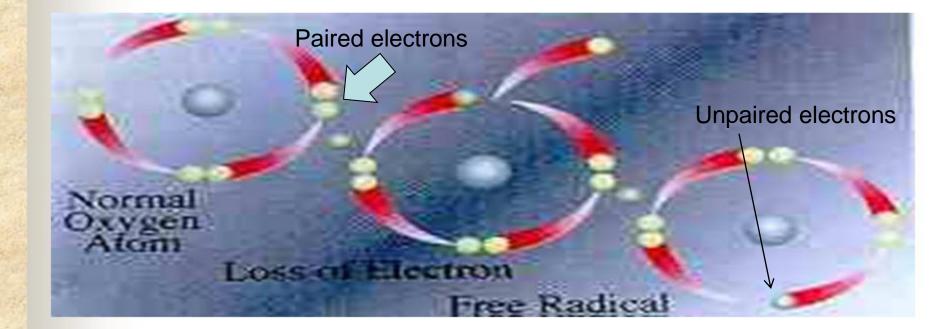

 $6CO_2 + 6H_2O + (ATP + Heat)$


Reducing agent

Oxidizing agent

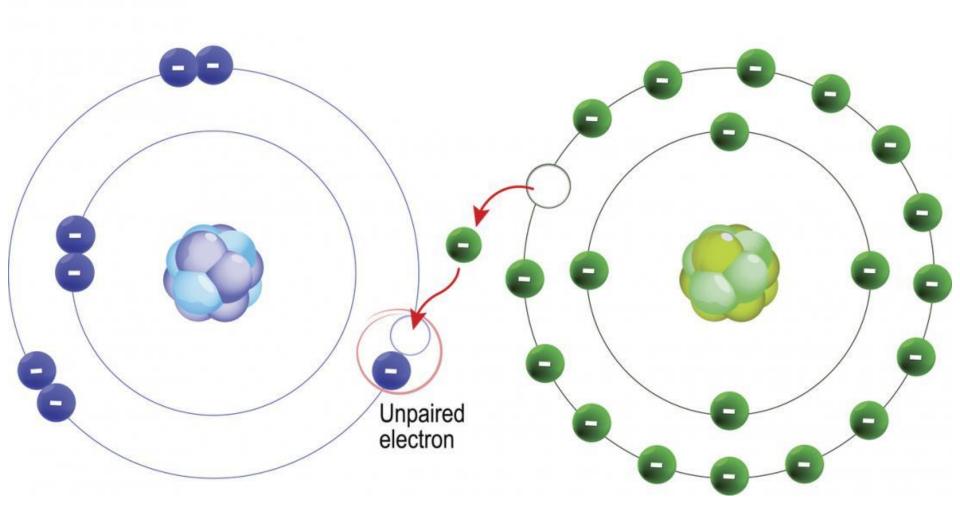
Oxidative stress

- It is an excess of free-radicals damages cells.
- Oxidative stress has been identified as a causative factor in:
 - Cognitive performance
 - Aging process
 - Development of diseases such as cancer, arthritis, cataracts,
 and heart disease

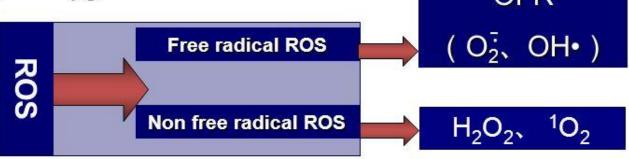


Research on Oxidative stress

- many research groups have driven efforts to assess the antioxidant properties of natural products.
- These properties have been investigated through either chemical (*in vitro*) or biological (*in vivo*) methods, or both.
- these researches have led some to suggest that the long-term consumption of food rich in antioxidants can retard or avoid the occurrence of such diseases.


Free Radical:

- A free radical is an atom capable of independent existence (hence the term "free") that contains one or more unpaired electrons in its outer orbital.
- It is an electron-deficient species.
- It is represented by a superscript dot to the right.(R•)


Free radical

Antioxidant

Reactive Oxygen Species (ROS)

ROS is a collective term that includes both oxygen free radicals (OFR), and non radicals that are oxidizing agents and / or are easily converted into radicals such as hydrogen peroxide and singlet oxygen.

Reactive species

Reactive Oxygen Species

Singlet oxygen 102

Ozone O₃

Hydroperoxyl radical HO₂*-

Hydroxyl peroxide H₂O₂

Hydroxyl radical *OH

Superoxide radical anion $O_2^{\bullet-}$

Lipid peroxyl LOO*

Peroxide ROOH

Hypochlorus acid HOCl

Reactive Nitrogen Species

Nitrous oxide NO*

Peroxynitrate OONO

Nitroxyl anion NO

Nitrogen dioxide NO2*

Dinitrogen dioxide N2O3

Nitrous acid HNO₂

Nitryl chloride NO₂Cl

Reactive Oxygen Species (ROS)		Reactive Nitrogen Species (RNS)	
Free radical	Structural formula	Free radical	Free radical
Superoxide anion	O ₂₋	Nitric oxide	NO
Hydrogen peroxide	H ₂ O ₂	Nitrous oxide	N ₂ O
Hydroxyl radical	OH·	Peroxnitrite	NO ₃₋
Peroxyl radical	OH ₂₋	Nitroxyl anion	HNO
Peroxynitrous acid	HNO ₃		

Sources of Free Radicals

- Exogenous sources of free radicals:
 - lonizing radiation
 - Ultraviolet radiation
 - Chemicals, smoking
 - Pollution
 - Diet (fatty and processed foods)

- Endogenous sources of free radicals:
 - Respiration
 - Metabolism.
 - Inflammation
 - Phagocytosis

Free Radical Oxidative Stress

Alzheimer's, Parkinson's, MS, ALS, OCD, ADHD, Autism, Migraine, Insomnia, Depression, Dementia, Bi-Polar Disorder, Cancer

Macular Degeneration,
Retinal Degeneration,
Cateracts

LUNG

Asthma, COPD, Allergies, Chronic Bronchitis, Cancer

BLOOD VESSELS

Atherosclerosis, Hypertension Varicose Veins, Elevated Cholestrol and Triglycerides

IMMUNE SYSTEM

Chronic Inflamation, Auto-Immune Disorders, HIV, Herpes, Crohn's, Hepatitis, Colds & Flu, Lupus, Cancer

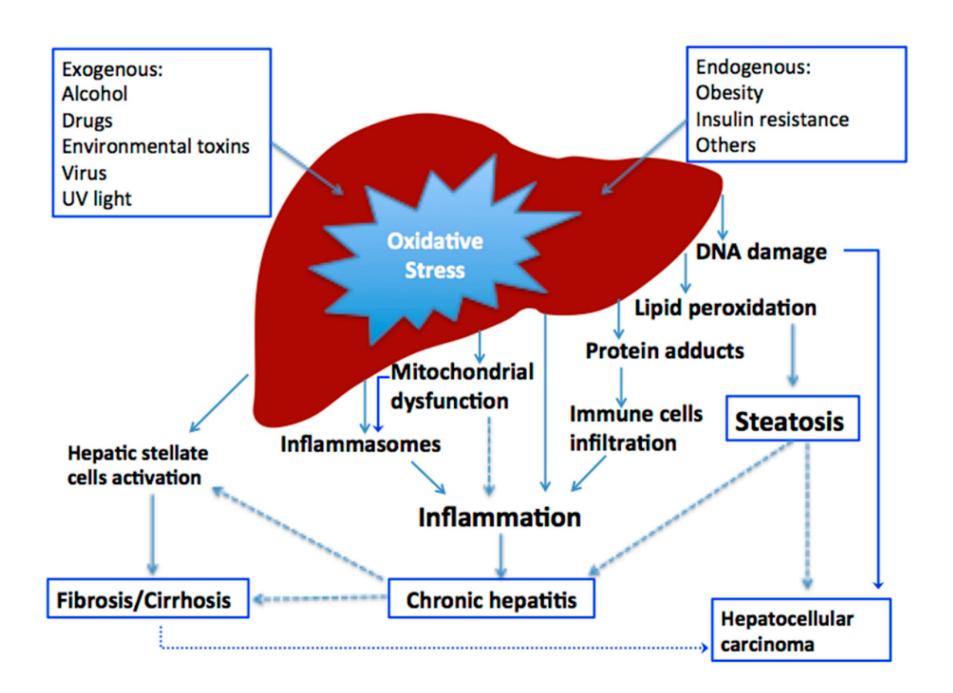
BRAIN

Heart Attack, Stroke, High Blood Pressure, Atherosclerosis, Angina

KIDNEY

Chronic Kidney Disease, Renal Nephritis

SKIN


Wrinkles, Acne, Eczema Psoriasis, Dermatitis, Cancer

JOINTS

Rheumatoid Arthritis, Osteo-Arthritis, Psoriatic Arthritis

MULTI-ORGAN

Diabetes, Chronic Fatigue, Fibromyalgia, Heavy Metal Toxicity, Lyme Disease

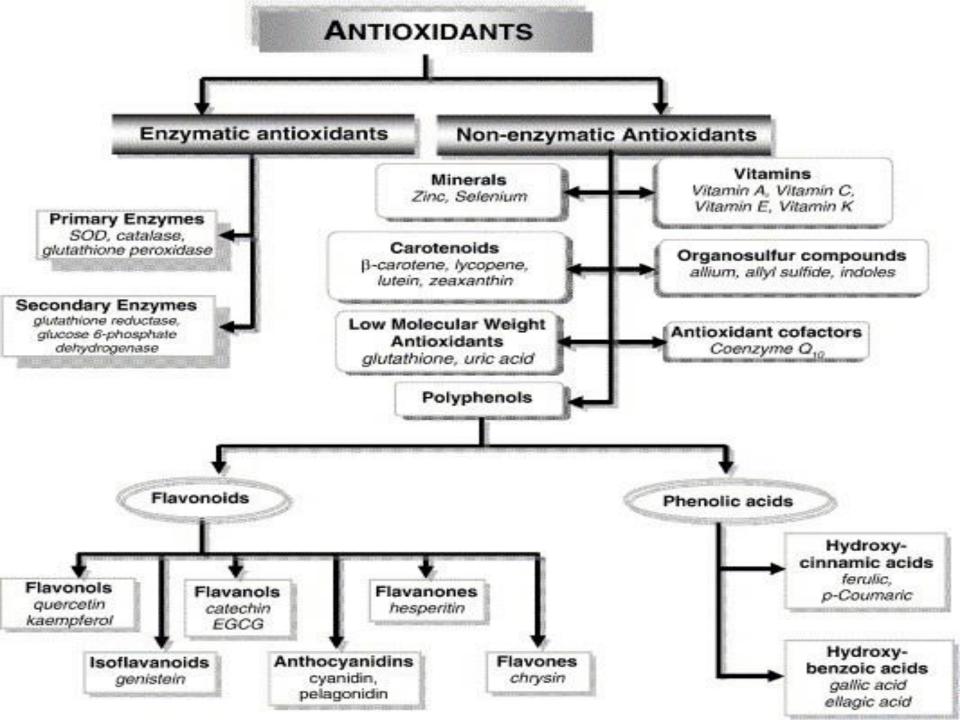
Antioxidant

- Antioxidant is a molecule that inhibits the oxidation of other molecules.
- Oxidation reactions can produce free radicals. In turn, these radicals can start chain reactions.
 When the chain reaction occurs in a cell, it can cause damage or death to the cell.
- Antioxidants terminate these chain reactions by removing free radical intermediates, and inhibit other oxidation reactions.
- The lichens have played an important role as a source for new antioxidant agents.

Antioxidant

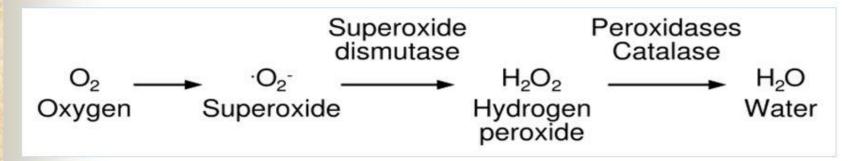
 Antioxidants are classified into two broad divisions, depending on whether they are soluble In water (hydrophilic) or in lipids (lipophilic).

Hydrophilic


antioxidants react with oxidants in the cell cytosol and the blood plasma

Lipohilic

antioxidants protect cell membranes from lipid peroxidation.


 These compounds may be synthesized in the body or obtained from the diet.

Antioxidant System in our body

The enzymatic antioxidants:

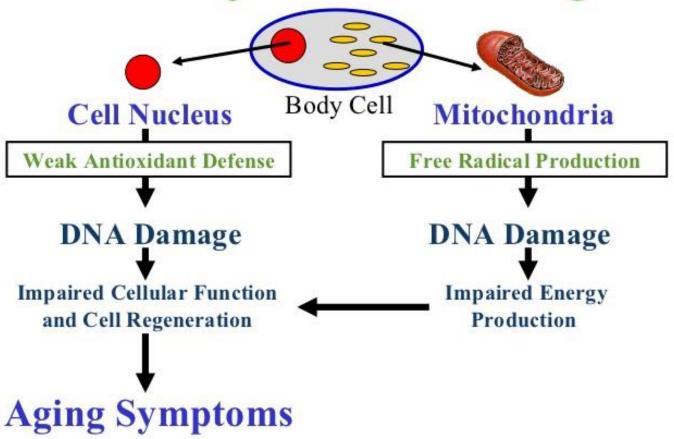
- Superoxide dismutase (SOD) eliminates the superoxide (O₂··).
- Catalase and the glutathione peroxidase eliminate hydrogen peroxide (H₂O₂).

The non enzymatic antioxidants:

Vitamins E, C, A or Pro vitamin A(beta-carotene).

Table 1. Reactive Oxygen Species and Antioxidants that Reduce Them

Reactive Species	Antioxidant	
Singlet oxygen ¹ O ₂	Vitamin A, vitamin E	
Superoxide radical (O ₂ ·•)	superoxide dismutase, vitamin C	
Hydrogen peroxide (H ₂ O ₂)	Catalase; glutathione peroxidase	
Peroxyl radical (ROO•)	Vitamin C, vitamin E	
Lipid peroxyl radical (LOO•)	Vitamin E	
Hydroxyl radical (OH∙)	Vitamin C	


Counteracting free radical damage

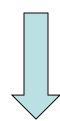
- ☐ The human body has several mechanisms to counteract damage by free radicals and other reactive oxygen species.
- One important line of defense against free radical damage is the presence of antioxidants.
- Some such antioxidants, are produced during normal metabolism in the body.
- Other lighter antioxidants are found in the diet.

What do antioxidants do?

- Provides key nutrients needed by the body to neutralize free radicals.
- Aid the human body's natural defenses.
- Repair oxidative damage.
- Slow or prevent damage to body cells.
- May exhibit anti-aging benefits.
- May improve immune function and lower risk for infection and cancer.

Summary: How Do We Age?

- Many of the changes associated with aging are actually due to the effects of free-radicals.
- As we age, the antioxidant enzyme systems work less efficiently.



Scientific Support for Antioxidants

- Animals with longer life spans have higher antioxidant levels
- Dietary increase in antioxidants increase life span
- Caloric restriction (reduces ROS formation) leads to significantly increased life span

Oxidative Stress in Malaria

We should know first

Apical complex structure and parasite invasion