CLS 291 Clinical Hematology 1

Lecture 11 Hemoglobin Electrophoresis

Hb variants

- There are a number of abnormal Hb, such as:
 - Hb S
 - Hb C
 - Hb O
 - Hb D
 - Hb H

Hemoglobin S Mutation

- There is a substitution of an amino acid in the β chain.
- Glutamic acid is substituted by Valine at position 6 of the β chain.

Electrophoresis

- Electrophoresis uses an electrical current to <u>separate</u> normal and abnormal types of hemoglobin in the blood.
- Hemoglobin types have different electrical <u>charges</u> and move at different <u>speeds</u>.
- An abnormal amount of normal hemoglobin or an abnormal type of hemoglobin in the blood may indicate a disease state.

Types of Electrophoresis

Types of Electrophoresis:

- 1. Cellulose Acetate Electrophoresis at Alkaline pH 8.0
- 2. Citrate Agar Electrophoresis at pH 6.0
- 3. Agarose Gel Electrophoresis.
- The automated method to detect the Hb variant is Automated Hb electrophoresis or Automated High-Performance Liquid Chromatography (HPLC)
- Technical factors affect Hb mobility:
 - 1. The intensity of the electrical field.
 - 2. Nature of charged particles on specific pH.
 - 3. Medium in which the movement may occur.

Cellulose Acetate Electrophoresis at Alkaline pH

Principle

- At alkaline pH, haemoglobin is a negatively charged protein and when subjected to electrophoresis will migrate toward the anode (+).
- Structural variants that have a change in the charge on the surface of the molecule at alkaline pH will separate from Hb A.
- Haemoglobin variants that have an amino acid substitution that has no effect on overall charge will not separate by electrophoresis.

Electrophoresis Result Reading

- This is an example of hemoglobin electrophoresis run at alkaline pH on cellulose acetate.
- The electrophoretic positions of the more common hemoglobins are shown on the right.
- Lane 1 is a commercial standard containing approximately equal amounts of hemoglobins A, F, S, and C.

Electrophoresis Result Reading

Hb Electrophoresis Origin HbA2 HbF HbA Normal pattern HbA2 HbS Origin HbF HbA Sickle cell anemia Origin HbA2 HbF HbA Beta thalassemia labpedia.net

Electrophoresis Result Reading

Table 2.3 Normal haemoglobins in adult blood.			
	Hb A	Hb F	Hb A ₂
Structure	$\alpha_2 \beta_2$	$\alpha_2 \gamma_2$	$\alpha_2 \delta_2$
Normal (%)	96–98	0.5–0.8	1.5–3.2

- Results are qualitative and quantitative.
- The different types of Hb can be identified (qualitative).
- The amount of each separated hemoglobin is measured (quantitative).

Example of HPLC result

High Performance Liquid Chromatography (HPLC)

Lecture 12 Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency

G6PD Deficiency

- G6PD deficiency is the most common <u>enzymatic disorder</u> of RBCs.
- Many gene variants were detected (around 180 variants).
- G6PD deficiency is an X-linked disease.

G6PD Deficiency

- G6PD enzyme functions in the protection against oxidative stress.
- The <u>lack of G6PD leads</u> to <u>hemolysis</u> during oxidative stress as a result of infection, medication, fava beans, and substance (henna).
- Oxidative stress leads to <u>Heinz body formation</u> and extravascular <u>hemolysis</u>.

Triggers of Oxidative Stress

WWW.MEDCOMIC.COM

@ 2014 JORGE MUNIZ

G6PD Deficiency

- Glucose-6-phosphate dehydrogenase deficiency ranges from mild to severe, <u>depending on the level of enzyme</u> <u>activity.</u>
 - A value >80% of normal red blood cell G6PD activity is considered G6PD normal.
 - Red cell G6PD activity less than 30% of the normal median must be regarded as G6PD deficient.

G6PD Deficiency Testing

Diagnosis of G6PD Deficiency:

- 1. General screening test:
 - a) CBC
 - b) Blood film: Bite cells, blister cells, small irregular cells, Heinz bodies, polychromasia.
- 2. Special Screening of G6PD deficiency:
 - a) Fluorescent spot testing (FST).
- 3. Confirmatory test:
 - Quantitative measurement of G6PD enzymatic activity.
- 4. Molecular test: Detection of G6PD gene mutations.

Special Screening of G6PD Deficiency

• A fluorescent spot testing (FST) for the qualitative assessment of G6PD enzymatic activity (UV-based test).

Normal G6PD enzyme activity Intermediate G6PD enzyme activity

Deficient G6PD enzyme activity

Normal controls

Deficient blood sample results

Special Screening of G6PD Deficiency

A fluorescent spot testing (FST) principle:

- Blood is mixed with a reagent containing NADP+ and G6P. The G6PD inside RBC will catalase the reaction to produce NADPH which is fluorescent.
- NADPH fluorescence is <u>directly proportional to G6PD</u> <u>activity</u>, and lack of fluorescence signals G6PD deficiency

