

GE106

Introduction to Engineering Design College of Engineering King Saud University

Lecture 10.

Concept Generation and Evaluation

FALL 2022

Introduction

So far you should know how to:

- Interpret the <u>needs</u> and analyze them
- Specify the <u>objectives</u> (primary and secondary)
- Determine the <u>human factors</u>
- Formulate the <u>constraints</u> and <u>criteria</u>
- Conduct a <u>morphological analysis</u> and generate concepts.

<u>Today</u> you will learn how to:

 Evaluate alternatives through the weight-and-rate technique

This will be covered through a <u>"solar oven"</u> design example

The Solar Oven Example It is required to design a solar oven. The oven should be simple, easy to manufacture, inexpensive and highly effective A well Understood problem -Learn about heat transfer \bigcirc -Learn about solar ovens Needs

The <u>first step</u> is not about finding solutions; It is about <u>understanding</u> <u>the problem</u>

<u>Heat Transfer</u>

It occurs through one of three modes when a ΔT exists

- <u>Conduction</u>: Heat travels from atom to atom of a <u>solid</u>
 Example: Doorknob is hot if fire is on other side
- 2. <u>Convection</u>: With a <u>gas or liquid</u>, the heat propagates as molecules move <u>Example</u>: When you open the door of an oven, the temperature in the kitchen increases
- 3. Radiation: A heated surface emits electromagnetic waves which carry energy away from the emitting object Example: Heat felt from a brick wall that has been in the sun all day

Understanding the Problem

$$\Delta T = T_{inside \ oven} - T_{ambient}$$

Criteria:

- Maximize ΔT
- Minimize Cost

Key Ideas

- Sunlight contains energy
- You want a <u>solar oven</u> that <u>gets as hot as</u> <u>possible</u> (highest temperature in oven chamber)
- You want your <u>oven</u> to <u>receive solar energy</u> <u>easily</u>
- You also want your <u>oven not</u> to <u>lose</u> the <u>solar</u> <u>energy</u> it has captured

Needs

•

- Low Cost
- Maximum Temperature
- No lenses
- Size of chamber (partition)
- No preheating
- Presence of a thermometer
- High simplicity

	WIIII.

Solar Oven Heat Transfer

Time = Shortly after Cover is Removed

Time = a long time af<u>ter "0"</u>

Summarizing what we know

- <u>We want</u> the <u>largest ΔT </u> we can get for a <u>given cost</u>
- To get a larger ΔT , we need <u>either</u> to:
 - 1. Increase Power in (get more sun into the oven)
 - 2. Decrease Power out for a given ΔT (reduce the rate at which energy is leaving the oven)

$$\uparrow \Delta T = \uparrow T_2 - T_1$$

$$\uparrow \Delta T = T_2 - \checkmark T_1$$

Increasing Power_{in}

Solar Intensity = 1,000 W/m²

Increase the area

What determines Power_{in}:

- Window Size
- Sun Intensity
- Window Thickness
- Angle light hits window
- Color of oven Wall*

To increase Power_{in} :

- <u>Bigger window</u>
- <u>Thinner window*</u>

Decreasing Power_{out} for a given ΔT ?

Energy leaves the oven through:

- Radiation (back out window)
- Conduction and Convection
 - back out window
 - sides of oven
 - bottom of oven

<u>Decreasing Power_{out} for a given ΔT?</u>

Heat Transfer Via Window

- About 25 W /(m² °C) when T inside oven = 150°C
- About 12 W/(m² °C) for a thicker window

Heat Transfer Via Sides and Bottom

• About 1.5 W/(m² °C)

More heat is lost through window

- Therefore, you want a <u>smaller, thicker window</u> to keep heat in!
- Some good insulation on sides and bottom

Putting it all Together

- To increase Power_{in}
 - Increase window size
 - <u>Decrease window thickness</u>
- To <u>decrease Power_{out}</u>
 - Decrease window size

- Increase window thickness
- <u>Conflicting objectives</u>? well, this is Engineering Design; you must make tradeoffs (compromise)

Solar Oven Concept Generation (Brainstorming)

Concept Evaluation

Characteristics of Engineering Decisions

- Multiple criteria
- Criteria are of <u>different importance</u>
- Criteria are <u>conflicting</u>
- Multiple interested parties

• Use a <u>Decision Matrix</u>: A simple decision approach to weigh pros and cons applying <u>weight and rate concept</u> (multiply and sum)

Applying weight-and-rate

• Features/attributes of the solar viewed important:

<u>Direct Energy</u> into Oven
 <u>Easy to Manufacture</u>
 <u>Room for Error</u> in Aim
 <u>Hold Energy in Oven</u>
 Durable

Keep attributes as independent as possible!*

Weights

 To determine the importance of each attribute, we use a simple approach based on weights that sum to 100

	Direct Energy	Manufac turability	Flexibility	Holding Energy in Oven	Total Weight
Scenario 1: Compromise	25	25	25	25	100%
Scenario 2: Most light in	40	5	15	40	100%
Scenario 3: Easy to make	20	<mark>4</mark> 0	20	20	100%

Rates

 Once alternative concepts are determined, <u>rate</u> <u>each attribute</u> for each alternative concept on a <u>scale from 1</u> (worst) <u>to 10</u> (best)

- For the <u>solar oven</u> <u>example</u>, we will only use <u>three</u> alternative <u>concepts*</u> and <u>four attributes</u>
- Normally, you would have more concepts and more attributes

Rating the Concepts

- Let us use the <u>"most light in</u>" Scenario
- This scenario uses weights (40,5,15,40)

	Direct Energy	Manufac turability	Flexibility	Holding Energy in Oven	Score
Weights >	40	5	15	4 0	
Concept 1: No reflector	1	10	5	3	
Big window	40	50	75	120	⊕, ²⁸⁵
Concept 2: 1 reflector Small window	4	8	7	6	545
	160	40	105	240	545
Concept 3: Parabolic	9	2	4	4	
	360	10	60	160	59° ×

Rating the Concepts

- Let us use the <u>"compromise</u>" Scenario*
- This scenario uses weights (<u>25, 25, 25, 25</u>)

	Direct Energy	Manufac turability	Flexibility	Holding Energy in Oven	Score
Weights >	25	25	25	25	
Concept 1: No reflector Big window	1	10	5	3	475
	25	250	125	75	
Concept 2: 1 reflector Small window	4	8	7	6	625 ★
	100	200	175	150	025
Concept 3: Parabolic	9	2	4	4	
	225	50	100	100	475

Final Remarks

- <u>Decision matrices</u> (weightand-rate) are <u>helpful</u> tools <u>for</u> <u>exploring trade-offs</u>
- <u>Use more than one scenario</u> and do not be driven by a single-objective mentality
- You do <u>not necessarily</u> have to use the one with the <u>highest</u> <u>score</u>

