Principals of Genetics (Zoo-352)

Department of Zoology, 1446

Dr. Mikhlid Hamed Almutairi

Associate Professor Medical Molecular genetics Department of Zoology College of Science King Saud University Office number: AB 67 , Ground floor Emails: <u>malmutari@ksu.edu.sa</u> mksa11@hotmail.com الدكتور: مخلد بن حامد المطيري أستاذ مشارك الوراثة الجزيئية الطبية قسم علم الحيوان كلية العلوم جامعة الملك سعود رقم المكتب: أب 67، الدور الأرضي البريد الإلكتروني: malmutari@ksu.edu.sa البريد الإلكتروني: mksal1@hotmail.com

Aims of genetics course

- 1. Understand the definition and branches of genetics.
- 2. Understand the key features of chromosome and gene.
- 3. Describe the key steps in the cell cycle.
- 4. Describe the relationship between mitosis and meiosis in both haploid and diploid cells.
- 5. Understand Mendel's first law of equal segregation.
- 6. Understand Mendel's second law of independent assortment.
- 7. Be able to apply the rules of probability to solve genetic questions.

Time table for weekly planning for principles of genetics

Lectures	Syllabus view	
1	Genetics overview	
2	Chromosomes	
3	The cell cycle and its checkpoint	
4	Mitosis	
5	Meiosis	
6	Exam 1 and collection of the first homework (16-8-1446 H)	
7	Saudi Founding Day holiday (24-8-1446 H)	
8	Mendelian genetics	
9	The law of segregation	
10	Testing the law of segregation	
11	Law of independent assortment	
12	Testing the law of independent assortment	
13	Genetics of the human blood group	
14	Exam 2 and collection of the second homework (6-11-1446 H)	

Assessment

Lecture:

- 2 lecture exams (20%)
- Attendance, participation and homework (10%)
- Final exam (40%)
- 70% of total grade
- □ Laboratory:
 - 30% of total grade

Genetics:

Genetics is the study of genes, heredity, and genetic variation in living organisms.

- A gene is a portion (or sequence) of DNA that codes for a specific protein (function).
- Heredity is the transmission of genetic traits from parents to their offspring, either through asexual reproduction or sexual reproduction.
- Genetic variation, variation in alleles of genes, occurs between individuals or between populations.

Genetic variation:

- □ Single-nucleotide polymorphisms (SNPs) in populations and single-nucleotide variations (SNVs) in individuals.
- □ SNP and SNV variants are simply exchanges of one nucleotide base pair for another.

Central Dogma

A segment of DNA is converted to RNA (transcription), followed by translation process that turns the RNA to protein (translation).

Branches of Genetics:

- 1. Classical Genetics: It is the oldest discipline in the field of genetics, going back to the experiments of Gregor Mendel. The study of the transmission of genotype from parent to offspring.
- 2. Human genetics: is the study of heredity and variation in the humans.
- 3. Cytogenetics: is the study of chromosomes and chromosome abnormalities
- 4. **Population genetics:** The genetics of the different populations of animal and plant species.
- 5. Molecular genetics: is the study of the structure and function of genes at the molecular level.
- 6. Genetic engineering: or the manipulation of an organism's genome, changes or adds genes to an organism's sequence of DNA in order to create new traits or remove unwanted ones

Genetics Terms:

- Genome: All genetics material (DNA) present in one organism.
- □ Haploid cells: The presence of a single set of chromosomes.
- Diploid cells: The presence of two sets of chromosomes
- □ Allele: Different version of one gene.
- Genotype: The combination of alleles present in an organism.
- Phenotype: Characteristics that are observed in an organism.
- □ Homozygous: Alleles are the same.
- □ Heterozygous: Two different alleles.

Differences between Prokaryotic and Eukaryotic cells

	Prokaryotic cells	Eukaryotic cells
Taxonomic groups	Bacteria, Cyanobacteria	Protists, Fungi, Plants, and Animals
Size	Usually <5 μm (less than)	Usually >5 μm (grater than)
Nucleus	No true nucleus, no nuclear membrane	True nucleus, nuclear membrane
Chromosomes	Single circular chromosome	Multiple linear chromosome
	Chromosomes are condensed in the	Chromosomes are condensed in a
	nucleoid via DNA supercoiling and	membrane-bound nucleus via
	the binding of proteins	histones
	Contain little amount of repetitive	Contain large amount of noncoding
	DNA	and repetitive DNA
	Contain one copy of each gene (they	Contain two copies of each gene (they
	are haploid)	are diploid)
Mitosis and Meiosis	Absent	Present

- Eukaryotic cells contain many different organelles that perform specific functions. Such as, mitochondria, chloroplasts contain genomes.
- □ The eukaryotic cell possesses some structures that are critical for mitosis and meiosis: centrosomes and microtubules/spindle fibers.