Basic database operations
using JDBC

Java Database Connectivity



JDBC Concepts and Terminology

Java Database Connectivity (JDBC)

Understanding the core concepts and terminology
Role of SQL in JDBC

JDBC Architecture

Example JDBC PROGRAM

Summary



What is JDBC?

e JDBCis an APl in Java for connecting and
executing queries on a database.

® Provides a standard interface for
database-independent applications.

e Works as a bridge between Java applications
and databases.



JDBC (Java Database Connectivity) is a Java API
for connecting to relational databases.

Allows Java applications to execute SQL
statements.

Provides a bridge between Java code and
database systems.



Role of SQL in JDBC

e JDBC uses SQL statements to interact with
databases.

e SQL commands are executed through JDBC
objects such as Statement and
PreparedStatement.

e JDBC sends SQL queries to the database and
retrieves results.



Introducing SQL (Structured Query
Language)
SQL is used to manage and manipulate relational
databases.
Common SQL operations:
- SELECT: Retrieve data
- INSERT: Add new records
- UPDATE: Modify data
- DELETE: Remove data



Database Tables

® Tables store data in rows and columns.
® Each column has a data type and name.
e Example:

CREATE TABLE students (
id INT PRIMARY KEY,
name VARCHAR(50),
age INT);



Creating Tables using JDBC

Example:
Statement stmt = con.createStatement();

stmt.executeUpdate("CREATE TABLE students (id
INT, name VARCHAR(50))");



Inserting Data using JDBC

*Example:

String sgl = "INSERT INTO students VALUES (1,
'Ali', 22)";
stmt.executeUpdate(sql);

e Adds a new record into the database table



Retrieving Data (SELECT)

*Example:

ResultSet rs = stmt.executeQuery("SELECT *
FROM students");

while(rs.next()) {

System.out.printin(rs.getint("id") + ", " +
rs.getString("name"));}



Updating and Deleting Data

e Update Example:
stmt.executeUpdate("UPDATE students SET age
=23 WHERE id =1");

e Delete Example:

stmt.executeUpdate("DELETE FROM students
WHERE id = 1");



L g g g b b P o

JDBC Architecture

Import JDBC packages

Register the JDBC driver
Establish a database connection
Create a statement object
Execute SQL queries

Process results

Close the connection



Import JDBC Packages

import java.sqgl.*;

Provides interfaces and classes such as Connection,
Statement, and ResultSet.

Required for all JDBC programes.



Register the Driver

Class.forName ("com.mysqgl.c]j.jdbc.Driver") ;

e Loads and registers the database driver.

e This step tells Java which database driver to use



Establish a Connection

Connection con =
DriverManager.getConnection (

"Jdbc:mysqgl://localhost:3306/testdb",
"root", "password");

Connects Java to the database using the correct URL, username,
and password.

Returns a Connection object used for executing SQL statements.



Create and Execute Statement

Statement stmt = con.createStatement () ;

ResultSet rs = stmt.executeQuery ("SELECT *
FROM students") ;

Statement is used to send SQL queries to the database.

Use executeUpdate() for INSERT, UPDATE, DELETE statements



Process Results

while (rs.next ()) {

System.out.println(rs.getInt(l) + "
rs.getString(2)),; }

ResultSet is used to read data returned from the database.

The next() method moves the cursor to the next record.



Close the Connection

rs.close();
stmt.close () ;

con.close () ;

Always close all database resources after use.

Prevents memory leaks and connection issues.



Full Example Program

import java.sqgl.*;

public class JDBCExample {
public static void main(String[] args) ({
try {
Class.forName ("com.mysgl.cj.jdbc.Driver") ;
Connection con = DriverManager.getConnection (

"jJdbc:mysqgl://localhost:3306/testdb", "root",
"password") ;

Statement stmt = con.createStatement () ;

ResultSet rs = stmt.executeQuery ("SELECT * FROM
students") ;



while (rs.next ())

System.out.println(rs.getInt(l) + " " +
rs.getString(2));

rs.close();
stmt.close () ;
con.close () ;
} catch (Exception e) {

System.out.println(e) ;



Summary

JDBC allows Java programs to interact with
relational databases.

JDBC interacts with databases through SQL
statements.

Key terms include Driver, Connection,
Statement, and ResultSet.

It provides portability and consistency for
database operations in Java.



