
Basic database operations
using JDBC

Java Database Connectivity

JDBC Concepts and Terminology

● Java Database Connectivity (JDBC)

● Understanding the core concepts and terminology

● Role of SQL in JDBC

● JDBC Architecture

● Example JDBC PROGRAM

● Summary

What is JDBC?

● JDBC is an API in Java for connecting and

executing queries on a database.

● Provides a standard interface for

database-independent applications.

● Works as a bridge between Java applications

and databases.

JDBC (Java Database Connectivity) is a Java API

for connecting to relational databases.

Allows Java applications to execute SQL

statements.

Provides a bridge between Java code and

database systems.

Role of SQL in JDBC

● JDBC uses SQL statements to interact with

databases.

● SQL commands are executed through JDBC

objects such as Statement and

PreparedStatement.

● JDBC sends SQL queries to the database and

retrieves results.

Introducing SQL (Structured Query
Language)

SQL is used to manage and manipulate relational
databases.

Common SQL operations:

 - SELECT: Retrieve data

- INSERT: Add new records

- UPDATE: Modify data

- DELETE: Remove data

Database Tables

● Tables store data in rows and columns.
● Each column has a data type and name.
● Example:

CREATE TABLE students (

id INT PRIMARY KEY,

name VARCHAR(50),

age INT);

Creating Tables using JDBC

Example:

Statement stmt = con.createStatement();

stmt.executeUpdate("CREATE TABLE students (id

INT, name VARCHAR(50))");

Inserting Data using JDBC

•Example:

String sql = "INSERT INTO students VALUES (1,

'Ali', 22)";

stmt.executeUpdate(sql);

• Adds a new record into the database table

Retrieving Data (SELECT)

•Example:

ResultSet rs = stmt.executeQuery("SELECT *

FROM students");

while(rs.next()) {

System.out.println(rs.getInt("id") + ", " +

rs.getString("name"));}

Updating and Deleting Data

● Update Example:

stmt.executeUpdate("UPDATE students SET age

= 23 WHERE id = 1");

● Delete Example:

stmt.executeUpdate("DELETE FROM students

WHERE id = 1");

JDBC Architecture

★ Import JDBC packages

★ Register the JDBC driver

★ Establish a database connection

★ Create a statement object

★ Execute SQL queries

★ Process results

★ Close the connection

Import JDBC Packages

import java.sql.*;

Provides interfaces and classes such as Connection,

Statement, and ResultSet.

Required for all JDBC programs.

Register the Driver

Class.forName("com.mysql.cj.jdbc.Driver");

● Loads and registers the database driver.

● This step tells Java which database driver to use

Establish a Connection

Connection con =
DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/testdb",
"root", "password");

Connects Java to the database using the correct URL, username,
and password.

Returns a Connection object used for executing SQL statements.

Create and Execute Statement

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT *
FROM students");

Statement is used to send SQL queries to the database.

Use executeUpdate() for INSERT, UPDATE, DELETE statements

Process Results

while(rs.next()) {

 System.out.println(rs.getInt(1) + " " +
rs.getString(2)); }

ResultSet is used to read data returned from the database.

The next() method moves the cursor to the next record.

Close the Connection

rs.close();

stmt.close();

con.close();

Always close all database resources after use.

Prevents memory leaks and connection issues.

Full Example Program

import java.sql.*;

public class JDBCExample {

 public static void main(String[] args) {

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 Connection con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/testdb", "root",
"password");

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT * FROM
students");

 while(rs.next())
 System.out.println(rs.getInt(1) + " " +
rs.getString(2));

rs.close();

 stmt.close();

 con.close();

 } catch(Exception e) {

 System.out.println(e);

 }

 }

}

Summary

● JDBC allows Java programs to interact with

relational databases.

● JDBC interacts with databases through SQL

statements.

● Key terms include Driver, Connection,

Statement, and ResultSet.

● It provides portability and consistency for

database operations in Java.

