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In this lecture, you will learn the following

items:

• How to compute the Spearman rank-order

correlation coefficient.

• How to compute the point-biserial correlation

coefficient.

OBJECTIVE



INTRODUCTION

The statistical procedures in this chapter are quite

different from those in the last several chapters. Unlike

this chapter, we had compared samples of data. This

lecture, however, examines the relationship between

two variables.

In other words, this lecture will address how one

variable changes with respect to another.



The relationship between two variables can be

compared with a correlation analysis. If any of the

variables are ordinal or dichotomous, we can use a

nonparametric correlation.

The Spearman rank-order correlation, also called the

Spearman’s ρ, is used to compare the relationship

between ordinal, or rank-ordered, variables.

The point-biserial and biserial correlations are used

to compare the relationship between two variables if

one of the variables is dichotomous. The parametric

equivalent to these correlations is the Pearson product-

moment correlation.



In this lecture, we will describe how to perform and

interpret a Spearman rank-order, point-biserial, and

biserial correlations.



THE CORRELATION COEFFICIENT

When comparing two variables, we use an obtained value

called a correlation coefficient. A population’s correlation

coefficient is represented by the Greek letter rho, ρ. A

sample’s correlation coefficient is represented by the

letter r.

We will describe two types of relationships between

variables. A direct relationship is a positive

correlation with an obtained value ranging from 0 to

1.0.



As one variable increases, the other variable also

increases. An indirect, or inverse, relationship is a

negative correlation with an obtained value ranging

from 0 to −1.0. In this case, one variable increases as

the other variable decreases.

In general, a significant correlation coefficient also

communicates the relative strength of a relationship

between the two variables. A value close to 1.0 or −1.0

indicates a nearly perfect relationship, while a value

close to 0 indicates an especially weak or trivial

relationship. A more detailed description of a

correlation coefficient’s relative strength is presented.



Table 1 summarizes his findings.



There are three important caveats to consider when

assigning relative strength to correlation coefficients,

however.

First, Cohen’s work was largely based on behavioral

science research. Therefore, these values may be

inappropriate in fields such as engineering or the natural

sciences.

Second, the correlation strength assignments vary for

different types of statistical tests.

Third, r-values are not based on a linear scale. For

example, r = 0.6 is not twice as strong as r = 0.3.



COMPUTING THE SPEARMAN RANK-ORDER 

CORRELATION COEFFICIENT

The Spearman rank-order correlation is a statistical

procedure that is designed to measure the relationship

between two variables on an ordinal scale of

measurement if the sample size is n ≥ 4. Use Formula 1

to determine a Spearman rank-order correlation

coefficient rs if none of the ranked values are ties.

Sometimes, the symbol rs is represented by the Greek

symbol rho, or ρ:

where n is the number of rank pairs and Di is the

difference between a ranked pair.



If ties are present in the values, use Formula 2,

Formula 3, and Formula 4 to determine rs:

If there are no ties in a variable, then T = 0.



Use Formula 5 to determine the degrees of freedom

for the correlation:

df = n − 2 (5)

where n is the number of paired values.



After rs is determined, it must be examined for

significance. Small samples allow one to reference a

table of critical values, such as (Table B.7).

However, if the sample size n exceeds those available

from the table, then a large sample approximation may

be performed.



Example

Spearman Rank-Order Correlation (Small Data Samples without Ties)

Eight men were involved in a study to examine the resting

heart rate regarding frequency of visits to the gym. The

assumption is that the person who visits the gym more

frequently for a workout will have a slower heart rate.

Table 2 shows the number of visits each participant made

to the gym during the month the study was conducted. It

also provides the mean heart rate measured at the end of

the week during the final 3 weeks of the month.





The values in this study do not possess characteristics of

a strong interval scale.

For instance, the number of visits to the gym does not

necessarily communicate duration and intensity of

physical activity. In addition, heart rate has several factors

that can result in differences from one person to another.

Ordinal measures offer a clearer relationship to compare

these values from one individual to the next.

Therefore, we will convert these values to ranks and use a

Spearman rank-order correlation.



1. State the Null and Research Hypothesis 

The null hypothesis states that there is no correlation

between number of visits to the gym in a month and mean

resting heart rate. The research hypothesis states that

there is a correlation between the number of visits to the

gym and the mean resting heart rate.





3. Choose the Appropriate Test Statistic

As stated earlier, we decided to analyze the variables using

an ordinal, or rank, procedure. Therefore, we will convert

the values in each variable to ordinal data. In addition, we

will be comparing the two variables, the number of visits to

the gym in a month and the mean resting heart rate. Since

we are comparing two variables in which one or both are

measured on an ordinal scale, we will use the Spearman

rank-order correlation.



4. Compute the Test Statistic 

First, rank the scores for each variable separately as

shown in Table 3. Rank them from the lowest score to

the highest score to form an ordinal distribution for each

variable.



To calculate the Spearman rank-order correlation

coefficient, we need to calculate the differences between

rank pairs and their subsequent squares where D = rank

(mean heart rate) − rank (number of visits).

It is helpful to organize the data to manage the summation

in the formula (Table 4).



Next, compute the Spearman rank-order correlation 

coefficient:





6. Compare the Obtained Value with the Critical Value 

The critical value for rejecting the null hypothesis is 0.738 

and the obtained value is |rs| = 0.619.

If the critical value is less than or equal to the obtained

value, we must reject the null hypothesis. If instead, the

critical value is greater than the obtained value, we must

not reject the null hypothesis. Since the critical value

exceeds the absolute value of the obtained value, we do

not reject the null hypothesis.



7. Interpret the Results

We did not reject the null hypothesis, suggesting that

there is no significant correlation between the number of

visits the males made to the gym in a month and their

mean resting heart rates.



8. Reporting the Results

The reporting of results for the Spearman rank order

correlation should include such information as the number

of participants (n), two variables that are being correlated,

correlation coefficient (rs), degrees of freedom (df), and p-

value’s relation to .

For this example, eight men (n = 8) were observed for 1

month. Their number of visits to the gym was documented

(variable 1) and their mean resting heart rate was recorded

during the last 3 weeks of the month (variable 2). These

data were put in ordinal form for purposes of the analysis.

The Spearman rank-order correlation coefficient was not

significant (rs(6) = −0.619, p > 0.05). Based on this data, we

can state that there is no clear relationship between adult

male resting heart rate and the frequency of visits to the

gym.



Example:

Sample Spearman Rank-Order Correlation 

(Small Data Samples with Ties)

The researcher repeated the experiment in the previous

example using females. Table 5 shows the number of

visits each participant made to the gym during the month

of the study and their subsequent mean heart rates.





As with the previous example, the values in this study do

not possess characteristics of a strong interval scale, so

we will use ordinal measures.

We will convert these values to ranks and use a

Spearman rank-order correlation.

Steps 1–3 are the same as the previous example.

Therefore, we will begin with step 4.



4. Compute the Test Statistic

First, rank the scores for each variable as shown in Table

6. Rank the scores from the lowest score to the highest

score to form an ordinal distribution for each variable.



To calculate the Spearman rank-order correlation

coefficient, we need to calculate the differences between

rank pairs and their subsequent squares where D = rank

(mean heart rate) − rank (number of visits). It is helpful

to organize the data to manage the summation in the

formula (Table 7).





Next, compute the Spearman rank-order correlation

coefficient.

Since there are ties present in the ranks, we will use

formulas that account for the ties. First, use Formula 3

and Formula 4. For the number of visits, there are two

groups of ties.

The first group has two tied values (rank = 4.5 and t = 2)

and the second group has

three tied values (rank = 8 and t = 3):



For the mean resting heart rate, there are no ties.

Therefore, Ty = 0.

Now, calculate the Spearman rank-order correlation

coefficient using Formula 2:





6. Compare the Obtained Value with the Critical Value

The critical value for rejecting the null hypothesis is 0.560

and the obtained value is |rs| = 0.860.

If the critical value is less than or equal to the obtained

value, we must reject the null hypothesis. If instead, the

critical value is greater than the obtained value, we must

not reject the null hypothesis. Since the critical value is

less than the absolute value of the obtained value, we

reject the null hypothesis.



7. Interpret the Results

We rejected the null hypothesis, suggesting that there is a

significant correlation between the number of visits the

females made to the gym in a month and their mean

resting heart rates.





COMPUTING THE POINT-BISERIAL AND BISERIAL 

CORRELATION COEFFICIENTS

The point-biserial and biserial correlations are statistical

procedures for use with dichotomous variables. A

dichotomous variable is simply a measure of two

conditions.

A dichotomous variable is either discrete or continuous. A

discrete dichotomous variable has no particular order and

might include such examples as gender (male vs. female)

or a coin toss (heads vs. tails). A continuous dichotomous

variable has some type of order to the two conditions and

might include measurements such as pass/fail or

young/old. Finally, since the point-biserial and biserial

correlations each involves an interval scale analysis, they

are special cases of the Pearson product-moment

correlation.



Correlation of a Dichotomous Variable and an Interval

Scale Variable

The point-biserial correlation is a statistical procedure to

measure the relationship between a discrete dichotomous

variable and an interval scale variable. Use Formula 8 to

determine the point-biserial correlation coefficient rpb:



The biserial correlation is a statistical procedure to measure

the relationship between a continuous dichotomous variable

and an interval scale variable. Use Formula 11 to determine

the biserial correlation coefficient rb:





You may use Table B.1 or Formula 2 to find the height of

the unit normal curve ordinate, y:

Formula 13 is the relationship between the point-biserial

and the biserial correlation coefficients. This formula is

necessary to find the biserial correlation coefficient

because SPSS only determines the point-biserial

correlation coefficient:



After the correlation coefficient is determined, it must be

examined for significance.

Small samples allow one to reference a table of critical

values, such as Table B.8.

However, if the sample size n exceeds those available

from the table, then a large sample approximation may be

performed.



Correlation of a Dichotomous Variable and

a Rank-Order Variable

As explained earlier, the point-biserial and biserial

correlation procedures earlier involve a dichotomous

variable and an interval scale variable. If the correlation

was a dichotomous variable and a rank-order variable, a

slightly different approach is needed.

To find the point-biserial correlation coefficient for a

discrete dichotomous variable and a rank-order variable,

simply use the Spearman rank-order described earlier and

assign arbitrary values to the dichotomous variable such

as 0 and 1.

To find the biserial correlation coefficient for a continuous

dichotomous variable and a rank-order variable, use the

same procedure and then apply Formula 13 given earlier.



Example 

Point-Biserial Correlation (Small Data Samples)

A researcher in a psychological lab investigated gender

differences. She wished to compare male and female

ability to recognize and remember visual details. She used

17 participants (8 males and 9 females) who were initially

unaware of the actual experiment.

First, she placed each one of them alone in a room with

various objects and asked them to wait. After 10 min, she

asked each of the participants to complete a 30 question

posttest relating to several details in the room.

Table 8 shows the participants’ genders and posttest

scores.





The researcher wishes to determine if a relationship

exists between the two variables and the relative

strength of the relationship.

Gender is a discrete dichotomous variable and visual

detail recognition is an interval scale variable. Therefore,

we will use a point-biserial correlation.



1. State the Null and Research Hypothesis

The null hypothesis states that there is no correlation

between gender and visual detail recognition. The

research hypothesis states that there is a correlation

between gender and visual detail recognition.





3. Choose the Appropriate Test Statistic 

As stated earlier, we decided to analyze the relationship

between the two variables. A correlation will provide the

relative strength of the relationship between the two

variables. Gender is a discrete dichotomous variable and

visual detail recognition is an interval scale variable.

Therefore, we will use a point-biserial correlation.



4. Compute the Test Statistic

First, compute the standard deviation of all values from

the interval scale data. It is helpful to organize the data

as shown in Table 9.





Using the summations from Table 9, calculate the mean 

and the standard deviation for the interval data:

Next, compute the means and proportions of the values

associated with each item from the dichotomous variable.

The mean males’ posttest score was



The mean females’ posttest score was

The males’ proportion was

The females’ proportion was



Now, compute the point-biserial correlation coefficient 

using the values computed earlier:

The sign on the correlation coefficient is dependent on the

order we managed our dichotomous variable. Since that

was arbitrary, the sign is irrelevant. Therefore, we use the

absolute value of the point-biserial correlation coefficient:





6. Compare the Obtained Value with the Critical Value

The critical value for rejecting the null hypothesis is 0.482

and the obtained value is |rpb| = 0.637.

If the critical value is less than or equal to the obtained

value, we must reject the null hypothesis. If instead, the

critical value is greater than the obtained value, we must

not reject the null hypothesis. Since the critical value is

less than the absolute value of the obtained value, we

reject the null hypothesis.



7. Interpret the Results

We rejected the null hypothesis, suggesting that there is

a significant and moderately strong correlation between

gender and visual detail recognition.





SUMMARY

The relationship between two variables can be compared

with a correlation analysis.

If any of the variables are ordinal or dichotomous, a

nonparametric correlation is useful. The Spearman rank-

order correlation, also called the Spearman’s , is used

to compare the relationship involving ordinal, or rank-

ordered, variables. The point biserial and biserial

correlations are used to compare the relationship between

two variables if one of the variables is dichotomous. The

parametric equivalent to these correlations is the Pearson

product-moment correlation.

In this lecture, we described how to perform and interpret a

Spearman rank order, point-biserial, and biserial

correlations.


