
Bias and Variance and
Ensembles of Classifiers

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

How to know if the Bias is High or the Variance is
High?

Training
 Error (Bias)

Low (e.g. 0.05) High (e.g 0.15) Low (e.g. 0.1) High

Validation Set
Error
(Variance)

Low (e.g. 0.1) Low (e.g. 0.16) High (e.g. 25) High

Comment Good High bias
(Underfitting)

High variance
(Overfitting)

Try to fix the
underfitting
problem first

CSC 563, KSU, Prof. Khalil El Hindi

• Underfitting (High Bias))

• In ANN, use more hidden Units and/or more layers

• More training epochs

• Use better parameter values (e.g. the learning rate, and the alpha momentum)

• In general use a more expressive ML model e.g.
• A quadratic model instated of a linear model)

• First order logic rules instead of propositional rules

• Overfitting (High Variance)

• Increase the training data set (does not hurt the bias; not really a tradeoff)

• Build an ensemble of classifiers (works for most ML methods)

• In ANN, use regularization (e.g. L2 reg. or Dropout) to simplify the network.

• Use a less expressive ML model

CSC 563, KSU, Prof. Khalil El Hindi

• See

• https://www.youtube.com/watch?v=EuBBz3bI-aA

• Common methods for finding low bias and low variance

• Regularization in ANN.

• Finding the appropriate value for k in instance based learning.

• Building ensembles of classifiers.

CSC 563, KSU, Prof. Khalil El Hindi

https://www.youtube.com/watch?v=EuBBz3bI-aA

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

Bagging

CSC 563, KSU, Prof. Khalil El Hindi

Bagging

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

It can hurt in some cases

• Noise Amplification: if the data set is noisy bagging may amplify the effect
of noise.

• Overfitting in Small datasets:
• in this case the bootstrap samples used to train individual models may not be

diverse enough.
• This can lead to a scenario where all models in the ensemble overfit in a similar way,

thereby not effectively reducing overfitting or improving model generalization.

• Degradation of Performance in Imbalanced Datasets
• If one class is significantly underrepresented, the process of creating bootstrap

samples might produce subsets with even poorer representation of the minority
class.

• This can lead to models that are biased towards the majority class, thereby reducing
the ensemble's ability to accurately predict minority class instances.

Random Forest
• Builds upon the concept of bagging but specifically applies it to decision trees
1. Bootstrap Sampling: Like bagging, Random Forest creates multiple bootstrap samples

from the original training data. Each sample is used to train a separate decision tree,
leading to a "forest" of trees.

2. Feature Randomness: In addition to bootstrapping samples, Random Forest
introduces another layer of randomness by selecting a random subset of features at
each split in the decision tree. This ensures that the trees in the forest are de-
correlated, making the ensemble less prone to overfitting and more robust to variance
in the data. For example for a dataset with 100 features instead of evaluating all 100
features to determine the best split, we might randomly select 10 features and only
consider those for splitting.

3. Aggregation of Predictions: Once the forest of trees is grown, Random Forest
aggregates the predictions of all trees to form the final prediction. For classification
tasks, this typically involves a majority voting mechanism, where the class that gets
the most votes from individual trees is chosen as the final prediction. For regression
tasks, it usually involves averaging the predictions from all trees.

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

CSC 563, KSU, Prof. Khalil El Hindi

Some Boosting Variants

1. Gradient Boosting
• Description: Gradient Boosting is a generalization of boosting to arbitrary differentiable loss functions. It builds models

sequentially, each new model correcting errors made by previously trained models. Models are added to the ensemble
based on the gradient of the loss function, which represents the direction of greatest improvement.

2. XGBoost (eXtreme Gradient Boosting)
• Description: XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible, and

portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel
tree boosting (also known as GBDT, GBM) that solves many data science problems in a fast and accurate way.

3. LightGBM (Light Gradient Boosting Machine)
• Description: LightGBM is a gradient boosting framework that uses tree-based learning algorithms. It's designed for

distributed and efficient training, especially for high-dimensional data. LightGBM improves on the traditional gradient
boosting method by using a novel tree algorithm called Gradient-based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB), which significantly increases the efficiency of model training.

4. CatBoost (Categorical Boosting)
• Description: CatBoost is an open-source gradient boosting library that provides high-performance implementation of

gradient boosting on decision trees, with a special emphasis on working with categorical data efficiently.

Stacking

• used to combine multiple different models

• use a meta-learner (or a blender) to learn how to best combine the
predictions from several base models.

• This approach leverages the strengths of various models

How Stacking Works

• Train Base Models:
• Train multiple base models. These models can be of different types (e.g., decision trees,

support vector machines, neural networks) and are trained on the entire training dataset or
through a technique like cross-validation to generate out-of-sample predictions.

• Generate Meta-Features:
• Once the base models are trained, they are used to make predictions on a separate dataset

(this could be a validation set or the same training set used in a cross-validated manner). The
predictions from the base models serve as the meta-features for the next step. The idea is
that these meta-features represent the input from various models' perspectives on the data.

• Train Meta-Learner:
• A meta-learner (another model) is then trained on the meta-features. The target is still the

original target variable, but now the features are the predictions from the base models. The
meta-learner's job is to learn the best way to combine these predictions to make a final
prediction.

• Final Prediction: For new data, predictions from the base models are first
generated and then fed into the meta-learner, which makes the final prediction.

CSC 563, KSU, Prof. Khalil El Hindi

Two methods for Stacking

1. Input features of the meta-classifier = the output of the base learners

2. Or the input of the meta-classifier = probability of the classes as predicted by
the base learners.

• Of course a validation set is used to for the training data of the meta-classifier

• The base learners are used to classify the validation set.

• The output of the classifiers (the classes or their probabilities) form the input
features of the meta-classifier

• To classify a new instance it is first classified by the base learners to form the
input vector for the meta-classifier.

• The meta-classifier is then used to classify the vector of classes (or the
probabilities) as produced by the base learners.

CSC 563, KSU, Prof. Khalil El Hindi

	Slide 1: Bias and Variance and Ensembles of Classifiers
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: How to know if the Bias is High or the Variance is High?
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Bagging
	Slide 41: Bagging
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: It can hurt in some cases
	Slide 51: Random Forest
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Some Boosting Variants
	Slide 61: Stacking
	Slide 62: How Stacking Works
	Slide 63
	Slide 64: Two methods for Stacking

