
Bias and Variance and 
Ensembles of Classifiers
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How to know if the Bias is High or the Variance is 
High?

Training
 Error (Bias)

Low (e.g. 0.05) High (e.g 0.15) Low (e.g. 0.1) High

Validation Set 
Error 
(Variance)

Low  (e.g. 0.1) Low (e.g. 0.16) High (e.g. 25) High

Comment Good High bias 
(Underfitting)

High variance 
(Overfitting)

Try to fix the 
underfitting 
problem first
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• Underfitting  (High Bias))

• In ANN, use more hidden Units and/or more layers

• More training epochs

• Use better parameter values (e.g. the learning rate, and the alpha momentum)

• In general use a more expressive ML model e.g.
• A quadratic model instated of a linear model)

• First order logic rules instead of propositional rules

• Overfitting (High Variance)

• Increase the training data set (does not hurt the bias; not really a tradeoff)

• Build an ensemble of classifiers (works for most ML methods)

• In ANN, use regularization (e.g. L2 reg. or Dropout) to simplify the network.

• Use a less expressive ML model
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• See

• https://www.youtube.com/watch?v=EuBBz3bI-aA

• Common methods for finding low bias and low variance

• Regularization in ANN.

• Finding the appropriate value for k in instance based learning.

• Building ensembles of classifiers.
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Bagging
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Bagging 

CSC 563, KSU,  Prof. Khalil El Hindi



CSC 563, KSU,  Prof. Khalil El Hindi



CSC 563, KSU,  Prof. Khalil El Hindi



CSC 563, KSU,  Prof. Khalil El Hindi



CSC 563, KSU,  Prof. Khalil El Hindi



CSC 563, KSU,  Prof. Khalil El Hindi



CSC 563, KSU,  Prof. Khalil El Hindi



CSC 563, KSU,  Prof. Khalil El Hindi



CSC 563, KSU,  Prof. Khalil El Hindi



It can hurt in some cases

• Noise Amplification: if the data set is noisy bagging may amplify the effect 
of noise.

• Overfitting in Small datasets:
•  in this case the bootstrap samples used to train individual models may not be 

diverse enough. 
• This can lead to a scenario where all models in the ensemble overfit in a similar way, 

thereby not effectively reducing overfitting or improving model generalization.

• Degradation of Performance in Imbalanced Datasets 
• If one class is significantly underrepresented, the process of creating bootstrap 

samples might produce subsets with even poorer representation of the minority 
class. 

• This can lead to models that are biased towards the majority class, thereby reducing 
the ensemble's ability to accurately predict minority class instances.



Random Forest
• Builds upon the concept of bagging but specifically applies it to decision trees
1. Bootstrap Sampling: Like bagging, Random Forest creates multiple bootstrap samples 

from the original training data. Each sample is used to train a separate decision tree, 
leading to a "forest" of trees.

2. Feature Randomness: In addition to bootstrapping samples, Random Forest 
introduces another layer of randomness by selecting a random subset of features at 
each split in the decision tree. This ensures that the trees in the forest are de-
correlated, making the ensemble less prone to overfitting and more robust to variance 
in the data. For example for a dataset with 100 features instead of evaluating all 100 
features to determine the best split, we might randomly select 10 features and only 
consider those for splitting. 

3. Aggregation of Predictions: Once the forest of trees is grown, Random Forest 
aggregates the predictions of all trees to form the final prediction. For classification 
tasks, this typically involves a majority voting mechanism, where the class that gets 
the most votes from individual trees is chosen as the final prediction. For regression 
tasks, it usually involves averaging the predictions from all trees.
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Some Boosting Variants

1. Gradient Boosting
• Description: Gradient Boosting is a generalization of boosting to arbitrary differentiable loss functions. It builds models 

sequentially, each new model correcting errors made by previously trained models. Models are added to the ensemble 
based on the gradient of the loss function, which represents the direction of greatest improvement.

2. XGBoost (eXtreme Gradient Boosting)
• Description: XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible, and 

portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel 
tree boosting (also known as GBDT, GBM) that solves many data science problems in a fast and accurate way.

3. LightGBM (Light Gradient Boosting Machine)
• Description: LightGBM is a gradient boosting framework that uses tree-based learning algorithms. It's designed for 

distributed and efficient training, especially for high-dimensional data. LightGBM improves on the traditional gradient 
boosting method by using a novel tree algorithm called Gradient-based One-Side Sampling (GOSS) and Exclusive Feature 
Bundling (EFB), which significantly increases the efficiency of model training.

4. CatBoost (Categorical Boosting)
• Description: CatBoost is an open-source gradient boosting library that provides high-performance implementation of 

gradient boosting on decision trees, with a special emphasis on working with categorical data efficiently.



Stacking

• used to combine multiple different models 

• use a meta-learner (or a blender) to learn how to best combine the 
predictions from several base models.

• This approach leverages the strengths of various models



How Stacking Works

• Train Base Models: 
• Train multiple base models.  These models can be of different types (e.g., decision trees, 

support vector machines, neural networks) and are trained on the entire training dataset or 
through a technique like cross-validation to generate out-of-sample predictions.

• Generate Meta-Features: 
• Once the base models are trained, they are used to make predictions on a separate dataset 

(this could be a validation set or the same training set used in a cross-validated manner). The 
predictions from the base models serve as the meta-features for the next step. The idea is 
that these meta-features represent the input from various models' perspectives on the data.

• Train Meta-Learner: 
• A meta-learner (another model) is then trained on the meta-features. The target is still the 

original target variable, but now the features are the predictions from the base models. The 
meta-learner's job is to learn the best way to combine these predictions to make a final 
prediction.

• Final Prediction: For new data, predictions from the base models are first 
generated and then fed into the meta-learner, which makes the final prediction.
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Two methods for Stacking

1. Input features of the meta-classifier = the output of the base learners

2. Or the input of the meta-classifier = probability of the classes as predicted by 
the base learners. 

• Of course a validation set is used to for the training data of the meta-classifier

• The base learners are used to classify the validation set.

• The output of the classifiers (the classes or their probabilities) form the input 
features of the meta-classifier

• To classify a new instance it is first classified by the base learners to form the 
input vector for the meta-classifier.

• The meta-classifier is then used to classify the vector of classes (or the 
probabilities) as produced by the base learners. 
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