
Share this page
(https://twitter.com/intent/tweet?

minutes.com%2Fdocs%2Fpython%2F&text=Learn+X+in+Y+minutes%2C+where+X%3DPython)

Select theme: light darkLearn X in Y minutes (/)

Where X=Python

Get the code:
learnpython.py (/docs/files/learnpython.py)

Python was created by Guido van Rossum in the early 90s. It is now one of the most

popular
languages in existence. I fell in love with Python for its syntactic clarity. It’s

basically
executable pseudocode.

Note: This article applies to Python 3 specifically. Check out here

(http://learnxinyminutes.com/docs/pythonlegacy/) if you want to learn the old Python

2.7

https://twitter.com/intent/tweet?url=https%3A%2F%2Flearnxinyminutes.com%2Fdocs%2Fpython%2F&text=Learn+X+in+Y+minutes%2C+where+X%3DPython
https://learnxinyminutes.com/
https://learnxinyminutes.com/docs/files/learnpython.py
http://learnxinyminutes.com/docs/pythonlegacy/

Single line comments start with a number symbol.

""" Multiline strings can be written

 using three "s, and are often used

 as documentation.

"""

##

1. Primitive Datatypes and Operators

##

You have numbers

3 # => 3

Math is what you would expect

1 + 1 # => 2

8 - 1 # => 7

10 * 2 # => 20

35 / 5 # => 7.0

Integer division rounds down for both positive and negative
numbers.

5 // 3 # => 1

-5 // 3 # => -2

5.0 // 3.0 # => 1.0 # works on floats too

-5.0 // 3.0 # => -2.0

The result of division is always a float

10.0 / 3 # => 3.3333333333333335

Modulo operation

7 % 3 # => 1

i % j have the same sign as j, unlike C

-7 % 3 # => 2

Exponentiation (x**y, x to the yth power)

2**3 # => 8

Enforce precedence with parentheses

1 + 3 * 2 # => 7

(1 + 3) * 2 # => 8

Boolean values are primitives (Note: the capitalization)

True # => True

False # => False

negate with not

not True # => False

not False # => True

Boolean Operators

Note "and" and "or" are case-sensitive

True and False # => False

False or True # => True

True and False are actually 1 and 0 but with different keywords

True + True # => 2

True * 8 # => 8

False - 5 # => -5

Comparison operators look at the numerical value of True and
False

0 == False # => True

1 == True # => True

2 == True # => False

-5 != False # => True

Using boolean logical operators on ints casts them to booleans
for evaluation, but their non-cast value is returned

Don't mix up with bool(ints) and bitwise and/or (&,|)

bool(0) # => False

bool(4) # => True

bool(-6) # => True

0 and 2 # => 0

-5 or 0 # => -5

Equality is ==

1 == 1 # => True

2 == 1 # => False

Inequality is !=

1 != 1 # => False

2 != 1 # => True

More comparisons

1 < 10 # => True

1 > 10 # => False

2 <= 2 # => True

2 >= 2 # => True

Seeing whether a value is in a range

1 < 2 and 2 < 3 # => True

2 < 3 and 3 < 2 # => False

Chaining makes this look nicer

1 < 2 < 3 # => True

2 < 3 < 2 # => False

(is vs. ==) is checks if two variables refer to the same object,
but == checks

if the objects pointed to have the same values.

a = [1, 2, 3, 4] # Point a at a new list, [1, 2, 3, 4]

b = a # Point b at what a is pointing to

b is a # => True, a and b refer to the same object

b == a # => True, a's and b's objects are equal

b = [1, 2, 3, 4] # Point b at a new list, [1, 2, 3, 4]

b is a # => False, a and b do not refer to the same
object

b == a # => True, a's and b's objects are equal

Strings are created with " or '

"This is a string."

'This is also a string.'

Strings can be added too

"Hello " + "world!" # => "Hello world!"

String literals (but not variables) can be concatenated without
using '+'

"Hello " "world!" # => "Hello world!"

A string can be treated like a list of characters

"Hello world!"[0] # => 'H'

You can find the length of a string

len("This is a string") # => 16

You can also format using f-strings or formatted string literals

(in Python 3.6+)

name = "Reiko"

f"She said her name is {name}." # => "She said her name is Reiko"

You can basically put any Python expression inside the braces and
it will be output in the string.

f"{name} is {len(name)} characters long." # => "Reiko is 5
characters long."

None is an object

None # => None

Don't use the equality "==" symbol to compare objects to None

Use "is" instead. This checks for equality of object identity.

"etc" is None # => False

None is None # => True

None, 0, and empty strings/lists/dicts/tuples all evaluate to
False.

All other values are True
bool(0) # => False

bool("") # => False

bool([]) # => False

bool({}) # => False

bool(()) # => False

##

2. Variables and Collections

##

Python has a print function

print("I'm Python. Nice to meet you!") # => I'm Python. Nice to
meet you!

By default the print function also prints out a newline at the
end.

Use the optional argument end to change the end string.

print("Hello, World", end="!") # => Hello, World!

Simple way to get input data from console

input_string_var = input("Enter some data: ") # Returns the data as
a string

There are no declarations, only assignments.

Convention is to use lower_case_with_underscores

some_var = 5

some_var # => 5

Accessing a previously unassigned variable is an exception.

See Control Flow to learn more about exception handling.

some_unknown_var # Raises a NameError

if can be used as an expression

Equivalent of C's '?:' ternary operator

"yay!" if 0 > 1 else "nay!" # => "nay!"

Lists store sequences

li = []

You can start with a prefilled list

other_li = [4, 5, 6]

Add stuff to the end of a list with append

li.append(1) # li is now [1]

li.append(2) # li is now [1, 2]

li.append(4) # li is now [1, 2, 4]

li.append(3) # li is now [1, 2, 4, 3]

Remove from the end with pop

li.pop() # => 3 and li is now [1, 2, 4]

Let's put it back

li.append(3) # li is now [1, 2, 4, 3] again.

Access a list like you would any array

li[0] # => 1

Look at the last element

li[-1] # => 3

Looking out of bounds is an IndexError

li[4] # Raises an IndexError

You can look at ranges with slice syntax.

The start index is included, the end index is not

(It's a closed/open range for you mathy types.)

li[1:3] # Return list from index 1 to 3 => [2, 4]

li[2:] # Return list starting from index 2 => [4, 3]

li[:3] # Return list from beginning until index 3 => [1, 2, 4]

li[::2] # Return list selecting every second entry => [1, 4]

li[::-1] # Return list in reverse order => [3, 4, 2, 1]

Use any combination of these to make advanced slices
li[start:end:step]

Make a one layer deep copy using slices

li2 = li[:] # => li2 = [1, 2, 4, 3] but (li2 is li) will result in
false.

Remove arbitrary elements from a list with "del"

del li[2] # li is now [1, 2, 3]

Remove first occurrence of a value

li.remove(2) # li is now [1, 3]

li.remove(2) # Raises a ValueError as 2 is not in the list

Insert an element at a specific index

li.insert(1, 2) # li is now [1, 2, 3] again

Get the index of the first item found matching the argument

li.index(2) # => 1

li.index(4) # Raises a ValueError as 4 is not in the list

You can add lists

Note: values for li and for other_li are not modified.

li + other_li # => [1, 2, 3, 4, 5, 6]

Concatenate lists with "extend()"

li.extend(other_li) # Now li is [1, 2, 3, 4, 5, 6]

Check for existence in a list with "in"

1 in li # => True

Examine the length with "len()"

len(li) # => 6

Tuples are like lists but are immutable.

tup = (1, 2, 3)

tup[0] # => 1

tup[0] = 3 # Raises a TypeError

Note that a tuple of length one has to have a comma after the
last element but

tuples of other lengths, even zero, do not.

type((1)) # => <class 'int'>

type((1,)) # => <class 'tuple'>

type(()) # => <class 'tuple'>

You can do most of the list operations on tuples too
len(tup) # => 3

tup + (4, 5, 6) # => (1, 2, 3, 4, 5, 6)

tup[:2] # => (1, 2)

2 in tup # => True

You can unpack tuples (or lists) into variables

a, b, c = (1, 2, 3) # a is now 1, b is now 2 and c is now 3

You can also do extended unpacking

a, *b, c = (1, 2, 3, 4) # a is now 1, b is now [2, 3] and c is now
4

Tuples are created by default if you leave out the parentheses

d, e, f = 4, 5, 6 # tuple 4, 5, 6 is unpacked into variables d, e
and f

respectively such that d = 4, e = 5 and f = 6

Now look how easy it is to swap two values

e, d = d, e # d is now 5 and e is now 4

Dictionaries store mappings from keys to values

empty_dict = {}

Here is a prefilled dictionary

filled_dict = {"one": 1, "two": 2, "three": 3}

Note keys for dictionaries have to be immutable types. This is to
ensure that

the key can be converted to a constant hash value for quick look-
ups.

Immutable types include ints, floats, strings, tuples.

invalid_dict = {[1,2,3]: "123"} # => Raises a TypeError:
unhashable type: 'list'

valid_dict = {(1,2,3):[1,2,3]} # Values can be of any type,
however.

Look up values with []

filled_dict["one"] # => 1

Get all keys as an iterable with "keys()". We need to wrap the
call in list()

to turn it into a list. We'll talk about those later. Note - for
Python

versions <3.7, dictionary key ordering is not guaranteed. Your
results might

not match the example below exactly. However, as of Python 3.7,
dictionary

items maintain the order at which they are inserted into the
dictionary.

list(filled_dict.keys()) # => ["three", "two", "one"] in Python
<3.7

list(filled_dict.keys()) # => ["one", "two", "three"] in Python
3.7+

Get all values as an iterable with "values()". Once again we need
to wrap it

in list() to get it out of the iterable. Note - Same as above
regarding key

ordering.

list(filled_dict.values()) # => [3, 2, 1] in Python <3.7

list(filled_dict.values()) # => [1, 2, 3] in Python 3.7+

Check for existence of keys in a dictionary with "in"

"one" in filled_dict # => True

1 in filled_dict # => False

Looking up a non-existing key is a KeyError

filled_dict["four"] # KeyError

Use "get()" method to avoid the KeyError

filled_dict.get("one") # => 1

filled_dict.get("four") # => None

The get method supports a default argument when the value is
missing

filled_dict.get("one", 4) # => 1

filled_dict.get("four", 4) # => 4

"setdefault()" inserts into a dictionary only if the given key

isn't present

filled_dict.setdefault("five", 5) # filled_dict["five"] is set to
5

filled_dict.setdefault("five", 6) # filled_dict["five"] is still 5

Adding to a dictionary

filled_dict.update({"four":4}) # => {"one": 1, "two": 2, "three":
3, "four": 4}

filled_dict["four"] = 4 # another way to add to dict

Remove keys from a dictionary with del

del filled_dict["one"] # Removes the key "one" from filled dict

From Python 3.5 you can also use the additional unpacking options

{'a': 1, **{'b': 2}} # => {'a': 1, 'b': 2}

{'a': 1, **{'a': 2}} # => {'a': 2}

Sets store ... well sets

empty_set = set()

Initialize a set with a bunch of values. Yeah, it looks a bit
like a dict. Sorry.

some_set = {1, 1, 2, 2, 3, 4} # some_set is now {1, 2, 3, 4}

Similar to keys of a dictionary, elements of a set have to be
immutable.

invalid_set = {[1], 1} # => Raises a TypeError: unhashable type:
'list'

valid_set = {(1,), 1}

Add one more item to the set

filled_set = some_set

filled_set.add(5) # filled_set is now {1, 2, 3, 4, 5}

Sets do not have duplicate elements

filled_set.add(5) # it remains as before {1, 2, 3, 4, 5}

Do set intersection with &

other_set = {3, 4, 5, 6}

filled_set & other_set # => {3, 4, 5}

Do set union with |

filled_set | other_set # => {1, 2, 3, 4, 5, 6}

Do set difference with -

{1, 2, 3, 4} - {2, 3, 5} # => {1, 4}

Do set symmetric difference with ^

{1, 2, 3, 4} ^ {2, 3, 5} # => {1, 4, 5}

Check if set on the left is a superset of set on the right

{1, 2} >= {1, 2, 3} # => False

Check if set on the left is a subset of set on the right

{1, 2} <= {1, 2, 3} # => True

Check for existence in a set with in

2 in filled_set # => True

10 in filled_set # => False

Make a one layer deep copy

filled_set = some_set.copy() # filled_set is {1, 2, 3, 4, 5}

filled_set is some_set # => False

##

3. Control Flow and Iterables

##

Let's just make a variable

some_var = 5

Here is an if statement. Indentation is significant in Python!

Convention is to use four spaces, not tabs.

This prints "some_var is smaller than 10"

if some_var > 10:

 print("some_var is totally bigger than 10.")

elif some_var < 10: # This elif clause is optional.

 print("some_var is smaller than 10.")

else: # This is optional too.

 print("some_var is indeed 10.")

"""

For loops iterate over lists

prints:

 dog is a mammal

 cat is a mammal

 mouse is a mammal

"""

for animal in ["dog", "cat", "mouse"]:

 # You can use format() to interpolate formatted strings

 print("{} is a mammal".format(animal))

"""

"range(number)" returns an iterable of numbers

from zero to the given number

prints:

 0

 1

 2

 3

"""

for i in range(4):

 print(i)

"""

"range(lower, upper)" returns an iterable of numbers

from the lower number to the upper number

prints:

 4

 5

 6

 7

"""

for i in range(4, 8):

 print(i)

"""

"range(lower, upper, step)" returns an iterable of numbers

from the lower number to the upper number, while incrementing

by step. If step is not indicated, the default value is 1.

prints:

 4

 6

"""

for i in range(4, 8, 2):

 print(i)

"""

To loop over a list, and retrieve both the index and the value of
each item in the list

prints:

 0 dog

 1 cat

 2 mouse

"""

animals = ["dog", "cat", "mouse"]

for i, value in enumerate(animals):

 print(i, value)

"""

While loops go until a condition is no longer met.

prints:

 0

 1

 2

 3

"""

x = 0

while x < 4:

 print(x)

 x += 1 # Shorthand for x = x + 1

Handle exceptions with a try/except block

try:

 # Use "raise" to raise an error

 raise IndexError("This is an index error")

except IndexError as e:

 pass # Pass is just a no-op. Usually you would
do recovery here.

except (TypeError, NameError):

 pass # Multiple exceptions can be handled
together, if required.

else: # Optional clause to the try/except block.
Must follow all except blocks

 print("All good!") # Runs only if the code in try raises no
exceptions

finally: # Execute under all circumstances

 print("We can clean up resources here")

Instead of try/finally to cleanup resources you can use a with
statement

with open("myfile.txt") as f:

 for line in f:

 print(line)

Writing to a file

contents = {"aa": 12, "bb": 21}

with open("myfile1.txt", "w+") as file:
 file.write(str(contents)) # writes a string to a file

with open("myfile2.txt", "w+") as file:
 file.write(json.dumps(contents)) # writes an object to a file

Reading from a file

with open('myfile1.txt', "r+") as file:
 contents = file.read() # reads a string from a file

print(contents)

print: {"aa": 12, "bb": 21}

with open('myfile2.txt', "r+") as file:
 contents = json.load(file) # reads a json object from a
file

print(contents)

print: {"aa": 12, "bb": 21}

Python offers a fundamental abstraction called the Iterable.

An iterable is an object that can be treated as a sequence.

The object returned by the range function, is an iterable.

filled_dict = {"one": 1, "two": 2, "three": 3}

our_iterable = filled_dict.keys()

print(our_iterable) # => dict_keys(['one', 'two', 'three']). This
is an object that implements our Iterable interface.

We can loop over it.

for i in our_iterable:

 print(i) # Prints one, two, three

However we cannot address elements by index.

our_iterable[1] # Raises a TypeError

An iterable is an object that knows how to create an iterator.

our_iterator = iter(our_iterable)

Our iterator is an object that can remember the state as we
traverse through it.

We get the next object with "next()".

next(our_iterator) # => "one"

It maintains state as we iterate.

next(our_iterator) # => "two"

next(our_iterator) # => "three"

After the iterator has returned all of its data, it raises a
StopIteration exception

next(our_iterator) # Raises StopIteration

We can also loop over it, in fact, "for" does this implicitly!

our_iterator = iter(our_iterable)

for i in our_iterator:

 print(i) # Prints one, two, three

You can grab all the elements of an iterable or iterator by
calling list() on it.

list(our_iterable) # => Returns ["one", "two", "three"]

list(our_iterator) # => Returns [] because state is saved

##

4. Functions

##

Use "def" to create new functions

def add(x, y):

 print("x is {} and y is {}".format(x, y))

 return x + y # Return values with a return statement

Calling functions with parameters

add(5, 6) # => prints out "x is 5 and y is 6" and returns 11

Another way to call functions is with keyword arguments

add(y=6, x=5) # Keyword arguments can arrive in any order.

You can define functions that take a variable number of

positional arguments

def varargs(*args):

 return args

varargs(1, 2, 3) # => (1, 2, 3)

You can define functions that take a variable number of

keyword arguments, as well

def keyword_args(**kwargs):

 return kwargs

Let's call it to see what happens

keyword_args(big="foot", loch="ness") # => {"big": "foot", "loch":
"ness"}

You can do both at once, if you like

def all_the_args(*args, **kwargs):

 print(args)

 print(kwargs)

"""

all_the_args(1, 2, a=3, b=4) prints:

 (1, 2)

 {"a": 3, "b": 4}

"""

When calling functions, you can do the opposite of args/kwargs!

Use * to expand tuples and use ** to expand kwargs.

args = (1, 2, 3, 4)

kwargs = {"a": 3, "b": 4}

all_the_args(*args) # equivalent to all_the_args(1, 2,
3, 4)

all_the_args(**kwargs) # equivalent to all_the_args(a=3,
b=4)

all_the_args(*args, **kwargs) # equivalent to all_the_args(1, 2,
3, 4, a=3, b=4)

Returning multiple values (with tuple assignments)

def swap(x, y):

 return y, x # Return multiple values as a tuple without the
parenthesis.

 # (Note: parenthesis have been excluded but can be
included)

x = 1

y = 2

x, y = swap(x, y) # => x = 2, y = 1

(x, y) = swap(x,y) # Again parenthesis have been excluded but
can be included.

Function Scope

x = 5

def set_x(num):

 # Local var x not the same as global variable x

 x = num # => 43

 print(x) # => 43

def set_global_x(num):

 global x

 print(x) # => 5

 x = num # global var x is now set to 6

 print(x) # => 6

set_x(43)

set_global_x(6)

Python has first class functions

def create_adder(x):

 def adder(y):

 return x + y

 return adder

add_10 = create_adder(10)

add_10(3) # => 13

There are also anonymous functions

(lambda x: x > 2)(3) # => True

(lambda x, y: x ** 2 + y ** 2)(2, 1) # => 5

There are built-in higher order functions

list(map(add_10, [1, 2, 3])) # => [11, 12, 13]

list(map(max, [1, 2, 3], [4, 2, 1])) # => [4, 2, 3]

list(filter(lambda x: x > 5, [3, 4, 5, 6, 7])) # => [6, 7]

We can use list comprehensions for nice maps and filters

List comprehension stores the output as a list which can itself
be a nested list

[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]

[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]

You can construct set and dict comprehensions as well.

{x for x in 'abcddeef' if x not in 'abc'} # => {'d', 'e', 'f'}

{x: x**2 for x in range(5)} # => {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

##

5. Modules

##

You can import modules

import math

print(math.sqrt(16)) # => 4.0

You can get specific functions from a module

from math import ceil, floor

print(ceil(3.7)) # => 4.0

print(floor(3.7)) # => 3.0

You can import all functions from a module.

Warning: this is not recommended

from math import *

You can shorten module names

import math as m

math.sqrt(16) == m.sqrt(16) # => True

Python modules are just ordinary Python files. You

can write your own, and import them. The name of the

module is the same as the name of the file.

You can find out which functions and attributes

are defined in a module.

import math

dir(math)

If you have a Python script named math.py in the same

folder as your current script, the file math.py will
be loaded instead of the built-in Python module.

This happens because the local folder has priority

over Python's built-in libraries.

##

6. Classes

##

We use the "class" statement to create a class

class Human:

 # A class attribute. It is shared by all instances of this
class

 species = "H. sapiens"

 # Basic initializer, this is called when this class is
instantiated.

 # Note that the double leading and trailing underscores denote
objects

 # or attributes that are used by Python but that live in user-
controlled

 # namespaces. Methods(or objects or attributes) like: __init__,
__str__,

 # __repr__ etc. are called special methods (or sometimes called
dunder methods)

 # You should not invent such names on your own.

 def __init__(self, name):

 # Assign the argument to the instance's name attribute

 self.name = name

 # Initialize property

 self._age = 0

 # An instance method. All methods take "self" as the first
argument

 def say(self, msg):

 print("{name}: {message}".format(name=self.name,
message=msg))

 # Another instance method

 def sing(self):

 return 'yo... yo... microphone check... one two... one
two...'

 # A class method is shared among all instances

 # They are called with the calling class as the first argument

 @classmethod

 def get_species(cls):

 return cls.species

 # A static method is called without a class or instance
reference

 @staticmethod

 def grunt():

 return "*grunt*"

 # A property is just like a getter.

 # It turns the method age() into a read-only attribute of the
same name.

 # There's no need to write trivial getters and setters in
Python, though.

 @property

 def age(self):

 return self._age

 # This allows the property to be set

 @age.setter

 def age(self, age):

 self._age = age

 # This allows the property to be deleted

 @age.deleter

 def age(self):

 del self._age

When a Python interpreter reads a source file it executes all its
code.

This __name__ check makes sure this code block is only executed
when this

module is the main program.

if __name__ == '__main__':

 # Instantiate a class

 i = Human(name="Ian")

 i.say("hi") # "Ian: hi"

 j = Human("Joel")

 j.say("hello") # "Joel: hello"

 # i and j are instances of type Human, or in other words: they
are Human objects

 # Call our class method

 i.say(i.get_species()) # "Ian: H. sapiens"

 # Change the shared attribute

 Human.species = "H. neanderthalensis"

 i.say(i.get_species()) # => "Ian: H. neanderthalensis"

 j.say(j.get_species()) # => "Joel: H.
neanderthalensis"

 # Call the static method

 print(Human.grunt()) # => "*grunt*"

 # Static methods can be called by instances too

 print(i.grunt()) # => "*grunt*"

 # Update the property for this instance

 i.age = 42

 # Get the property

 i.say(i.age) # => "Ian: 42"

 j.say(j.age) # => "Joel: 0"

 # Delete the property

 del i.age

 # i.age # => this would raise an
AttributeError

##

6.1 Inheritance

##

Inheritance allows new child classes to be defined that inherit
methods and

variables from their parent class.

Using the Human class defined above as the base or parent class,
we can

define a child class, Superhero, which inherits the class
variables like

"species", "name", and "age", as well as methods, like "sing" and
"grunt"

from the Human class, but can also have its own unique
properties.

To take advantage of modularization by file you could place the
classes above in their own files,

say, human.py

To import functions from other files use the following format

from "filename-without-extension" import "function-or-class"

from human import Human

Specify the parent class(es) as parameters to the class
definition

class Superhero(Human):

 # If the child class should inherit all of the parent's
definitions without

 # any modifications, you can just use the "pass" keyword (and
nothing else)

 # but in this case it is commented out to allow for a unique
child class:

 # pass

 # Child classes can override their parents' attributes

 species = 'Superhuman'

 # Children automatically inherit their parent class's

constructor including

 # its arguments, but can also define additional arguments or
definitions

 # and override its methods such as the class constructor.

 # This constructor inherits the "name" argument from the
"Human" class and

 # adds the "superpower" and "movie" arguments:

 def __init__(self, name, movie=False,

 superpowers=["super strength", "bulletproofing"]):

 # add additional class attributes:

 self.fictional = True

 self.movie = movie

 # be aware of mutable default values, since defaults are
shared

 self.superpowers = superpowers

 # The "super" function lets you access the parent class's
methods

 # that are overridden by the child, in this case, the
__init__ method.

 # This calls the parent class constructor:

 super().__init__(name)

 # override the sing method

 def sing(self):

 return 'Dun, dun, DUN!'

 # add an additional instance method

 def boast(self):

 for power in self.superpowers:

 print("I wield the power of {pow}!".format(pow=power))

if __name__ == '__main__':

 sup = Superhero(name="Tick")

 # Instance type checks

 if isinstance(sup, Human):

 print('I am human')

 if type(sup) is Superhero:

 print('I am a superhero')

 # Get the Method Resolution search Order used by both getattr()
and super()

 # This attribute is dynamic and can be updated

 print(Superhero.__mro__) # => (<class '__main__.Superhero'>,

 # => <class 'human.Human'>, <class
'object'>)

 # Calls parent method but uses its own class attribute

 print(sup.get_species()) # => Superhuman

 # Calls overridden method

 print(sup.sing()) # => Dun, dun, DUN!

 # Calls method from Human

 sup.say('Spoon') # => Tick: Spoon

 # Call method that exists only in Superhero

 sup.boast() # => I wield the power of super
strength!

 # => I wield the power of
bulletproofing!

 # Inherited class attribute

 sup.age = 31

 print(sup.age) # => 31

 # Attribute that only exists within Superhero

 print('Am I Oscar eligible? ' + str(sup.movie))

##

6.2 Multiple Inheritance
##

Another class definition

bat.py

class Bat:

 species = 'Baty'

 def __init__(self, can_fly=True):

 self.fly = can_fly

 # This class also has a say method

 def say(self, msg):

 msg = '...'

 return msg

 # And its own method as well

 def sonar(self):

 return '))) ... ((('

if __name__ == '__main__':

 b = Bat()

 print(b.say('hello'))

 print(b.fly)

And yet another class definition that inherits from Superhero and
Bat

superhero.py

from superhero import Superhero

from bat import Bat

Define Batman as a child that inherits from both Superhero and
Bat

class Batman(Superhero, Bat):

 def __init__(self, *args, **kwargs):

 # Typically to inherit attributes you have to call super:

 # super(Batman, self).__init__(*args, **kwargs)

 # However we are dealing with multiple inheritance here,
and super()

 # only works with the next base class in the MRO list.

 # So instead we explicitly call __init__ for all ancestors.

 # The use of *args and **kwargs allows for a clean way to
pass arguments,

 # with each parent "peeling a layer of the onion".

 Superhero.__init__(self, 'anonymous', movie=True,

 superpowers=['Wealthy'], *args,
**kwargs)

 Bat.__init__(self, *args, can_fly=False, **kwargs)

 # override the value for the name attribute

 self.name = 'Sad Affleck'

 def sing(self):

 return 'nan nan nan nan nan batman!'

if __name__ == '__main__':

 sup = Batman()

 # Get the Method Resolution search Order used by both getattr()
and super().

 # This attribute is dynamic and can be updated

 print(Batman.__mro__) # => (<class '__main__.Batman'>,

 # => <class 'superhero.Superhero'>,

 # => <class 'human.Human'>,

 # => <class 'bat.Bat'>, <class
'object'>)

 # Calls parent method but uses its own class attribute

 print(sup.get_species()) # => Superhuman

 # Calls overridden method

 print(sup.sing()) # => nan nan nan nan nan batman!

 # Calls method from Human, because inheritance order matters

 sup.say('I agree') # => Sad Affleck: I agree

 # Call method that exists only in 2nd ancestor

 print(sup.sonar()) # =>))) ... (((

 # Inherited class attribute

 sup.age = 100

 print(sup.age) # => 100

 # Inherited attribute from 2nd ancestor whose default value was
overridden.

 print('Can I fly? ' + str(sup.fly)) # => Can I fly? False

##

7. Advanced

##

Generators help you make lazy code.

def double_numbers(iterable):

 for i in iterable:

 yield i + i

Generators are memory-efficient because they only load the data
needed to

process the next value in the iterable. This allows them to
perform

operations on otherwise prohibitively large value ranges.

NOTE: `range` replaces `xrange` in Python 3.

for i in double_numbers(range(1, 900000000)): # `range` is a
generator.

 print(i)

 if i >= 30:

 break

Just as you can create a list comprehension, you can create
generator

comprehensions as well.

values = (-x for x in [1,2,3,4,5])

for x in values:

 print(x) # prints -1 -2 -3 -4 -5 to console/terminal

You can also cast a generator comprehension directly to a list.

values = (-x for x in [1,2,3,4,5])

gen_to_list = list(values)

print(gen_to_list) # => [-1, -2, -3, -4, -5]

Decorators

In this example `beg` wraps `say`. If say_please is True then it

will change the returned message.

from functools import wraps

def beg(target_function):

 @wraps(target_function)

 def wrapper(*args, **kwargs):

 msg, say_please = target_function(*args, **kwargs)

 if say_please:

 return "{} {}".format(msg, "Please! I am poor :(")

 return msg

 return wrapper

@beg

def say(say_please=False):

 msg = "Can you buy me a beer?"

 return msg, say_please

print(say()) # Can you buy me a beer?

print(say(say_please=True)) # Can you buy me a beer? Please! I am
poor :(

Ready For More?

Free Online

Automate the Boring Stuff with Python (https://automatetheboringstuff.com)

Ideas for Python Projects (http://pythonpracticeprojects.com)

The Official Docs (https://docs.python.org/3/)

Hitchhiker’s Guide to Python (https://docs.python-guide.org/en/latest/)

Python Course (https://www.python-course.eu)

Free Interactive Python Course (http://www.Kikodo.io)

First Steps With Python (https://realpython.com/learn/python-first-steps/)

A curated list of awesome Python frameworks, libraries and software

(https://github.com/vinta/awesome-python)

30 Python Language Features and Tricks You May Not Know About

(https://sahandsaba.com/thirty-python-language-features-and-tricks-you-may-

not-know.html)

Official Style Guide for Python (https://www.python.org/dev/peps/pep-0008/)

Python 3 Computer Science Circles (https://cscircles.cemc.uwaterloo.ca/)

Dive Into Python 3 (https://www.diveintopython3.net/index.html)

https://automatetheboringstuff.com/
http://pythonpracticeprojects.com/
https://docs.python.org/3/
https://docs.python-guide.org/en/latest/
https://www.python-course.eu/
http://www.kikodo.io/
https://realpython.com/learn/python-first-steps/
https://github.com/vinta/awesome-python
https://sahandsaba.com/thirty-python-language-features-and-tricks-you-may-not-know.html
https://www.python.org/dev/peps/pep-0008/
https://cscircles.cemc.uwaterloo.ca/
https://www.diveintopython3.net/index.html

 (https://creativecommons.org/licenses/by-sa/3.0/deed.en_US)

A Crash Course in Python for Scientists

(https://nbviewer.jupyter.org/gist/anonymous/5924718)

Python Tutorial for Intermediates (https://pythonbasics.org/)

Build a Desktop App with Python (https://pythonpyqt.com/)

Got a suggestion? A correction, perhaps? Open an Issue

(https://github.com/adambard/learnxinyminutes-docs/issues/new) on the Github

Repo, or make a pull request (https://github.com/adambard/learnxinyminutes-

docs/edit/master/python.html.markdown) yourself!

Originally contributed by Louie Dinh, and updated by 8 contributor(s)

(https://github.com/adambard/learnxinyminutes-

docs/blame/master/python.html.markdown).

© 2022

Louie Dinh

(http://pythonpracticeprojects.com),
Steven Basart (http://github.com/xksteven),

Andre Polykanine (https://github.com/Oire),
Zachary Ferguson

(http://github.com/zfergus2),
evuez (http://github.com/evuez),
Rommel Martinez

(https://ebzzry.io),
Roberto Fernandez Diaz (https://github.com/robertofd1995),

caminsha (https://github.com/caminsha)

https://creativecommons.org/licenses/by-sa/3.0/deed.en_US
https://nbviewer.jupyter.org/gist/anonymous/5924718
https://pythonbasics.org/
https://pythonpyqt.com/
https://github.com/adambard/learnxinyminutes-docs/issues/new
https://github.com/adambard/learnxinyminutes-docs/edit/master/python.html.markdown
https://github.com/adambard/learnxinyminutes-docs/blame/master/python.html.markdown
http://pythonpracticeprojects.com/
http://github.com/xksteven
https://github.com/Oire
http://github.com/zfergus2
http://github.com/evuez
https://ebzzry.io/
https://github.com/robertofd1995
https://github.com/caminsha

