King Saud University Computer Science Department
College of Computer and Information Sciences CSC 113

LAB 8: Interfaces and Exceptions

AuditDepartment

+ AuditDepartment(size: int)

+ addEmployee(Chargable c): boolean

+ displayWithSalary(from: double, to: double, days: int): void
+ averageSalaryProgrammers(): double

+ averageProjectCount(): double

1

{ lnte.rface}
Chargable

+ salaryWithBenfits(days: int): double
+ display(): void

Employee

#id: int
name: String
- dailySalary: double

+ Employee(id: int, name: String, dailySalary: double
+ Employee(Employee e)

+ Setters/Getters...
Programmer ProjectManager
- avgDailyLines: int -nbProjects: int
+ Programmer(i:int, n:String, ds:double, avg: int) + ProjectManager(i:int, n:String, ds:double, p:int)
+ Programmer(Programmer p) + ProjectManager(ProjectManager pm)
+ Setters/Getters + Setters/Getters...

King Saud University Computer Science Department
College of Computer and Information Sciences CSC 113

A company has two kinds of employees: Programmers, and Project Managers. There is
a daily salary for both of them, but they differ in how their final salaries are calculated.

* Programmers are paid based on their daily salaries, as well as 10 SR for each
line of their average lines of code (all multiplied by days).
Pay = (dailySalary + 10 * avgLinesOfCode) * days

+ Project Managers are only paid based on their daily salaries (multiplied by
days). An additional 500 SR for each project they work on should be added to
their calculated salaries.

Pay = dailySalary * days + 500 * noProject

The company came up with the above UML diagram, and you are required to implement
all of the classes. You should also:

* Implement/Override any method when required.

* Protect any class that is not intended to be instantiated (making it abstract).

+ Protect any method that is not intended to be overridden (making it final).

* Protect any class that is not intended to be inherited (making it final).

The company has Audit Department, which provides the company with several
information through the following methods:
- displayWithSalary(from: double, to: double, days: int): displays all the
employees having salaries between from and to for the giving days.
- averageSalaryProgrammers(): returns the average salary of all programmers.
- averageProjectCount(): returns the average of project count of all project
managers.

Exception handling:
- check for (ArithmeticException) when calculating the average not to divide by
zero.
- check for (NegativeArraySizeException) when creating the array in the
constructer.
- check for (ArraylndexOutOfBoundsException) in addEmployee().
- check for (lllegalArgumentException) displayWithSalary() in the following:
1. if fromis larger than to.
2. if days is negative.

Finally, write a main to test your implementation of the Audit Department.

