SODIUM DODECYL SULPHATE -POLYACRYLAMIDE GEL ELECTROPHORESIS [SDS-PAGE]

Lab#8

BCH 333

SDS-PAGE:

- SDS-PAGE: Sodium Dodecyl Sulfate-PolyacrylAmide gel Electrophoresis.
- The separation of macromolecules in an electric field is called *electrophoresis*.
- For separating proteins by electrophoresis uses a discontinuous polyacrylamide gel.
- SDS-PAGE aim to separate and identify proteins according to their molecular weight.
- Applications:
- > Quantifying.
- Comparing (relative abundance).
- > Characterizing proteins (e.g. determining MW of proteins).
- Checking purity of protein samples.

Principle of SDS-PAGE:

- <u>In general</u>, fractionation by gel electrophoresis is based on differences in size, shape and net charge of macromolecules (in molecules native condition using <u>native gel electrophoresis</u>).
- Systems where you separate proteins under native conditions cannot distinguish between these effects and therefore proteins of different sizes may have the same mobility in native gels.
- \rightarrow In SDS-PAGE, this problem is overcome by:
- 1. Using an anionic detergent Sodium Dodecyl Sulfate (SDS), which binds strongly to most proteins.
- 2. Using disulfide reducing agent such as β -mercaptoethanol or DTT (dithiothreitol).

Principle of SDS-PAGE:

- Sodium Dodecyl Sulfate (SDS) is a detergent which *denature proteins* by binding to the hydrophobic regions, all non-covalent bonds will disrupt, and the proteins acquire a *negative net charge*.
- A Concurrent treatment with a disulfide reducing agent such as β -mercaptoethanol or DTT (dithiothreitol) further breaks down the strong bound disulfide.

 \rightarrow So, the proteins samples are having uniformed structure and charge (-ve).

What is SDS?

Effect of SDS

The carbon tail has a neutral charge and the sulphate group is negatively charged

Effect of β -mercaptoethanol

Small molecule moves more quickly through gel

Large molecule moves more slowly through gel

Principle of SDS-PAGE:

• Because the <u>charge-to-mass ratio is nearly the same</u> among SDS-denatured polypeptides, the final separation of proteins is dependent almost entirely on the differences in relative molecular mass of polypeptides (separation will depend on their molecular weight only).

→i.e The electrophoretic mobility of the molecules is now considered to be a function of their size (the protein samples are having uniformed structure and charge → the separation will depend on their molecular weight only).

- Polyacrylamide gels restrain larger molecules from migrating as fast as smaller molecules.
- Thus, small proteins migrate faster through the gel under the influence of the applied electric field, whereas large proteins are successively retarded, due to the sieving effect of the gels.

→i.e the migration of the (SDS-treated proteins), towards the anode (+) is inversely proportional to the logarithms of their molecular weights, or more simply expressed:

Small proteins migrate faster through the gel

SDS-treated proteins have very similar charge-to-mass ratios, and similar shapes. During SDS-PAGE, the rate of migration of SDS-treated proteins is effectively determined by **molecular weight**.

Graph of log MW vs. R_f is sigmoidal, it is nearly linear for a range of molecular weights excluding very small and very large MW.

Practical part

OBJECTIVES:

• To separate and calculate the molecular size of proteins by comparing the separated bands with known standard molecular weight marker.

SDS-Polyacrylamide Gel Electrophoresis preparation

1. Sample Preparation:

• 40 µl of protein sample + 10 µl of <u>disruption buffer</u> \rightarrow boil the mixture 3 min at 99 °C.

• Disruption buffer [loading buffer] contain:

- > 10% (w/v) SDS [?]
- > 1M Tris/HCl, pH 6.8
- > Glycerol [?]
- $> \beta$ -Mercaptoethanol [?]
- ▹ Bromophenol blue [?]

2.Polyacrylamide Gel (Acrylamide stock):

- The polyacrylamide gel is formed <u>by co-polymerization of acrylamide</u> and a <u>cross-linking</u> by N,N'-methylene-bis-acrylamide "bis-acrylamide".
- Polyacrylamide= acrylamide + bis-acrylamide.

• To polymerize the gel a system:

- 1- Ammonium PerSilfate (APS) [initiator].
- 2-TetraMethylene Ethylene Diamin (TEMED) [catalyst].

Fig. 10.5 The formation of a polyacrylamide gel from acrylamide and bis-acrylamide.

2.Polyacrylamide Gel:

- It is composed of *two* gels layers:
- A. Separation gel:
- HIGH concentration of the acrylamide stock and pH value.

B. Stacking gel:

• LOW concentration of the acrylamide stock and pH value.

The gel's two layers:

sample organization	B Stacking gel pH ↓	Stacking gel 0. 125 M Tris-HCl, pH 6.8 5% acrylamide* Larger pores, lower ionic strength
sample separation	A separation gel pH ↑	Running (resolving) gel 0. 375 M Tris-HCI, pH 8.8 12% acrylamide* Smaller pores, higher ionic strength
		*Investigators adjust the acrylamide concentration to manipulate the gel pore sizes

Proteins are sandwiched between the Cl⁻ ions and the glycine molecules.

A. Separation Gel Contents:

• For 10 ml of separation gel:

Acrylamide%	6%	8%	10%	12%	15%
H ₂ O	5.2 ml	4.6 ml	3.8 ml	3.2 ml	2.2 ml
Acrylamide/Bis-acrylamide (30% / 0.8% w/v)	2 ml	2.6 ml	3.4 ml	4 ml	5 ml
1.5 M Tris (pH=8.8)	2.6 ml				
10% w/v SDS	0.1 ml				
10% w/v Ammonium persulfate (APS)	100 µl				
TEMED	10 µl				

*Note: APS and TEMED must be added right before each use.

• The acrylamide percentage in SDS PAGE gel depends on the size of the target protein in the sample.

Acrylamide %	M.W. Range	
7%	50 kDa - 500 kDa	
10%	20 kDa - 300 kDa	
12%	10 kDa - 200 kDa	
15%	3 kDa - 100 kDa	

B. Stacking Gel Contents:

• For 5 ml of stacking gel:

	Volume
H ₂ O	2.975 ml
Acrylamide/Bis-acrylamide (30% / 0.8% w/v)	0.67 ml
0.5 M Tris-HCl (pH=6.8)	1.25 ml
10% w/v SDS	0.05 ml
10% w/v Ammonium persulfate (APS)	0.05 ml
TEMED	0.005 ml

3. Sample Loading:

- 4. Running the gel using, Running buffer (pH 8.3):
- It helps is deliver the electric current through the gel.
- It contains:
 - ≻ Tris-HCl.
 - > Glycine.
 - > SDS.
- 5. Stain the gel using staining buffer :
- It contains:
 - Glacial acetic acid
 - > Methanol
 - Coomassie brilliant blue 250-R.

6. De-stain the gel using De-staining buffer:

- It contains:
 - Glacial acetic acid
 - ➢ Methanol

Data Analysis

For Molecular Weight Determination:

 $- R_{f} = \frac{\text{Distance of migration of sample}}{\text{Distance moved by tracking dye}}$

For Molecular Weight Determination cont':

At beginning

After a while

After more mins.

At the end

<u>Staining</u>

<u>De Staining</u>

Supporting Materials:

 SDS PAGE principles - simple animated tutorial: https://www.youtube.com/watch?v=3CrzY7jb9fQ
https://www.youtube.com/watch?v=i_6y6Z5UvwE