

PCR- Optimization of Annealing Temperature

BCH361- Practical

Polymerase Chain Reaction (PCR)=DNA Photocopier

Performing PGR steps :

PGR optimization:

- PCR optimization ?
- What if not?
- **REMEMBER:**

→ There is no single set of conditions that is optimal for all PCR reactions.

WHY?

Standard concentrations of PER components

Component	Final concentration
Taq polymerase	0.5–2.0 units, ideally 1.25 units.
Deoxy-nucleotides (dNTPs)	Typical concentration is 200 μ M of each dNTP.
Magnesium Concentration	1.5-2.0 mM is optimal for Taq DNA Polymerase.*
Forward Primers	Typically 0.1-0.5 µM .
Reverse Primer	Typically 0.1-0.5 μM.
DNA Template	lng-1µg of genomic templates.

PGR optimization:

• It is important to note that while optimization of one parameter, other parameters should be fixed and not changed. WHY ?

→ How you will know that you reached to the optimum conditions?

	[1	Mg`']	= 2.5	5 mM		[/	Mg]	= 3.5	mΜ
0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.2	0.5	0.8
	_	_		_					_

Primer concentration (µM, each) bp: 0.04 0.1 0.25 0.5 1 2,000 800 400 200 100

Nonspecific products and primer-dimers

 Desired PCR product

8

General PCR thermal cycling condition

	Step	Temperature	Duration	Cycle
Stage 1	Initial denaturation	94–97 °C	3 min	x1
	Denaturation	94–97 °C	30 sec	
Stage 2 —	Annealing	50-65 °C	30 sec	x (25-35)
	Elongation	72-80 °C	30-60 sec	
Stage 3	Final elongation	75-80 °C	5-7 min	x1

PER optimization of annealing temperature (Ta):

• Reaching the optimum Ta is critical for **reaction specificity**, as non-specific products may be formed as a result of **non-optimal Ta**.

• HOW?

→Optimization done by applying temperature gradient PCR, where PCR carried with different Ta starting at 5 °C below the lowest calculated melting temperature (Tm) of the primer pair.

• Example.

PGR optimization of annealing temperature (Ta):

• When optimizing Ta what you should do with other PCR component?

→ Start by applying the standard concentration of PCR component that work with majority of PCR reaction.

Practical Part

- Optimization of PCR annealing temperature.
- Be familiar with PCR technique and thermal cycler device.

Principie:

Method:

- 1. You will be using GoTaq® Green Master Mix (Promega).
- 2. prepare a master mix that contains everything except the DNA template by multiplying the volume per reaction of each component by (number of desired reaction +1 for pipetting error):

Components	Volume per reaction (µl)	Master mix (Volume per reaction X)
GoTaq® Green Master Mix, 2X	6.25	
upstream primer, 10µM	0.25	
downstream primer, 10µM	0.25	
DNA template	2	
Nuclease-Free Water to	3.75	
Final volume	12.5	

Nethod:

- 3. Using special PCR tubes, distribute the master mix by pipetting --- µl to each tube.
- 4. Add $2 \mu l$ DNA template for each template.
- 5. Centrifuge the tubes briefly.
- 6. Set the thermal cycling condition as following:

Step	Temperature	Duration	Cycle
Initial denaturation	95 °C	2 min	x1
Denaturation	95 °C	30 sec	
Annealing	°C *	30 sec	x 35
Elongation	72 °C	1 min	
Final elongation	72 °C	5 min	x1
Storage	4 °C	00	

* The Tm for both primers is 57

- 7. Try different 8 annealing temperatures depending on your primer pair Tm.
- 8. Set the final volume in the thermal cycler to be 12.5 μ l.
- 9. Start PCR !!

How Thermal Cyclor will control the temperature during temperature gradient PCRP

Initial denaturation All the rows have the same temperature (94 -97 °C)

Denaturation All the rows have the same temperature (94 -97 °C)

Annealing Each raw/column will have different annealing

Extension All the rows have the same temperature (72 -80 °C)

OR

17

Results:

- Analyse the results using 2% agarose gel, and determine the optimum Ta.
- \rightarrow Known that the amplicon size is 350 bp, and the primer Tm is 60°C.

Nethod:

1. Start by applying the standard concentration of PCR component that work with majority of PCR reaction. Use the table to calculate the needed volume of each PCR component:

Components	Stock concentration	Final concentration	Volume per reaction (µl)
PCR buffer	10X	1X	
Taq polymerase	5 U/µl	0.05 U/µl	
dNTPs	10 mM	200 µM	
MgCl ₂	25 mM	1.5 mM	
Forward primer	10 µM	0.4 µM	
Reverse primer	10 µM	0.4 µM	
DNA Template	45 ng/ μl	90 ng	
Water			
Total volume			50 µl

Method:

2. Prepare a master mix that contains everything except the DNA template by multiplying the volume per reaction of each component by (number of desired reaction +1 for pipetting error):

Volume per reaction (µl)	Master mix (Volume per reaction x)
50 µl	- μl

Method:

- 3. Using special PCR tubes, distribute the master mix by pipetting --- µl to eah tube.
- 4. Add the DNA template for each template.
- 5. Centrifuge the tubes briefly.
- 6. Set the thermal cycling condition as following:

Step	Temperature	Duration	Cycle
Initial denaturation	94 °C	3 min	x1
Denaturation	94 °C	30 sec	
Annealing	°C	30 sec	x 25
Elongation	72 °C	30 sec	
Final elongation	72 °C	5 min	x1
Storage	4 °C	8	

Nethod:

- 3. Try different 8 annealing temperatures depending on your primer pair Tm.
- 4. Set the final volume in the thermal cycler to be 50 μ l.
- 5. Start PCR !!