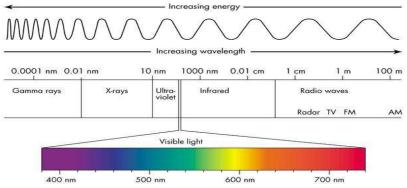
SCANNING SPECTROPHOTOMETRY AND SPECTROPHOTOMETRIC DETERMINATION OF CONCENTRATION

Lab#1


BCH 333

Spectrophotometry :

• Spectrophotometry is the science of measuring the light-absorbing and light-transmitting characteristics of a substance.

• Molecules (or part of molecules) capable of absorbing light called Chromophores.

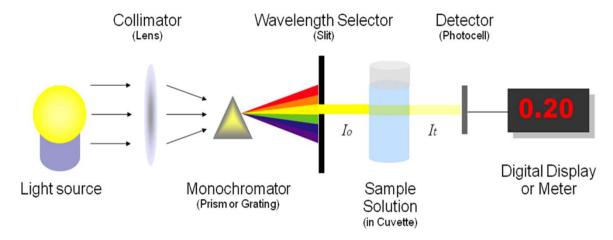

→ The basic principle is that molecules absorb and transmit light <u>of specific wavelengths</u> within the: *ultraviolet* (200 - 400 nm), *visible* (400 - 700 nm) and *near-infrared* (700 - 1000 nm) regions of the electromagnetic spectrum.

Figure 1. Electromagnetic spectrum.

Spectrophotometry cont':

- **Spectrophotometer** is an instrument used to measure the intensity of light that is transmitted or absorbed by a sample at a given wavelength.
- How the spectrophotometer works:

Figure 2. Basic structure of spectrophotometers.

• A nice video that show you how dose spectrophotometer work: <u>http://www.youtube.com/watch?v=pxC6F7bK8CU</u>

Spectrophotometry cont':

• The absorption phenomenon is described by *Beer-Lambert law as:*

$$A_{\lambda} = \varepsilon.1.c$$

- $A_{\lambda}^{=}$ is the absorbance at specific wavelength, $\epsilon^{=}$ extinction (absorption) coefficient, $l^{=}$ length of the light path through the solution, $c^{=}$ concentration of the absorbing substance.
- A plot of absorbance (A) against the wavelength (λ) is known as <u>Absorption spectrum</u>.

Absorption spectrum:

• **Definition:** The curve that display the action or behaviour of <u>absorption</u> of molecule [chromophore] <u>at different wavelengths (λ).</u>

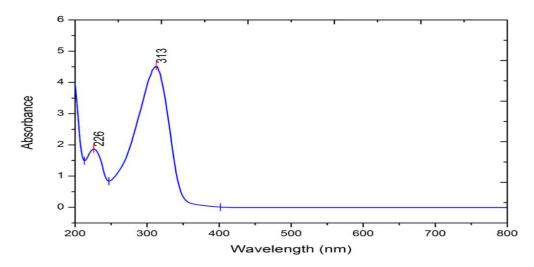
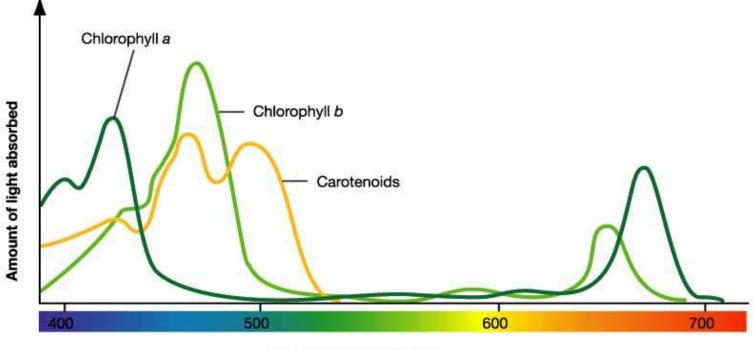



Figure 3. Absorption spectrum for a molecule.

• Every molecule has its own absorption spectrum, So it's considered as fingerprint for each molecule.

Wavelength of light (nm)

Figure 4. Absorption spectrum curve for different molecules.

λ max:

• **Definition:** it is the <u>wavelength</u>, at which the molecule has **the maximum absorbance**, and it can be determined from absorption spectrum curve.

[The wavelength of maximum absorption (λmax)]

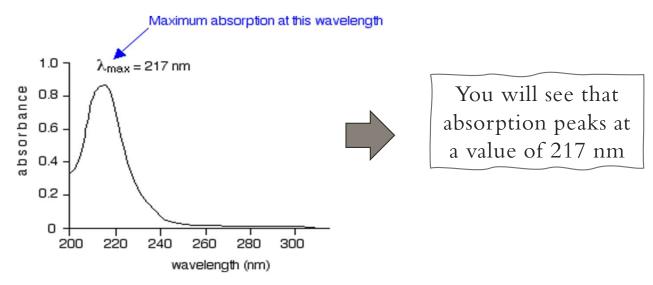


Figure 5. Determination of λ max from the absorption spectrum.

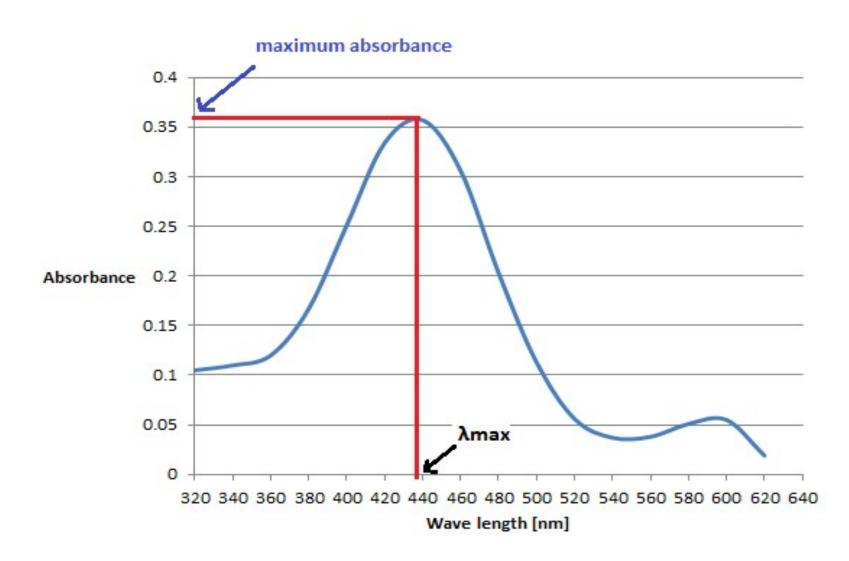


Figure 6. Absorption spectrum curve and determination of λ max.

Absorption spectrum cont':

- The absorption spectrum for a chromophore is affected by:
 - 1. Its structure.
 - 2. Environmental factors: pH, solvent polarity, orientation.
- These effects mean that it is essential to determine the absorption spectrum <u>under defined conditions</u> of pH and solvent compositions.

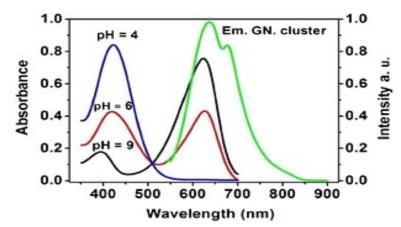


Figure 7. Absorption spectra of bromothymol blue at different pH.

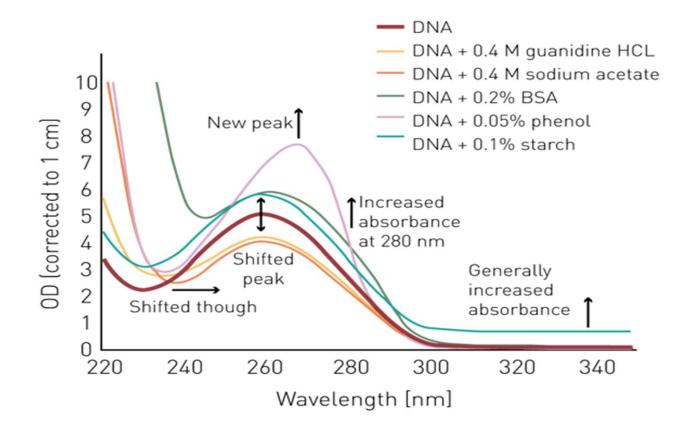
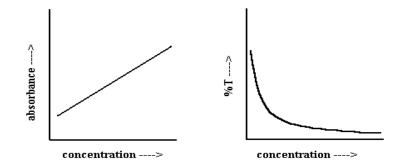
Application of Absorption Spectrum:

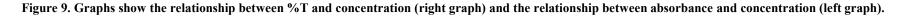
• What is the benefit of studying the absorption spectrum :

→Determine λ_{max} .

- \rightarrow Used to identify substances.
- \rightarrow It also can be used to know if there is any <u>contamination</u> with another molecule.

Example of how contamination affect the absorption spectrum of a chromophore


Figure 8. Absorbance spectra of DNA samples, pure or with potential contaminants.

Spectrophotometry for quantitative analysis:

- Spectrophotometry is widely used for <u>quantitative analysis</u> in various areas (e.g., chemistry, physics, biology, biochemistry, engineering, clinical applications, industrial applications, etc).
- By using the spectrophotometer, we can *quantitatively measure absorbance*, and this information can be used to determine the concentration of the absorbing molecule [concentration of unknown sample].
- According to Beer-Lambert law:

More concentrated solution will \rightarrow absorb more light and transmits less.

Spectrophotometry for quantitative analysis cont':

1. Beer-Lambert law:

→ The Beer-Lambert law describes the relation of absorbance, path length and concentration of an absorbing substance:

$$A_{\lambda} = \varepsilon.1.c$$

- A_{λ} = is the absorbance at specific wavelength, ϵ = extinction (absorption) coefficient, l= length of the light path through the solution, c= concentration of the absorbing substance.
- There is a linear relationship between *absorbance* and *concentration* of an absorbing species.

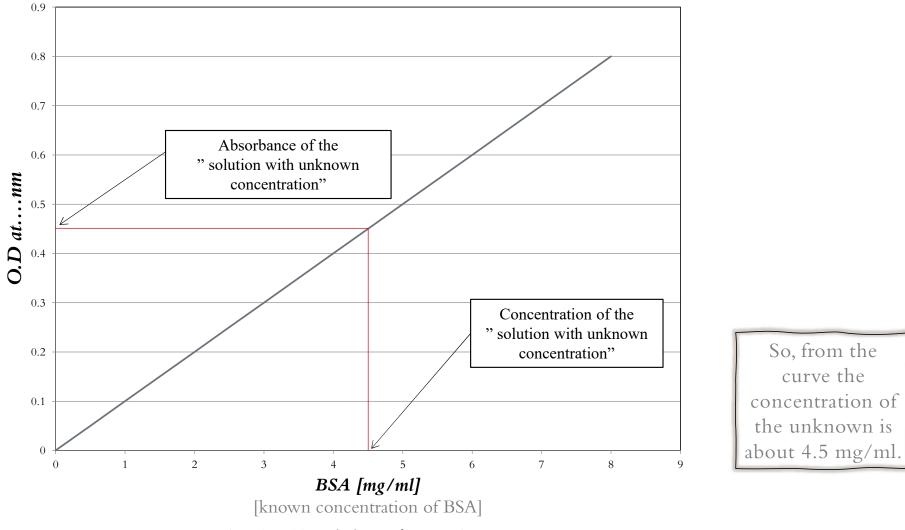
So, what does standard curve of concentrations mean?

Spectrophotometry for quantitative analysis cont':

2. Standard curve for concentrations:

- **Definition:** It is a graph that shows the relationship between different <u>known concentrations</u> of a substance and the <u>absorbance at a specific wavelength</u>.
- Standard curves are commonly used to *determine the concentration* of a substance, using serial dilution of solutions of known concentrations called *Standard Solutions*.

 \rightarrow So, Standard Solution (reference) defined as a solution containing <u>a precisely known concentration</u> of an element or a substance.


• Based on the linear relationship between the *concentration* and the *absorbance* value at specific wavelength, the <u>unknown concentration of a sample could be determined</u>, by comparing the light absorbed by unknown with that of a standard solutions in the standard curve.

[X] α A

→ Where [X] is the concentration of the unknown sample and A is absorbance.

HOW?

If the unknown concentration of a solution has absorbance value =0.45, the conc. From the curve • will be?

So, from the

curve the

Figure 10. BSA standard curve of concentration

Summery

To determine the concentration of a solution with "an unknown concentration":

From standard curve of concentration:

→ Measure the absorbance of the "solution with unknown concentration" in order to determine the concentration, from the curve. Using Beer-Lambert law:

→Using available information of any standard solution to determine the " ϵ ", then using these information to get the unknown concentration. By: $A_{\lambda} = \epsilon lc$

*Note: " ϵ " will change when the wavelength changed.

Calculating the unknown concentration by Beer-Lambert Law:

Example:

Guanosine has a maximum absorbance of 275 nm. $\varepsilon_{275}=8400 M^{-1}cm^{-1}$ and the path length is 1 cm. Using a spectrophotometer, you find that $A_{275}=0.70$. What is the concentration of guanosine?

To solve this problem, you must use Beer's Law:

 $A_{\lambda} = \varepsilon.1.c$

 $0.70 = 8400 \text{ M}^{-1} \text{ cm}^{-1}.1 \text{ cm}. \text{ c}$

→ c= 8.33 x10⁻⁵ mol/L

Practical part

OBJECTIVES:

□ Drawing the *absorption spectrum* of bromophenol blue at pH=2.4 and determination of λmax .

-

Determination the concentration for unknown concentration of bromophenol blue using a standard curve.

1 Absorption spectrum

METHOD:

1. Take a test tube and add the following reagents:

Reagent	Volume (ml)
0.1 M citrate buffer, pH 2.4	9.0
7.5 x 10 $^{-5}$ M bromophenol blue	0.2
95% ethanol	0.8

2. Mix and measure the absorbance of the solution from 320 to 620 nm at 20 nm intervals, using a scanning spectrophotometer, against a water blank.

*Note: Use suitable cuvettes at sets of wavelengths.

:RESULTS

Wavelength (nm)	Absorbance
320	
340	
360	
380	
400	
420	
440	
460	
480	
500	
520	
540	
560	
580	
600	
620	

- Plot a graph of absorbance against wavelength (absorption spectrum curve).
- From the graph (absorption spectrum curve), determine the λmax for bromophenol blue at pH 2.4.

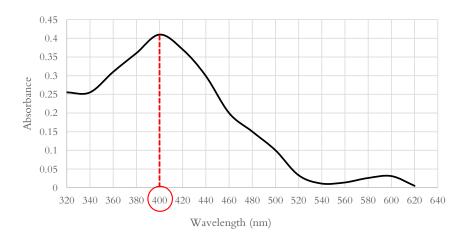


Figure 11. Absorption spectrum curve of substance X and determination of λ max.

2 Standard curve and determination of unknown concentration

METHOD:

1. Set up 7 test tubes as following:

Tube No.	0.1 M citrate buffer [pH 2.4] (ml)	7.5x10 ^{- 4} M bromophenol blue (ml)	95% ethanol (ml)	Unknown sample (ml)	Molar concentration of bromophenol blue x 10 ⁻⁵	
1	9.0	0.1	0.9	-	0.75]
2	9.0	0.2	0.8	-	1.5	
3	9.0	0.4	0.6	-	3	Standard Solutions
4	9.0	0.6	0.4	-	4.5	$C1 \times V1 = C2 \times V2$
5	9.0	0.8	0.2	-	6	
6	9.0	1.0	-	-	7.5	
Unknown	9.0	-	-	1.0	?	Unknown sample From the standard
						curve

2. Mix and measure the absorbance of all the tubes at 430 nm against a water blank.

RESULTS:

Tube No.	Molar concentration of bromophenol blue x 10 ⁻⁵	Absorbance at 430 nm
1	0.75	
2	1.5	
3	3	
4	4.5	
5	6	
6	7.5	
Unknown	?	

- Plot a <u>standard curve</u> of absorbance against molar concentration of bromophenol blue.
- From the curve determine the molar concentration of the unknown (using TREND formula).

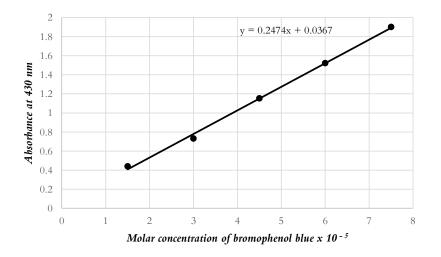


Figure 12. Bromophenol blue standard curve of concentration

Spectrophotometry Introduction:

http://www.youtube.com/watch?v=qbCZbP6_j48

Spectrophotometry for quantitative analysis :

http://www.youtube.com/watch?v=VqAa_cmZ7OY&feature=relmfu