Experiment (3)

Extraction and Determination of Bacterial Proteins

Chemical

LB medium, Distilled water, BSA stock solution (62.5 µg/ml), Bradford reagent and Lysis buffer

Preparation of lysis buffer

Containing the following: 140mM NaCl, 2.7mM KCl, 10mM Na₂HPO₄ and 1.8mM KH₂PO₄

Equipment and Glassware

Microfuge centrifuge, electronic balance, water bath, spectrophotometer, microcentrifuge tube, centrifuge tube, Pasteur pipette, micropipette, tips, test tubes, plastic cuvettes.

Protocol:

A) Extraction and isolation of bacterial proteins:

- 1. Centrifuge the bacterial sample (6 ml of overnight culture) for 5 minutes at 3000 rpm at 4 °C.
- 2. Discard the supernatant and resuspend the pellet in 1 ml lysis buffer.
- 3. Sonicate for 30–60 s in ice bucket until the cells are completely disrupted.
- 4. Transfer the resuspended sample to microcentrifuge tube, then spin 5 min at 13000 rpm at 4°C.
- 5. Separate soluble proteins (supernatant) from insoluble proteins (pellet). Use supernatant (soluble proteins) for next step. (Tube F)
- 6. Resuspend the pellet in another 1 ml lysis buffer and use supernatant for next step. (Insoluble proteins). (Tube G)

B) Determination of total bacterial proteins concentration:

1. Set up 8 test tubes as following:

Tubes	d.H2O (μl)	Volumes from stock BSA (62.5 µg/ml)	Sample [µl]	Bradford reagent (µl)	Protein concentration [µg/ml]
Blank	200	0			
A	180	20			
В	150	50			
С	100	100		800	
D	50	150			

Е	-	200		
F	-	-	200	?
(Unknown soluble proteins)				
F'	100	-	100	?
G		-	200	?
(Unknown insoluble proteins)				
G'	100	-	100	?

- 2. Mix and incubate for 5 min at room temperature, then measure the absorbance at 590 nm.
- 3. Plot standard curve for absorbance against BSA concentration using results for solutions (A-E).
- 4. From the standard curve, estimate the concentration of proteins presents in your samples.

Results:

Test tube	Protein concentration [µg/ml]	Absorbance at 590 nm
Blank		
A		
В		
С		
D		
E		
F		
F'		
G		
G'		