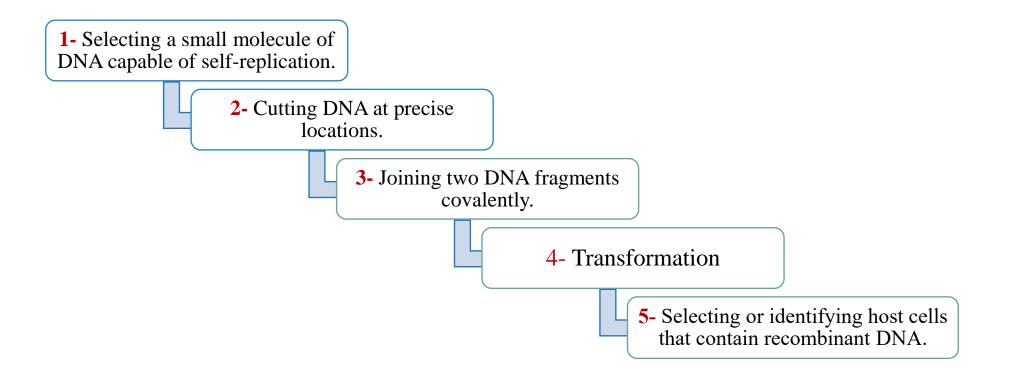

BCH 462- Biotechnology & Genetic engineering [Practical] Lab (2) Competent Cells Formation and Transformation


Molecular cloning

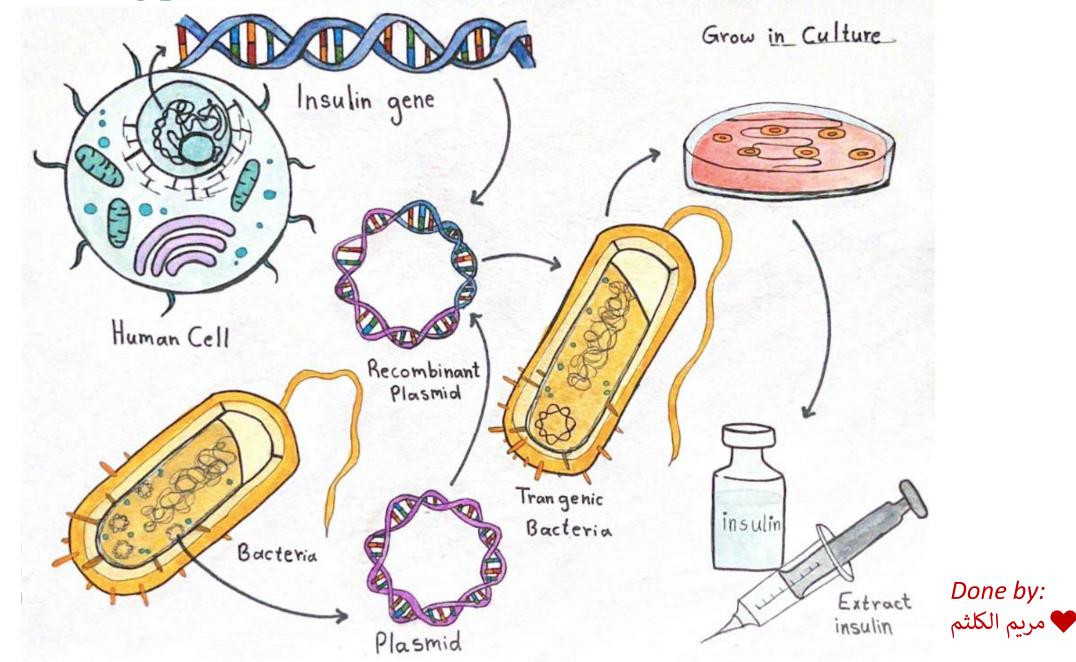
An important tool to understand the structure, function and regulation of individual genes and their products.

- It is a cell-based technique.
- A clone is an identical copy, the term <u>originally</u> was applied to cells produced when a cell of a single type was
 isolated and allowed to reproduce to create a population of identical cells.
- Used to create copies of certain DNA fragments using a <u>vector</u> carrying the <u>DNA of interest</u>.
- DNA cloning involves separating a <u>specific gene or DNA segment</u> from a larger chromosome, attaching it to a small molecule of <u>carrier DNA</u>, which eventually inserted to a <u>host cell</u> (usually bacteria) then self-replicate.

DNA cloning steps

DNA cloning steps cont.

- **1-** Selecting a small molecule of DNA capable of self-replication.
- 2- Cutting DNA at precise locations.
- 3- Joining two DNA fragments covalently.

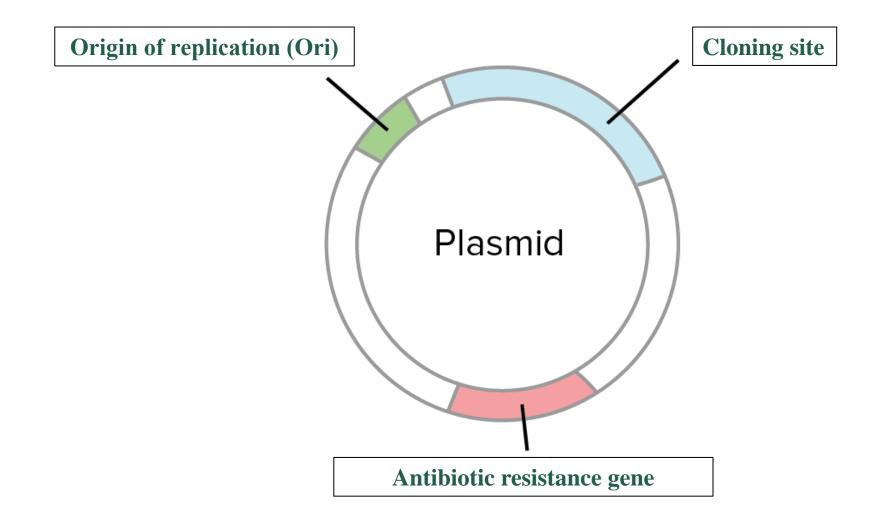

4- Transformation

- Introducing of the recombinant DNA into bacterial cells (the host)
- Recombinant DNA amplified <u>using bacterial DNA replication machinery.</u>

5- Selecting or identifying host cells that contain recombinant DNA.

- The cloning vector generally has features that allow the host cells to survive in an environment where cells lacking the vector would die.
- Cells containing the vector are thus "selectable" in that environment.

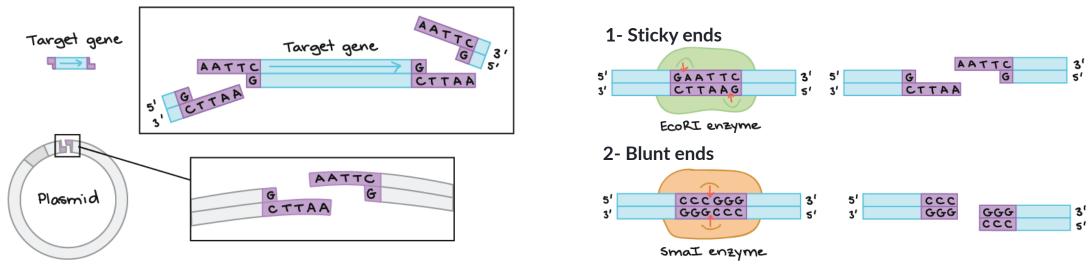
DNA cloning process



Cloning vector

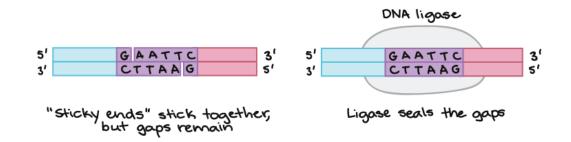
The DNA into which a foreign piece of DNA is cloned is called a "vector" (a vector is a carrier or delivery agent).

- Vectors are those small DNA molecules that <u>carry a foreign DNA</u> fragment when inserted into it.
- Most cloning vectors used in the laboratory are <u>modified versions of naturally</u> occurring small DNA molecules found in <u>bacteria</u> (plasmid).
- Based on the nature and sources the vectors are grouped into different classes, including bacteriophages and plasmids.
- The cloning vector is chosen according to the **size** and **type** of DNA to be cloned.


Plasmid vectors should contain three important parts:

Restriction enzymes [R.E]

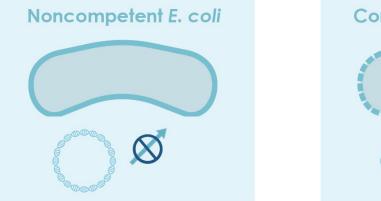
- A **restriction enzyme** is a <u>DNA-cutting</u> enzyme that <u>recognizes specific sites</u> in DNA.
- Are found in **bacteria** (and other prokaryotes).

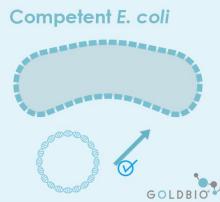

- They <u>recognize</u> and <u>bind</u> to specific sequences of DNA, called **restriction sites** and cleave the DNA into smaller fragments.
- Each restriction enzyme recognizes just <u>one</u> or a <u>few</u> restriction sites.
- Because they cut <u>within</u> the molecule, they are often called **endonucleases**.
- A restriction enzyme will make a **double-stranded** cut in the DNA molecule.

DNA ligase

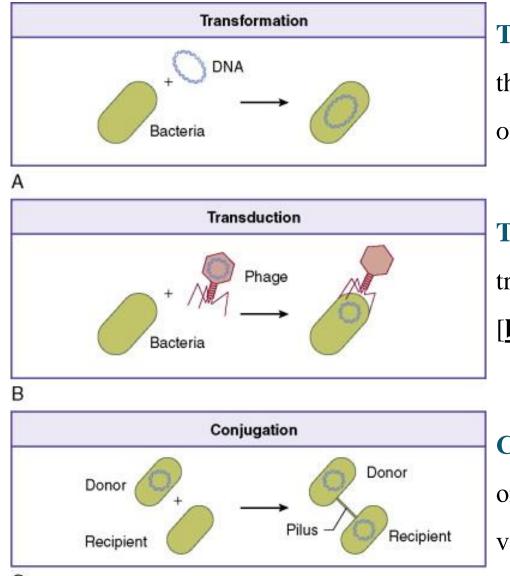
- DNA ligase can join matching sticky ends of DNA pieces from different sources that have been cut by the same restriction enzyme. (Why ?)
- The mechanism of DNA ligase is to form two <u>covalent</u> phosphodiester bonds between 3' ends of one nucleotide, ("acceptor") with 5' phosphate end of another ("donor").
- ATP is required for the ligase to work.
- Composite DNA molecules of this type, comprising covalently linked segments from two or more sources, are called recombinant DNAs.

Pause and Think in which processes DNA ligase participate? And what its function?




Competence

- For a bacterial cell to take up DNA from its surroundings, it must be in a special physiological state called competence.
- **Competence** is the ability of a cell to undergo transformation, which means the ability to take up extracellular DNA from its environment.
- Competence play role in **pathogenesis** and **survival**. How?


There are two classes of competent cells:

- 1- Natural competence: a genetically specified ability of bacteria that is occur under <u>natural condition</u>.
- 2- Artificial competence: when cells in <u>laboratory</u> cultures are treated to be permeable to DNA.

Natural competence

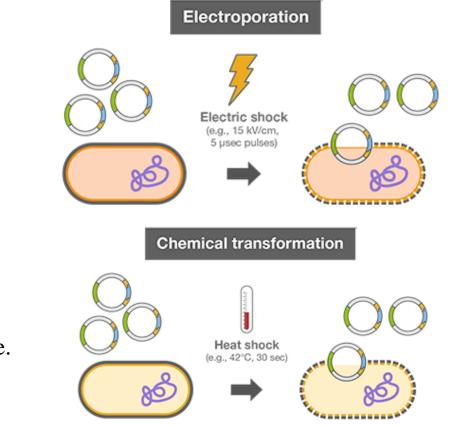
Transformation: acquisition of extracellular DNA from the environment, transformation is the only <u>direct uptake</u> of DNA.

Transduction: is the process by which DNA is transferred from one bacterium to another by a virus [bacteriophages].

Conjugation: DNA is transferred directly from one organism to another and it requires direct <u>cell-cell contact</u> via a sex pilus.

Methods of artificial transformation

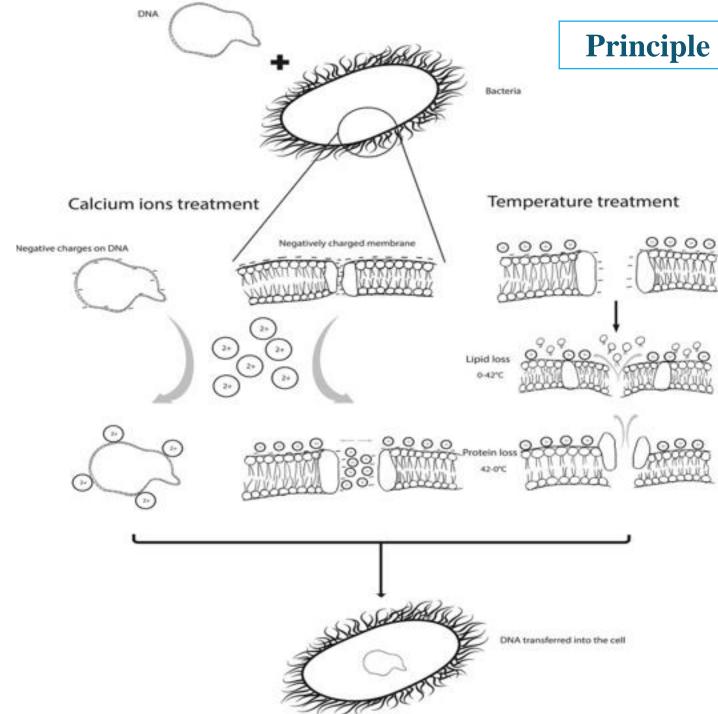
1. Electroporation or Electro-permeabilization


Electroporation is a physical method that uses an **electrical pulse** to create <u>temporary pores</u> in cell membranes through which substances like nucleic acids can pass into cells.

- 2. Chemical transformation
- Less efficient than electroporation.

It involves **two** major steps:

- 1- **CaCl₂ treatment**, to permeabilize the bacterial cell membrane.
- 2- Brief **heat shock** to facilitate the DNA up take.



• Aims:

- Making a competent cells using **calcium chloride CaCl₂** method.
- Transformation of the competent cells with recombinant plasmid DNA using **chemical transformation** method.

- Principle
- 1- Competent cell formation
 - By Chemical Transformation cells are incubated in CaCl₂ solution that help the cells to take up the DNA plasmid by increasing the bacterial cells membranes permeability [renders them competent to take up DNA].
- 2- Transformation of competent cells with DNA
 - Once the cells are made <u>competent</u>, the plasmid DNA is mixed with the cells.
 - The competent cells are then subjected <u>to heat shock</u>, which allows the <u>DNA to enter the cells</u>.

Principle of chemical transformation

3-Transformation efficiency

- The transformed cells are then grown in LB agar plate containing <u>appropriate antibiotic</u> to be able to count <u>the transformed colonies only</u>, (which they are colonies containing transformed cells-containing the DNA plasmid), each colony on an antibiotic plate presents a single transformation event.
- Then calculations of the **transformation efficiency** will be done.

· Restriction enzymes e.g. EcoRI expected results. moderate - Ve control 1- Plasmid. Front cno plasmid!) Contains - Origanal bacterid Che plasmid) - NO Ampicillin -transformed bacteria 2-Grene of interest. Ampicillin - Ampicillin E CALIFICATION observation no growth only basteria containing Overgrowth Plasmid well survive. to ensure the Purpose To ensure to ensure efficiency: phsmid [agne Ampici Ilin Transformation efficiency. l-ability of bacteria efficiency. Ligase. growth condition. Cincubator, nut rients Recombinant DNA:

- Calculations
- **Transformation efficiency** is a <u>quantitative value</u> that describes how effective you were at getting plasmid DNA into your competent cells.
- The number represents how many cells were transformed per microgram (μg) of plasmid DNA used.

- This calculation requires two values:

- 1- The <u>number</u> of colonies that were successfully transformed.
- 2- The <u>amount</u> of plasmid DNA used for the transformation.

Transformation efficiencies generally range from $1 \times 10^6 - 1 \times 10^{10}$ CFU/µg

Transformation efficiency= $\underline{\text{Total number of colonies}} = \underline{\text{CFU/}\mu g}$ Amount of DNA plated [μg]

 $CFU/\mu g = (colony-forming units)$ per microgram of transforming DNA.

Transformation efficiency D.F.= Final Vol.
TE =
$$\frac{1000}{\mu g op DNA plated(A)}$$
 (FU/ μg
(A) $\mu g of DNA plated = \frac{DNA transformed (\mu g)}{(0-50)} X Volume spread(\mu)}$
(1) DNA transformed (μg)= 100 ng => 0.1 μg plasmid Step B.1
(2) volume spread(μl)= $5\mu l$ Step B.8
(3) Total volume of transformation (μl)=
 $25\mu l$ of plasmid + 100 μl of alls + 1000 μl LB = 1125 μl
(A) $0.1(\mu g)X 5\mu r$
 $125\mu l$ Mg

Homework

 Draw a flowchart to show the molecular cloning steps. Indicate by arrow the step that performed in the lab today.

Supporting materials

The Mechanism of Transformation with Competent Cells:

https://www.youtube.com/watch?v=7Ul9RVYG5CM

Principle of Chemical Transformation:

http://www.dnalc.org/resources/animations/transformation2.html

Mechanism of Recombination:

http://www.dnalc.org/resources/3d/20-mechanism-of-recombination.html