BCH 462- Biotechnology & Genetic engineering [Practical] Lab (1) Plasmid Isolation and Purification

Let's assume we want to make insulin for the treatment of diabetes.

- Which is better to use cow OR bacteria as a <u>biological factory</u>? Why?
- \rightarrow How would the cell produce human insulin ?

Figure 1. Schematic representation of recombinant insulin production

DNA cloning techniques

Are techniques used to create copies of certain DNA fragments.

- 1- **PCR** (in vitro)
 - [polymerase chain reaction].
- 2- Cell-based (in vivo)

[using a <u>vector</u> e.g. **plasmid** carrying the DNA of interest, which eventually inserted to a host cell "usually bacteria" and self replicate].

Plasmid

- The DNA of most bacteria is contained in a single circular molecule, called the **bacterial chromosome.**
- Many bacteria contain an <u>extrachromosomal</u> element of DNA, termed a **plasmid**.
- Plasmid is a relatively small, covalently closed circular molecule that replicate <u>independently</u> from a bacterial chromosome. (Why ?)
- Every plasmid has its own <u>origin of replication</u> (replicon) and use the enzymes and proteins that <u>encoded by</u> <u>its host</u> for its replication and transcription.
- Plasmid found in a wild variety of bacterial species and they are <u>not essential</u> for the bacterium but <u>benefit the</u> <u>survival</u> of the organism (Symbiotic relationship with the host ?).

Plasmid cont.

Plasmids classes:

- I. Virulence plasmids encoding <u>toxin</u> genes.
- II. Drug-resistance plasmids that confer <u>resistance</u> to antibiotics.
- III. Plasmids encode genes required for bacterial <u>conjugation</u>.(which can be advantageous for host cell)

Plasmids applications:

- i. Molecular cloning
- ii. Gene therapy
- iii. Drug production
- iv. Making a large amount of proteins.

Figure 3. Illustration of *E.coli* showing chromosomal DNA and plasmids

Plasmid cont.

Figure 6. Electron micrograph of an *E. coli* cell ruptured to release its DNA.

Plasmid as a vector

- Plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant
 DNA sequences within host organisms (It is used to provide a "vehicle" in which to insert a desired DNA fragment).
- Recombinant DNA, molecules of DNA from two different species (human/bacteria) that are inserted into a host organism (bacteria) to produce new genetic combinations (human insulin).
- In the laboratory, the modified plasmids (recombinant DNA) are usually reintroduced into a host cell for replication via process called *transformation*.

Figure 7. Recombinant DNA

Figure 8. Transformation

Plasmid vectors should contain three important parts:

- **1.** Origin of replication (Ori)
- 2. antibiotic resistance
- 3. gene cloning site

The **Ori** is a DNA sequence which allows initiation of replication of the plasmid by cellular enzymes.

Sall

Plasmid isolation and purification

- Is an essential step for many molecular biology procedures.
- In general, plasmid purification involved <u>three steps</u>:
- 1. Growth of the bacterial culture.
- 2. Harvesting and lysis of bacteria.
- 3. **Purification** of plasmid DNA.

1. Growth of the bacterial culture

Depending upon nutritional status, bacteria exhibit different growth patterns which include:

- I. Lag phase: in this phase bacteria <u>adapt</u> themselves to growth conditions and synthesis its own DNA, RNA and proteins.
- **II.** Log phase: it is exponential phase, the bacterial cells divide and the production of new cells is <u>proportion</u> to increased time.
- **III. Stationary phase:** the growth rate slows as nutrients become limited, waste products accumulate and the rate of cell division equals the rate of death.
- IV. Death phase: due to continuous <u>accumulation</u> of toxic metabolites and the lack of nutrients, death occurs of the bacteria.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure.9. Bacterial culture growth curve.

 \bigcirc Pause and Think on which phase should we purify plasmid?

2. Harvesting and lysis of bacteria

- 1. Bacteria are recovered by **centrifugation.**
- 2. Cell lysis by any one of many methods, including:
- > Treatment with **detergents**, **alkali**, **organic solvents**, and **heat**.
- The choice among these methods depends on three factors:
- The size of plasmid.
- The bacterial strain.
- The technique used to subsequently purify the plasmid DNA.

3. Purification of plasmid DNA

- The plasmid purification procedures, unlike the procedures for purification of genomic DNA, should involve removal of not only protein but also another major impurity **bacterial chromosomal DNA**.
- There are basic methods of plasmid preparation:
- 1. Chemical base lysis methods.
- 2. Application of affinity matrices for plasmid or proteins.

Practical part

• Aim:

• To isolate pure plasmid DNA from **E. coli** using alkaline lysis method.

Principle:

- In the alkaline lysis method, cells are lysed and DNA denatured by **SDS** and **alkaline pH**.
- The **SDS** will lyse the bacterial <u>cell membrane</u> and denature the <u>proteins</u>.
- Alkaline pH will denature the <u>genomic DNA</u> and the <u>proteins</u> too.
- **Neutralization** of the solution.
- **Precipitation** of protein-SDS complexes.
- Subsequently both complexes, DNA and protein, are removed by centrifugation leaving native plasmid molecules in the supernatant.

Figure.10. Alkaline lysis purification method performing steps

Practical part

- Results:
 - Concentration of plasmid DNA (ng/µl) = ______
 - Plasmid purity: A260/A280 = _____

- Methodology:
- 1- Centrifuge the bacterial samples at 4 °C, maximum speed for 5 minutes, using microcentrifuge device.

Bacterial sample was centrifuged at 4°C, maximum speed for 5 minutes using microcentrifuge.

References:

Endnote, Mendeley or Cite This For Me: Web Citer (extension in Google Chrome).