

Medical Mycology

In this course we will focus on:

- understanding the principle of some clinical techniques used for the identification and diagnosis of fungal infection.
- fungal infections, or mycosis, which are diseases caused by a fungus (yeast or mold

* Basic steps will be addressed before moving to the diagnostic techniques

- *How to prepare fungus media (CZA and SDA)
- Isolation

- Media will affect colony morphology and color
- •Media generally contain a source of carbon, nitrogen and vitamins.
- •Glucose is the most widely utilizable carbon source followed by Fructose.
- Nitrogen sources include peptone, yeast extract.

- •Two general types of culture media are essential to ensure the primary recovery of all clinically significant fungi from clinical specimens.
- 1-One medium should be **nonselective** (such as potato dextrose agar PDA) that is, one that will **permit the growth of all clinically relevant fungi**
- 2-The other medium **should be selective**, specially designed to isolate specific pathogenic fungi.

1-Czapek's Agar (CZA)

* This is a **defined medium** primarily for the cultivation of fungi (**saprophytic fungi**) that are **capable of using Sodium Nitrate as their main source of nitrogen**

Composition of the (CZA)

Ingredients	Benefits	Grams/L
Sucrose	a carbohydrate source	30
Sodium nitrate	Inorganic source of nitrogen	2
Dipotassium		1
phosphate		
Magnesium sulfate		0.5
Potassium chloride		0.5
Ferrous sulfate		0.01
Agar	added as the solidifying agent	15
Distilled Water		1000

Final pH Final pH (at 25°C) 7.3±0.2

2- Sabouraud agar or Sabouraud dextrose agar (SDA)

- *Type of agar growth medium containing peptones
- *Commonly used for research and clinical diagnosis
- *SDA is sufficient for the recovery of dermatophytes from cutaneous samples

Composition of the (SDA)

T 11 4	D 694	
Ingredients	Benefits	Grams/L
Peptone	**provide the nitrogen and vitamin	10
	source required for fungal growth	
Dextrose	a carbohydrate source which serves as a growth stimulant	40
Agar	added as the solidifying agent	15
Distilled Water		1000 ml

Final pH (at 25°C) 5.6±0.2

3-Potato dextrose agar (PDA)

- A general-purpose media for yeasts and fungus
- How to inhibit bacterial growth in PDA
- * 1-Can be supplemented with antibiotics to inhibit bacterial growth
- *2- <u>Use a specified amount of sterile tartaric acid (10%)</u> to lower the pH of this medium which inhibits bacterial growth.

Composition of the (PDA)

Ingredients	Benefits	Grams/L
Potatoes	provides a nutrient base for the growth	200
infusion	of most fungi	
Dextrose	a carbohydrate source which serves as a growth stimulant	20
Agar	added as the solidifying agent	15
Distilled Water		1000 ml

Final pH (at 25°C) 5.6±0.2


- ➤ Weigh all the ingredients (gram/L)
- > Suspend all the ingredients in 1000 ml distilled water.

Even though we follow a precise protocol (recipe) to make any media, we still need to make sure that the of this media is suitable for fungal growth.

How to adjust the pH?

- ❖ Determine the pH level you have using pH Meter.
- * Add either an acidic or alkaline substance to the media
- **❖** To increase the pH use few drops of (0.1 M) Sodium Hydroxide(NaOH)
- **To lower the pH use few drops of (0.1 M) hydrochloric acid (HCL)**

PH Adjustment - YouTube

- > After adjusting the pH
- > Use cotton plug and foil to close the flask (you can use Bottle with cap)
- **>** Label your flask with:
- A) Tape that has (your name- media type- date)

B) Autoclave tape that changes color upon appropriate sterilization

- If necessary, use warm water bath to dissolve the medium completely.
- > Sterilize by autoclaving at 15 lbs pressure (121°C) for 20 minutes.

- In specific clinical work, when pH 3.5 is required, the medium should be acidified with sterile 10% tartaric acid
- > Antibiotics can be added to create selective culture
- > In this case:
- > Prepare the media as described, autoclave, THEN add acid/antibiotics

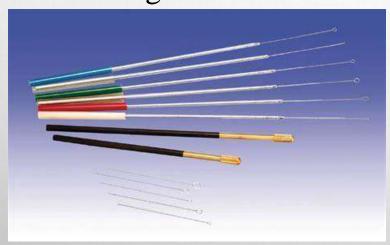
And finally pour the media immediately.

DO NOT heat the media after adding the acid/antibiotics.

➤ Use a marker to briefly label the edge of petri dishes (name-date- experiment)

Example; Haya, 27/8, isolation/ or purification...etc

** label the bottom of the plate only, NEVER label the lid



➤ Pour the sterile media in petri dishes and wait until the media is completely solidify.

Isolation (from plants/fruits)

Under sterile conditions, use the appropriate tools to inoculate part of the fungal growth in suitable media

• In Microbiology labs, the most common tools used for this purpose is the inoculating needles.

• Needles can be used if there is visible mycelium/ spores

• If you don't see visible mycelium/spores, use sterile scalpel and forceps to cut small section of the rotten tissue and plate it.

• Incubate at 25-28°C for several days (keep tracking incubated plates to avoid overgrowth).

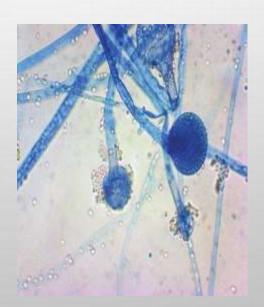
Fungus culture Purification

Disk method

- Label your plate (as you can't invert it post the purification process)
- > Use sterilized glass Pasteur pipettes to cut out a disk from the margin of the fungal colony
- > Use sterile forceps to invert the disk at the center of new plate (growth side should face the media)
- ** to make sure the fungus has access to all the nutrition required for an ideal growth
- Incubate as required

What is the purpose of the purification process (sometimes known as subculturing process)

- A)-Characteristics (identification) of an infectious agent
- 1. Colony morphology (shape, margin, color)
- ** It has limited value in identification of fungal growth because most fungus show different morphological features on different media.


2. Microscopic observation

- using common staining reagent: Lactophenol cotton blue and use 40X
 objective to describe (septate /aseptate (non-septate hyphae), conidia
 shape..etc
- B)-To maintain viability.

The following microscopic criteria are used to make a genus/species identification of the fungal isolate

- 1. Determine the structure of the hyphae. Are they: Septate or aseptate
- 2. Branching or not branching
- 3. Pigmented or not pigmented
- 4. The size, shape, and arrangement of the spores

