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Chapter 1

Introduction to Numerical Methods

1.1 Introduction

I have written this book as an introductory course in numerical methods and numerical analysis
for mathematicians, computer scientists, engineers, and other scientists. Numerical analysis is the
branch of mathematics concerned with the theoretical foundations of numerical algorithms for the
solution of problems arising in scientific applications. The subject addresses a variety of questions
ranging from the approximation of functions and integrals to the approximate solution of algebraic,
transcendental, differential and integral equations, with particular emphasis on the stability, accu-
racy, efficiency and reliability of numerical algorithms.
The intention of this book is to provide a gentle and sympathic introduction to many of the problems
of scientific computing, and the wide variety of methods used for their solutions. The presentation
of each numerical method is based on the successful teaching methodology of providing examples
and geometric motivation for a method, and a concise statement of the steps to carry out the
computation, before giving a mathematical derivation of the process or a discussion after more the-
oretical issues that are relevant to the use and understanding of the topic. Each topic illustrated
by examples that range in complexity from very simple to moderate. Geometrical or graphical
illustrations are included whenever they appropriate.
This book is concerned with the practical solution of problems on computers. In the process of
problem solving, it is possible to distinguish several more or less distinct phases. The first phase
is formulation. In formulating a mathematical model of a physical situation, the scientist should
take into account beforehand the fact that he expects to solve his problem on a computer. He
will therefore provide for specific objectives, proper input data, adequate checks, and for the type
and amount of output. Once a problem has been formulated, numerical methods, together with a
preliminary error analysis, must be devised for solving the problem. A numerical method which
can be used to solve a problem will be called an algorithm. An algorithm is a complete and un-
ambiguous set of procedures leading to the solution of a mathematical problem. The selection or
construction of appropriate algorithms properly falls within the scope of numerical analysis. Having
decided on a specific algorithm or set of algorithms for solving the problem, the numerical analyst
should consider all the sources of error that may affect the results. He must consider how much
accuracy is required, estimate the magnitude of the round-off and discretization error, determine
an appropriate step size or the number of iterations required, provide for adequate checks on the
accuracy, and make allowance for corrective action in cases of nonconvergence.

1



2 1.1 Introduction

The third phase of problem solving is programming. The programmer must transform the suggested
algorithm into a set of unambiguous step-by-step instructions to the computer. the first step in
this procedure is called flow charting. A flow chart is simply a set of procedures, usually in logical
block form, which the computer will follow. It may be given in graphical or procedural statement
form. The complexity of the problem and the amount of detail included. However, it should be
possible for someone other than the programmer to follow the flow of information from the chart.
The flow chart is an effactive aid to the programmer, who must translate its major functions into
machine code, and, at the same time, it is an effactive means of communication to others who wish
to understand what the program does. In this book we sometimes use flow charts in graphical form,
but more often in procedural statement form. Having produced a flow chart, the programmer must
transform the indicated procedures into a set of machine instructions. This may be done directly
in machine language or procedure-oriented language (sometimes called an algorithmic language).
In this book MATLAB language is used exclusively. The practical justification of the methods is
presented through computer examples through the use of MATLAB. In recent years, the number
of MATLAB users has dramatically increased and now includes professionals who were trained in
other high-level languages, Fortran, C, etc. but are now switching to MATLAB as well as stu-
dents who are learning MATLAB as their first programming language. The surge of popularity in
MATLAB is related to the increasing popularity of UNIX and computer graphics. To what extend
numerical computations in the future will be programmed in MATLAB is uncertain. Nonetheless,
there is no question that a need exists for comprehensive text especially geared to the requirements
of those who want to learn, or use, numerical methods in MATLAB. This book has been written
in response to this need.
The objectives of using MATLAB in this book include: (1) to be easily understood by undergradu-
ate students with minimal knowledge of MATLAB, (2) to enable students to practice the methods
in MATLAB, (3) to provide the short programs that can be easily used for scientific applications
with or without modifications, and (4) to provide software that are easy to understand.

To provide maximum teaching flexibility, each chapter and each section begins with the basic,
elementary material and gradually builds up to the more advanced material. The level of mathe-
matical justification is determined largely by the desire to keep the mathematical prerequisites to a
minimum. Thus, for example, no knowledge of linear algebra is assumed beyond the basic matrix
algebra, and analytical results are based on a sound knowledge of the calculus.
In elementary calculus we learn how to differentiate and integrate to get exact answers to remarkably
diverse range of realistic problems that could not be solved by purely algebraic methods. Unfor-
tunately, from a practical point of view, the techniques of elementary (or even advanced) calculus
alone are not adequate for solving calculus type problems such as solving polynomial equations of
degree greater than four or even a simple equation such as

x = cosx,

also, to evaluate integrals of type∫ b

a
ex

2
dx and

∫ b

a

sinx

x
dx; etc.,

it is impossible to get the exact solutions of these problems. Even when an analytical solution can
be found it may be of more theoretical than practical. Fortunately, one rarely needs exact answers.
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Indeed, in the real world the problems themselves are usually inexact because they are generally
possessed in terms of parameters that are measured, hence only approximate. What we are likely to
require in a realistic situation is not an exact answer but rather one having a prescribed accuracy.
The basic approach used to solve problems in numerical analysis is the algorithm which is used to
describe a step-by-step procedure and requires a finite number of steps. So a numerical method is
an algorithm which consists of a sequence of arithmetic and logical operations and which produces
an approximate solution to within any prescribed accuracy. There are different numerical methods
for the solution of one problem but the particular method chosen depends on the context from
which the problem is taken.

Types of Numerical Methods

There are two basic types of numerical methods, direct numerical and indirect (iterative) numerical
methods.

Direct methods compute the solution to a problem in a finite number of steps. These methods
would give the precise answer if they were performed in infinite precision arithmetic. Examples
include Gaussian elimination, the LU factorization method for solving systems of linear equations.
In practice, finite precision is used and the result is an approximation of the true solution (assuming
stability). In the absence of rounding errors, direct methods would deliver an exact solution.

In contrast to direct methods, iterative methods are not expected to terminate in a finite number of
steps. Starting from an initial guess, iterative methods form successive approximations that con-
verge to the exact solution only in the limit. In computational mathematics, an iterative method
is a mathematical procedure that generates a sequence of improving approximate solutions for a
class of problems. A specific implementation of an iterative method, including the termination
criteria, is an algorithm of the iterative method. An iterative method is called convergent if the
corresponding sequence converges for given initial approximations. A mathematically rigorous con-
vergence analysis of an iterative method is usually performed. A convergence test, often involving
the residual, is specified in order to decide when a sufficiently accurate solution has (hopefully)
been found. Even using infinite precision arithmetic these methods would not reach the solution
within a finite number of steps (in general). Iterative methods are often the only choice for non-
linear equations. However, iterative methods are often useful even for linear problems involving a
large number of variables (sometimes of the order of millions), where direct methods would be pro-
hibitively expensive (and in some cases impossible) even with the best available computing power.
Examples include Newton’s method, bisection method, and Jacobi iteration. In computational
matrix algebra, iterative methods are generally needed for large problems.
An iterative method for the given problem converges means:- approximate values should come in
side the given interval I- difference between two successive approximations should be small. Other-
wise diverges. An iterative process may converge or diverge. If the divergence occurs, the procedure
should be terminated because there may be no solution. We can restart the procedure by changing
the initial approximation if necessary. But in the case of convergence we have to apply some stop-
ping procedures to end the computations. In the following there are some more stopping criterion
that can be used, each of them can be apply to any iterative technique considered in this chapter.
By selecting a tolerance ϵ > 0 and generate approximate solutions x1, x2, . . . , xn until one of the
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following conditions is satisfied:

|xn − xn−1| < ϵ or
|xn − xn−1|

|xn|
< ϵ, xn ̸= 0.

Sometimes difficulties can arise using any of these stopping criteria. For example, there exist
sequence {xn}∞0 with the property that the differences (xn − xn−1) converge to zero while the
sequence itself diverges. It is also possible for f(xn) to be close to zero while xn differs significantly
from α. Without additional knowledge about f(x) or α, the above second inequality is the best
stooping criterion to apply because it tests relative error. Also, one of the other stopping criteria is
to use a fixed number of iterations, and then the final approximation xn may be considered as the
value of the required root. This type of stopping criteria is helpful when the convergence is very
slow. It is important to note that in considering whether an iteration converges or not, it may be
necessary to ignore the first few iterations since the procedure may appear diverge initially, even
though it ultimately converges.
Iterative methods are more common than direct methods in numerical analysis. Some methods are
direct in principle but are usually used as though they were not. For these methods the number
of steps needed to obtain the exact solution is so large that an approximation is accepted in the
same manner as for an iterative method. The numerical methods deal with numbers. We exam the
sources of various types of computational errors.

1.2 Error Analysis

In generally numerical methods give an approximate solution (in number) of the given problem.
How good is the approximate answer, we have to check by using the error analysis theory. There
are basically two ways to know about the resulting approximation:- by using actual (exact) error
and the error bound (upper bound) formulas of the using numerical methods.

What is Error

An approximate number p is a number that differs but slightly from an exact number α. We write

p ≈ α.

By error E of an approximate number p, we mean the difference between the exact number α and
its computed approximation p. Thus we define

E = α− p. (1.1)

If α > p, the error E is positive, and if α < p, the error E is negative. In many situations, the sign
of the error may not be known and might even be irrelevant. Therefore, we define absolute error as

|E| = |α− p|. (1.2)

The relative error RE of an approximate number p is the ratio of the absolute error of the number
to the absolute value of the corresponding exact number α. Thus

RE =
|α− p|
|α|

, α ̸= 0. (1.3)
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If we approximate 1
3 by 0.333, we have

E =
1

3
× 10−3 and RE = 10−3.

Note that relative error is generally a better measure of the extend of error than the actual error.
But one should also note that relative error is undefined if the exact answer is equal to zero.
Generally, we shall be interested in E (or sometimes |E|) rather than RE, but when the true
value of a quantity is very small or very large, relative errors are more meaningful. For example,
if the true value of a quantity is 1015, and error of 106 is probably not serious, but this is more
meaningfully expressed by saying that RE = 10−9. In actual computation of the relative error, we
shall often replace the unknown true value by the computed approximate value. Sometimes the
quantity

|α− p|
|α|

× 100%, (1.4)

is defined as percentage error. From the above example, we have

PE = 0.001× 100 = 0.1%.

In investigating the effect of the total error in various methods, we shall often mathematically
derive an error, called, error bound and which is a limit on how large the error can be. We shall
have the reason to compute error bounds in many situations. This applies to both absolute and
relative errors. Note that the error bound can be much larger than the actual error and that this
is often the case in practice. Any mathematically derived error bound must account for the worst
possible case that can occur and is often based upon certain simplifying assumptions about the
problem which in many practical cases cannot be actually tested. For the error bound to be used
in any practical way, the user must have a good understanding of how the error bound was derived
in order to know how crude it is, that is, how likely it is to over estimate the actual error. Of
course, whenever possible, our goal is to eliminate or lesser the effects of errors, rather than trying
to estimate them after they occur.

1.3 Sources of Errors

In analysing the accuracy of numerical result, one should be aware of the possible sources of error
in each stage of the computational process and of the extend to which these errors can affect the
final answer. We will consider that there are three types of errors which occur in a computation.
We discuss them step by step as follows.

1.3.1 Human Error

These types of errors arise when the equations of the mathematical model are formed, due to
sources such as the idealistic assumptions made to simplify the model, inaccurate measurements of
data, miscopying of figures, the inaccurate representation of mathematical constants (for example,
if the constant π occurs in an equation, we must replace π by 3.1416 or 3.141593, etc.).
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1.3.2 Truncation Error

This type of error is caused when we are forced to use mathematical techniques which give ap-
proximate, rather than exact, answer. For example, suppose that we use the Maclaurin’s series
expansion to represent sinx, so that

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

If we want a number that approximates sin(π2 ), we must terminate the expansion in order to obtain

sin(
π

2
) =

π

2
− (π/2)3

3!
+

(π/2)5

5!
− (π/2)7

7!
+E,

where E is the truncation error introduced in the calculation. Truncation errors in numerical analy-
sis usually occur because many numerical methods are iterative in nature, with the approximations
theoretically becoming more accurate as we take more iterations. As a practical matter, we must
stop the iteration after a finite number of steps, thus introducing a truncation error. The Taylor
series is the most important means used to derive numerical schemes and analysis truncation errors.

1.3.3 Round-off Error

This type of errors are associated with the limited number of digits numbers in the computer. For
example, by rounding off 1.32463672 to six decimal places to give 1.324637. Any further calculation
involving such a number will also contain an error. Round-off numbers according to following rules:

1. If first discarded digit is less than 5, leave the remaining digits of number unchanged, that is,
48.47263 ≈ 48.4726.

2. If the first discarded digit is exceeds 5, add 1 to the retained digit. For example, 48.4726 ≈
48.473.

3. If the first discarded digit is exactly 5 and there are nonzero among those discarded, add, 1
to the last retained digit. For example, 3.0554 ≈ 3.06.

4. If the first discarded digit is exactly 5 and all other discarded digits are zero, the last retained
digit is left unchanged if it is even, otherwise 1 is added to it. For example,

3.05500 ≈ 3.06
3.04500 ≈ 3.04.

with these rules, the error is never larger in magnitude than one-half unit of the place of the nth
digit in the rounded number. To understand the nature of round-off errors, it is necessary to learn
the ways numbers are stored and additions and subtractions are performed in a computer. •
A solution is correct within k decimal places if the error is less than 0.5× 10−k.
If x∗ is an approximation to x, then we say that x∗ approximates x to k significant digits if k is the

largest nonnegative integer for which

∣∣∣∣x− x∗

x

∣∣∣∣ < 5× 10−k. •



Chapter 2

Solution of Nonlinear Equations

2.1 Introduction

In this chapter we study one of the fundamental problems of numerical analysis, namely the nu-
merical solution of nonlinear equations. Most equations arising in practice are nonlinear and are
rarely of a form which allows the roots to be determined exactly. Consequently, numerical methods
are used to solve nonlinear algebraic equations when the equations prove intractable to ordinary
mathematical techniques. These numerical methods are all iterative, and they may be used for
equations that contain one or several variables. These techniques can be divided into two cate-
gories; one-point (need one initial approximation) and two- point (need two initial approximations)
methods.

Important Points of the Chapter 2

I. A nonlinear equation in this chapter may be considered any one of the following types:

1. An equation may be an algebraic equation (a polynomial equation of degree n) expressible in
the form:

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, an ̸= 0, n > 1,

where an, an−1, . . . , a1 and a0 are constants. For example, the following equations are nonlin-
ear.

x2 + 5x+ 6 = 0; x3 = 2x+ 1; x200 − 2x+ 1 = 0.

2. The power of the unknown variable (not a positive integer number) involved in the equation
must be difficult to manipulate. For example, the following non-polynomial equations are
nonlinear

x−1 + 2x = 1;
√
x+ x = 2; x2/3 +

2

x
+ 4 = 0.

3. An equation may be a transcendental equation, the equation which involves the trigonometric
functions, exponential functions and logarithmic functions. For example, all the following
transcendental equations are nonlinear

x = cos(x); ex + x− 10 = 0; x+ lnx = 10.
7



8 2.2 Method of Bisection

II. Given nonlinear equation must be put in the following form

f(x) = 0, where f(x) must be nonlinear function.

III. There may be many roots of the given nonlinear equation but we will seek the approximation
of only one of its real root α lies in the given interval [a, b], that is

f(α) = 0, where α ∈ [a, b].

IV. If f(x) is continuous function in in a interval [a, b] and f(x) has opposite signs at the end
points of the interval, then there must be a root of nonlinear equation f(x) = 0 in [a, b].
V. Root of a nonlinear equation may be simple (not repeating) or multiple (repeating). Simple
root means

f(α) = 0 but f ′(α) ̸= 0.

For example, α1 = −3 and α2 = −2 are the simple roots of the nonlinear equation x2+5x+6 = 0.
For the multiple root, we mean

f(α) = 0 but f ′(α) = 0.

For example, α1 = −2 and α2 = −2 are the multiple roots of the nonlinear equation x2+4x+4 = 0.
VI. The methods we will consider in this chapter are iterative methods and they are, bisection
method, fixed-point method, Newton method (also called, Newton-Raphson method) and secant
method which give us the approximation of single (or simple) root of the nonlinear equation. For
the multiple roots of the nonlinear equation we will use other iterative methods, called, the first
modified Newton’s method (also called the Schroeder’s method) and the second modified Newton’s
method. The iterative methods for the approximation of simple root can be use also for the ap-
proximation of the multiple roots but they are very slow. All the numerical methods described in
this chapter are applicable to general nonlinear functions. The iterative methods we will discuss in
this chapter are basically of two types: one in which the convergence is guaranteed and the other
in which the convergence depends on the initial approximation.
VII. Remember that the best method for the approximation of the simple root of nonlinear equa-
tion is Newton’s method (called quadratic convergent method) and for multiple root of nonlinear
equation is modified Newton’s method (called quadratic convergent method). Newton’s method
for multiple root of nonlinear root is called a linear convergent method.

Definition 2.1 (Root of an Nonlinear Equation)

Assume that f(x) is a continuous function. An number α for which f(α) = 0 is called a root of the
equation f(x) = 0 or a zero of the function f(x). •

First, we shall discuss the numerical iterative methods for simple root of nonlinear equations in a
single variable. The problem here can be simply written down as:

f(x) = 0. (2.1)
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Figure 2.1: Graphical Solution of Bisection Method.

2.2 Method of Bisection

This is one of the simplest iterative technique for determining roots of (2.1) and it needs two initial
approximations to start. It is based on the Intermediate Value Theorem. This method is also called
the interval-halving method because the strategy is to bisect or halve the interval from one endpoint
of the interval to the other endpoint and then retain the half interval whose end still bracket the
root. It is also referred to a bracketing method or sometimes called the Bolzano’s method. The
fact that the function is required to change sign only once gives us a way to determine which half
interval to retain; we keep the half on which f(x) changes sign or became zero. The basis for this
method can be easily illustrated by considering a function y = f(x). Our object is to find an x
value for which y is zero. Using this method, we begin by supposing f(x) is a continuous function
defined on the interval [a, b] and then by evaluation the function at two x values, say, a and b, such
that

f(a)f(b) < 0.

The implication is that one of the values is negative and the other is positive. These conditions
can be easily satisfied by sketching the function, see Figure 2.1. Obviously, the function is negative
at one endpoint a of the interval and positive at other endpoint b and is continuous on a ≤ x ≤
b. Therefore the root must lies between a and b (by Intermediate Value Theorem) and a new
approximation to the root α be calculated as

c =
a+ b

2
,

and, in general

cn =
an + bn

2
, n ≥ 1. (2.2)

The iterative formula (2.2) is known as the bisection method.
If f(c) ≈ 0, then c ≈ α is the desired root, and, if not, then there are two possibilities. Firstly, if
f(a)f(c) < 0, then f(x) has a zero between point a and point c. The process can then be repeated
on the new interval [a, c]. Secondly, if f(a)f(c) > 0 it follows that f(b)f(c) < 0 since it is known
that f(b) and f(c) have opposite signs. Hence, f(x) has zero between point c and point b and
the process can be repeated with [c, b]. We see that after one step of the process, we have found
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Figure 2.2: Graphical Solution of x3 = 2x+ 1 in the intervals [−2, 2] and [−1.5, 2].

either a zero or a new bracketing interval which is precisely half the length of the original one.
The process continue until the desired accuracy is achieved. We use the bisection process in the
following example.

Example 2.1 Use the bisection method to find the approximation to the root of the equation

x3 = 2x+ 1,

that is located in the interval [1.5, 2.0] accurate to within 10−2.

Solution. Since the given function f(x) = x3−2x−1 is a polynomial function and so is continuous
on [1.5, 2.0], starting with a1 = 1.5 and b1 = 2, we compute:

a1 = 1.5 : f(a1) = −0.625
b1 = 2.0 : f(b1) = 3.0,

and since f(1.5)f(2.0) < 0, so that a root of f(x) = 0 lies in the interval [1.5, 2.0]. Using formula
(2.2) (when n = 1), we get:

c1 =
a1 + b1

2
= 1.75; f(c1) = 0.859375.

Hence the function changes sign on [a1, c1] = [1.5, 1.75]. To continue, we squeeze from right and
set a2 = a1 and b2 = c1. Then the midpoint is:

c2 =
a2 + b2

2
= 1.625; f(c2) = 0.041056.

Continue in this way we obtain a sequence {ck} of approximation shown by Table 2.1.
We see that the functional values are approaching zero as the number of iterations is increase.
We got the desired approximation to the root of the given equation is c6 = 1.617188 ≈ α after 6
iterations with accuracy ϵ = 10−2. •

To use MATLAB command for the bisection method, first we define a function m-file as fn.m for
the equation as follows:
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Table 2.1: Solution of x3 = 2x+ 1 by bisection method
n Left Right Function Value

Endpoint an Midpoint cn Endpoint bn f(cn)

01 1.500000 1.750000 2.000000 0.8593750
02 1.500000 1.625000 1.750000 0.0410156
03 1.500000 1.562500 1.625000 -0.3103027
04 1.562500 1.593750 1.625000 -0.1393127
05 1.593750 1.609375 1.625000 -0.0503273
06 1.609375 1.617188 1.625000 -0.0049520

function y = fn(x)
y = x.ˆ 3− 2 ∗ x− 1;

then use the single commands:

>> s = bisect(′fn′, 1.5, 2, 1e− 2)

We can easily find the roots (1.61803399,−1.00,−0.61803399) of the equation x3 = 2x + 1 by
defining the coefficients of the polynomial equation using MATLAB commands as:

>> CP = [1 0 − 2 − 1]; Sol = roots(CP );

Example 2.2 Find the point of intersection of the graphs y = x3 + 2x− 1 and y = sinx, then use
bisection method within accuracy 10−3.

Solution. The graphs in the Figure 2.3 show that there is an intersection at about point (0.66, 0.61).
Using the function f(x) = x3 + 2x− sinx− 1 and the starting interval [0.5, 1.0], we compute:

a1 = 0.5 : f(a1) = −0.3544,
b1 = 1.0 : f(b1) = 1.1585.

Since f(x) is continuous on [0.5, 1.0] and f(0.5).f(1.0) < 0, so that a root of f(x) = 0 lies in the
interval [0.5, 1.0]. Using formula (2.2) (when n = 1), we get:

c1 =
a1 + b1

2
= 0.75; f(c1) = 0.240236.

Hence the function changes sign on [a1, c1] = [0.5, 0.75]. To continue, we squeeze from right and
set a2 = a1 and b2 = c1. Then the midpoint is:

c2 =
a2 + b2

2
= 0.625; f(c2) = −0.090957.

Then continue in this manner we obtain a sequence {ck} of approximation shown by Table 2.2.
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Figure 2.3: Graphical Solution of sinx = x3 + 2x− 1 and x3 + 2x− sinx = 1.

Table 2.2: Solution of x3 + 2x− sinx− 1 by bisection method
n Left Right Function Value

Endpoint an Endpoint bn Midpoint cn f(cn)

01 0.5000 1.0000 0.750000 0.240236
02 0.5000 0.7500 0.625000 -0.090957
03 0.6250 0.7500 0.687500 0.065344
...

...
...

...
...

07 0.6563 0.6641 0.660156 -0.005228
08 0.6602 0.6641 0.662109 -0.000302

Program 2.1
MATLAB m-file for the Bisection Method
function sol=bisect(fn,a,b,tol)
fa = feval(fn, a); fb = feval(fn, b);
if fa ∗ fb > 0; fprintf(’Endpoints have same sign’) return end
while abs (b− a) > tol c = (a+ b)/2; fc = feval(fn, c);
if fa ∗ fc < 0; b = c; else a = c; end; end; sol=(a+ b)/2;

We see that the functional values are approaching zero as the number of iterations is increase.
We got the desired approximation to the root of the given equation is c8 = 0.662109 ≈ α after 8
iterations with accuracy ϵ = 10−3. •

Theorem 2.1 (Bisection Convergence and Error Theorem)

Let f(x) be continuous function defined on the given initial interval [a0, b0] = [a, b] and suppose that
f(a)f(b) < 0. Then bisection method (2.2) generates a sequence {cn}∞n=1 approximating α ∈ (a, b)
with the property

|α− cn| ≤
b− a

2n
, n ≥ 1. (2.3)



Chapter Two Solution of Nonlinear Equations 13

Moreover, to obtain accuracy of

|α− cn| ≤ ϵ,

(for ϵ = 10−k) it suffices to take

n ≥
ln
{
10k(b− a)

}
ln 2

, (2.4)

where k is nonnegative integer.

Proof.

Since both the root α and the midpoint c1 lie in the interval [a, b], the distance between them cannot
be greater than of this width interval. Thus

|α− cn| ≤
bn−1 − an−1

2
, for all n.

Observe that

b1 − a1 =
b0 − a0

2
,

then

b2 − a2 =
b1 − a1

2
=

b0 − a0
22

.

Finite mathematical induction is used to conclude that

bn−1 − an−1 =
b0 − a0
2n−1

.

Therefore, the error is bounded as follows

|α− cn| ≤
bn−1 − an−1

2
=

b0 − a0
2n

,

gives the estimate.

Now to establish the bound on the number of bisections n (or iterations), we simply observe that

b− a

2n
≤ 10−k,

together with (2.3) implies that

|α− cn| ≤ 10−k,

that is, we wish to calculate a root to within 10−k. Since 2n ≥ 10k(b− a), so by taking logarithms,

we get n ln 2 ≥ ln
{
10k(b− a)

}
, and solving for n, we get the inequality (2.4). •

The above Theorem 2.1 gives us information about bounds for errors in approximation and the
number of bisections needed to obtain any given accuracy.
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Example 2.3 Show that number of iterations of bisection will require to attain an accuracy of 10−4

using the starting interval [a, b] is

n ≥ ln(b− a) + 4 ln 5

ln 2
+ 4.

Determine the number of iterations needed to achieve the an approximation with same above given
accuracy to the solution of x3 − 2x− 1 = 0 lying in the interval [1.5, 2].

Solution. By using the inequality (2.4), we get

n ≥
ln
{
10k(b− a)

}
ln 2

=
ln(b− a) + ln[(5)(2)]4

ln 2
,

or

n ≥ ln(b− a) + 4[ln 5 + ln 2]

ln 2
=

ln(b− a) + 4 ln 5

ln 2
+ 4.

Now by taking a = 1.5 and b = 2 in the above inequality, we get

n ≥ ln(2− 1.5) + 4 ln 5

ln 2
+ 4 = 8.2877 + 4 = 12.2877.

So no more than thirteen iterations are required to obtain an approximation accurate to within the
given accuracy 10−4. •

Example 2.4 Find a bound for the number of iterations needed to achieve an approximation with
accuracy 10−1 to the solution of xex = 1 lying in the interval [0.5, 1] using the bisection method.
Find an approximation to the root with this degree of accuracy.

Solution. Here a = 0.5, b = 1 and k = 1, then by using inequality (2.4), we get

n ≥ ln[101(1− 0.5)]

ln 2
≈ 2.3219.

So no more than three iterations are required to obtain an approximation accurate to within 10−1.
The given function f(x) = xex − 1 is continuous on [0.5, 1.0], so starting with a1 = 0.5 and b1 = 1,
we compute:

a1 = 0.5 : f(a1) = −0.1756,
b1 = 1 : f(b1) = 1.7183,

since f(0.5)f(1) < 0, so that a root of f(x) = 0 lies in the interval [0.5, 1]. Using formula (2.2)
(when n = 1), we get:

c1 =
a1 + b1

2
= 0.75; f(c1) = 0.5878.

Hence the function changes sign on [a1, c1] = [0.5, 0.75]. To continue, we squeeze from right and
set a2 = a1 and b2 = c1. Then the bisection formula gives

c2 =
a2 + b2

2
= 0.625; f(c2) = 0.1677.
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Figure 2.4: Graphical Solution of xex = 1.

Finally, we have in the similar manner as

c3 =
a3 + b3

2
= 0.5625,

the value of the third approximation which is accurate to within 10−1. •

It is important to keep in mind that the error analysis gives only a bound for the number of
iterations necessary, and in many cases this bound is much larger than the actual number required.

Example 2.5 Use the bisection method to compute the first three approximate values for 4
√
18.

Also, compute an error bound and absolute error for your approximation.

Solution. Consider

x =
4
√
18 = (18)1/4, or x4 − 18 = 0.

Choose the interval [2, 2.5] on which the function f(x) = x4 − 18 is continuous and the function
f(x) satisfies the sign property, that is

f(2)f(2.5) = (−2)(21.0625) = −42.125 < 0.

Hence root α = 4
√
18 = 2.0598 ∈ [2, 2.5] and we compute its first approximate value by using formula

(2.2) (when n = 1) as follows:

c1 =
2.0 + 2.5

2
= 2.2500 and f(2.25) = 7.6289.

Since the function f(x) changes sign on [2.0, 2.25]. To continue, we squeeze from right and use
formula (2.2) again to get the following second approximate value of the root α as:

c2 =
2.0 + 2.25

2
= 2.1250 and f(2.1250) = 2.3909.

Then continue in the similar way, the third approximate value of the root α is c3 = 2.0625 with
f(2.0625) = 0.0957. Note that the value of the function at each new approximate value is decreasing
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which shows that the approximate values are coming closer to the root α. Now to compute the error
bound for the approximation we use the formula (2.3) and get

|α− c3| ≤
2.5− 2.0

23
= 0.0625,

which is the possible maximum error in our approximation and

|E| = |2.0598− 2.0625| = 0.0027,

be the absolute error in the approximation. •

One drawback of the bisection method is the convergence rate is raster slow. However, the rate of
convergence is guaranteed. So for this reason it is often used as a started for the more efficient used
to find roots of the nonlinear equations. The method may give a false root if f(x) is discontinuous
on the given interval [a, b].

Procedure 2.1 (Bisection Method)

1. Establish an interval a ≤ x ≤ b such that f(a) and f(b) are of opposite sign, that is,
f(a).f(b) < 0.

2. Choose an error tolerance (ϵ > 0) value for the function.

3. Compute a new approximation for the root: cn =
(an + bn)

2
; n = 1, 2, 3, . . . .

4. Check tolerance. If |f(cn)| ≤ ϵ, use cn, n ≥ 1 for desired root; otherwise continue.

5. Check, if f(an)f(cn) < 0, then set bn = cn; otherwise set an = cn.

6. Go back to step 3, and repeat the process.

2.3 Fixed-Point Method

This is another iterative method to solve the nonlinear equation (2.1) and needs one initial ap-
proximation to start. This is a very general method for finding the root of (2.1) and it provides us
with a theoretical framework within which the convergence properties of subsequent methods can
be evaluated. The basic idea of this method which is also called successive approximation method
or function iteration, is to rearrange the original equation

f(x) = 0, (2.5)

into an equivalent expression of the form

x = g(x). (2.6)

Any solution of (2.6) is called a fixed-point for the iteration function g(x) and hence a root of (2.5).
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Figure 2.5: Graphical Solution of Fixed-Point Method.

Definition 2.2 (Fixed-Point of a Function)

A fixed-point of a function g(x) is a real number α such that α = g(α).

For example, x = 2 is a fixed-point of the function g(x) =
x2 − 4x+ 8

2
because g(2) = 2. •

The task of solving (2.5) is therefore reduced to that of finding a point satisfying the fixed-point
condition (2.6). The fixed-point method essentially solves two functions simultaneously; y = x and
y = g(x). The point of intersection of these two functions is the solution to x = g(x), and thus to
f(x) = 0, see Figure 2.5.

This method is conceptually very simple. Since g(x) is also nonlinear, the solution must be obtained
iteratively. An initial approximation to the solution, say, x0, must be determined. For choosing
the best initial value x0 for using this iterative method, we have to find an interval [a, b] on which

the original function f(x) satisfies the sign property and then use the midpoint
a+ b

2
as the initial

approximation x0. Then this initial value x0 is substituted in the function g(x) to determined the
next approximation x1 and so on.

Definition 2.3 (Fixed-Point Method)

The iteration defined in the following

xn+1 = g(xn); n = 0, 1, 2, . . . , (2.7)

is called the fixed-point method or the fixed-point iteration. •

The value of the initial approximation x0 is chosen arbitrarily and the hope is that the sequence
{xn}∞n=0 converges to a number α which will automatically satisfies (2.5). Moreover, since (2.5) is
a rearrangement of (2.6), α is guaranteed to be a zero of f(x). In general, there are many different
ways of rearranging of (2.6) in (2.5) form. However, only some of these are likely to give rise to
successful iterations but sometime we don’t have successful iterations. To describe such behaviour,
we discuss the following example.
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Example 2.6 Consider the nonlinear equation x3 = 2x+1 which has a root in the interval [1.5, 2.0]
using fixed-point method with x0 = 1.5, take three different rearrangements for the equation.

Solution. Let us consider the three possible rearrangement of the given equation as follows:

(i) xn+1 = g1(xn) =
(x3n − 1)

2
; n = 0, 1, 2, . . . ,

(ii) xn+1 = g2(xn) =
1

(x2n − 2)
; n = 0, 1, 2, . . . ,

(iii) xn+1 = g3(xn) =

√
(2xn + 1)

xn
; n = 0, 1, 2, . . . ,

then the numerical results for the corresponding iterations, starting with the initial approximation
x0 = 1.5 with accuracy 5 × 10−2, are given in Table 2.3. We note that the first two considered

Table 2.3: Solution of x3 = 2x+ 1 by fixed-point method
n xn xn+1 = g1(xn) xn+1 = g2(xn) xn+1 = g3(xn)

= (x3n − 1)/2 = 1/(x2n − 2) =
√
(2xn + 1)/xn

00 x0 1.500000 1.500000 1.500000
01 x1 1.187500 4.000000 1.632993
02 x2 0.337280 0.071429 1.616284
03 x3 -0.480816 -0.501279 1.618001
04 x4 -0.555579 -0.571847 1.618037
05 x5 -0.585745 -0.597731 1.618034

sequences diverge and the last one converges. This example asks the need for a mathematical
analysis of the method. The following theorem gives sufficient conditions for the convergence of the
fixed-point iteration. •

Theorem 2.2 (Fixed-Point Theorem)

If g is continuously differentiable on the interval [a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then

(a) g has at-least one fixed-point in the given interval [a, b].

Moreover, if the derivative g′(x) of the function g(x) exists on an interval [a, b] which contains the
starting value x0, with

k ≡ max
a≤x≤b

|g′(x)| < 1; for all x ∈ [a, b]. (2.8)

Then

(b) The sequence (2.7) will converge to the attractive (unique) fixed-point α in [a, b].

(c) The iteration (2.7) will converge to α for any initial approximation.
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(d) We have the error estimate

|α− xn| ≤
kn

1− k
|x1 − x0|, for all n ≥ 1. (2.9)

(e) The limit holds:

lim
n→∞

α− xn+1

α− xn
= g′(α). (2.10)

Proof

(a) Suppose g is continuous on [a, b] and g(x) ∈ [a, b]. We need to show it has a fixed point. If
g(a) = a and g(b) = b, then the function g has a fixed-point at the endpoints. Suppose that it
is not happening, that is, g(a) ̸= a and g(b) ̸= b and define a function f(x) = g(x)− x which
is continuous on [a, b]. Then f(x) has a zero in [a, b] if and only if g(x) has a fixed point in
[a, b] but

f(a) = g(a)− a > 0,

since g(a) is in [a, b] and hence cannot be smaller than a, and we have assumed that g(a) is
not equal to a. Similarly,

f(b) = g(b)− b < 0,

and so by the Intermediate Value Theorem there is a α in the interval (a, b) such that f(α) = 0,
which implies that α = g(α). Thus the function g(x) has at least one fixed-point in [a, b]. This
proves (a).

(b) Suppose now that (2.8) holds, and α and β are two fixed-points of the function g in [a, b].
Then we have

α = g(α) and β = g(β).

In addition, by the Mean Value Theorem, we have that for any two points α and β in [a, b],
there exits a number η such that

|α− β| = |g(α)− g(β)| = |g′(η)||α− β| ≤ k|α− β|,

where η ∈ (a, b). Thus

|α− β| − k|α− β| or (1− k)|α− β| ≤ 0.

Since k < 1, we must have α = β; and thus, the function g has a unique fixed-point α in the
interval [a, b]. This proves (b).

(c) For the convergence, consider the iteration

xn = g(xn−1), for all n ≥ 1, 2 . . . ,

and the definition of the fixed-point, that is

α = g(α).
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If we subtract last two equations and take the absolute values, we get

|α− xn| = |g(α)− g(xn−1)| ≤ k|α− xn−1|.

The recursion can be solved readily to get

|α− xn| ≤ k|α− xn−1| ≤ k2|α− x− n− 2| · · · ≤ kn|α− x0|, (2.11)

from which it follows that

as n → ∞, kn → 0, (since k < 1),

therefore, xn → α. Hence the iteration converges. This proves (c).

(d) Since we note that

|α− x0| = |α− x1 + x1 − x0| ≤ |α− x1|+ |x1 − x0|

≤ |g(α)− g(x0)|+ |x1 − x0| ≤ k|α− x0|+ |x1 − x0|,

which gives

|α− x0| − k|α− x0| ≤ |x1 − x0| or (1− k)|α− x0| ≤ |x1 − x0|,

and from this it follows that

|α− x0| ≤
1

1− k
|x1 − x0|.

From (2.11), we can write above equation as follows

|α− xn| ≤
kn

1− k
|x1 − x0|,

which proves (d).

(e) Finally, by subtracting iteration xn+1 = g(xn) and α = g(α), we have

α− xn+1 = g(α)− g(xn) = g′(η(x))(α− xn),

which implies that
α− xn+1

α− xn
= g′(η(x)),

and by taking limits, we have

lim
n→∞

α− xn+1

α− xn
= lim

n→∞
g′(η(x)) = g′(α),

since η(x) → α is forced by the convergence of xn to α. This proves (e). •

Now we come back to our previous Example 2.6 and discuss that why the first two rearrangements
we considered, do not converge but on the other hand, last sequence has a fixed-point and converges.
Since, we observe that f(1.5)f(2) < 0, then the solution we seek is in the interval [1.5, 2].
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Figure 2.6: Graphical Solution of x =
√
(2x+ 1)/x.

(i) For g1(x) =
x3 − 1

3
, we have g′1(x) = x2, which is greater than unity throughout the interval

[1.5, 2]. So by Fixed-Point Theorem 2.2 this iteration will fail to converge.

(ii) For g2(x) =
1

x2 − 2
, we have g′2(x) =

−2x

(x2 − 2)2
, and |g′2(1.5)| > 1, so from Fixed-Point

Theorem 2.2 this iteration will fail to converge.

(iii) For g3(x) =

√
2x+ 1

x
, we have g′3(x) = x−3/2/2

√
2x+ 1 < 1, for all x in the given interval

[1.5, 2]. Also, g3 is decreasing function of x, and g3(1.5) = 1.63299 and g3(2) = 1.58114
both lie in the interval [1.5, 2]. Thus g3(x) ∈ [1.5, 2], for all x ∈ [1.5, 2], so from Fixed-Point
Theorem 2.2 the iteration will converge, see Figure 2.6. •

Note 2.1 From (2.9) Note that the rate of convergence of the fixed-point method depends on the

factor
kn

(1− k)
; the smaller the value of k, then faster the convergence. The convergence may be

very slow if the value of k is very close to 1. •

Note 2.2 Assume that g(x) and g′(x) are continuous functions of x for some open interval I, with
the fixed-point α contained in this interval. Moreover assume that

|g′(α)| < 1, for α ∈ I,

then, there exists an interval [a, b], around the solution α for which all the conditions of Theorem 2.2
are satisfied. But if

|g′(α)| > 1, for α ∈ I,

then the sequence (2.7) will not converge to α. In this case α is called a repulsive fixed-point. If

|g′(α)| = 0, for α ∈ I,

then the sequence (2.7) converges very fast to the root α while if

|g′(α)| = 1, for α ∈ I,
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then the convergence the sequence (2.7)is not guaranteed and if the convergence happened, it would
be very slow. Thus to get the faster convergence, the value of |g′(α)| should be equal to zero or very
close to zero. •

Example 2.7 If α and β are roots of the nonlinear equation x2 + ax+ b = 0, then show that the
following iterative schemes

xn+1 = −
(
axn + b

xn

)
= g1(xn), n ≥ 0,

will converge near x = α if |α| > |β| and the other scheme

xn+1 = −
(

b

xn + a

)
= g2(xn), n ≥ 0,

will converge near x = α if |α| < |β|.

Solution. Since α and β are roots of the nonlinear equation x2 + ax+ b = 0, then we have

α+ β = −a and αβ = b.

The first iterative scheme will converge to x = α if

|g′1(α)| < 1, that is,

∣∣∣∣ bα2

∣∣∣∣ < 1,

it gives
|α|2 > |b| = |α||β|, gives |α| > |β|.

The second iterative scheme will converge to x = α if

|g′2(α)| < 1, that is,

∣∣∣∣ b

(α+ a)2

∣∣∣∣ < 1,

which implies that

(α+ a)2 > |b| or |β|2 > |b|, (since α+ a = −β).

Hence
|β|2 > |b| = |α||β|, gives |β| > |α|,

or, |α| < |β|. •

Example 2.8 Find an interval [a, b] on which fixed-point problem x =
2− ex + x2

3
will converges.

Estimate the number of iterations n within accuracy 10−5.

Solution. Since x =
2− ex + x2

3
can be written as

f(x) = ex − x2 + 3x− 2 = 0,
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and we observe that f(0)f(1) = (−1)(e1) < 0, then the solution we seek is in the interval [0, 1].

For g(x) =
2− ex + x2

3
, we have g′(x) =

2x− ex

3
< 1, for all x in the given interval [0, 1]. Also,

g is decreasing function of x and g(0) = 0.3333 and g(1) =
3− e

3
= 0.0939 both lie in the interval

[0, 1]. Thus g(x) ∈ [0, 1], for all x ∈ [0, 1], so from Fixed-Point Theorem 2.2 the g(x) has a unique
fixed-point in [0, 1]. Taking x0 = 0.5, we have

x1 = g(x0) =
2− ex0 + x20

3
= 0.2004.

Also, we have
k1 = |g′(0)| = 0.3333 and k2 = |g′(1)| = 0.2394,

which give k = max{k1, k2} = 0.3333. Thus the error estimate (2.9) within the accuracy 10−5 is

|α− xn| ≤ 10−5, gives
(0.3333)n

1− 0.3333
(0.2996) ≤ 10−5,

and by solving this inequality, we obtain n ≥ 9.7507. So we need ten approximations to get the
desired accuracy for the given problem. •

Example 2.9 Convert the equation x2−5 = 0 to the fixed-point problem x = x+c(x2−5) with c a
nonzero constant. Find a value of c to ensure rapid convergence of the following scheme to α =

√
5

xn+1 = xn + c(x2n − 5), n ≥ 0.

Solution. Given x2 − 5 = 0, and it can be written as for c ̸= 0

c(x2 − 5) = 0 or − x+ x+ c(x2 − 5) = 0.

From this we have
x = x+ c(x2 − 5) = g(x),

and it gives the iterative scheme

xn+1 = xn + c(x2n − 5) = g(xn), n ≥ 0.

For guaranteed convergence of this scheme, we mean that

|g′(x)| < 1 or |1 + 2cx| < 1 or − 1 < 1 + 2cx < 1.

Moreover, the convergence will be rapid if

g′(α) = 1 + 2αc = 0.

Since α =
√
5, therefore

1 + 2
√
5c = 0.

Thus, we have c = − 1

2
√
5
, the required value of c. •
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Figure 2.7: Graphical Solution of x = 3−x.

Example 2.10 Show that the function g(x) = 3−x on the interval [0, 1] has at least one fixed-point
but it is not unique.

Solution. Given x = g(x) = 3−x, and it can be written as

x− 3−x = f(x) = 0.

So f(0)(1) = (−1)(2/3) < 0, so f(x) has a root in the interval [0, 1], see Figure 2.7. Note that
g is decreasing function of x and g(0) = 1 and g(1) = 0.3333 both lie in the interval [0, 1]. Thus
g(x) ∈ [0, 1], for all x ∈ [0, 1], so from Fixed-Point Theorem 2.2 the function g(x) has at least one
fixed-point in [0, 1]. Since the derivative of the function g(x) is

g′(x) = −3−x ln 3,

which is less than zero on [0, 1], therefore, the function g is decreasing on [0, 1]. But
g′(0) = − ln 3 = −1.0986, so

|g′(x)| > 1 on (0, 1).

Thus from Fixed-Point Theorem 2.2 the function g(x) has no unique fixed-point in [0, 1]. •

Example 2.11 Show that the function g(x) =
√
2x− 1 on the interval [0, 1] that satisfies none of

the hypothesis of Theorem 2.2 but still has a unique fixed-point on [0, 1].

Solution. Since x = g(x) =
√
2x− 1, it gives

x2 − 2x+ 1 = (x− 1)2 = f(x) = 0.

Then x = α = 1 ∈ [0, 1] is the root of the nonlinear equation f(x) = 0 and the fixed-point of the
function g(x) as g(1) = 1. But notice that the function g(x) is not continuous on the interval [0, 1]
and the derivative of the function g(x)

g′(x) =
1√

2x− 1
,

does not exist on the interval (0, 1). So all the conditions of Fixed-Point Theorem 2.2 fail. •
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Example 2.12 Show that the fixed point form of the equation x = N1/3 can be written as x = Nx−2

and the associated iterative scheme

xn+1 = Nx−2
n , n ≥ 0,

will not successful (diverge) in finding the approximation of cubic root of the positive number N .

Solution. Given x = N1/3 and it can be written as

x3 −N = 0 or x =
N

x2
= Nx−2.

It gives the iterative scheme

xn+1 = Nx−2
n = g(xn), n ≥ 0.

From this, we have

g(x) = Nx−2 and g′(x) = −2Nx−3.

Since α = x = N1/3, therefore

g′(α) = −2Nα−3 and g′(N1/3) = −2N(N1/3)−3 = −2NN−1 = −2.

Thus

|g′(N1/3)| = | − 2| = 2 > 1,

which shows the divergence. •

Example 2.13 Which of the following sequences will converge faster to
√
5

(a) xn+1 = xn + 1− x2n
5
, (b) xn+1 =

1

3

[
3xn + 1− x2n

5

]
.

Solution. It can be easily verify by using the Note 2.2. From the first sequence, we have

g1(x) = x+ 1− x2

5
and g′1(x) = 1− 2x

5
,

which implies that

|g′1(
√
5)| =

∣∣∣∣∣1− 2
√
5

5

∣∣∣∣∣ = 0.1056 < 1.

Similarly, from the second sequence, we have

g2(x) =
1

3

[
3x+ 1− x2

5

]
and g′2(x) =

1

3

[
3− 2x

5

]
, gives, |g′2(

√
5)| = 0.701186 < 1.

We note that both sequences are converging to
√
5 but the sequence (a) will converges faster than

the sequence (b) because the value of |g′1(
√
5)| is closer to zero than by |g′2(

√
5)|. •
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Figure 2.3.1. Convergent function iterations.
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Figure 2.3.2. Divergent function iterations.

The graphical interpretation of the fixed-point method is illustrated in Figure 2.3.1(a) and in
Figure 2.3.1(b). The fixed point α is the abscissa of the intersection of the graph of the function
g(x) with the line y = x. The ordinate of the function g(x) at x0 is the value of x1. To turn this
ordinate into an abscissa, reflect it in the line y = x. We may repeat this process to get x2, x3
and so on. It is seen that the iterates see Figure 2.3.1(a) moving (zigzag) towards the fixed-point,
while in Figure 2.3.2(b) they going away: the iterations in Figure 2.3.2(a) converge if you start near
enough to the fixed point, whereas the other diverge no matter how close you start. The fixed-point
in Figure 2.3.2(a) is said to be attractive, and the one in Figure 2.3.2(b) is said to be repulsive.

Example 2.14 Assuming that the iterative schemes generated by

xn+1 = g1(xn) =
1
3(x

2
n + 2); n = 0, 1, . . . ,

xn+1 = g2(xn) = 3− 2

xn
; n = 0, 1, . . . ,

both converge, show that they do so to different roots of the same equation x2 − 3x + 2 = 0. Find
the third approximation of to the root 1 using suitable iterative scheme, starting with x0 = 0.5.

Solution. If xn converges to α, then the first iterative scheme gives

α = g1(α) =
1

3
(α2 + 2), that is, α2 − 3α+ 2 = 0,
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which has the roots α = 1 and α = 2. Since the first derivative of the function g1(x) is

g′1(x) =
2

3
x,

so
|g′1(1)| < 1 and |g′1(2)| > 1.

Hence convergence to α = 1. Now if xn converges to α, then other scheme gives

α = g2(α) = 3− 2

α
, that is, α2 − 3α+ 2 = 0.

Since the first derivative of the function g2(x) is

g′2(x) =
2

x2
,

so
|g′2(2)| < 1 and |g′2(1)| > 1.

Hence convergence to α = 2. Thus first iterative scheme is the most suitable one. Using this suitable
iterative scheme with x0 = 0.5, we get

x1 = g1(x0) = 0.7500, x2 = g1(x1) = 0.8542, x3 = g1(x2) = 0.9099,

and
|α− x3| = |1− 0.9099| = 0.0901,

the required absolute error. •

Example 2.15 Let α1 and α2 are two fixed points of the function

g(x) = 0.5x2 − 1.5x+ 2.

(a) Find the values of both fixed points.
(b) For which fixed point in part (a), the fixed-point method will converge.

Solution. Since f(x) = g(x)− x = 0, so we have

0.5x2 − 2.5x+ 2 = 0.

Solving this quadratic equation, we get

x1 = 1 and x2 = 4.

Then
g(1) = 0.5(12)− 1.5(1) + 2 = 1 and g(4) = 0.5(42)− 1.5(4) + 2 = 4,

showing that α1 = 1 and α2 = 4 are the two fixed points of the given function.
Since the first derivative of the given function g(x) is

g′(x) = x− 1.5,

and its absolute value at the both fixed points are

|g′(1)| = |1− 1.5| = 0.5 < 1 and |g′(4)| = |4− 1.5| = 2.5 > 1.

Therefore, from Fixed-Point Theorem 2.2, we conclude that the fixed-point method will converge for
the fixed-point α1 = 1 only. •
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Figure 2.8: Graphical Solution of ex = x+ 2 Graphical solution of x = ln(x+ 2).

Example 2.16 One of the possible rearrangement of the nonlinear equation ex = x+2, which has
root in [1, 2] is

xn+1 = g(xn) = ln(xn + 2); n = 0, 1, . . . .

(a) Show that g(x) has a unique fixed-point in [1, 2].

(b) Use fixed-point iteration formula (2.7) to compute approximation x3, using x0 = 1.5.

(c) Compute an error estimate |α− x3| for your approximation.

(d) Determine the number of iterations needed to achieve an approximation with accuracy 10−2

to the solution of g(x) = ln(x+2) lying in the interval [1, 2] by using the fixed-point iteration
method.

Solution. Since, we observe that f(1)f(2) < 0, then the solution we seek is in the interval [1, 2].

(a) For g(x) = ln(x+2), we have g′(x) = 1/(x+2) < 1, for all x in the given interval [1, 2]. Also,
g is increasing function of x, and g(1) = ln(3) = 1.0986123 and g(2) = ln(4) = 1.3862944
both lie in the interval [1, 2]. Thus g(x) ∈ [1, 2], for all x ∈ [1, 2], so from fixed-point theorem
the g(x) has a unique fixed-point, see Figure 2.8.

(b) using the given initial approximation x0 = 1.5, we have the other approximations as

x1 = g(x0) = 1.252763, x2 = g(x1) = 1.179505, x3 = g(x2) = 1.156725.

(c) Since a = 1 and b = 2, then the value of k can be found as follows

k1 = |g′(1)| = |1/3| = 0.333 and k2 = |g′(2)| = |1/4| = 0.25,

which give k = max{k1, k2} = 0.333. Thus using the error formula (2.9), we have

|α− x3| ≤
(0.333)3

1− 0.333
|1.252763− 1.5| = 0.013687.
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(d) From the error bound formula (2.9), we have

kn

1− k
|x1 − x0| ≤ 10−2.

By using above parts (b) and (c), we have

(0.333)n

1− 0.333
|1.252763− 1.5| ≤ 10−2.

Solving this inequality, we obtain

n ln(0.333) ≤ ln(0.02698), gives, n ≥ 3.28539.

So we need four approximations to get the desired accuracy for the given problem. •

MATLAB command for the above given rearrangement x = g(x) of f(x) = x3 − 2x − 1 by using
the initial approximation x0 = 1.5, can be written as follows:

function y = fn(x)
y = log(x+ 2);
>> x0 = 1.5; tol = 0.01; sol = fixpt(′fn′, x0, tol);

Program 2.2
MATLAB m-file for the Fixed-Point Method
function sol=fixpt(fn,x0,tol)
old= x0+1; while abs(x0-old) > tol; old=x0;
x0 = feval(fn, old); end; sol=x0;

Procedure 2.2 (Fixed-Point Method)

1. Choose an initial approximation x0 such that x0 ∈ [a, b].

2. Choose a convergence parameter ϵ > 0.

3. Compute new approximation xnew by using the iterative formula (2.7).

4. Check, if |xnew − x0| < ϵ then xnew is the desire approximate root; otherwise set x0 = xnew
and go to step 3.

2.4 Newton’s Method

This is one of the most popular and powerful iterative method for finding roots of the nonlinear
equation (2.1). It is also known as the method of tangents because after estimated the actual root,
the zero of the tangent to the function at that point is determined. It always converges if the
initial approximation is sufficiently close to the exact solution. This method is distinguished from
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Figure 2.9: Graphical Solution of Newton’s Method.

the methods of previous sections by the fact that it requires the evaluation of both the function
f(x) and the derivative of the function f ′(x), at arbitrary point x. The Newton’s method consists
geometrically of expanding the tangent line at a current point xi until it crosses zero, then setting
the next guess xi+1 to the abscissa of that zero crossing, see Figure 2.9. This method is also called
the Newton-Raphson method.
There are many description of the Newton’s method. We shall derive the method from the familiar
Taylor’s series expansion of a function in the neighborhood of a point.
Let f ∈ C2[a, b] and let xn be the nth approximation to the root α such that f ′(xn) ̸= 0 and |α−xn|
is small. Consider the first Taylor polynomial for f(x) expanded about xn, so we have

f(x) = f(xn) + (x− xn)f
′(xn) +

(x− xn)
2

2
f ′′(η(x)), (2.12)

where η(x) lies between x and xn. Since f(α) = 0, then (2.12), with x = α, gives

f(α) = 0 = f(xn) + (α− xn)f
′(xn) +

(α− xn)
2

2
f ′′(η(α)).

Since |α− xn| is small, then we neglect the term involving (α− xn)
2 and so

0 ≈ f(xn) + (α− xn)f
′(xn).

Solving for α, we get

α ≈ xn − f(xn)

f ′(xn)
, (2.13)

which should be better approximation to α than is xn. We call this approximation as xn+1, then
we get

xn+1 = xn − f(xn)

f ′(xn)
, f ′(xn) ̸= 0, for all n ≥ 0. (2.14)

The iterative method (2.14) is called the Newton’s method. Usually the Newton’s method converges
well and quickly but its convergence cannot, however guaranteed and it may sometime converge to a
different root from the one expected. In particular, there may be difficulties if initial approximation
is not sufficiently close to the actual root. The most serious problem of the Newton’s method is that
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some functions are difficult to differentiate analytically, and some functions cannot be differentiated
analytically at all. The Newton’s method is not restricted to one-dimension only. The method
readily generalizes to multiple dimensions. It should be noted that this method is suitable for
finding real as well as imaginary roots of the polynomials.

Example 2.17 Use the Newton’s method to find the root of x3 = 2x + 1 that is located in the
interval [1.5, 2.0] accurate to 10−2, take an initial approximation x0 = 1.5.

Solution. Given f(x) = x3 − 2x− 1 and so f ′(x) = 3x2 − 2. Now evaluating f(x) and f ′(x) at the
give approximation x0 = 1.5, gives

x0 = 1.5, f(1.5) = −0.625, f ′(1.5) = 4.750.

Using the Newton’s iterative formula (2.14), we get

x1 = x0 −
f(x0)

f ′(x0)
= 1.5− (−0.625)

4.75
= 1.631579.

Now evaluating f(x) and f ′(x) at the new approximation x1, gives

x1 = 1.631579, f(1.631579) = 0.0801869, f ′(1.631579) = 5.9861501.

Using the iterative formula (2.14) again to get other new approximation. The successive iterates
were shown in the Table 2.4. Just after the third iterations the required root is approximated to

Table 2.4: Solution of x3 = 2x+ 1 by Newton’s method
n xn f(xn) f ′(xn) Error = x− xn
00 1.500000 -0.625000 4.750000 0.1180339
01 1.631579 0.0801869 5.9861501 -0.0135451
02 1.618184 0.000878 5.855558 -0.0001501
03 1.618034 0.00000007 5.854102 -0.0000001

be x3 = 1.618034 and the functional value is reduced to 7.0 × 10−8. Since the exact solution is
1.6180339, so the actual error is 1 × 10−7. We see that the convergence is quite faster than the
methods considered previously. •

To get the above results using MATLAB command, firstly the function x3−2x−1 and its derivative
3x2 − 2 were saved in m-files called fn.m and dfn.m, respectively written as follows:

function y = fn(x) function dy = dfn(x)
y = x.ˆ 3− 2 ∗ x− 1; dy = 3 ∗ x.ˆ 2− 2;

after which we do the following:

>> x0 = 1.5; tol = 0.01; sol = newton(′fn′,′ dfn′, x0, tol);
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Figure 2.10: Graphical Solution of the function y = x2.

Example 2.18 Use Newton’s method to approximate, to within 10−4, the value of x that produces
the point on the graph of y = x2 that is closest to (1, 0), using initial approximation x0 = 1.

Solution. The distance between an arbitrary point (x, x2) on the graph of y = x2 and the point
(1, 0) is

d(x) =
√
(x− 1)2 + (x2 − 0)2 =

√
x4 + x2 − 2x+ 1.

Because a derivative is needed to find the critical point of d, it is easier to work with the square of
this function

F (x) = [d(x)]2 = x4 + x2 − 2x+ 1,

whose minimum will occur at the same value of x as the minimum of d(x). To minimize F (x), we
need x so that

F ′(x) = 4x3 + 2x− 2 = 0, gives, f(x) = 4x3 + 2x− 2, f ′(x) = 12x2 + 2.

Applying Newton’s iterative formula (2.14) to find the approximation of this equation, we have

xn+1 = xn − 4x3n + 2xn − 2

12x2n + 2
.

Finding the approximation to the x within 10−4 using the initial approximation x0 = 1, we get

x1 = x0 −
4x30 + 2x0 − 2

12x20 + 2
= 0.7143.

Continue in the same manner, we get, x2 = 0.6052, x3 = 0.5900, x4 = 0.5898, x5 = 0.5898. So
the point on the graph that is closest to (1, 0) has the approximate coordinates (0.5898, 0.3479). •

Program 2.3
MATLAB m-file for the Newton’s Method
function sol=newton(fn,dfn,x0,tol)
old = x0+1; while abs (x0− old) > tol; old = x0;
x0 = old− feval(fn, old)/feval(dfn, old); end; sol=x0;
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Example 2.19 If the difference of two numbers x and y is 6 and the square root of their product
is 4, then use Newton’s method to approximate, to within 10−4, the largest value of the number x
and the corresponding number y using initial approximation x0 = 7.5.

Solution. Given
x− y = 6 and

√
xy = 4.

Solving the above equations for x, we have

x(x− 6) = 16 or x2 − 6x− 16 = f(x) = 0.

Applying Newton’s iterative formula (2.14) to find the approximation of this equation, we have

xn+1 = xn − x2n − 6xn − 16

2xn − 6
.

Finding the approximation to within 10−4 using the initial approximation x0 = 7.5, we get

x1 = x0 −
x20 − 6x0 − 16

2x0 − 6
= 8.0278,

and continue in the same manner, we get the approximations within accuracy 10−4 as follows

x2 = 8.0001, x3 = 8.0000, x4 = 8.0000.

Thus the largest value of number x is 8 and its corresponding y value is 2. •

Example 2.20 The graphs of y = 2 sinx and y = ln(x) + k touch each other in the neighborhood
of point x = 8. Find the value of the constant k and the coordinates of point of contact, use x0 = 8.

Solution. Since we know that the graphs will touch each other if the values of derivatives at their
point of contact is same. So for

y = 2 sinx, gives, y′ = 2 cosx,

and

y = ln(x) + k, gives, y′ =
1

x
.

Thus

2 cosx =
1

x
, gives, x cosx− 0.5 = 0,

and from this we have the function and its derivative as follows

f(x) = x cosx− 0.5 and f ′(x) = cosx− x sinx.

Using Newton’s iterative formula (2.14), we get

xn+1 = xn − xn cosxn − 0.5

cosxn − xn sinxn
,

and for finding the approximations, starting x0 = 8, we obtain, x1 = 7.7936 and x2 = 7.7897.
Taking x = 7.79, we have y = 2 sin 7.79 = 1.996. Therefore, the point of contact is (7.79, 1.996).
To find the value of k, we solve the equation, 1.996 = ln(7.79) + k, and it gives, k = −0.0568, the
required value of k. •
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Figure 2.11: Graphical Solution of x4 − 3x2 + 4x = 1 and x = (1 + 3x2)/(4 + x3).

Example 2.21 Successive approximations xn to the desired root are generated by the scheme

xn+1 =
1 + 3x2n
4 + x3n

, n ≥ 0.

Find f(xn) and f ′(xn) and then use the Newton’s method to find the approximation of the root
accurate to 10−2, starting with x0 = 0.5.

Solution. Given

x =
1 + 3x2

4 + x3
= g(x),

and

x− g(x) = x− 1 + 3x2

4 + x3
=

x4 − 3x2 + 4x− 1

4 + x3
.

Since
f(x) = x− g(x) = 0,

therefore, we have

f(xn) = x4n − 3x2n + 4xn − 1 and f ′(xn) = 4x3n − 6xn + 4.

Using these functions values in the Newton’s iterative formula (2.14), we have (see Figure 2.11),

xn+1 = xn − x4n − 3x2n + 4xn − 1

4x3n − 6xn + 4
.

Finding the first approximation of the root using the initial approximation x0 = 0.5, we get

x1 = x0 −
x40 − 3x20 + 4x0 − 1

4x30 − 6x0 + 4
= 0.5− 0.3125

1.5
= 0.2917.

Similarly, the other approximations can be obtained as

x2 = 0.2917− (−0.0813)

2.3491
= 0.3263; x3 = 0.3263− (−0.0029)

2.1812
= 0.3276.

Notice that |x3 − x2| = 0.0013. •
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Figure 2.12: Graphical Solution of x2 − 3x = 4 and x = (x2 + 4)/(2x− 3).

Example 2.22 Develop the iterative formula

xn+1 =
x2n − b

2xn − a
, n ≥ 0,

for the approximate roots of the quadratic equation x2−ax+b = 0 using the Newton’s method. Then
use the formula to find the third approximation of the positive root of the equation x2 − 3x = 4,
starting with x0 = 3.5.

Solution. Given
f(x) = x2 − ax+ b,

therefore, we have (see Figure 2.12),

f(xn) = x2n − axn + b and f ′(xn) = 2xn − a.

Using these functions values in the Newton’s iterative formula (2.14), we have

xn+1 = xn − x2n − axn + b

2xn − a
=

x2n − b

2xn − a
, n ≥ 0.

Finding the first three approximations of the positive root of x2 − 3x = 4 using the initial approxi-
mation x0 = 3.5 and a = 3, b = −4, we use the above formula by taking n = 0, 1, 2 as follows

x1 =
x20 − b

2x0 − a
= 4.0625, x2 =

x21 − b

2x1 − a
= 4.0008, x3 =

x22 − b

2x2 − a
= 4.0000,

are the possible three approximations. Note that the positive root of x2−3x−4 = 0 is 4, so we have

|4− x3| = |4− 4| = 0.0000,

the possible absolute error. •

The Newton’s method is widely used in computers as a basis for the square root and the reciprocal
evaluation.
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Figure 2.13: Graphical Solution of x2 = 19 and x = x/2 + (19/2)x−1.

Example 2.23 Develop an iterative procedure for evaluating pth any root of a positive number N
by using Newton’s method. Use the developed formula to find second approximation to the square
root of 19, taking an initial approximation x0 = 5. Compute absolute error.

Solution. We shall compute x = N1/p by finding a positive root for the nonlinear equation

xp −N = 0,

where p is any positive integer and N > 0 is the number whose root is to be found. Therefore, if
f(x) = 0, then x = N1/p is the exact root. Let

f(x) = xp −N and f ′(x) = pxp−1.

Hence, assuming an initial estimate to the root, say, x = x0 and by using iterative formula (2.14),
we get

x1 = x0 −
(xp0 −N)

pxp−1
0

= x0 −
xp0

pxp−1
0

+
N

pxp−1
0

= (1− 1

p
)x0 +

N

p
x1−p
0 .

In general, we have

xn+1 = (1− 1

p
)xn +

N

p
x1−p
n , (2.15)

where p = 2, 3, . . . , and n = 0, 1, . . ..
Since we want the approximations of the square root of number 19, so we take N = 19 and p = 2.
Given the initial approximation x0 = 5, then by using the iterative formula (2.15), we get

x1 = 4.4 and x2 = 4.3590909.

After just two iterations the estimated value compares rather favorably with the exact value of√
19 ≈ 4.3588989, (see Figure 2.13). Thus the absolute error is

|E| = |
√
19− x2| = |5.3588989− 4.3590909| = 0.000192.

We can calculate higher roots of a number by using the general iterative formula (2.15). •
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Figure 2.14: Graphical Solution of 1/x = 3 and x = x(2− 3x).

Example 2.24 Develop an iterative procedure for evaluating the reciprocal of a positive number N
by using Newton’s method. Use the developed formula to find third approximation to the reciprocal
of 3, taking an initial approximation x0 = 0.4. Compute absolute error.

Solution. Consider x = 1/N . This problem can be easily solved by noting that we seek to find a
root to the nonlinear equation

1/x−N = 0,

where N > 0 is the number whose reciprocal is to be found. Therefore, if f(x) = 0, then x = 1/N
is the exact root. Let

f(x) = 1/x−N and f ′(x) = −1/x2.

Hence, assuming an initial estimate to the root, say, x = x0 and by using iterative formula (2.14),
we get

x1 = x0 −
(1/x0 −N)

(−1/x20)
= x0 + (1/x0 −N)x20 = x0 + x0 −Nx20 = x0(2−Nx0).

In general, we have

xn+1 = xn(2−Nxn), n = 0, 1, . . . , (2.16)

We have to find the approximation of the reciprocal of number N = 3. Given the initial gauss of
say x0 = 0.4, then by using the iterative formula (2.16), we get

x1 = 0.3200, x2 = 0.3328, x3 = 0.3333.

After just three iterations the estimated value compares rather favorably with the exact value of
1/3 ≈ 0.3333, (see Figure 2.14). Thus the absolute error is

|E| =
∣∣∣∣13 − x3

∣∣∣∣ = |0.3333− 0.3333| = 0.0000.

We can calculate the other reciprocal of the number in the same way by using the general iterative
formula (2.16). •
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Lemma 2.1 Assume that f ∈ C2[a, b] and there exists a number α ∈ [a, b], where f(α) = 0. If
f ′(α) ̸= 0, then there exists a number δ > 0 such that the sequence {xn}∞n=0 defined by the iteration

xn+1 = g(xn) = xn − f(xn)

f ′(xn)
, for n = 0, 1, . . . , (2.17)

will converges to α for any initial approximation x0 ∈ [α− δ, α− δ]. •

The Newton’s method uses the iteration function

g(x) = x− f(x)

f ′(x)
, (2.18)

is called the Newton’s iteration function. Since f(α) = 0, it is easy to see that g(α) = α. Thus
the Newton’s iteration for finding the root of the equation f(x) = 0 is accomplished by finding a
fixed-point of the equation g(x) = x.

Procedure 2.3 (Newton’s Method)

1. Find the initial approximation x0 for the root by sketching the graph of the function.

2. Evaluate function f(x) and the derivative f ′(x) at initial approximation.

Check: if f(x0) = 0 then x0 is the desire approximation to a root. But if f ′(x0) = 0, then go
back to step 1 to choose new approximation.

3. Establish Tolerance (ϵ > 0) value for the function.

4. Compute new approximation for the root by using the iterative formula (2.14).

5. Check Tolerance. If |f(xn)| ≤ ϵ, for n ≥ 0, then end; otherwise, go back to step 4, and repeat
the process.

2.5 Secant Method

Since we known the main obstacle to using the Newton’s method is that it may be difficult or impos-
sible to differentiate the function f(x). The calculation of f ′(xn) may be avoided by approximating
the slope of the tangent at x = xn by that of the chord joining the two points (xn−1, f(xn−1)) and
(xn, f(xn)), see Figure 2.15.
The slope of the chord (or secant) is

f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1
. (2.19)

Then by using this approximation of the derivative of the function in the Newton’s iterative formula
(2.14), we get

xn+1 = xn − (xn − xn−1)f(xn)

f(xn)− f(xn−1)
=

xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)
, n ≥ 1. (2.20)
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Figure 2.15: Graphical Solution of Secant Method.

Note that when f(xn) = f(xn−1), the calculation of xn+1 fails. This is because the chord is horizon-
tal. The iterative formula (2.20) known as the secant method. It needs two initial approximations
to start. This method is very similar to false position method described in Section 2.3. However,
for the secant method it is not necessary for the interval to contain a root and no account is taken
of signs of the numbers f(xn).
This method suffers from the same disadvantages as the Newton’s method, that is, convergence to
a particular root cannot guaranteed but nevertheless it is a powerful general purpose method. The
order of convergence of the secant method is (1 +

√
5)/2 ≈ 1.618, so its ultimate convergence is

not quite as fast as the Newton’s method (order of convergence is quadratically) but the order of
convergence of this method is somewhat better than the bisection method, the false position method,
and the fixed-point method (all these methods have linear convergence). This is sometimes called
superlinear. We will discuss the order of convergence of all these methods in some details later in
the chapter.

Example 2.25 Show that the iterative procedure for evaluating the reciprocal of a number N by
using the secant method is:

xn+1 = xn + (1−Nxn)xn−1, n ≥ 1. (2.21)

Solution. Let N be a positive number and x = 1/N . If f(x) = 0, then x = α = 1/N is the exact
zero of the function

f(x) = 1/x−N.

Since the secant formula is

xn+1 = xn − (xn − xn−1)f(xn)

f(xn)− f(xn−1)
, n ≥ 1.

Hence, assuming the initial estimates to the root, say, x = x0, x = x1 and by using the secant
iterative formula, we have

x2 = x1 −
(x1 − x0)(1/x1 −N)

(1/x1 −N)− (1/x0 −N)
= x1 −

(x1 − x0)(1/x1 −N)

−(x1 − x0)/x1x0
.
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Figure 2.16: Graphical Solution of 1/x = 5 and x = x+ (1− 5x)x.

It gives
x2 = x1 + (1/x1 −N)x1x0 = x1 + x0 −Nx1x0 = x1 + (1−Nx1)x0.

In general, this becomes

xn+1 = xn + (1−Nxn)xn−1, n = 1, 2, . . . .

For example, suppose we want the reciprocal of number N = 5. Assuming the initial approximations
of say x0 = 0 and x1 = 0.1, then by using the above iterative formula, we get the first three
approximations as follows:

x2 = 0.1, x3 = 0.15, x4 = 0.175,

The estimated value compares rather favorably with exact value of 1/5, (see Figure 2.16). •

Example 2.26 Show that the secant method for finding approximation of the square root of a
positive number N is

xn+1 =
xnxn−1 +N

xn + xn−1
, n ≥ 1. (2.22)

Carry out the first three approximations for the square root of 9, using x0 = 2, x1 = 2.5 and also
compute absolute error.

Solution. We shall compute x = N1/2 by finding a positive root for the nonlinear equation

x2 −N = 0,

where N > 0 is the number whose root is to be found. If f(x) = 0, then x = α = N1/2 is the exact
zero of the function

f(x) = x2 −N.

Since the secant formula is

xn+1 = xn − (xn − xn−1)f(xn)

f(xn)− f(xn−1)
, n ≥ 1.
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Figure 2.17: Graphical Solution of x2 = 9 and x = (x2 + 9)/2x.

Hence, assuming the initial estimates to the root, say, x = x0, x = x1, and by using the secant
iterative formula, we have

x2 = x1 −
(x1 − x0)(x

2
1 −N)

(x21 −N)− (x20 −N)
= x1 −

(x1 − x0)(x
2
1 −N)

(x1 − x0)(x1 + x0)
=

x1x0 +N

(x1 + x0)
.

In general, we have

xn+1 =
xnxn−1 +N

xn + xn−1
, n = 1, 2, . . . ,

the secant formula for approximation of the square root of number N. Now using this formula for
approximation of the square root of N = 9, taking x0 = 2 and x1 = 2.5, we have

x2 = 3.1111, x3 = 2.9901, x4 = 2.9998.

Hence
Absolute Error = |91/2 − x4| = |3− 2.9998| = 0.0002,

is the possible absolute error, (see Figure 2.17). •

Example 2.27 Use the secant method to find the approximate root of the following equation within
the accuracy 10−2 take x0 = 1.5 and x1 = 2.0 as starting values

x3 = 2x+ 1.

Solution. Since f(x) = x3 − 2x− 1 and

x0 = 1.5, f(x0) = −0.625,
x1 = 2.0, f(x1) = 3.0,

therefore, we see that f(x0) ̸= f(x1). Hence, one can use the iterative formula (2.20), to get new
approximation:

x2 =
x0f(x1)− x1f(x0)

f(x1)− f(x0)
=

(1.5)(3.0)− (2.0)(−0.625)

3.0− (−0.625)
= 1.586207,

and f(x2) = −0.18434. Similar way, we can find the other possible approximation of the root. A
summary of the calculations is given in Table 2.5. •
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Table 2.5: Solution of x3 = 2x+ 1 by secant method
n xn−1 xn xn+1 f(xn+1)

01 1.500000 2.000000 1.586207 -0.1814342
02 2.000000 1.586207 1.609805 -0.0478446
03 1.586207 1.609805 1.618257 0.0013040

To use MATLAB command for the secant method, the function has been used in the m-file as fn.m,
then the first few iterations are easily performed by the following sequence of MATLAB commands:

>> x0 = 1.5;x1 = 2; x2 = x1− (x1− x0)/(fn(x1)− fn(x0)) ∗ fn(x1)
>> x0 = x1;x1 = x2; x3 = x2− (x2− x1)/(fn(x2)− fn(x1)) ∗ fn(x2)

The last two commands can be repeated to generate the subsequent iterates shown in Table 2.5.

Program 2.4
MATLAB m-file for the Secant Method
function sol=secant(fn,a,b,tol)
x0 = a;x1 = b; fa = feval(fn, x0); fb = feval(fn, x1);
while abs(x1-old)> tol new = x1− fb ∗ (x1− x0)/(fb− fa);
x0 = x1; fa = fb;x1 == new; fb = feval(fn, new); end; sol=new;

We see that the functional values are approaching zero as the number of iterations is increased
a and note that this method converges faster than the methods discussed in Sections 2.1 and 2.2
because we got the desired approximation c3 = 1.618032 after 4 iterations with accuracy ϵ = 10−2.

One can use MATLAB single command to get the same above results by the secant method as

>> a = 1.5; b = 2.0; tol = 1e− 2; sol = secant(′fn′, a, b, tol);

Example 2.28 The root of the equation x2e−x/2 = 1 is in the interval [x0, x1]. Apply secant
method to find approximation of the root correct to 3 decimal places using x0 = 1.42 and x1 = 1.43.

Solution. Since f(1.42) = −0.0086 and f(1.43) = 0.00034, so using secant iterative formula
(2.20), we obtain new approximation as

x2 =
x0f(x1)− x1f(x0)

f(x1)− f(x0)
=

(1.42)(0.00034)− (1.43)(−0.0086)

0.00034− (−0.0086)
= 1.4296.

As f(x2) = −0.00011, we get another new approximation as

x3 =
x1f(x2)− x2f(x1)

f(x2)− f(x1)
=

(1.43)(−0.00011)− (1.4296)(0.00034)

(−0.00011− 0.00034)
= 1.4292.

Since x2 and x3 agree to 3 decimal places, so the required root is 1.429. •
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Figure 2.18: Multiple roots of f(x) = 0.

Procedure 2.4 (Secant Method)

1. Choose the two initial approximation x0 and x1.

2. Check, if f(x0) = f(x1), go to step 1 otherwise, continue.

3. Establish Tolerance (ϵ > 0) value for the function.

4. Compute new approximation for the root by using the iterative formula (2.20).

5. Check tolerance. If |xn − xn−1| ≤ ϵ, for n ≥ 1, then end; otherwise, go back to step 4, and
repeat the process.

In the preceding discussion the restriction was made that f ′(α) ̸= 0, where α is the solution to
f(x) = 0. The rapid convergence of both the Newton’s method and the secant method depend
because of this restriction. From the definition of the Newton’s method, it is clear that difficulties
might occur if f ′(xn) goes to zero simultaneously with f(xn). In particular, the Newton’s method
and the secant method will generally give problems if f ′(α) = 0 when f(α) = 0. In the following
section we investigate this situation and will uncover an interesting fact, namely, how fast the
iteration converges. We will see that both the Newton’s method and the secant method will
continue to converge, but not as rapidly as we expect.

2.6 Multiplicity of a Root

So far we discussed about the function which has simple root. Now we will discuss about the
function which has multiple roots. A root is called a simple root if it is distinct, otherwise roots
that are of the same order of magnitude are called multiple.

Definition 2.4 (Order of a Root)

The equation f(x) = 0 has a root α of order m, if there exists a continuous function h(x), and
f(x) can be expressed as the product

f(x) = (x− α)mh(x), where h(α) ̸= 0. (2.23)
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Figure 2.19: Graphical Solution of x3 − x2 − 21x+ 45 = 0.

So h(x) can be used to obtain the remaining roots of f(x) = 0. It is called polynomial deflation. •

A root of order m = 1 is called a simple root and if m > 1 it is called multiple root. In particular,
a root of order m = 2 is sometimes called a double root, and so on.
The behavior of the graph of f(x) near a root of multiplicity m (m = 1, 2, 3) is shown in Figure 2.18.
It can be seen that when α is a root of odd multiplicity, the graph of f(x) will cross the x-axis at
(α, 0); and when α has even multiplicity the graph will be tangent to but will not cross the x-axis
at (α, 0). Moreover, the higher the value of m the flatter the graph will be near the point (α, 0).
Sometime it is more difficult to deal with the Definition 2.4 concerning about the order of the root.
We will use the following Lemma which will illuminate these concepts.

Lemma 2.2 Assume that function f(x) and its derivatives f ′(x), f ′′(x), · · · , f (m)(x) are defined
and continuous on an interval about x = α. Then f(x) = 0 has a root α of order m if and only if

f(α) = f ′(α) = f ′′(α) = · · · = f (m−1)(α) = 0, f (m)(α) ̸= 0. (2.24)

For example, consider the equation f(x) = x3 − x2 − 21x+45 = 0, which has three roots; a simple
root at α = −5 and a double root at α = 3. This can be verified by considering the derivatives of
the function as follows

f ′(x) = 3x2 − 2x− 21, f ′′(x) = 6x− 2.

At the value α = −5, we have f(5) = 0 and f ′(5) = 64 ̸= 0, so by (2.24), we see that m = 1. Hence
α = −5 is a simple root of the equation. For the value α = 3, we have

f(3) = 0, f ′(3) = 0, f ′′(3) = 16 ̸= 0,

so that m = 2 by (2.24), hence α = 3 is a double root of the equation. Note that this function f(x)
has the factorization and can be written in the form of (2.23) as (see Figure 2.19),

f(x) = (x− 3)2(x+ 5).

Note that for a simple root α of the nonlinear equation f(x) = 0, means that

f(α) = 0 but f ′(α) ̸= 0.
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Figure 2.20: Graphical Solution of xex = 0 and x2ex = 0.

But for multiple root α of the nonlinear equation, we must have

f(α) = 0 and f ′(α) = 0.

The order of multiplicity of the multiple root can be easily find out by taking the higher derivatives
of the function at α unless the higher derivative becomes nonzero at α. Then the order of nonzero
higher derivative will be the order of multiplicity of the multiple root. •

Example 2.29 Find the multiplicity of the root α = 1 of the equation x lnx = lnx.

Solution. From the given equation, we have

f(x) = x lnx− lnx and f(1) = 0,

f ′(x) = lnx+ 1− 1

x
and f ′(1) = 0,

f ′′(x) =
1

x
+

1

x2
and f ′′(1) = 2 ̸= 0.

Thus the multiplicity of the root α = 1 of the given equation is 2. •

Usually we don’t know in advance that an equation has multiple roots, although we might suspect
it from sketching the graph. Many problems which leads to multiple roots, are in fact ill-posed.
The methods we discussed so far cannot be guaranteed to converge efficiently for all problems.
In particular, when a given function has a multiple root which we require, the methods we have
described will either not converge at all or converge more slowly. For example, the Newton’s
method converges very fast to simple root but converges more slowly when used for functions
involving multiple roots.

Example 2.30 Consider the following two nonlinear equations

(1) xex = 0 (2) x2ex = 0.

(a) Find the Newton’s method for the solutions of the given equations.
(b) Explain why one of the sequences converges much faster than the other to the root α = 0.



46 2.6 Multiplicity of a Root

Solution. (a) For the first equation, we have

f(x) = xex and f ′(x) = (1 + x)ex.

Then the Newton’s method for the solution of the first equation is

xn+1 = g1(xn) = xn − f(xn)

f ′(xn)
=

x2n
(1 + xn)

, n ≥ 0,

which is the first sequence. Similarly, we can find the Newton’s method for the solution of the second
equation as follows:

xn+1 = g2(xn) = xn − x2ne
xn

(2xn + x2n)e
xn

=
xn + x2n
(2 + xn)

, n ≥ 0,

and it is the second sequence.
(b) From the first sequence, we have

g1(x) =
x2

(1 + x)
and g′1(x) =

x2 + 2x

(1 + x)2
.

Then

|g′1(α)| = |g′1(0)| =
∣∣∣∣01
∣∣∣∣ = 0,

which shows that the first sequence converges to zero. Similarly, from the second sequence, we have

g2(x) =
x+ x2

(2 + x)
and g′2(x) =

x2 + 4x+ 2

(2 + x)2
.

Thus

|g′2(0)| =
∣∣∣∣24
∣∣∣∣ = 1

2
< 1,

which shows that the second sequence is also converges to zero. Since the value of |g′1(0)| is smaller
than |g′2(0)|, therefore, the first sequence converges faster than the second one. •

Note that in the above Example 2.30, the root α = 0 is the simple root for the first equation (see
Figure 2.20) because

f(0) = 0 but f ′(0) = 1 ̸= 0,

and for the second equation it is a multiple root because

f(0) = 0 and f ′(0) = 0.

Therefore, the Newton’s method converges very fast for the first equation and converges very slow
for the second equation. However, in some cases simple modifications can be made to the methods
to maintain the rate of convergence. Two such modified methods are considered here, called the
Newton modified methods.
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First Modified Newton’s Method

If we wish to determine a root of known multiplicity m for the equation f(x) = 0, then the first
Newton’s modified method (also called the Schroeder’s method) may be used. It has the form

xn+1 = xn −m
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . (2.25)

It is assumed that we have an initial approximation x0. The similarity to the Newton’s method
is obvious and like the Newton’s method it converges very fast for the multiple roots. The major
disadvantage of this method is that the multiplicity of the root must be known in advance and this
is generally not the case in practice.

Example 2.31 Show that nonlinear equation
1

e(1−x)
= x has a root at x = 1. Use the first modified

Newton’s method to find its first three approximations using x0 = 0.

Solution. Since f(x) = 1− xe(1−x). First we show that α = 1 is the zero of the given function as

f(α) = f(1) = 1− 1e0 = 1− 1 = 0.

To check whether it is simple or multiple zero of f(x), we do the following

f ′(x) = −e1−x + xe(1−x) and f ′(α) = f ′(1) = −1 + 1 = 0,

which means that α = 1 is the multiple zero of the given function. To find its order of multiplicity,
we do

f ′′(x) = 2e(1−x) − xe(1−x) and f ′′(α) = f ′′(1) = 2− 1 = 1 ̸= 0,

hence α = 1 is a zero of multiplicity 2 of the given function. Now we have to find the first three
approximations to the multiple zero α = 1 of the given function by using the first modified Newton’s
method which can be written as

xn+1 = xn −m
f(xn)

f ′(xn)
= xn −m

1− xne
(1−xn)

(xn − 1)e(1−xn)
, n ≥ 0,

where m is the order of multiplicity of the zero of the function.
For n = 0, 1, 2 and m = 2, with initial approximation x0 = 0, we have

x1 = 0.7358, x2 = 0.9782, x3 = 0.9998,

are the required first three approximations to α = 1, (see Figure 2.21). •

Second Modified Newton’s Method

An alternative approach to this problem that does not require any knowledge of the multiplicity of
the root is to replace the function f(x) in the equation by q(x), where

q(x) =
f(x)

f ′(x)
.
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Figure 2.21: Graphical Solution of 1− xe(1−x) = 0.

One can show that q(x) has only a simple root at x = α. Thus the Newton’s method applied to
find a root of q(x) will avoid any problems of multiple roots. If

f(x) = (x− α)mh(x),

then
f ′(x) = m(x− α)m−1h(x) + (x− α)mh′(x).

Thus

q(x) =
(x− α)h(x)

[mh(x) + (x− α)h′(x)]
.

Obviously we find that q(x) has the root α to multiplicity one. So with this modification, the
Newton’s method becomes

xn+1 = xn − q(xn)

q′(xn)
,

which gives

xn+1 = xn − f(xn)f
′(xn)

[f ′(xn)]2 − [f(xn)][f ′′(xn)]
, n = 0, 1, 2, . . . (2.26)

This iterative formula (2.26) is known as the second modified Newton’s method. The disadvantage
of this method is that we must calculate a further higher derivative. A similar modification can be
made to the secant method.

Example 2.32 Use the second modified Newton’s method to find the first approximation x1 to the
multiple root of the nonlinear equation 1− cos(x) = 0, using x0 = 0.1.

Solution. Since f(x) = 1− cosx, we have f ′(x) = sinx and f ′′(x) = cosx. Now using the second
modified Newton’s formula (2.26)

xn+1 = xn − f(xn)f
′(xn)

[f ′(xn)]2 − [f(xn)][f ′′(xn)]
, n ≥ 0,

we have

xn+1 = xn − (1− cosxn)(sinxn)

[sinxn]2 − (1− cosxn)(cosxn)
, n ≥ 0.



Chapter Two Solution of Nonlinear Equations 49

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

x

y

y = 1 − cosx

α

Figure 2.22: Graphical Solution of 1− cosx = 0.

For n = 0 and the initial approximation x0 = 0.1, we have

x1 = x0 −
(1− cosx0)(sinx0)

[sinx0]2 − (1− cosx0)(cosx0)
= 0.1− (1− cos 0.1)(sin 0.1)

[sin 0.1]2 − (1− cos 0.1)(cos 0.1)
= 0.098,

which is the required first approximation to α = 0, (see Figure 2.22). •

Example 2.33 Show that the function f(x) = ex − x2

2
− x− 1 has zero of multiplicity 3 at α = 0

and then, find the approximate solution of the zero of the function with the help of the Newton’s
method, first and second modified Newton’s methods, by taking initial approximation x0 = 1.5 within
an accuracy of 10−4.

Solution. Since α = 0 is a root of f(x), (see Figure 2.23), so

f(x) = ex − x2

2
− x− 1, f(0) = 0,

f ′(x) = ex − x− 1, f ′(0) = 0,
f ′′(x) = ex − 1, f ′′(0) = 0,
f ′′′(x) = ex, f ′′′(0) = 1 ̸= 0,

the function has zero of multiplicity 3. In Table 2.6 we showed the comparison of three methods. •

To use MATLAB command for the first modified Newton’s method (2.25) and the second modified
Newton’s method (2.26), we define a function m-file as fn1.m and its derivatives m-files as dfn1.m
and ddfn1.m for the equation as follows:

function y = fn1(x) function dy = dfn1(x) function ddy = ddfn1(x)
y = exp(x)− x.ˆ 2/2− x− 1; dy = exp(x)− x− 1; ddy = exp(x)− 1;

then use the following commands:

>> x0 = 1.5;m = 3; tol = 1e− 4; sol = mnewton1(′fn1′,′ dfn1′, x0,m, tol)
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Table 2.6: Comparison results of three methods for the Example 2.33
Newton’s Method 1st. M.N. Method 2nd. M.N. Method

n xn xn xn
00 1.500000 1.500000 1.500000
01 1.067698 0.2030926 -0.297704
02 0.745468 3.482923e-03 -6.757677e-03
03 0.513126 1.010951e-06 -3.798399e-06
.. ........
25 7.331582e-05
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Figure 2.23: Graphical Solution of ex − x2/2− x− 1 = 0.

and

>> x0 = 1.5; tol = 1e− 4;
>> sol = mnewton2(′fn1′,′ dfn1′,′ ddfn1′, x0, tol)

We note that for the multiple root the both modified Newton’s methods converge very fast as they
took 4 iterations to converge while the Newton’s method converges very slow and took 25 iterations
to converge for the same accuracy.

Program 2.5
MATLAB m-file for First Modified Newton’s Method
function sol=mnewton1(fn1,dfn1,x0,m,tol)
old = x0+1; while abs (x0− old) > tol; old = x0;
fa=feval(fn,old); fb=feval(dfn,old);
x0 = old− (m ∗ fa)/fb; end; sol=x0;

Note that when the order of multiplicity of a root of the equation f(x) = 0 is not known, then the
second modified Newton’s formula (2.26) can be used. MATLAB m-file can be written as follows
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Program 2.6
MATLAB m-file for Second Modified Newton’s Method
function sol=mnewton2(fn1,dfn1,ddfn1,x0,tol)
old = x0+1; while abs (x0− old) > tol; old = x0;
fa=feval(fn,old); fb=feval(dfn,old); fc=feval(ddfn,old);
x0 = old− (fa ∗ fb)/((fb). ˆ 2 - (fa ∗ fc));end; sol=x0;

2.7 Convergence of Iterative Methods

Now we define the order of the convergence of functional iteration schemes discussed in the previous
sections. This is a measure of how rapidly a sequence converges.

Definition 2.5 (Order of Convergence)

Suppose that the sequence {xn}∞n=0 converges to α, and let en = α− xn define the error of the nth
iterate. If two positive constants β ̸= 0 and R > 0 exist, and

lim
n→∞

|α− xn+1|
|α− xn|R

= lim
n→∞

|en+1|
|en|R

= β, (2.27)

then the sequence is said to converge to α with order of convergence R. The number β is called the
asymptotic error constant. The cases R = 1, 2 are given special consideration.
If R = 1, the convergence of the sequence {xn}∞n=0 is called linear.
If R = 2, the convergence of the sequence {xn}∞n=0 is called quadratic.

If R is large, the sequence {xn} converges rapidly to α; that is, (2.27) implies that for large values
of n we have the approximation |en+1| ≈ β|en|R. For example, suppose that R = 2 and |en| ≈ 10−3;
then we could expect that |en+1| ≈ β × 10−6. •

Example 2.34 Show that the following sequence

xn+1 =
1

2
xn

(
1 +

N

x2n

)
, n ≥ 0,

will converge quadratically to
√
N.

Solution. Since the sequence is given as

xn+1 =
1

2
xn

(
1 +

N

x2n

)
,

and α =
√
N , then we have

xn+1 −
√
N =

1

2
xn

(
1 +

N

x2n

)
−

√
N =

1

2

(
xn +

N

xn
− 2

√
N

)

=
1

2

(
√
xn −

√
N

√
xn

)2

=
1

2xn
(xn −

√
N)2.
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Thus

en+1 =
1

2xn
e2n or en+1 ∝ e2n,

which shows the quadratic convergence. •

Example 2.35 Find the value of a and b so that the rate of convergence of the iterative scheme

xn+1 = axn + b

(
N

x2n

)
, for n ≥ 0,

for computing N1/3 becomes quadratically or higher.

Solution. Since we have

x = N1/3 or x3 = N,

therefore

f(x) = x3 −N.

Let α be the exact root and en = α− xn, be the error in nth step, then by substituting

α3 = N, xn = α+ en, xn+1 = α+ en+1,

in the given iterative scheme, we get

α+ en+1 = a(α+ en) + b

(
α3

(α+ en)2

)

= a(α+ en) + b

(
α3

α2 (1 + en/α)
2

)

= a(α+ en) + bα

(
1 +

en
α

)−2

= a(α+ en) + bα

{
1− 2

en
α

+ 3

(
en
α

)2

− . . .

}

= a(α+ en) + bα− 2ben + 3b
e2n
α

− . . . .

Thus

en+1 = (a+ b− 1)α+ (a− 2b)en +O(e2n) + . . . .

Now for the method to become of order 2, we must have

a+ b− 1 = 0 and a− 2b = 0,

and by solving this system for a and b, we have, a =
2

3
and b =

1

3
, the required values. •
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Quadratically convergent sequences generally converge much faster than those that converge only
linearly, but many techniques that generate convergent sequences do so only linearly. The following
two lemmas tell us about the conditions of the linear convergence and the quadratic convergence
of the sequences.

Lemma 2.3 (Linear Convergence)

Let g is continuously differentiable on the interval [a, b] and suppose that g(x) ∈ [a, b] for all
x ∈ [a, b]. Suppose that g′(x) is continuous on (a, b) with

|g′(x)| ≤ k < 1; for all x ∈ (a, b).

If g′(α) ̸= 0, then for any x0 ∈ [a, b], the sequence xn+1 = g(xn), for n ≥ 0, converges only linearly
to the unique fixed-point α in [a, b]. •

Example 2.36 Consider an iterative scheme

xn+1 = 0.4 + xn − 0.1x2n, n ≥ 0.

Will this scheme converge to the fixed-point α = 2 ? If yes, find its rate of convergence.

Solution. Since

g(x) = 0.4 + x− 0.1x2 and g(2) = 0.4 + 2− 0.1(2)2 = 2,

which shows that the scheme converges to α = 2. Also

g′(x) = 1− 0.2x, gives, g′(2) = 1− 0.4 = 0.6 ̸= 0.

Therefore, the scheme converges linearly. •

Lemma 2.4 (Quadratic Convergence)

Let α be a solution of the equation x = g(x). Suppose that g′(α) = 0 and g′′ is continuous on
an open interval (a, b) containing α. Then there exists a δ > 0 such that, for x0 ∈ [α − δ, α + δ],
the sequence {xn}∞n=0 defined by the iteration xn+1 = g(xn), for n ≥ 0, converges at least
quadratically to α. •

Example 2.37 The iterative scheme

xn+1 = 2− (1 + a)xn + ax2n, n ≥ 0,

converges to α = 1 for some values of a. Find the value of a for which the convergence is at least
quadratic.

Solution. Given

g(x) = 2− (1 + a)x+ ax2 and g(1) = 2− (1 + a) + a = 1.
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Thus, the given iterative scheme converges to 1. Also

g′(x) = −(1 + a) + 2ax,

and so

g′(1) = 0 = −(1 + a) + 2a, gives, a = 1.

Thus, the convergence of the given iterative scheme is at least quadratic for the value of a = 1. •

Note 2.3 The sequence {xn}∞n=0 defined by the iteration

xn+1 = g(xn), for n ≥ 0,

converges only quadratically to α if

g′(α) = 0 but g′′(α) ̸= 0.

and cubically (order three) to α if

g′(α) = 0, g′′(α) = 0 but g′′′(α) ̸= 0.

In the similar manner the higher order of convergence can be achieved.

Example 2.38 (a) Find the values of k1 and k2 such that the iterative scheme

xn+1 = k1x
2
n +

k2
xn

− 5, n ≥ 0,

converges quadratically to α = 1.
(b) What is the order of convergence of the iteration

xn+1 =
xn(x

2
n + 3k)

3x2n + k
, k > 0,

as it converges to the fixed-point α =
√
k.

Solution. (a) Given

g(x) = k1x
2 +

k2
x

− 5,

and at fixed-point α = 1, we have

g(1) = 1 = k1 + k2 − 5, gives, k1 + k2 = 6.

Also

g′(x) = 2k1x− k2
x2

,

and the convergence is quadratic at α = 1, we have

g′(1) = 0 = 2k1 − k2, gives, 2k1 − k2 = 0.
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Solving these two equations for unknowns k1 and k2, we obtain

k1 = 2 and k2 = 4.

Note that

g′′(x) = 2k1 +
2k2
x3

and g′′(1) = 12 ̸= 0.

(b) Since the given iteration is

xn+1 =
xn(x

2
n + 3k)

3x2n + k
= g(xn), which gives , g(x) =

x(x2 + 3k)

3x2 + k
.

The first derivative of g(x) can be found as

g′(x) =
3(x2 − k)2

(3x2 + k)2
.

To find the order of convergence of the iteration, we have to check the derivative g′(x) at fixed-point
x = α =

√
k, if it is equal to zero, then order is at least quadratic, otherwise linear. So

g′(
√
k) =

3[(
√
k)2 − k]2

[3(
√
k)2 + k]2

= 0.

Therefore, the order of convergence for the given iteration is at least quadratic. One can find the
second derivative of g(x) as

g′′(x) =
48xk(x2 − k)

(3x2 + k)3
, g′′(

√
k) = 0, but g′′′(x) =

−48k(9x4 − 18kx2 + b2)

(3x2 + k)4
, g′′′(

√
k) =

3

2k
̸= 0.

Hence, the order of convergence for the given iteration is exactly cubic. •

Now we discuss the rate of the convergence of all the iterative methods for the nonlinear equations
which we discussed in the previous sections.

Case 2.1 (Bisection Method)

The convergence of the bisection method is very slow. At each step we gain one binary digit in
accuracy. Since 10−1 ≈ 2−3.3, we gain on the average one decimal digit per 3.3 steps. Note that
the rate of convergence is completely independent of the function f(x). This is because we only
make use of the sign of the computed function values. To investigate the rate of convergence of the
bisection method, we consider the following example.

Example 2.39 If α is the fixed-point of the equation x = g(x) in [x, b]. Then show that rate of
convergence of the bisection method is linear.

Solution. Since the bisection iteration function is define in the interval [x, b], so by using the
bisection formula (2.2), we have

g(x) =
x+ b

2
and g′(x) =

1

2
.
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So at x = α, we have

g′(α) =
1

2
̸= 0,

therefore, by the Lemma 2.3, the convergence is linear. •

Case 2.2 (Fixed-point Method)

The convergence rate of the fixed-point iteration can be analyzed as follows. The general procedure
is given by

xn+1 = g(xn), n = 0, 1, 2, . . . (2.28)

Let x = α denote the solution to f(x) = 0, so f(α) = 0 and α = g(α). Then

xn+1 − α = en+1 = g(xn)− g(α), (2.29)

where en+1 denote the error of the (n+1)th iterate. Expressing g(α) in the Taylor series about xn
gives:

g(α) = g(xn) + g′(η)(α− xn), xn ≤ η ≤ α. (2.30)

Solving (2.30) for g(xn)− g(α) and substituting into (2.29), we get

en+1 = g′(η)en, (2.31)

or

|en+1| = |g′(η)||en|. (2.32)

Now suppose that |g′(x)| ≤ k < 1 for all values of x in an interval. If x1 is choose in this interval,
x2 will also be in the interval and the fixed-point iteration method will converge, since∣∣∣∣en+1

en

∣∣∣∣ = |g′(η)| < 1. (2.33)

Convergence is linear since en+1 is linearly dependent on en. If |g′(η)| > 1, the procedure diverges.
If |g′(η)| < 1, but close to one, convergence is quite slow. •

Example 2.40 (a) Show that α = 1 is a unique fixed-point of

g(x) =
x2 − 4x+ 7

4
.

(b) Find the rate of convergence of the sequence

xn =
x2n−1 − 4xn−1 + 7

4
.

Solution. (a) Firstly, we show that α = 1 is a fixed-point of g(x) by showing that g(1) = 1 and it
happened because

g(1) =
1− 4 + 7

4
= 1.
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It is unique also because

g′(x) =
2x− 4

4
and |g′(1)| = 0.5 < 1.

(b) To find the rate of convergence of the given sequence, we have

g(x) =
x2 − 4x+ 7

4
and g′(x) =

2x− 4

4
.

Taking x = α = 1, gives

g′(1) =
2− 4

4
= −1

2
̸= 0.

Hence the rate of the convergence of the given sequence is linear or slow. •

Case 2.3 (Newton’s Method)

The convergence rate of the Newton’s method can be analyzed as follows. The general procedure

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, 2, . . . ,

is of the form xn+1 = g(xn). Consequently, if the method converges, then the absolute value of the
derivative of the function g(x) with respect to x must be less than one, that is, |g′(x)| < 1. Since

g(x) = x− f(x)

f ′(x)
,

then

g′(x) = 1− f ′(x)f ′(x)− f(x)f ′′(x)

[f ′(x)]2
=

f(x)f ′′(x)

[f ′(x)]2
.

Hence if ∣∣∣∣f(x)f ′′(x)

[f ′(x)]2

∣∣∣∣ < 1, or |f(x)f ′′(x)| < [f ′(x)]2, (2.34)

on an interval about the root α, the method will converge for any initial approximation in the
interval. The (2.34) represents a sufficient condition for convergence. It is evident that f ′(x) must
not be zero. This is an important factor to consider when choosing the initial x value.
Now we show that the Newton’s method is quadratically convergent for the simple root. Let x = α
denote the solution to f(x) = 0, so f(α) = 0 and α = g(α). Since xn+1 = g(xn), we can write

xn+1 − α = en+1 = g(xn)− g(α), (2.35)

where en denote the error of the nth iterate. Let us expand g(xn) as a Taylor series in terms of
(xn − α) with the second derivative term as the remainder:

g(xn) = g(α) + g′(α)(xn − α) +
g′′(η)

2
(xn − α)2, xn ≤ η ≤ α.

Since

g′(α) =
f(α)f ′′(α)

[f ′(α)]2
= 0,
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because f(α) = 0, we have

g(xn) = g(α) +
g′′(η)

2
(xn − α)2.

Solving above equation for (g(xn)− g(α)) and substituting into (2.35), we get

en+1 = g(α)− g(xn) = −g′′(η)

2
(en)

2. (2.36)

This implies that each error is (in the limit) proportional to the square of the previous error, that
is, the Newton’s method is quadratically convergent.

Example 2.41 Show that the sequence xn+1 =
1

2
xn

(
3− x2n

N

)
, n ≥ 0, has convergence of the

second order with the limit
√
N.

Solution. Let

xn+1 −
√
N =

1

2
xn

(
3− x2n

N

)
−

√
N =

1

2
xn

(
1− x2n

N

)
+ (xn −

√
N),

or

en+1 =
1

2N
xn
(
N − x2n

)
+ (xn −

√
N) = (xn −

√
N)

[
1− xn

2N
(xn +

√
N)

]
.

Thus

en+1 =
(xn −

√
N)

2N

[
(N − x2n) + (N − xn

√
N)
]
= −

[
(xn + 2

√
N)

2N

]
(xn −

√
N)2,

which shows that en+1 ∝ e2n, the quadratic convergence. •

Since we know that rate of convergence of the Newton’s method is linear if the function has multiple
root. In the following example we discuss the rate of the convergence of the Newton’s method for
the multiple roots. •

Example 2.42 If x = α is a simple root of f(x) = 0, then show that the rate of convergence of
the Newton’s method is at least quadratic.

Solution. Consider the Newton’s iteration function which is define as follows:

g(x) = x− f(x)

f ′(x)
.

Since α is a simple root of nonlinear equation f(x) = 0, so

f(α) = 0 but f ′(α) ̸= 0.

Thus taking derivative of g(x), we get

g′(x) = 1− f ′(x)f ′(x)− f(x)f ′′(x)

[f ′(x)]2
=

f(x)f ′′(x)

[f ′(x)]2
.
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At x = α, we know that f(α) = 0 and f ′(α) ̸= 0, so we have

g′(α) = 1− f ′(α)f ′(α)− f(α)f ′′(α)

[f ′(α)]2
=

f(α)f ′′(α)

[f ′(α)]2
= 0.

Thus from Lemma 2.4, the rate of convergence of Newton’s method is at least quadratic. •

Example 2.43 If x = α is a double root of f(x) = 0, then show that the rate of convergence of
the Newton’s method is linear.

Solution. Consider the Newton’s iteration function which is define as follows:

g(x) = x− f(x)

f ′(x)
.

Since α is a double root of nonlinear equation f(x) = 0, so

f(α) = 0, f ′(α) = 0, f ′′(α) ̸= 0.

Thus taking derivative of g(x), we get

g′(x) = 1− f ′(x)f ′(x)− f(x)f ′′(x)

[f ′(x)]2
=

f(x)f ′′(x)

[f ′(x)]2
.

At x = α, we know that f(α) = 0 and f ′(α) = 0, so we have indeterminate form

(
0

0

)
. Using

L′Hôpital’s rule we have

g′(x) =
f ′(x)f ′′(x) + f(x)f ′′′(x)

2[f ′(x)f ′′(x)]
,

once again we get the indeterminate form. So again applying the L′Hôpital’s rule, we obtain

g′(x) =
(f ′′(x))2 + 2f ′(x)f ′′′(x) + f ′(x)f (4)

2[(f ′′(x))2 + f ′(x)f ′′′(x)]
,

and at x = α, we get

g′(α) =
(f ′′(α))2 + 0 + 0

2[(f ′′(x))2 + 0]
=

1

2
̸= 0.

Thus from Lemma 2.3, the rate of convergence of Newton’s method is linear. •

In the following example we discuss the rate of convergence of Newton’s method for the root of
nonlinear equation with multiplicity m without using the L′Hôpital’s rule.

Example 2.44 If x = α is a root of multiplicity m of f(x) = 0, then show that the rate of conver-
gence of the Newton’s method is linear.

Solution. Consider the Newton’s iteration function which is define as follows:

g(x) = x− f(x)

f ′(x)
.



60 2.7 Convergence of Iterative Methods

Since the function f(x) has multiple root, so

f(x) = (x− α)mh(x),

and its derivative is

f ′(x) = m(x− α)m−1h(x) + (x− α)mh′(x).

Substituting the values of the f(x) and f ′(x) in the above equation, we get

g(x) = x− (x− α)mh(x)

(m(x− α)m−1h(x) + (x− α)mh′(x))
,

or

g(x) = x− (x− α)h(x)

(mh(x) + (x− α)h′(x))
.

Then
g′(x) = 1 − {([mh(x) + (x− α)][h(x) + (x− α)h′(x)]− [(x− α)h(x)]

[mh′(x) + h′(x) + (x− α)h′′(x)])}/([mh(x) + (x− α)h′(x)]2).

At x = α, and since f(α) = 0, we have

g′(α) = 1− [mh(α)][h(α)]

[mh(α)]2
= 1− 1

m
̸= 0, because m > 1.

Therefore, the Newton’s method converges to a multiple zero from any sufficiently close approxi-

mation and the convergence is linear (by the Lemma 2.3), with ration (1− 1

m
). In particular for a

double root, the ration is
1

2
, which is comparable with the convergence of the bisection method. •

Case 2.4 (Secant Method)

The convergence rate of the secant method can be analyzed as follows. The general procedure is

xn+1 = xn − f(xn)(xn − xn−1)

f(xn)− f(xn−1)
(2.37)

As before, let xn−1 = α− en−1, xn = α− en, and xn+1 = α− en+1. Then

en+1 = en − f(α− en)(en − en−1)

f(α− en)− f(α− en−1)

Since by using the Taylor’s theorem

yn = f(α− en) = f(α)− enf
′(α) +

e2n
2!
f ′′(α)− · · ·

and

yn−1 = f(α− en−1) = f(α)− en−1f
′(α) +

e2n−1

2!
f ′′(α)− · · ·
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therefore, we have

en+1 = en − (en − en−1)[f(α)− enf
′(α) + 1/2e2nf

′′(α)− · · ·]
[−(en − en−1)f ′(α) + 1/2(e2n − e2n−1)f

′′(α)− · · ·]

= en −
[

−enf
′(α) + 1/2e2nf

′′(α)− · · ·
−f ′(α) + 1/2(en + en−1)f ′′(α)− · · ·

]
(becausef(α) = 0)

= en − 1

f ′(α)
[−enf

′(α) + 1/2e2nf
′′(α)− · · ·]

× [−1 + 1/2(en + en−1)
f ′′(α)
f ′(α) − · · ·]−1

= en − 1

f ′(α)
[enf

′(α) + 1/2e2nf
′′(α) + · · ·]

× [1− 1/2(en + en−1)
f ′′(α)

f ′(α)
+ · · ·]−1

= en − 1

f ′(α)
[enf

′(α)− 1/2e2nf
′′(α) + 1/2en(en + en−1)f

′′(α)− · · ·]

= en − 1

f ′(α)
[−enf

′(α) + 1/2enen−1f
′′(α)− · · ·]

= − f ′′(α)

2f ′(α)
enen−1 + · · ·

Hence

en+1 ≈ Kenen−1, where K = − f ′′(α)

2f ′(α)
, (2.38)

so that the each error is proportional to the product of the previous two errors. By comparison
with the Newton’s method convergence we expect the rate of the convergence of the secant method
is inferior to that of the Newton’s method. If we put

en = βeRn−1,

where R is the order of convergence and the constant β is called the asymptotic error constant, then
we obtain

en+1 = βeRn = β(βeRn−1)
R,

and

β(βeRn−1)
R ≈ KβeRn−1en−1.

Thus

eR
2

n−1 ≈ λeR+1
n−1 ,
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for some constant λ, it follows that
R2 = R+ 1.

Solving this quadratic equation, we get

R =
1±

√
5

2
= 1.61803,

neglecting the negative value. This formula for R tells us that

|en| ≈ β|en−1|1.61803.

Thus the error of the secant method is of order 1.61803, which is in-between 1 and 2. This shows
that the order of the secant method is better than the bisection method and fixed-point method but
less than the Newton’s method.
Remember, however, that the secant method does not require the derivative of f(x) to be evaluated
at each step, so that in many ways the secant method is a very attractive alternative to the standard
Newton’s method. •

Example 2.45 If x = α is a root of multiplicity m of nonlinear equation f(x) = 0, then show that
the rate of convergence of the first modified Newton’s method is at least quadratic.

Solution. The first modified Newton’s iteration function is define as follows:

g(x) = x−m
f(x)

f ′(x)
. (2.39)

Since the function f(x) has multiple root, so

f(x) = (x− α)mh(x),

and its derivative is
f ′(x) = m(x− α)m−1h(x) + (x− α)mh′(x).

Substituting the values of the f(x) and f ′(x) in (2.39), we get

g(x) = x− m(x− α)mh(x)

(m(x− α)m−1h(x) + (x− α)mh′(x))
,

or

g(x) = x− m(x− α)h(x)

(mh(x) + (x− α)h′(x))
.

Then
g′(x) = 1 − m{([mh(x) + (x− α)][h(x) + (x− α)h′(x)]− [(x− α)h(x)]

[mh′(x) + h′(x) + (x− α)h′′(x)])}/([mh(x) + (x− α)h′(x)]2).

At x = α, and since f(α) = 0, we have

g′(α) = 1− [m2h2(α)]

[mh(α)]2
,

it gives
g′(α) = 0.
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Therefore, the modified Newton’s method converges to a multiple root α and the convergence is at
least quadratically (by Lemma 2.4).

Similarly, if x = α is a root of multiplicity m of f(x) = 0, then by using the Example 2.45 one can
easily show that the rate of convergence of the Newton’s method is linear. As the Newton iteration
function is defined by

g(x) = x−m
f(x)

f ′(x)
,

and proceeding in the same way as we did in the Example 2.45, one can get

g′(α) = 1− 1

m
̸= 0, because m > 1.

Hence the Newton’s method converges to a multiple root α from any sufficiently close approximation

and the convergence is linear (by Lemma 2.3) with ration (1− 1

m
). In particular for a double root,

the ration is
1

2
, which is comparable with the convergence of the bisection method. •

2.8 Systems of Nonlinear Equations

A system of nonlinear algebraic equations may arise when one is dealing with problems involving
optimization and numerical integration (Gauss quadratures). Generally, the system of equations
may not be of the polynomial variety. Therefore a system of n equations in n unknowns is called
nonlinear if one or more of the equations in the systems is/are nonlinear.

The numerical methods we discussed so far have been concerned with finding a root of a nonlinear
algebraic equation with one independent variable. We now consider methods for solving systems of
nonlinear algebraic equations in which each equation is a function of a specified number of variables.

Consider the system of two nonlinear equations with two variables

f1(x, y) = 0, (2.40)

and

f2(x, y) = 0. (2.41)

The problem can be stated as follows:

Given the continuous functions f1(x, y) and f2(x, y), find the values x = α and y = β such that

f1(α, β) = 0 and f2(α, β) = 0. (2.42)

The function f1(x, y) and f2(x, y) may be algebraic equations, transcendental or any nonlinear
relationship between the input x and y and the output f1(x, y) and f2(x, y). The solutions to
(2.40) and (2.41) are the intersections of the f1(x, y) = f2(x, y) = 0, see Figure 2.24. This problem
is considerably more complicated then solution of a single nonlinear equation. The one-point
iterative method discussed in the previous Section 2.5 for the solution of a single equation may be
extended to system. So to solve the system of nonlinear equations we have many methods but we
will use the Newton’s method.
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Figure 2.24: Nonlinear equation in two variables.

Newton’s Method

Consider the two nonlinear equations specified by the equations (2.40) and (2.41). Suppose that
(xn, yn) is an approximation to a root (α, β), then by using the Taylor’s theorem for functions of
two variables for f1(x, y) and f2(x, y) expanding about (xn, yn), we have

f1(x, y) = f1(xn + (x− xn), yn + (y − yn))

= f1(xn, yn) + (x− xn)
∂f1(xn, yn)

∂x
+ (y − yn)

∂f1(xn, yn)

∂y
+ · · ·

and
f2(x, y) = f2(xn + (x− xn), yn + (y − yn))

= f2(xn, yn) + (x− xn)
∂f2(xn, yn)

∂x
+ (y − yn)

∂f2(xn, yn)

∂y
+ · · ·

Since f1(α, β) = 0 and f2(α, β) = 0, these equations, with x = α and y = β, give

0 = f1(xn, yn) + (α− xn)
∂f1(xn, yn)

∂x
+ (β − yn)

∂f1(xn, yn)

∂y
+ · · ·

0 = f2(xn, yn) + (α− xn)
∂f2(xn, yn)

∂x
+ (β − yn)

∂f2(xn, yn)

∂y
+ · · ·

The Newton’s method has a condition that initial approximation (xn, yn) should sufficiently close
to exact root (α, β), therefore, the higher order terms may be neglected to obtain

0 ≈ f1(xn, yn) + (α− xn)
∂f1(xn, yn)

∂x
+ (β − yn)

∂f1(xn, yn)

∂y

0 ≈ f2(xn, yn) + (α− xn)
∂f2(xn, yn)

∂x
+ (β − yn)

∂f2(xn, yn)

∂y

(2.43)

We see that this represents a system of two linear algebraic equations for α and β. Of course, since
the higher order terms are omitted in the derivation of these equations, their solution (α, β) is no
longer an exact root of (2.42) and (2.43). However, it will usually be a better approximation than
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(xn, yn), so replacing (α, β) by (xn+1, yn+1) in (2.42) and (2.43), gives the iterative scheme

0 = f1(xn, yn) + (xn+1 − xn)
∂f1(xn, yn)

∂x
+ (yn+1 − yn)

∂f1(xn, yn)

∂y

0 = f2(xn, yn) + (xn+1 − xn)
∂f2(xn, yn)

∂x
+ (yn+1 − yn)

∂f2(xn, yn)

∂y

Then writing in the matrix form, we have
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y


 xn+1 − xn

yn+1 − yn

 = −

 f1

f2

 , (2.44)

where f1, f2 and their partial derivatives f1x, f1y are evaluated at (xn, yn). Hence

 xn+1

yn+1

 =

 xn

yn

−


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y


−1 f1

f2

 . (2.45)

We call the following matrix J a Jacobian matrix

J =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 . (2.46)

Note that (2.44) can be written in the simplified form as follows
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y


 h

k

 = −

 f1

f2

 ,

where h and k can be evaluated as

h =

(
− f1

∂f2
∂y

+ f2
∂f1
∂y

)
(∂f1
∂x

∂f2
∂y

− ∂f1
∂y

∂f2
∂x

) and k =

(
f1

∂f2
∂x

− f2
∂f1
∂x

)
(∂f1
∂x

∂f2
∂y

− ∂f1
∂y

∂f2
∂x

) , (2.47)

where all functions are to be evaluated at (x, y). The Newton’s method for a pair of equations in
two unknowns is therefore(

xn+1

yn+1

)
=

(
xn
yn

)
+

(
h
k

)
, n = 0, 1, 2, . . . (2.48)
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where (h, k) are given by (2.47) evaluated at (xn, yn).

At a starting approximation (x0, y0), the functions f1, f1x, f1y, f2, f2x and f2y are evaluated. The
linear equations are then solved for (x1, y1) and whole process is repeated until convergence is ob-
tained. By comparison of the (2.14) and (2.45) shows that the above procedure is indeed an exten-
sion of the Newton’s method in one variable, where division by f ′ generalized to pre-multiplication
by J−1.

Example 2.46 For the following system of two equations

x3 + 3y2 = 21
x2 + 2y = −2

Find the Jacobian matrix and its inverse using initial approximation (1,−1), then find the first
approximation by using the Newton’s method.

Solution. Given
f1(x, y) = x3 + 3y2 − 21, f1x = 3x2, f1y = 6y,

f2(x, y) = x2 + 2y + 2, f2x = 2x, f2y = 2.

At the given initial approximation x0 = 1 and y0 = −1, we have

f1(1,−1) = −17,
∂f1
∂x

= f1x = 3,
∂f1
∂y

= f1y = −6,

f2(1,−1) = 1,
∂f1
∂x

= f2x = 2,
∂f2
∂y

= f2y = 2.

The Jacobian matrix J at the given initial approximation can be calculated as

J =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 =

 3 −6

2 2

 and J−1 =
1

18

(
2 6

−2 3

)
,

is the inverse of the Jacobian matrix.Now to find the first approximation we have to solve the
following equation(

x1
y1

)
=

(
1

−1

)
− 1

18

(
2 6

−2 3

)(
−17

1

)
=

(
2.5556

−3.0556

)
,

the required first approximation. •

Example 2.47 Solve the following system of two equations using the Newton’s method with given
accuracy ϵ = 10−5.

4x3 + y = 6
x2y = 1

Assume x0 = 1.0 and y0 = 0.5 as starting values.
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Figure 2.25: Graphical solution of the given nonlinear system.

Solution. Obviously this system of nonlinear equations has an exact solution of x = 1.088282 and
y = 0.844340, (see Figure 2.25). Let us look how the Newton’s method is used to approximate these
roots. The first partial derivatives are as follows:

f1(x, y) = 4x3 + y − 6, f1x = 12x2, f1y = 1,

f2(x, y) = x2y − 1, f2x = 2xy, f2y = x2.

At the given initial approximation x0 = 1.0 and y0 = 0.5, we get

f1(1.0, 0.5) = −1.5,
∂f1
∂x

= f1x = 12,
∂f1
∂y

= f1y = 1.0,

f2(1.0, 0.5) = −0.5,
∂f1
∂x

= f2x = 1.0,
∂f2
∂y

= f2y = 1.0.

The Jacobian matrix J and its inverse J−1 at the given initial approximation can be calculated as
follows:

J =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 =

 12.0 1.0

1.0 1.0

 and J−1 =
1

11.0

(
1.0 −1.0

−1.0 12.0

)
.

The Jacobian matrix can be find out by using MATLAB commands as follows:

>> syms x y
>> fun = [4 ∗ xˆ 3+y − 6, xˆ 2∗y − 1];
>> var = [x, y]; R = jacobian(f, var);

Substituting all these values in (2.46), we get the first approximation as follows:(
x1
y1

)
=

(
1.0
0.5

)
− 1

11.0

(
1.0 −1.0

−1.0 12.0

)(
−1.5
−0.5

)
=

(
1.090909
0.909091

)
.
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Similarly, the second iteration gives(
x2
y2

)
=

(
1.090909
0.909091

)
− 1

15.012077

(
1.190082 −1.0

−1.983471 14.280989

)(
0.102178
0.081893

)

=

(
1.088264
0.844686

)
.

The first two and the further steps of the method are listed in Table 2.7. •

Table 2.7: Solution of a system of two nonlinear equations
n x-approx. y-approx. 1st. func. 2nd. func.

xn yn f1(xn, yn) f2(xn, yn)

00 1.000000 0.500000 -1.50000 -0.500000
01 1.090909 0.909091 0.102178 0.081893
02 1.088264 0.844686 0.000091 0.000377
03 1.088282 0.844340 0.000001 0.000001

A typical iteration of this method for this pair of equations can be implemented in MATLAB com-
mand window using:

>> f1 = 4 ∗ x0ˆ 3 + y0− 6; f2 = x0ˆ 2 ∗ y0− 1;
>> f1x = 12 ∗ x0ˆ 2; f1y = 1; f2x = 2 ∗ x0 ∗ y0; f2y = x0ˆ 2;
>> D = f1x ∗ f2y − f1y ∗ f2x;
>> h = (f2 ∗ f1y − f1 ∗ f2y)/D; k = (f1 ∗ f2x− f2 ∗ f1x)/D;
>> x0 = x0 + h; y0 = y0 + k;

Using the starting value (1.0, 0.5), we found the possible approximations as shown in Table 2.7. •

We see that the values of both the functional are approaching zero as the number of iterations is
increased. We got the desired approximations to the roots after 3 iterations with accuracy ϵ = 10−5.
The Newton’s method is fairly easy to implement for the case of two equations in two unknowns.
We first need the function m-files for the equations and the partial derivatives. For the equations
in the Example 2.47, we do the following:

function f = fn2(v) function J = dfn2(v)
%f and v are vector quantities %Jacobian matrix forfn2.m
x = v(1); y = v(2); x = v(1); y = v(2);
f(1) = 4 ∗ x.ˆ 2 + y − 6; J(1, 1) = 12 ∗ x.ˆ 2; J(1, 2) = 1;
f(2) = x.ˆ 2 ∗ y − 1; J(2, 1) = 2 ∗ x ∗ y;J(2, 2) = x.ˆ 2;

Then the following MATLAB commands can be used to generate the solution of the Example 2.47:

>> s = newton2(′fn2′,′ dfn2′, [1.0, 0.5], 1e− 5)
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The m-file Newton2.m will need both the function and its partial derivatives as well as starting
vector and a tolerance. The following code can be used.

Program 2.7
MATLAB m-file for Newton’s Method for a Nonlinear System
function sol=newton2(fn2,dfn2,x0,tol)
old=x0+1; while max(abs(x0-old))>tol; old=x0;
f = feval(fn2, old); f1 = f(1); f2 = f(2); J = feval(dfn2, old);
f1x = J(1, 1); f1y = J(1, 2); f2x = J(2, 1); f2y = J(2, 2);
D = f1x ∗ f2y − f1y ∗ f2x; h = (f2 ∗ f1y − f1 ∗ f2y)/D;
k = (f1 ∗ f2x− f2 ∗ f1x)/D; x0 = old+ [h, k]; end; sol=x0;

Similarly, for a large system of equations it is convenient to use vector notation. Consider the
system

f(x) = 0,

where f = (f1, f2, . . . , fn)
T and x = (x1, x2, . . . , xn)

T . Denoting the nth iterate by

x[n] = (x
[n]
1 , x

[n]
2 , x

[n]
3 , . . . , x

[n]
n )T , then the Newton’s method is defined by

x[n+1] = x[n] −
[
J(x[n])

]−1
f(x[n]), (2.49)

where the Jacobian matrix J is defined as

J =



∂f1
∂x1

∂f1
∂x2

...
∂f1
∂xn

. .

. .

. .
∂fn
∂x1

∂fn
∂x2

...
∂fn
∂xn


.

Since the iterative formula (2.49) involves the inverse of Jacobian J , in practice we do not attempt
to find this explicitly. In stead of using the form of (2.49) we use the following form

J(x[n])Z[n] = −f(x[n]), (2.50)

where Z[n] = x[n+1] − x[n].
This represents a system of linear equations for Z[n] and can be solved by any methods described
in the next Chapter 3. Once Z[n] has been found, the next iterate is calculated from

x[n+1] = Z[n] + x[n]. (2.51)

There are two major disadvantages with method:

1. The method may not converges unless the initial approximation is a good one. Unfortunately,
there are no general means by which an initial solution can be obtained. One can assume
such values for which det(J) ̸= 0. This does not guarantee convergence but it does provide
some guidance as to the appropriateness of one’s initial approximation.
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2. The method requires the user to provide the derivatives of each function with respect to
each variable. Therefore one must evaluate the n functions and the n2 derivatives at each
iteration. So solving systems of nonlinear equations is a difficult task. For systems of nonlinear
equations that have analytical partial derivatives, Newton’s method can be used; otherwise,
multi-dimensional minimization techniques should be used.

Procedure 2.5 (Newton’s Method for Two Nonlinear Equations)

1. Choose the initial guess for the roots of the system, so that the determinant of the Jacobian
matrix is not zero.

2. Establish Tolerance ϵ(> 0).

3. Evaluate the Jacobian at initial approximations and then find inverse of Jacobian.

4. Compute new approximation to the roots by using iterative formula (2.51).

5. Check tolerance limit. If ∥(xn, yn) − (xn−1, yn−1)∥ ≤ ϵ, for n ≥ 0, then end; otherwise, go
back to step 3, and repeat the process.

2.9 Exercises

1. Find the root of f(x) = ex−2−x in the interval [−2.4,−1.6] accurate to 10−4 using bisection
method.

2. Use bisection method to find solutions accurate to within 10−4 on the interval [−5, 5] of the
following functions:
(a) f(x) = x5 − 10x3 − 4, (b) f(x) = 2x2 + ln(x)− 3, (c) f(x) = ln(x) + 30e−x − 3.

3. The following equations have a root in the interval [0, 1.6]. Determine these with an error
less than 10−4 using bisection method.
(a) 2x− e−x = 0; (b) e−3x + 2x− 2 = 0.

4. Estimate the number of iterations needed to achieve an approximation with accuracy 10−4

to the solution of f(x) = x3 +4x2 +4x− 4 lying in the interval [0, 1] using bisection method.

5. Use the bisection method for f(x) = x3 − 3x+ 1 in [1, 3] to find:
(a) The first eight approximation to the root of the given equation.
(b) Find an error estimate |α− x8|.

6. The cubic equation x3 − 3x− 20 = 0 can be written as

(a) x =
(x3 − 20)

3
, (b) x =

3

(x3 − 3)
, (c) x = (3x+ 20)1/3.

Choose the form which satisfies the condition |g′(x)| < 1 on [3, 4] and then find third approx-
imation x3 when x0 = 3.5.
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7. Consider the nonlinear equation g(x) =
1

2
e0.5x defined on the interval [0, 1]. Then

(a) Show that there exists a unique fixed-point for g in [0, 1].
(b) Use fixed-point iterative method to compute x3, set x0 = 0.
(c) Compute an error bound for your approximation in part (b).

8. An equation x3 − 2 = 0 can be written in form x = g(x) in two ways:

(a) x = g1(x) = x3 + x− 2, (b) x = g2(x) =
(2 + 5x− x3)

5
Generate first four approximations from xn+1 = gi(xn), i = 1, 2 by using x0 = 1.2. Show
which sequence converge to 21/3 and why ?

9. Find value of k such that the iterative scheme xn+1 =
x2n − 4kxn + 7

4
, n ≥ 0 converges to 1.

Also, find the rate of convergence of the iterative scheme.

10. Write the equation x2−6x+5 = 0 in the form x = g(x), where x ∈ [0, 2], so that the iteration
xn+1 = g(xn) will converge to the root of the given equation for any initial approximation
x0 ∈ [0, 2].

11. Which of the following iterations

(a) xn+1 =
1

4

(
x2n +

6

xn

)
, (b) xn+1 =

(
4− 6

x2n

)
is suitable to find a root of the equation x3 = 4x2 − 6 in the interval [3, 4] ? Estimate the
number of iterations required to achieve 10−3 accuracy, starting from x0 = 3.

12. An equation ex = 4x2 has a root in [4, 5]. Show that we cannot find that root using x =

g(x) =
1

2
ex/2 for the fixed-point iteration method. Can you find another iterative formula

which will locate that root ? If yes, then find third iterations with x0 = 4.5. Also find the
error bound.

13. Let f(x) = ex+3x2. Find Newton’s formula g(xk). Start with x0 = 4 and x0 = −0.5, compute
x4.

14. Use Newton’s formula for the reciprocal of square root of a number 15 and then find the 3rd
approximation of number, with x0 = 0.05.

15. Use Newton’s method to find solution accurate to within 10−4 of the equation tan(x)−7x = 0,
with initial approximation x0 = 4.

16. Find Newton’s formula for f(x) = x3 − 3x+ 1 in [1, 3] to calculate x3, if x0 = 1.5. Also, find
the rate of convergence of the method.

17. Rewrite the nonlinear equation g(x) =
1

2
e0.5x which defined in the interval [0, 1] in the equiv-

alent form f(x) = 0 and then use the Newton’s method with x0 = 0.5 to find third approxi-
mation x3.

18. Given the iterative scheme xn+1 = xn −
f(xn)

f ′(xn)
, n ≥ 0 with f(α) = f ′(α) = 0 and f ′′(α) ̸= 0.

Find the rate of convergence for this scheme.
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19. Find x4 for x3 − 2x− 5 = 0 by secant method using x0 = 2 and x1 = 3.

20. Solve the equation e−x − x = 0 by secant method,using x0 = 0 and x1 = 1, accurate to 10−4.

21. Use secant method to find a solution accurate to within 10−4 for ln(x) + x− 5 = 0 on [3, 4].

22. Find the root of multiplicity of the function f(x) = (x− 1)2 ln(x) at α = 1.

23. Show that if f(x) has a root of multiplicity m at x = α, then

f (n)(x) = 0, n = 1, 2, . . . ,m− 1.

24. Show that the root of multiplicity of the function f(x) = x4−x3− 3x2+5x− 2 is 3 at α = 1.
Estimate the number of iterations required to solve the problem with accuracy 10−4, start
with the starting value x0 = 0.5 by using:
(a) Newton’s method; (b) First modified Newton’s method; (c) Second modified Newton’s
method

25. If f(x), f ′(x) and f ′′(x) are continuous and bounded on a certain interval containing x = α
and if both f(α) = 0 and f ′(α) = 0 but f ′′(α) ̸= 0, show that

xn+1 = xn − 2
f(xn)

f ′(xn)

will converge quadratically if xn is in the interval.

26. Show that iterative scheme xn+1 = 1 + xn − x2n
2
, n ≥ 0 converges to

√
2. Find the rate of

convergence of the sequence.

27. Let α be the exact solution of the function f(x) = 0 such that f ′(α) ̸= 0, f ′′(α) ̸= 0, then
find the conditions on the constant K under which the rate of convergence of the sequence
xn+1 = x2n −Kf(xn), n = 0, 1, 2, . . . is quadratic.

28. Solve the following system using the Newton’s method:

4x3 + y = 6
x2y = 1

Start with initial approximation x0 = y0 = 1. Stop when successive iterates differ by less
than 10−7.

29. Solve the following system using the Newton’s method:

x + ey = 68.1
sinx − y = −3.6

Start with initial approximation x0 = 2.5, y0 = 4, compute the first three approximations.



Chapter 3

Systems of Linear Algebraic
Equations

3.1 Introduction

When engineering systems are modeled, the mathematical description is frequently developed in
terms of set of algebraic simultaneous equations. Sometimes these equations are non-linear and
sometimes linear. In this chapter we discuss systems of simultaneous linear equations and describe
the numerical methods for the approximate solutions of such systems. The solution of a system
of simultaneous linear algebraic equations is probably one of the most important topics in the
engineering computation. Problems involving simultaneous linear equations arise in the areas of
elasticity, electric-circuit analysis, heat transfer, vibrations and so on. Also, the numerical integra-
tion of some types of ordinary and partial differential equations may be reduced to the solution of
such a system of equations. It has been estimated, for example, that about 75% of all scientific
problems require the solution of a system of linear equations at one stage or another. It is therefore
important to be able to solve linear problems efficiently and accurately.

Important Points of the Chapter 3

I. In this chapter we look for the solutions of systems of linear equations.

II. Linear systems may be simultaneous (number of linear equations and unknowns variables are
equal) or underdetermined (number of linear equations less than unknowns variables) or overde-
termined (number of linear equations more than unknowns variables). Here, we shall discuss only
simultaneous systems.

III. Matrix form of linear system is Ax = b, where A called coefficient matrix, column matrix b is
right hand constant and column matrix x be the unknowns.

IV. Linear systems may be nonhomogeneous (right hand vector b ̸= 0) or homogeneous (b = 0).

V. Linear systems may have unique solution or no solution or infinitely many solutions.
73
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VI. Linear systems may be nonsingular (determinant of coefficients matrix A not equal to zero)
or singular (determinant of coefficients matrix A equal to zero). Nonsingular systems have unique
solution while singular systems have either no solution or infinitely many solutions.

VII. Solutions of linear systems can be obtained by both direct and indirect (iterative) methods.

VII. Linear systems may be well-conditioned (small condition number) or ill-conditioned (large
condition number) .

Definition 3.1 (Linear equation)

It is an equation in which the highest exponent in a variable term is no more than one. The graph
of such equation is a straight line. •

A linear equation in two variables x1 and x2 is an equation that can be written in the form

a1x1 + a2x2 = b,

where a1, a2, and b are real numbers. Note that this is the equation of a straight line in the plane.
For example, the equations

5x1 + 2x2 = 2,
4

5
x1 + 2x2 = 1, 2x1 − 4x2 = π,

are all linear equations in two variables.

A linear equation in n variables x1, x2, . . . , xn is an equation that can be written as

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an are real numbers and called the coefficients of unknown variables x1, x2, . . . , xn
and the real number b, the right-hand side of equation, is called the constant term of the equation.

Definition 3.2 (System of Linear Equations)

A system of linear equations (or linear system) is simply a finite set of linear equations.

For example,
4x1 − 2x2 = 5
3x1 + 2x2 = 4

is the system of two equations in two variables x1 and x2, while

2x1 + x2 − 5x3 + 2x4 = 9
4x1 + 3x2 + 2x3 + 4x4 = 3
x1 + 2x2 + 3x3 + 2x4 = 11

is the system of three equations in the four variables x1, x2, x3 and x4.
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In order to write a general system of m linear equations in the n variables x1, . . . , xn, we have

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
... · · ·

...
...

am1x1 + am2x2 + · · · + amnxn = bm

(3.1)

or, in compact form the system (3.1) can be written

n∑
j=1

aijxj = bi, i = 1, 2, . . . ,m. (3.2)

For such system we seek all possible ordered sets of numbers c1, . . . , cn which satisfies all m equa-
tions when they are substituted for the variables x1, x2, . . . , xn. Any such set {c1, c2, . . . , cn}, is
called a solution of the system of linear equations (3.1) or (3.2).

There are three possible types of linear systems arise in engineering problems and they are:

1. If there are more equations than unknown variables (m > n), then the system is usually
called overdetermined. Typically, an overdetermined system has no solution. For example,
the following system has no solution.

4x1 = 8
3x1 + 9x2 = 13

3x2 = 9

2. If there are more unknown variables than the number of the equations (n > m), then the
system is usually called underdetermined. Typically, an underdetermined system has infinite
number of solutions. For example, the following system has infinitely many solutions.

x1 + 5x2 = 45
3x2 + 4x3 = 21

3. If there are same number of equations as the unknown variables (m = n), then the system is
usually called simultaneous system. It has unique solution if the system satisfies the certain
conditions (which we will discuss below). For example, the system

2x1 + 4x2 + x3 = −11
−x1 + 3x2 − 2x3 = −16
2x1 − 3x2 + 5x3 = 21

has unique solution x1 = 2, x2 = −4 and x3 = 1.

Most engineering problems fall into this category. In this chapter we will solve the simulta-
neous linear systems using many numerical methods.



76 3.1 Introduction

A simultaneous system of linear equations is said to be linear independent if no equation in
the system can be expressed as a linear combination of the others. Under these circumstances
a unique solution exists. For example, the following system of linear equations

2x1 + x2 − x3 = 1
x1 − 2x2 + 3x3 = 4
x1 + x2 = 1

are linear independent and therefore, has unique solution x1 = 1, x2 = 0 and x3 = 1. However,
the system

5x1 + x2 + x3 = 4
3x1 − x2 + x3 = −2
x1 + x2 = 3

does not have a unique solution since the equations are not linear independent; the first
equation is equal to the second equation plus twice the third equation.

Theorem 3.1 (Solution of a Linear System)

Every system of linear equations has either no solution, exactly one solution, or infinitely many
solutions. •

For example, in the case of a system of two equations in two variables, we can have these three
possibilities for the solutions of the linear system. Firstly, the two lines (since the graph of linear
equation is straight line) may be parallel and distinct, in this case there is no solution to the system
because the two lines do not intersect each other at any point. For example, consider the following
system

x1 + x2 = 1
2x1 + 2x2 = 3

From the graphs (see Figure 3.1(a)) of the given two equations show that lines are parallel so,
the given system has no solution. It can be proved algebraically simply by multiplying the first
equation of the system by 2, to get a system of the form

2x1 + 2x2 = 2
2x1 + 2x2 = 3

which is not possible.

Secondly, the two lines may not be parallel, and they meet exactly one point, so in this case the
system has exactly one solution. For example, consider the following system

x1 − x2 = −1
3x1 − x2 = 3

From the graphs (see Figure 3.1(b)) of these two equations, we can see that the lines intersect in
exactly one point, namely, the (2,3), and so the system has exactly one solution, x1 = 2, x2 = 3.
To show algebraically, if we substitute x2 = x1+1 in the second equation, we have 3x1−x1−1 = 3,
or x1 = 2 and using this value of x1 in x2 = x1 + 1, gives x2 = 3.
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Figure 3.1: Three possible solutions of simultaneous systems.

Finally, the two lines may actually be the same line, and so in this case, every point on the lines
gives a solution to the system, and therefore, there are infinitely many solutions. For example,
consider the following system

x1 + x2 = 1
2x1 + 2x2 = 2

Here, both equations have same line for their graph, see Figure 3.1(c). So this system has infinitely
many solutions because any point on this line gives a solution to this system. Since any solution
of first equation is also solution of the second equation. For example, if we set x2 = x1 − 1 and
choose x1 = 0, x2 = 1 and x1 = 1, x2 = 0, and so on. •
Note that a system of equations with no solution is said to be inconsistent system and if it has at
least one solution, it is said to be consistent system.

3.1.1 Linear System in Matrix Notation

To write the general simultaneous system of n linear equations in the n unknown variables x1, x2, . . . , xn,
is

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

...
an1x1 + an2x2 + · · · + annxn = bn

(3.3)

The system of linear equations (3.3) can be written as the single matrix equation


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann




x1
x2
...
xn

 =


b1
b2
...
bn

 . (3.4)
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If we compute the product of the two matrices on the left-hand side of (3.9), we have
a11x1 + a12x2 + · · · + a1nxn
a21x1 + a22x2 + · · · + a2nxn

...
...

...
...

an1x1 + an2x2 + · · · + annxn

 =


b1
b2
...
bn

 . (3.5)

But two matrices are equal if and only if their corresponding elements are equal. Hence the single
matrix equation (3.9) is equivalent to the system of the linear (3.3). If we define

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bn

 ,

the coefficient matrix, the column matrix of unknowns, and the column matrix of constants, re-
spectively, then the system (3.3) can be written very compactly as

Ax = b, (3.6)

which is called the matrix form of the system of linear equations (3.3). The column matrices x
and b are called vectors. If right-hand sides of the equal signs of (3.6) are not zero, then the linear
system (3.6) is called a nonhomogeneous system, and we will find that all the equations must be
independent to obtain unique solution. If the constants b of (3.6) are added to the coefficient
matrix A as a column of elements in the position shown below

[A|b] =


a11 a12 · · · a1n

... b1

a21 a22 · · · a2n
... b2

...
...

...
...

...
...

an1 an2 · · · ann
... bn

 , (3.7)

then the matrix [A|b] is called augmented matrix of the system (3.6). In many instances, it may be
found convenient to operate on the augmented matrix instead of manipulating the equations. It is
customary to put a bar between the last two columns of the augmented matrix remind us where
the last column come from. However, the bar is not absolutely necessary. The coefficient and
augmented matrices of a linear system will play key roles in our methods of solving linear systems.

Using MATLAB commands we can define augmented matrix as follows:

>> A = [1 2 3; 4 5 6; 7 8 9]; b = [10; 11; 12]; Aug = [A b]; Aug = [A eye(3)]

Homogeneous Linear System

If all of the constant terms b1, b2, . . . , bn on the right-hand sides of the equal signs of the linear
system (3.6) are zero, then the system (3.6) is called a homogeneous system, and it can be written



Chapter Three Systems of Linear Algebraic Equations 79

as
a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

...
...

...
...

...
an1x1 + an2x2 + · · · + annxn = 0

(3.8)

The system of linear equations (3.8) can be written as the single matrix equation
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann




x1
x2
...
xn

 =


0
0
...
0

 . (3.9)

Also, it can be written in more compact form as

Ax = 0, (3.10)

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

 , x =


x1
x2
...
xn

 , 0 =


0
0
...
0

 .

It can be seen by inspection of the homogeneous system (3.10) that one of its solution is x = 0, such
solution, in which all of the unknowns are zero, is called the trivial solution or zero solution. For the
general nonhomogeneous linear system there are three possibilities: no solution, one solution, or
an infinitely many solutions. For the general homogeneous system, there are only two possibilities:
either the zero solution is the only solution or there are an infinitely many solutions (called non-
trivial solutions). Of course, it is usually non-trivial solutions that are of interest in physical
problems. A non-trivial solution to the homogeneous system can occurs with certain conditions on
the coefficient matrix A which we will discuss later.

3.2 Properties of Matrices and Determinant

To discuss the solution of the linear systems, it will be necessary to introduce the basic algebraic
properties of matrices which make it possible to describe the linear systems in a concise way that
makes solving a system of n linear equations as easy as possible.

3.2.1 Introduction of Matrices

A matrix can be described as a rectangular array of elements that can be represented as follows:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

 . (3.11)
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The number a11, a12, . . . , amn that make up the array are called the elements of the matrix. The
first subscript for the element denotes the row and the second denotes the column in which the
element appear. The elements of a matrix may take many forms. They could be all numbers (real
or complex), or variables, or functions, or integrals, or derivatives, or even matrices themselves.

The order or size of a matrix is specified by the number of rows (m) and column (n); thus the
matrix A in (3.11) is of order m by n, usually written as m× n.

A vector can be considered as a special case of a matrix having only one row or one column. A
row vector containing n elements is a 1× n matrix, called a (row matrix), and a column vector of
n elements is an n× 1 matrix, called a (column matrix). A matrix of order 1× 1 is called a scalar.

Definition 3.3 (Matrix Equality)

Two matrices A = (aij) and B = (bij) are equal if they are the same size and the corresponding
elements in A and B are equal, that is

A = B if and only if aij = bij ,

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. For example, the following matrices

A =

 1 −1 2
1 3 2
2 4 3

 and B =

 1 −1 z
1 3 2
x y w

 ,

are equal if and only if x = 2, y = 4, z = 2 and w = 3. •

Definition 3.4 (Addition of Matrices)

Let A = (aij) and B = (bij) are both m× n matrices, then the sum A+B of two matrices of same
size is a new matrix C = (cij) each of whose elements is the sum of the two corresponding elements
in the original matrices, that is

cij = aij + bij , for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

For example, let

A =

(
1 2
3 4

)
and B =

(
4 1
5 2

)
,

then (
1 2
3 4

)
+

(
4 1
5 2

)
=

(
5 3
8 6

)
= C.

•

Using MATLAB commands adding two matrices A and B of same size, results in the answer C
another matrix of same size, are:

>> A = [1 2; 3 4]; B = [4 1; 5 2]; C = A+B
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Definition 3.5 (Difference of Matrices)

Let A and B are m × n matrices, we write A + (−1)B as A − B and call this the difference of
two matrices of same size is a new matrix C each of whose elements is the difference of the two
corresponding elements in the original matrices. For example, let

A =

(
1 2
3 4

)
and B =

(
4 1
5 2

)
.

Then (
1 2
3 4

)
−
(

4 1
5 2

)
=

(
−3 1
−2 2

)
= C.

Note that (−1)B = −B is obtained by multiplying each entries of matrix B by (−1), called the
scalar multiple of matrix B by −1. The matrix −B is called negative of the matrix B. •

Definition 3.6 (Multiplication of Matrices)

The multiplication of two matrices is defined only when the number of columns in the first matrix
is equal to the number of rows in the second. If an m×n matrix A is multiplied by an n× p matrix
B, then the product matrix C is an m× p matrix where each term is defined by

cij =
n∑

k=1

aikbkj ,

for each i = 1, 2, . . . ,m, and j = 1, 2, . . . , p. For example, let

A =

(
1 2
3 4

)
and B =

(
4 1
5 2

)
.

Then (
1 2
3 4

)(
4 1
5 2

)
=

(
4 + 10 1 + 4
12 + 20 3 + 8

)
=

(
14 5
32 11

)
= C.

Note that even AB is defined, the product BA may not be defined. Moreover, a simple multiplication
of two square matrices of same size will show that even BA is defined, it need not equal to AB,
that is, they do not commute. For example, if

A =

(
1 2

−1 3

)
and B =

(
2 1
0 1

)
,

then

AB =

(
2 3

−2 2

)
while BA =

(
1 7

−1 3

)
.

Thus AB ̸= BA. •

Using MATLAB commands matrix multiplication has the standard meaning as well. Multiplying
two matrices A and B of size m× p and p× n respectively, results in the answer C another matrix
of size m× n, are:

>> A = [1 2;−1 3]; B = [2 1; 0 1]; C = A ∗B
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3.2.2 Some Special Matrix Forms

There are many special types of matrices that are encountered frequently in engineering analysis.
We discuss some of the them in the following.

Definition 3.7 (Square Matrix)

A matrix A which has the same number of rows m and columns n ,that is, m = n, defined as

A = (aij), for i = 1, 2, . . . , n and j = 1, 2, . . . , n,

is called a square matrix. For example, the following matrices

A =

(
1 2

−1 3

)
and B =

 2 1 2
1 2 3
0 1 5

 ,

are square matrices because both have the same numbers of rows and columns. •

Definition 3.8 (Null Matrix)

It is a matrix in which all elements are zero, that is

A = (aij) = 0, for i = 1, 2, . . . , n and j = 1, 2, . . . , n.

It is also called zero matrix. It may be either rectangular or square. For example, the following
matrices

A =

(
0 0 0
0 0 0

)
and B =

 0 0 0
0 0 0
0 0 0

 ,

are the zero matrices. •

Definition 3.9 (Identity Matrix)

It is a square matrix in which the main diagonal elements are equal to 1, and is defined as follows

I = (aij) =

{
aij = 0, if i ̸= j,
aij = 1, if i = j.

An example of 4× 4 identity matrix may be written as

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The Identity matrix (also called unit matrix) serves somewhat the same purpose in matrix algebra as
does the number one (unity) in scalar algebra. It is called the identity matrix because multiplication
of a matrix by it will result in a same matrix. For a square matrix A of order n, it can be seen that

InA = AIn = A.
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Similarly, for rectangular matrix B of order m× n, we have

ImB = BIn = B.

The multiplication of an identity matrix by itself results in a same identity matrix. •

In MATLAB identity matrices are created with eye function, which can take either one or two
input arguments.

>> I = eye(n); I = eye(m,n)

Definition 3.10 (Transpose Matrix)

The transpose of a matrix A, which is a new matrix formed by interchanging the rows and columns
of the original matrix. If the original matrix A is of order m × n, then the transpose matrix, as
AT , will be of order n×m, that is

If A = (aij), for i = 1, 2, . . . ,m and j = 1, 2, . . . , n,

then
AT = (aji), for i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

•

The transpose of a matrix A can be found by using MATLAB command as follows:

>> A = [1 2 3; 4 5 6; 7 8 9];B = A′

It is to be noted that

1. (AT )T = A 2. (A1 +A2)
T = AT

1 +AT
2

3. (A1A2)
T = AT

2 A
T
1 4. (αA)T = αAT , α is a scalar.

Definition 3.11 (Inverse Matrix)

An n× n matrix A has an inverse or is invertible if there exists an n× n matrix B such that

AB = BA = In.

Then the matrix B is called the inverse of A and is denoted by A−1. For example, let

A =

(
2 3
2 2

)
and B =

(
−1 3

2
1 −1

)
.

Then we have
AB = BA = I2,

which means that B is an inverse of A. The invertible matrix is also called, nonsingular matrix. •
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To find the inverse of the square matrix A using MATLAB commands we do as follows:

>> A = [2 − 1 0 0;−1 2 − 1 0; 0 − 1 2 − 1; 0 0 − 1 2]; Ainv = INVMAT (A)

Program 3.1
MATLAB m-file for finding inverse of a matrix
function [Ainv]=INVMAT(A)
[n,n]=size(A); I=zeros(n,n); for i=1:n; I(i,i)=1; end; m(1:n,1:n)=A; m(1 : n, n+ 1 : 2 ∗ n) = I;
for i=1:n; m(i, 1 : 2 ∗ n) = m(i, 1 : 2 ∗ n)/m(i, i); for k=1:n; if i˜ =k
m(k, 1 : 2∗n) = m(k, 1 : 2∗n)−m(k, i)∗m(i, 1 : 2∗n); end;end;end; invrs = m(1 : n, n+1 : 2∗n);

MATLAB built-in function inv(A) can be also use to calculate the inverse of a square matrix A if
A is invertible. If the matrix A is not invertible, then the matrix A is called singular. There are
some well-known properties of the invertible matrix which are define as follows.

Theorem 3.2 If the matrix A is invertible, then

1. It has exactly one inverse. If B and C are the inverses of A, then B = C.

2. Its inverse matrix A−1 is also invertible and (A−1)−1 = A.

3. Its product with another invertible matrix is invertible, and the inverse of the product is the
product of the inverses in the reverse order. If A and B are invertible matrices of the same
size, then AB is invertible and (AB)−1 = B−1A−1.

4. Its transpose matrix AT is invertible and (AT )−1 = (A−1)T .

5. The kA for any non-zero k is invertible, that is, (kA)−1 =
1

k
A−1.

6. The Ak for any k is also invertible, that is, (Ak)−1 = (A−1)k.

7. Its size 1× 1 is invertible when it is nonzero. If A = (a), then A−1 = (
1

a
).

8. The formula for A−1 when n = 2 is

A−1 =

(
a11 a12
a21 a22

)−1

=
1

a11a22 − a12a21

(
a22 −a12

−a21 a11

)
,

provided that a11a22 − a12a21 ̸= 0. •

Definition 3.12 (Diagonal Matrix)

It is a square matrix having all elements equal to zero except those on main diagonal, that is

A = (aij) =

{
aij = 0, if i ̸= j,
aij ̸= 0, if i = j.

Note that all diagonal matrices are invertible if all diagonal entries are nonzero. •
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The MATLAB diag function is used to either create a diagonal matrix from a vector or it extract
the diagonal entries of a matrix. If the input argument of the diag function is a vector, MATLAB
uses the vector to create a diagonal matrix:

>> x = [2, 2, 2]; A = diag(x)
>> B = [2 − 4 1; 6 10 − 3; 0 5 8]; M = diag(B)

The matrix A is called the scalar matrix because it has all the elements on the main diagonal equal
to the same scalars 2. Multiplication of a square matrix and a scalar matrix is commutative, and
the product is also a diagonal matrix.

Definition 3.13 (Upper-Triangular Matrix)

It is a square matrix which has zero elements below and to the left of the main diagonal. The
diagonal as well as the above diagonal elements can take on any value, that is

U = (uij), where uij = 0, if i > j.

An example of such a matrix is

U =

 1 2 3
0 4 5
0 0 6

 .

The upper-triangular matrix is called upper-unit-triangular matrix if the diagonal elements are equal
to one. This type of matrix is used in solving linear algebraic equations by LU decomposition with
Crout’s method. Also, if the main diagonal elements of the upper-triangular matrix are zero, then

A =

 0 a12 a13
0 0 a23
0 0 0

 ,

is called the strictly upper-triangular matrix. This type of matrix will be used in solving linear
systems by iterative methods. •

Using MATLAB command triu(A) we can create an upper triangular matrix from a matrix A as

>> A = [1 2 3; 4 5 6; 7 8 9]; U = triu(A)

Also we can create strictly upper-triangular matrix, that is, an upper-triangular matrix with zero
diagonal, from a given matrix A by using MATLAB built-in function triu(A,I) as follows:

>> A = [1 2 3; 4 5 6; 7 8 9]; U = triu(A, I)

Definition 3.14 (Lower-Triangular Matrix)

It is a square matrix which has zero elements above and to the right of the main diagonal and the
rest of the elements can take on any value, that is

L = (lij), where lij = 0, if i < j.
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An example of such a matrix is

L =

 2 0 0
3 1 0
4 5 3

 .

The lower-triangular matrix is called lower-unit-triangular matrix if the diagonal elements are equal
to one. This type of matrix is used in solving linear algebraic equations by LU Decomposition with
Doolittle’s method. Also, if the main diagonal elements of the lower-triangular matrix are zero,
then the matrix

A =

 0 0 0
a21 0 0
a31 a32 0

 ,

is called the strictly lower-triangular matrix. We will use this type of matrix in solving the linear
systems by using iterative methods. •

In similar way like upper-triangular matrices we can create lower-triangular matrix and strictly
lower-triangular matrix from a given matrix A by using MATLAB built-in functions tril(A) and
tril(A,I) respectively.

Note that all the triangular matrices (upper or lower) with nonzero diagonal entries are invertible.

Definition 3.15 (Symmetric Matrix)

A symmetric matrix is one in which the elements aij of a matrix A, in the ith row and jth column
equal to the element aji in the jth row and ith column which means that

AT = A, that is aij = aji, for i ̸= j.

Note that any diagonal matrix, including the identity, is symmetric. A lower- or upper-triangular
matrix is symmetric if and only if it is, in fact , a diagonal matrix.
One way to generate a symmetric matrix is to multiply a matrix by its transpose, since ATA is
symmetric for any A. To generate a symmetric matrix using MATLAB commands we do as

>> A = [1 : 4; 5 : 8; 9 : 12]; B = A′ ∗A; C = A ∗A

Example 3.1 Find all the values of a, b and c for which the following matrix is symmetric:

A =

 4 a+ b+ c 0
−1 3 b− c
−a+ 2b− 2c 1 b− 2c

 .

Solution. If the given matrix is symmetric, then A = AT , that is

A =

 4 a+ b+ c 0
−1 3 b− c
−a+ 2b− 2c 1 b− 2c

 =

 4 −1 −a+ 2b− 2c
a+ b+ c 3 1
0 b− c b− 2c

 = AT ,
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which implies that

0 = −a+ 2b− 2c, −1 = a+ b+ c, 1 = b− c.

Solving above system, we get, a = 2, b = −1, c = −2 and using these values, we have the given
matrix of the form

A =

 4 −1 0
−1 3 1
0 1 3

 .

•

Theorem 3.3 If A and B are symmetric matrices with same size, and if k is any scalar, then

1. AT is also symmetric.

2. A+B and A−B are symmetric.

3. kA is also symmetric.

Note that product of symmetric matrices is not symmetric in general but the product is symmetric
if and only if the matrices commute. Also, note that if A is a square matrix, then the matrices
A,AAT and ATA are either all nonsingular or all singular. •

If for a matrix A, the aij = −aji for i ̸= j and the main diagonal elements are not all zero, then
the matrix A is called skew matrix. If all the elements on the main diagonal of a skew matrix are
zero, then the matrix is called skew symmetric, that is

A = −AT , with aij = −aji, for i ̸= j and aii = 0.

Any square matrix may be split into the sum of a symmetric and a skew symmetric matrix. Thus

A =
1

2
(A+AT ) +

1

2
(A−AT ),

where
1

2
(A + AT ) is symmetric matrix and

1

2
(A − AT ) is skew symmetric matrix. The following

matrices  1 2 3
2 4 5
3 5 6

 ,

 1 2 3
−2 4 −5
−3 5 6

 ,

 0 2 3
−2 0 5
−3 5 0

 ,

are the examples of symmetric, skew and skew symmetric matrices respectively. •

Definition 3.16 (Band Matrix)

A n×n square matrix A is called a band matrix if there exists positive integers p and q, with 1 < p
and q < n such that

aij = 0 for p ≤ j − i or q ≤ i− j.

The number p describes the number of diagonals above, and including, the main diagonal on which
nonzero entries may lie. The number q describes the number of diagonals below, and including, the
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main diagonal on which nonzero entries may lie. The number p+ q − 1 is called the bandwidth of
the matrix A, which tells us how many of the diagonals can contain nonzero entries. For example,
the following matrix

A =


1 2 3
2 3 4 5
0 5 6 7
0 0 7 8

 ,

is banded with p = 3 and q = 2, and so the bandwidth is equal to 4. An important property of the
band matrix is called the tridiagonal matrix, in this case p = q = 2, that is, all nonzero elements
lie either on or directly above or below the main diagonal. For such type of matrix, the Gaussian
elimination is particular simpler. In general, the nonzero elements of a tridiagonal matrix lie in
three bands: the superdiagonal, diagonal and subdiagonal. For example, the following matrix

A =



1 2
2 3 1

3 2 1
2 4 3

1 2 3
1 6 4

3 4


,

is a tridiagonal matrix. A matrix which is predominantly zero is called a sparse matrix. A band
matrix or a tridiagonal matrix is a sparse matrix but the nonzero elements of a sparse matrix are
not necessarily near the diagonal. •

3.2.3 The Determinant of Matrix

The determinant is a certain kind of a function that associates a real number with a square matrix.
We will denote the determinant of a square matrix A by det(A) or |A|.

Definition 3.17 (Determinant of Matrix)

Let A = (aij) be an n× n square matrix then a determinant of A is given by:

1. det(A) = a11, if n = 1.

2. det(A) = a11a22 − a12a21, if n = 2. •

For example, if

A =

(
4 2

−3 7

)
and B =

(
6 3
2 5

)
,

then

det(A) = (4)(7)− (−3)(2) = 34 and det(B) = (6)(5)− (3)(2) = 24.

Notice that the determinant of a 2× 2 matrix is given by the difference of the products of the two
diagonals of a matrix. The determinant of a 3 × 3 matrix is defined in terms of determinants of
2× 2 matrices and the determinant of a 4× 4 matrix is defined in terms of determinants of 3× 3
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Figure 3.2: Direct evaluation of 2× 2 and 3× 3 determinants.

matrices and so on.
MATLAB function det(A) calculated the determinant of the square matrix A as:

>> A = [2 2; 6 7]; B = det(A)

Other way to find the determinants of only 2 × 2 and 3 × 3 matrices can be found easily and
quickly using diagonals (or direct evaluation). For 2× 2 matrix, the determinant can be obtained
by forming the product of the entries on the line from left to right and subtracting from this number
the product of the entries on the line from right to left. For a matrix of size 3× 3, the diagonals of
an array consisting of the matrix with the two first columns added to the right are used. Then the
determinant can be obtained by forming the sum of the products of the entries on the lines from
left to right, and subtract from this number the products of the entries on the lines from right to
left, as shown in Figure 3.2.
Thus for 2× 2 matrix

|A| = a11a22 − a12a21,

and for 3× 3 matrix

|A| = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33
(diagonal products from left to right) (diagonal products from right to left)

For example, the determinant of 2× 2 matrix can be computed as

|A| =
∣∣∣∣∣ 12 5
−7 6

∣∣∣∣∣ = (12)(6)− (5)(−7) = 72 + 35 = 107,

and the determinant of 3× 3 matrix can be obtained as

|A| =

∣∣∣∣∣∣∣
4 5 6

−3 8 2
4 9 7

∣∣∣∣∣∣∣ = [(4)(8)(7) + (5)(2)(4) + (6)(−3)(9)]

− [(6)(8)(4) + (4)(2)(9) + (5)(−3)(7)] = 102− 159 = −57.

For finding the determinants of the higher-order matrices, we will define the following concepts of
minor and cofactor of the matrices.
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Definition 3.18 (Minors of a Matrix)

The minor Mij of all elements aij of a matrix A of order n×n as the determinant of the sub-matrix
of order (n− 1)× (n− 1) obtained from A by deleting the ith row and jth column (also called ijth
minor of A). For example, let

A =

 2 3 −1
5 3 2
4 −2 4

 ,

then, the minor M11 will be obtained by deleting the first row and the first column of the given
matrix A, that is,

M11 =

∣∣∣∣∣ 3 2
−2 4

∣∣∣∣∣ = (3)(4)− (−2)(2) = 12 + 4 = 16.

Similarly, we can find the other possible minors of the given matrix as follows:

M12 = 12, M13 = −22, M21 = 10, M22 = 12,

and
M23 = −16, M31 = 9, M32 = 9, M33 = −9,

which are the required minors of the given matrix. •

Definition 3.19 (Cofactor of a Matrix)

The cofactor Aij of all elements aij of a matrix A of order n× n is given by

Aij = (−1)i+jMij ,

where Mij is the minor of all elements aij of a matrix A. For example, the cofactor A11 of the
elements a11 of the matrix

A =

 2 3 −1
5 3 2
4 −2 4

 ,

is computed as follows
A11 = (−1)1+1M11 = M11 = 16.

Similarly, for other elements, we have

A12 = −12, A13 = −22, A21 = −10, A22 = 12,

A23 = 16, A31 = 9, A32 = −9, A33 = −9.

Program 3.2
MATLAB m-file for finding minors and cofactors of a matrix
function CofA = cofactor(A,i,j)
[m,n] = size(A); if m ˜ = n error(’Matrix must be square’) end
A1 = A([1:i-1,i+1:n],[1:j-1,j+1:n]); Minor = det(A1); CofA = (-1)ˆ (i+j)*det(Minor);
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Definition 3.20 (Cofactor Expansion of Determinant of a Matrix)

Let A be a square matrix, then we define determinant of A is the sum of the products of the elements
of the first row and their cofactors. If A is 3× 3 matrix, then its determinant is define as

det(A) = |A| = a11A11 + a12A12 + a13A13.

Similarly, more general for n× n matrix, we define as

det(A) = |A| =
n∑
1

aijAij , n > 2, (3.12)

where summation is on i for any fixed value of jth column (1 ≤ j ≤ n), or on j for any fixed value
of ith row (1 ≤ i ≤ n) and Aij is the cofactor of element aij . •

Example 3.2 Find the minors and cofactors of the matrix A and use it to evaluate the determinant
of the matrix

A =

 3 1 −4
2 5 6
1 4 8

 .

Solution. The minors of A are calculated as follows

M11 = 16, M12 = 10, M13 = 3,

and from these values of the minors, we can calculate the cofactors of the elements of the given
matrix as follows

A11 = 16, A12 = −10, A13 = 3.

Now by using the cofactor expansion along the first row, we can find the determinant of the matrix
as follows

det(A) = a11A11 + a12A12 + a13A13 = (3)(16) + (1)(−10) + (−4)(3) = 26. •

Note that in the above Example 3.2, we computed the determinant of the matrix by using the
cofactor expansion along the first row but it can also be found along the first column of the matrix.
To get the results of the Example 3.2, we use the MATLAB command window as follows:

>> A = [3 1 − 4; 2 5 6; 1 4 8]; DetA = CofFexp(A);

Program 3.3
MATLAB m-file for determinant of a matrix by cofactor expansion
function DetA = CofFexp(A)
[m,n] = size(A); if m ˜ = n error(’Matrix must be square’) end; a = A(1,:);c = [ ];
for i=1:n; c1i = cofactor(A,1,i); c = [c;c1i]; end; DetA = a*c;
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Theorem 3.4 (The Laplace Expansion Theorem)

The determinant of an n× n matrix A = {aij}, when n ≥ 2, can be computed as

det(A) = ai1Ai1 + ai2Ai2 + · · ·+ ainAin =
n∑

j=1

aijAij ,

which is called the cofactor expansion along the ith row and also as

det(A) = a1jA1j + a2jA2j + · · ·+ anjAnj =
n∑

i=1

aijAij ,

is called cofactor expansion along jth column. It is called Laplace Expansion Theorem. •

Note that the cofactor and minor of an element aij differs only in sign, that is, Aij = ±Mij . A
quick way for determining whether to use the + or − is to use the fact that the sign relating Aij

and Mij is in the ith row and jth column of the checkerboard array
+ − + − + · · ·
− + − + − · · ·
+ − + − + · · ·
− + − + − · · ·
...

...
...

...
...

. . .

 .

For example, A11 = M11, A21 = −M21, A12 = −M12, A22 = M22 and so on.

Definition 3.21 (Cofactor Matrix)

If A is any n× n matrix and Aij is the cofactor of aij, then the matrix

Cof(A) =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

... · · ·
...

An1 An2 · · · Ann

 ,

is called the matrix of cofactor from A. For example, the cofactor of the matrix

A =

 3 2 −1
1 6 3
2 −4 0

 ,

can be calculated as follows:

A11 = 12, A12 = 6, A13 = −16, A21 = 4, A22 = 2,

A23 = 16, A31 = 12, A32 = −10, A33 = 16.

So that the matrix

Cof(A) =

 12 6 −16
4 2 16

12 −10 16

 .

is the required of the cofactor matrix. •
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Definition 3.22 (Adjoint of a Matrix)

If A is any n × n matrix and Aij is the cofactor of aij of A, then the transpose of this matrix is
called the adjoint of A and is denoted by Adj(A). For example, the cofactor matrix of the following
matrix

A =

 3 2 −1
1 6 3
2 −4 0

 ,

is calculated as

Cof(A) =

 12 6 −16
4 2 16

12 −10 16

 .

So by taking its transpose, we get the matrix 12 6 −16
4 2 16

12 −10 16


T

=

 12 4 12
6 2 −10

−16 16 16

 = Adj(A),

which is called the adjoint of the given matrix A. •

Example 3.3 Find the determinant of the following matrix using cofactor expansion and show
that det(A) = 0 when x = 4

A =

 x+ 2 x 2
1 x− 1 3
4 x+ 1 x

 .

Solution. Using the cofactor expansion along the first row, we compute the determinant of the
given matrix as follows:

|A| = a11A11 + a12A12 + a13A13,

where

A11 = M11 = x2 − 4x− 3, A12 = −M12 = −x+ 12, A13 = −3x+ 5.

Thus

|A| = (x+ 2)[x2 − 4x− 3] + x[−x+ 12] + 2[−3x+ 5] = x3 − 3x2 − 5x+ 4.

Now taking x = 4, we get

|A| = (4)3 − 3(4)2 − 5(4) + 4 = 64− 48− 20 + 4 = 0,

which is the required determinant of the matrix at x = 4. •

The following are special properties which will be helpful in reducing the amount of work involved
in evaluating determinants.

Theorem 3.5 (Properties of the Determinant)

Let A be an n× n matrix:
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1. The determinant of a matrix A is zero if any row or column is zero or equal to a linear
combination of other rows and columns.
For example, if

A =

 3 1 0
2 1 0
4 3 0

 ,

then det(A) = 0.

2. A determinant of a matrix A is changed in sign if the two rows or two columns are interchange.
For example, if

A =

(
3 2
4 5

)
,

then det(A) = 7, but for the matrix

B =

(
4 5
3 2

)
,

obtained from the matrix A by interchanging its rows, we have det(B) = −7.

3. The determinant of a matrix A is equal to the determinant of its transposed. For example, if

A =

(
5 3
4 4

)
,

then det(A) = 8, and for the matrix

B =

(
5 4
3 4

)
,

obtained from the matrix A by taking its transpose, we have

det(B) = 8 = det(A).

5. If the matrix B is obtained from the matrix A by multiplying every element in one row or in
one column by k, then determinant of the matrix B is equal to k times the determinant of A.
For example, if

A =

(
6 5
3 4

)
,

then det(A) = 9, but for the matrix

B =

(
12 10
3 4

)
,

obtained from the matrix A by multiplying its first row by 2, we have

det(B) = 18 = 2(9) = 2 det(A).
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6. If the matrix B is obtained from the matrix A by adding to a row (or a column) of a multiple
of another row (or another column) of A, then determinant of the matrix B is equal to the
determinant of A. For example, if

A =

(
4 3
5 4

)
then det(A) = 1, and for the matrix

B =

(
4 3
13 10

)
,

obtained from the matrix A by adding to its second row 2 times the first row, we have

det(B) = 1 = det(A).

7. If two rows or two columns of a matrix A are identical, then the determinant is zero. For
example, if

A =

(
2 3
2 3

)
, then det(A) = 0.

8. The determinant of a product of matrices is the product of the determinants of all matrices.
For example, if

A =

 3 4 5
3 2 1
2 1 6

 and B =

 1 2 3
4 2 3
1 3 5

 ,

then det(A) = −36 and det(A) = −3. Also,

AB =

 24 29 46
12 13 20
12 24 39

 ,

then det(AB) = 108. Thus

det(A) det(B) = (−36)(−3) = 108 = det(AB).

9. The determinant of a triangular matrix (upper-triangular or lower-triangular matrix) is equal
to the product of all their main diagonal elements. For example, if

A =

 3 4 5
0 4 7
0 0 5

 , then det(A) = (3)(4)(5) = 60.

10. The determinant of an n×n matrix A times scalar multiple k equal to kn times the determinant
of the matrix A, that is det(kA) = kn det(A). For example, if

A =

 3 4 5
2 3 6
1 0 5

 ,
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then det(A) = 14, and for the matrix

B = 2A =

 6 8 10
4 6 12
2 0 10

 ,

obtained from the matrix A by multiply by 2, we have

det(B) = 112 = 8(14) = 23 det(A).

11. The determinant of the kth power of a matrix A equal to the kth power of the determinant
of the matrix A, that is det(Ak) = (det(A))k. For example, if

A =

 2 −2 0
2 3 −1
1 0 1

 ,

then det(A) = 12, and for the matrix

B = A3 =

 −18 −30 12
24 −3 −9
3 −12 3

 ,

obtained by taking cubic power of the matrix A, we have

det(B) = 1728 = (12)3 = (det(A))3.

12. The determinant of a scalar matrix (1 × 1) is equal to the element itself. For example, if
A = (8), then det(A) = 8.

Example 3.4 Find all the values of α for which det(A) = 0, where

A =

 α− 3 1 0
0 α− 1 1
0 2 α

 .

Solution. We find the determinant of the given matrix by using the cofactor expansion along the
first row, so we compute

|A| = a11A11 + a12A12 + a13A13

= (α− 3)

∣∣∣∣∣ α− 1 1
2 α

∣∣∣∣∣− 1

∣∣∣∣∣ 0 1
0 α

∣∣∣∣∣+ 0

∣∣∣∣∣ 0 α− 1
0 2

∣∣∣∣∣
= (α− 3)(α+ 1)(α− 2).

Given det(A) = 0, implies that, alpha = −1, 2, 3, the required values of α. •
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Theorem 3.6 If A is an invertible matrix, then

1 . det(A) ̸= 0 2 . det(A−1) =
1

det(A)
3 . A−1 =

Adj(A)

det(A)
.

4 . (adj(A))−1 =
A

det(A)
= adj(A−1) 5 . det(adj(A)) = det(A)n−1.

By using the Theorem 3.6 we can find the inverse of a matrix by showing that determinant of a
matrix not equal to zero and by using adjoint and determinant of the given matrix A. •

Example 3.5 For what values of α the following matrix has an inverse:

A =

 1 0 α
2 2 1
0 2α 1

 .

Solution. We find the determinant of the given matrix by using the cofactor expansion along the
first row as follows:

|A| = a11A11 + a12A12 + a13A13,

which is equal to

|A| = (1)A11 + (0)A12 + (α)A13 = A11 + αA13 = 2− 2α+ 4α2.

From the Theorem 3.6 we know that the matrix has an inverse if det(A) ̸= 0, so

|A| = 2− 2α+ 4α2 = 2(2α+ 1)(α− 1) ̸= 0.

Hence the given matrix has an inverse if α ̸= −1/2 and α ̸= 1. •

Example 3.6 Use the adjoint method to compute the inverse of the the following matrix

A =

 1 2 −1
2 −1 1
1 2 2

 .

Also, find the inverse and determinant of the adjoint matrix.

Solution. First we compute the determinant of the given matrix as follows:

det(A) = |A| = a11A11 + a12A12 + a13A13 = (1)(−4)− (2)(3) + (−1)(5) = −15,

and the compute the nine cofactors as follows:

A11 = −4, A12 = −3, A13 = 5, A21 = −6, A22 = 3, A23 = 0, A31 = 1, A32 = −3, A33 = −5.

Thus we have the cofactor matrix and the adjoint matrix as follows

Cof(A) =

 −4 −3 5
−6 3 0
1 −3 −5

 , adj(A) =

 −4 −3 5
−6 3 0
1 −3 −5


T

=

 −4 −6 1
−3 3 −3
5 0 −5

 .

To get adjoint of the matrix of the Example 3.6, we use MATLAB command window as:

>> A = [1 2 − 1; 2 − 1 1; 1 2 2]; AdjA = Adjoint(A);
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Program 3.4
MATLAB m-file for adjoint of a matrix
function AdjA = Adjoint(A)
[m,n] = size(A); if m ˜ = n error(’Matrix must be square’) end; A1 = [ ];
for i = 1:n; for j=1:n; A1 = [A1;cofactor(A,i,j)];end;end; AdjA = reshape(A1,n,n);

Then by using the Theorem 3.6 we can have the inverse of the matrix as follows:

A−1 =
Adj(A)

det(A)
= − 1

15

 −4 −6 1
−3 3 −3
5 0 −5

 =

 4/15 2/5 −1/15
1/5 −1/5 1/5

−1/3 0 1/3

 .

Using the Theorem 3.6 we can compute the inverse of the adjoint matrix as follows:

(adj(A))−1 =
A

det(A)
=

 −1/15 −2/15 1/15
−2/15 1/15 −1/15
−1/15 −2/15 −2/15

 ,

and det(adj(A)) = (det(A))3−1 = (−15)2 = 225. •

Example 3.7 If det(A) = 3 and det(B) = 4, then show that

det(A2B−1ATB3) = 432.

Solution. By using the properties of the determinant of the matrix, we have

det(A2B−1ATB3) = det(A2) det(B−1) det(AT ) det(B3),

which can be also written as

det(A2B−1ATB3) = (det(A))2
1

det(B)
(det(A))(det(B))3.

Now using the given information, we get

det(A2B−1ATB3) = (3)2
1

4
(3)(4)3 = 3342 = 432,

the required solution. •

3.2.4 Matrix Inversion Method

If matrix A is nonsingular, then the linear system (3.6) always has a unique solution for each b,
since the inverse matrix A−1 exists, so the solution of the system (3.6) can formally expressed as

A−1Ax = A−1b, or Ix = A−1b,

gives
x = A−1b. (3.13)

If A is a square invertible matrix, there exists a sequence of elementary row operations that carry
A to the identity matrix I of the same size, that is, A −→ I. This same sequence of row operations
carries I to A−1, that is, I −→ A−1. This can be also written as

[A|I] −→ [I|A−1].
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Example 3.8 Use matrix inversion method to find unique solution the linear system Ax = b,
where

A =

 1 2 0
−2 1 2
−1 1 1

 , b =

 1
1
1

 .

Solution. First we compute the inverse of the given matrix which has the form

A−1 =

 1 2 −4
0 −1 2
1 3 −5

 ,

and then we can find unique solution of the given system as

x = A−1b =

 1 2 −4
0 −1 2
1 3 −5


 1

1
1

 =

 −1
1

−1

 ,

the solution of the given system by the matrix inversion method. •

Thus, when the matrix inverse A−1 of the coefficient matrix A is computed, the solution vector x
of linear system is simply the product of inverse matrix A−1 and the right-hand side vector b.

Using MATLAB commands the linear system of equations defined by the coefficient matrix A and
the right hand-side vector b using matrix inverse method is solved with:

>> A = [1 2 0;−2 1 2;−1 1 1]; b = [1; 1; 1]; x = A \ b

Theorem 3.7 For an n× n matrix A, the following properties are equivalent:

1. The inverse of matrix A exists, that is, A is nonsingular.

2. The determinant of matrix A is nonzero.

3. The homogeneous system Ax = 0 has a trivial solution x = 0.

4. The nonhomogeneous system Ax = b has a unique solution. •

Not all matrices have inverses. Singular matrices don’t have inverse and thus the corresponding
system of equations does not have a unique solution. The inverse of a matrix can also be computed
by using the following numerical methods for linear systems, called, Gauss-elimination method,
Gauss-Jordan method and LU-decomposition method but the best and simplest method for finding
the inverse of a matrix is to perform the Gauss-Jordan method on the augmented matrix with
identity matrix of same size.
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3.3 Solutions of Linear Systems of Equations

Now we shall discuss numerical methods for solving system of linear equations. We shall discuss
both direct and indirect (iterative) methods for the solution of given linear systems. In direct
method we shall discuss the familiar technique called the method of elimination to find the solution
of linear systems. This method starts with the augmented matrix of the given linear system and
obtain a matrix of a certain form. This new matrix represents a linear system that has exactly
the same solutions as the given origin system. In indirect methods we shall discuss Jacobi and
Gauss-Seidel methods.
The following basic theorems on the solvability of linear systems are proved in linear algebra.

Theorem 3.8 A homogeneous system of n equations in n unknowns has a solution other than the
trivial solution if and only if the determinant of the coefficients matrix A vanishes, that is matrix
A is singular. •

Theorem 3.9 (Necessary and Sufficient Condition for a unique solution)

A nonhomogeneous system of n equations in n unknowns has a unique solution if and only if the
determinant of a coefficients matrix A is not vanishes, that is, A is nonsingular. •

Before, we discuss numerical methods for solving linear system, we introduce the most important
numerical quantity associated with a matrix.

Definition 3.23 (Rank of a Matrix)

The rank of a matrix A is the number of pivots. An m × n matrix will, in general, have a rank
r, where r is an integer and r ≤ min{m,n}. If r = min{m,n}, then the matrix is said to be full
rank. If r < min{m,n}, then the matrix is said to be rank deficient. •

In principle, the rank of a matrix can be determined by using the Gaussian elimination process in
which the coefficient matrix A is reduced to upper-triangular form U . After reducing the matrix
to triangular form, we find that the rank is the number of columns with nonzero values on the
diagonal of U . In practice, especially for large matrices, round-off errors during the row operation
may cause a loss of accuracy in this method of rank computation.

Theorem 3.10 For a system of n equations in n unknowns written in the form Ax = b, then
solution x of a system exists and is unique for any b if and only if rank(A) = n. •

Conversely, if rank(A) < n for an n × n matrix A, then the system of equations Ax = b may or
may not be consistent. Such a system may not have solution, or the solution, if it exists, will not
be unique. For example, the rank of the following matrix is 3.

A =

 1 2 4
1 1 5
1 1 6

 .

In MATLAB command, the built-in rank function can be use to estimate the rank of a matrix:
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>> A = [1 2 4; 1 1 5; 1 1 6]; rank(A)

Note that:
rank(AB) ≤ min(rank(A), rank(B))
rank(A+B) ≤ rank(A) + rank(B)
rank(AAT ) = rank(A) = rank(ATA)

Although the rank of a matrix is very useful to categorize the behaviour of matrices and systems
of equations, the rank of a matrix is usually not computed. •

3.4 Direct Numerical Methods for Linear Systems

To solve the systems of linear equations using the numerical methods, there are two types of methods
available. Methods of first type are called direct methods or elimination methods. The other type
of the numerical methods are called iterative methods. In this chapter we will discuss both type
of the numerical methods. The first type of methods find the solution in a finite number of steps.
These methods are guaranteed to succeed and are recommended for general purpose. Here, we will
consider Gaussian elimination method and its variants and LU decomposition, by Doolittle’s and
Crout’s methods.
The direct method refers to a procedure for computing a solution from a form that is mathematically
exact. We shall begin with simple method, called Gaussian elimination method and its variants and
then continue with the methods involving triangular matrices, symmetric and tridiagonal matrices.

3.4.1 Gaussian Elimination Method

It is one of the most popular and widely used direct method for solving linear systems of alge-
braic equations. No method of solving linear systems requires fewer operations than the Gaussian
procedure. The goal of the Gaussian elimination method for solving linear systems is to convert
the original system into the equivalent upper-triangular system and from which each unknown is
determined by backward substitution.
The Gaussian elimination procedure start with forward elimination, in which the first equation
in the linear system is used to eliminate the first variable from the rest of (n − 1) equations.
Then the new second equation is used to elimination second variable from the rest of (n − 2)
equations, and so on. If (n − 1) such elimination is performed then the resulting system will be
the triangular form. Once this forward elimination is completed, we can determine whether the
system is overdetermined or underdetermined or has a unique solution. If it has a unique solution,
then the backward substitution is used to solve the triangular system easily and one can find the
unknown variables involve in the system.
Now we shall describe the method in detail for a system of n linear equations. Consider the following
a system of n linear equations:

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1
a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2
a31x1 + a32x2 + a33x3 + · · · + a3nxn = b3

...
...

...
...

...
...

an1x1 + an2x2 an3x3 + · · · + annxn = bn

(3.14)
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Forward Elimination

Consider first equation of the given system (3.14)

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1, (3.15)

as first pivotal equation with first pivot element a11. Then the first equation times multiples
mi1 = (ai1/a11), i = 2, 3, . . . , n, is subtracted from the ith equation to eliminate first variable x1,
producing an equivalent system

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a
(1)
22 x2 + a

(1)
23 x3 + · · · + a

(1)
2n xn = b

(1)
2

a
(1)
32 x2 + a

(1)
33 x3 + · · · + a

(1)
3n xn = b

(1)
3

...
...

...
...

...

a
(1)
n2 x2 + a

(1)
n3 x3 + · · · + a

(1)
nnxn = b

(1)
n

(3.16)

Now consider a second equation of the system (3.16), which is

a
(1)
22 x2 + a

(1)
23 x3 + · · ·+ a

(1)
2n xn = b

(1)
2 , (3.17)

as second pivotal equation with second pivot element a
(1)
22 . Then the second equation times multiples

mi2 = (a
(1)
i2 /a

(1)
22 ), i = 3, . . . , n, is subtracted from the ith equation to eliminate second variable x2,

producing an equivalent system

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a
(1)
22 x2 + a

(1)
23 x3 + · · · + a

(1)
2n xn = b

(1)
2

a
(2)
33 x3 + · · · + a

(2)
3n xn = b

(2)
3

...
...

...
...

a
(2)
n3 x3 + · · · + a

(2)
nnxn = b

(2)
n

(3.18)

Now consider a third equation of the system (3.18), which is

a
(2)
33 x3 + · · ·+ a

(2)
3n xn = b

(2)
3 , (3.19)

as the third pivotal equation with third pivot element a
(2)
33 . Then the third equation times multiples

mi3 = (a
(2)
i3 /a

(2)
33 ), i = 4, . . . , n, is subtracted from the ith equation to eliminate third variable x3.

Similarly, after (n-1)th steps, we have the nth pivotal equation which have only one unknown
variable xn, that is

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

+ a
(1)
22 x2 + a

(1)
23 x3 + · · · + a

(1)
2n xn = b

(1)
2

+ a
(2)
33 x3 + · · · + a

(2)
3n xn = b

(2)
3

...
...

a
(n−1)
nn xn = b

(n−1)
n

(3.20)
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with nth pivotal element a
(n−1)
nn . After getting the upper-triangular system which is equivalent to

the original system, the forward elimination is completed.

Backward Substitution

After the triangular set of equations has been obtained, the last equation of the system (3.20) yields
the value of xn directly. The value is then substituted into the equation next to the last one of the
system (3.20) to obtain a value of xn−1, which is, in turn, used along with the value of xn in the
second to the last equation to obtain a value of xn−2, and so on. Mathematical formula can be
obtain for the backward substitution

xn =
b
(n−1)
n

a
(n−1)
nn

xn−1 =
1

a
(n−2)
n−1n−1

(
b
(n−2)
n−1 − a

(n−2)
n−1n xn

)
...

x1 =
1

a11

b1 − n∑
j=2

a1jxj





(3.21)

The Gaussian elimination can be carried out by writing only the coefficients and the right-hand
side terms in a matrix form, which means the augmented matrix form. Indeed, this is exactly what
a computer program for the Gaussian elimination does. Even for hand calculation, the augmented
matrix form is more convenient than writing all set of equations. The augmented matrix is formed
as follows 

a11 a12 a13 · · · a1n | b1
a21 a22 a23 · · · a2n | b2
a31 a32 a33 · · · a3n | b3
...

...
...

...
... |

an1 an2 an3 · · · ann | bn

 . (3.22)

The operations used in the Gaussian elimination method can now be applied to the augmented
matrix. Consequently system (3.20) is now written directly as follows:

a11 a12 a13 · · · a1n | b1

a
(1)
22 a

(1)
23 · · · a

(1)
2n | b

(1)
2

a
(2)
33 · · · a

(2)
3n | b

(2)
3

...
... |

a
(n−1)
nn | b

(n−1)
n

 , (3.23)

from which the unknowns are determined as before by using backward substitution. The number of
multiplications and divisions for the Gaussian elimination method for one b vector is approximately

N =
(n3

3

)
+ n2 −

(n
3

)
. (3.24)
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Simple Gaussian Elimination Method

Firstly, we will solve the linear system using the simplest variation of the Gaussian elimination
method, called the simple Gaussian elimination or the Gaussian elimination without pivoting. The
basic of this variation is that all the possible diagonal elements (called pivot elements) should be
nonzero. If at any stage it becomes zero, then interchange that row with any below row with nonzero
element at that position. After getting upper-triangular matrix, we use backward substitution to
get the solution of the given linear system.

Example 3.9 Solve the following linear system using the simple Gaussian elimination method

x1 + 2x2 + x3 = 2
2x1 + 5x2 + 3x3 = 1
x1 + 3x2 + 4x3 = 5

solution. The process begins with the augmented matrix form
1 2 1

... 2

2 5 3
... 1

1 3 4
... 5

 .

Since a11 = 1 ̸= 0, so we wish to eliminate the elements a21 and a31 by subtracting from the second

and third rows the appropriate multiples of the first row. In this case the multiples are m21 =
2

1
= 2

and m31 =
1

1
= 1. Hence 

1 2 1
... 2

0 1 1
... −3

0 1 3
... 3

 .

As a
(1)
22 = 1 ̸= 0, therefore, we eliminate entry in a

(1)
32 position by subtracting the multiple m32 =

1

1
= 1 of the second row from the third row, to get


1 2 1

... 2

0 1 1
... −3

0 0 2
... 6

 .

Obviously, the original set of equations has been transformed to an upper-triangular form. Since all
the diagonal elements of the obtaining upper-triangular matrix are nonzero, which means that the
coefficient matrix of the given system is nonsingular and therefore, the given system has a unique
solution. Now expressing the set in algebraic form yields

x1 + 2x2 + x3 = 2
x2 + x3 = −3

2x3 = 6
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Now using backward substitution, we get

2x3 = 6, gives x3 = 3,
x2 = −x3 − 3 = −(3)− 3 = −6, gives x2 = −6,
x1 = 2− 2x2 − x3 = 2− 2(−6)− 3, gives x1 = 11,

which is the required solution of the given system. •

The above results can be obtained using MATLAB commands as follows:

>> B = [1 2 1 2; 2 5 3 1; 1 3 4 5]; x = WP (B); disp(x)

Program 3.5
MATLAB m-file for the Simple Gaussian Elimination Method
function x=WP(B)
[n,t]=size(B); U=B; for k=1:n-1; for i=k:n-1; m=U(i+1,k)/U(k,k);for j=1:t;
U(i+1,j)=U(i+1,j)-m*U(k,j);end;end end; i=n; x(i,1)=U(i,t)/U(i,i); for i=n-1:-1:1; s=0;
for k=n:-1:i+1; s = s+ U(i, k) ∗ x(k, 1); end; x(i,1)=(U(i,t)-s)/U(i,i); end; B; U; x; end

In the simple description of Gaussian elimination without pivoting just given, we used the kth
equation to eliminate variable xk from equations k+ 1, . . . , n during the kth step of the procedure.

This is possible only if at the beginning of the kth step, the coefficient a
(k−1)
kk of xk in equation k is

not zero. Since these coefficients are used as denominators both in the multipliers mij and in the
backward substitution equations. But this does not necessarily mean that the linear system is not
solvable, but that the procedure of solution must be altered.

Example 3.10 Solve the following linear system using the simple Gaussian elimination method

x2 + x3 = 1
x1 + 2x2 + 2x3 = 1

2x1 + x2 + 2x3 = 3

Solution. Writing the given system in the augmented matrix form
0 1 1

... 1

1 2 2
... 1

2 1 2
... 3

 .

To solve this system, the simple Gaussian elimination method will fail immediately because the
element in the first row on the leading diagonal, the pivot, is zero. Thus it is impossible to divide
that row by the pivot value. Clearly, this difficulty can be overcome by rearranging the order of the
rows; for example by making the first row the second, gives

1 2 2
... 1

0 1 1
... 1

2 1 2
... 3

 .
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Now we use the usual elimination process. The first elimination step is to eliminate the element

a31 = 2 from the third row by subtracting a multiple m31 =
2

1
= 2 of row 1 from row 3, gives


1 2 2

... 1

0 1 1
... 1

0 −3 −2
... 1

 .

We finished with the first elimination step since the element a21 is already eliminated from second

row. The second elimination step is to eliminate the element a
(1)
32 = −3 from the third row by

subtracting a multiple m32 =
−3

1
of row 2 from row 3, gives


1 2 2

... 1

0 1 1
... 1

0 0 1
... 4

 .

Obviously, the original set of equations has been transformed to an upper-triangular form. Now
expressing the set in algebraic form yields

x1 + 2x2 + 2x3 = 1
x2 + x3 = 1

x3 = 4

Using backward substitution, we get, x1 = −1, x2 = −3, x3 = 4, the solution of the system. •

Example 3.11 Solve the linear system using the simple Gaussian elimination method

x1 + x2 + x3 = 3
2x1 + 2x2 + 3x3 = 7
x1 + 2x2 + 3x3 = 6

Solution. Writing the given system in the augmented matrix form
1 1 1

... 3

2 2 3
... 7

1 2 3
... 6

 .

First elimination step is to eliminate the elements a21 = 2 and a31 = 1 from second and third rows

by subtracting multiples m21 =
2

1
= 2 and m31 =

1

1
= 1 of row 1 from row 2 and row 3 respectively,

gives 
1 1 1

... 3

0 0 1
... 1

0 1 2
... 3

 .
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We finished with the first elimination step. To start the second elimination step, since we note that

the element a
(1)
22 = 0, called the second pivot element, so the simple Gaussian elimination cannot

continue in its present form. Therefore, we interchange the rows 2 and 3, to get
1 1 1

... 3

0 1 2
... 3

0 0 1
... 1

 .

We finished with the second elimination step since the element a
(1)
32 is already eliminated from third

row. Obviously, the original set of equations has been transformed to an upper-triangular form.
Now expressing the set in algebraic form yields

x1 + x2 + x3 = 3
x2 + 2x3 = 3

x3 = 1

Using backward substitution, we get, x1 = 1, x2 = 1, x3 = 1, the solution of the system. •

Example 3.12 Use the simple Gaussian elimination method, find all values of a and b for which
the following linear system is consistent or inconsistent.

2x1 − x2 + 3x3 = 1
4x1 + 2x2 + 2x3 = 2a
2x1 + x2 + x3 = b

Solution. Writing the given system in the augmented matrix form 2 −1 3 1
4 2 2 2a
2 1 1 b

 ,

in which we wish to eliminate the elements a21 and a31 by subtracting from the second and third
rows the appropriate multiples of the first row. In this case the multiples are m21 = 2 and m31 = 1.
Hence  2 −1 3 1

0 4 −4 2a− 2
0 2 −2 b− 1

 .

We finished with the first elimination step. The second elimination step is to eliminate element

a
(1)
32 = 2 by subtracting a multiple m32 =

2

4
=

1

2
of row 2 from row 3, gives 2 −1 3 1

0 4 −4 2a− 2
0 0 0 b− a

 .

We finished with the second column. So third row of the equivalent upper-triangular system is

0x1 + 0x2 + 0x3 = b− a. (3.25)
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Firstly, if (3.25) has no constraint on unknowns x1, x2, and x3, then the upper-triangular system
represents only two non-trivial equations, namely

2x1 − x2 + 3x3 = 1
4x2 − 4x3 = 2a− 2

in three unknowns. As a result, one of the unknowns can be chosen arbitrarily, say x3 = x∗3, then
x∗2 and x∗1 can be obtained by using backward substitution

x∗2 = a/2− 1/2 + x∗3; x∗1 =
1

2
(1 + a/2− 1/2− 2x∗3).

Hence

x∗ = [
1

2
(1/2 + a/2− 2x∗3), 1/2a− 1/2 + x∗3, x

∗
3]
T ,

is an approximation solution of given system for any value of x∗3 for any real value of a. Hence the
given linear system is consistent (infinitely many solutions).
Secondly, when b− a ̸= 0, in this case (3.25) puts a restriction on unknowns x1, x2 and x3 that is
impossible to satisfy. So the system cannot have any solutions and therefore, it is inconsistent. •

Example 3.13 For what values of α the following linear system has (i) Unique solution, (ii) No
solution, (iii) Infinitely many solutions, by using the simple Gaussian elimination method. Use
smallest positive integer value of α to get the unique solution of the system.

x1 + 3x2 + αx3 = 4
2x1 − x2 + 2αx3 = 1
αx1 + 5x2 + x3 = 6

Solution. Writing the given system in the augmented matrix form 1 3 α 4
2 −1 2α 1
α 5 1 6

 ,

and by using the following multiples m21 = 2 and m31 = α, we get 1 3 α 4
0 −7 0 −7
0 5− 3α 1− α2 6− 4α

 .

Now using the multiple m32 =
5− 3α

−7
, gives 1 3 α 4
0 −7 0 −7
0 0 1− α2 1− α

 .

So if 1−α2 ̸= 0, then we have the unique solution of the given system while for α = ±1, we have no
unique solution. If α = 1, then we have infinitely many solution because third row of above matrix
gives

0x1 + 0x2 + 0x3 = 0,
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and when α = −1, we have

0x1 + 0x2 + 0x3 = 2,

which is not possible, so no solution.
Since we can not take α = 1 for the unique solution, so can take next positive integer α = 2, which
gives us upper-triangular system of the form

x1 + 3x2 + 2x3 = 4
− 7x2 = −7

− 3x3 = −1

Solving this system using backward substitution, we get, x1 = 1/3, x2 = 1, x3 = 1/3, the required
unique solution of the given system using smallest positive integer value of α. •

Theorem 3.11 An upper-triangular matrix A is nonsingular if and only if all its diagonal elements
are different from zero. •

Example 3.14 Use the simple Gaussian elimination method to find all the values of α which make
the following matrix singular.

A =

 1 −1 α
2 2 1
0 α −1.5

 .

Solution. Applying the forward elimination step of the simple Gaussian elimination on the given
matrix A and eliminate the element a21 by subtracting from the second row the appropriate multiple
of the first row. In this case the multiple is given as 1 −1 α

0 4 1− 2α
0 α −1.5

 .

We finished with the first elimination step. The second elimination step is to eliminate element

a
(1)
32 = α by subtracting a multiple m32 =

α

4
of row 2 from row 3, gives


1 −1 α
0 4 1− 2α

0 0 −1.5− α(1− 2α)

4

 .

To show that the given matrix is singular, we have to set the third diagonal element equal to zero
(by Theorem 3.11), that is

−1.5− α(1− 2α)

4
= 0, or 2α2 − α− 6 = 0.

Solving the above quadratic equation, we get, α = −3

2
and α = 2, the possible values of α which

make the given matrix singular. •
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Example 3.15 Use the smallest positive integer value of α to find the unique solution of the linear
system Ax = [1, 6,−4]T by simple Gaussian elimination method, where

A =

 1 −1 α
2 2 1
0 α −1.5

 .

Solution. Since we know from the previous Example 3.14 that the given matrix A is singular when

α = −3

2
and α = 2. To find the unique solution we take the smallest positive integer value α = 1

and consider the augmented matrix as follows:


1 −1 1

... 1

2 2 1
... 6

0 1 −1.5
... −4

 .

Applying the forward elimination step of the simple Gaussian elimination on the given matrix A
and eliminate the element a21 by subtracting from the second row the appropriate multiple m21 = 2
of the first row, gives 

1 −1 1
... 1

0 4 −1
... 4

0 1 −1.5
... −4

 .

The second elimination step is to eliminate element a
(1)
32 = 1 by subtracting a multiple m32 =

1

4
of

row 2 from row 3, gives 
1 −1 1

... 1

0 4 −1
... 4

0 0 −5/4
... −5

 .

Now expressing the set in algebraic form yields

x1 − x2 + x3 = 1
4x2 − x3 = 4

−5/4x3 = −5

Using backward substitution, we get, x1 = −1, x2 = 2, x3 = 4, the unique solution. •

Note that the inverse of the nonsingular matrix A can be easily determined by using the simple
Gaussian elimination method. Here, we have to consider the augmented matrix as a combination
of the given matrix A and the identity matrix I (same size as of A). To find the inverse matrix
B = A−1 we must solve the linear system in which the jth column of the matrix B is the solution
of the linear system with right-hand side the jth column of the matrix I.
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Example 3.16 Use the simple Gaussian elimination method to find the inverse of the following
matrix

A =

 2 −1 3
4 −1 6
2 −3 4

 .

Solution. Suppose that the inverse A−1 = B of the given matrix exists and let

AB =

 2 −1 3
4 −1 6
2 −3 4


 b11 b12 b13

b21 b22 b23
b31 b32 b33

 =

 1 0 0
0 1 0
0 0 1

 = I.

Now to find the elements of the matrix B, we apply the simple Gaussian elimination on the aug-
mented matrix

[A|I] =


2 −1 3

... 1 0 0

4 −1 6
... 0 1 0

2 −3 4
... 0 0 1

 .

Applying the forward elimination step of the simple Gaussian elimination on the given matrix A
and eliminate the elements a21 = 4 and a31 = 2 by subtracting from the second and the third rows

the appropriate multiples m21 =
4

2
= 2 and m31 =

2

2
= 1 of the first row. It gives


2 −1 3

... 1 0 0

0 1 0
... −2 1 0

0 −2 1
... −1 0 1

 .

We finished with the first elimination step. The second elimination step is to eliminate element

a
(1)
32 = −2 by subtracting a multiple m32 =

−2

1
= −2 of row 2 from row 3, gives


2 −1 3

... 1 0 0

0 1 0
... −2 1 0

0 0 1
... −5 2 1

 .

We solve the first system  2 −1 3
0 1 0
0 0 1


 b11

b21
b31

 =

 1
−2
−5

 ,

by using backward substitution, we get

2b11 − b21 + 3b31 = 1
b21 = −2

b31 = −5
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which gives b11 = 7, b21 = −2, b31 = −5. Similarly, the solution of the second linear system 2 −1 3
0 1 0
0 0 1


 b12

b22
b32

 =

 0
1
2

 ,

can be obtained as follows:
2b12 − b22 + 3b32 = 0

b22 = 1
b32 = 2

which gives b12 = −5/2, b22 = 1, b32 = 2. Finally, the solution of the third linear system 2 −1 3
0 1 0
0 0 1


 b13

b23
b33

 =

 0
0
1

 ,

can be obtained as follows:
2b13 − b23 + 3b33 = 0

b23 = 0
b33 = 1

and it gives b13 = −3/2, b23 = 0, b33 = 1. Hence the elements of the inverse matrix B are

B = A−1 =


7 −5

2
−3

2

−2 1 0

−5 2 1

 ,

which is the required inverse of the given matrix A. •

Procedure 3.1 [Gaussian Elimination Method]

1. Form the augmented matrix, B = [A|b].

2. Check first pivot element a11 ̸= 0, then move to the next step; otherwise, interchange rows so
that a11 ̸= 0.

3. Multiply row one by multiplier mi1 =
ai1
a11

and subtract to the ith row for i = 2, 3, . . . , n.

4. Repeat the steps 2 and 3 for the remaining pivots elements unless coefficient matrix A becomes
upper-triangular matrix U .

5. Use backward substitution to solve xn from the nth equation xn =
bn−1
n

ann
and solve the other

(n-1) unknowns variables by using (3.21).

The use of non-zero pivots is sufficient for the theoretical correctness of the simple Gaussian elimi-
nation, but more care must be taken if one is to obtain reliable results.
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Example 3.17 Consider a linear system

0.000100x1 + x2 = 1
x1 + x2 = 2

which has exact solution x = [1.00010, 0.99990]T . Now we solve this system by the simple Gaussian
elimination. The first elimination step is to eliminate first variable x1 from second equation by
subtracting multiple m21 = 10000 of first equation from second equation, gives

0.000100x1 + x2 = 1
− 10000x2 = −10000

Using backward substitution to get the solution x∗ = [0, 1]T . Thus a computational disaster has
occurred. But if we interchange the equations, we obtain

x1 + x2 = 2
0.000100x1 + x2 = 1

Apply the Gaussian elimination again, and we got the solution x∗ = [1, 1]T . This solution is as
good as one would hope. So, we conclude from this example that it is not enough just to avoid zero
pivot, one must also avoid relatively small one. •

Here we need some pivoting strategies which help us to over come these difficulties facing during
the process of simple Gaussian elimination.

3.4.2 Pivoting Strategies

Since we know that simple Gaussian elimination is applied to a problem with no pivotal elements
zero. However, the method does not work if the first coefficient of the first equation or if a diagonal
coefficients becomes zero in the process of solution because they are used as denominators in a
forward elimination.
Pivoting is used to change sequential order of the equations for two purposes, first to prevent
diagonal coefficients from becoming zero, and second, to make each diagonal coefficient larger
in magnitude than any other coefficient below it, that is, to decrease the round-off errors. The
equations are not mathematical affected by changes of the sequential order, but changing the order
makes coefficient become non-zero. Even when all diagonal coefficients are non-zero, the changes
of order increases accuracy of the computations. The standard pivoting strategy which handled
these difficulties easily are explained below.

Partial Pivoting

Here we develop an implementation of the Gaussian elimination which utilizes the pivoting strategy
discussed above. In using the Gaussian elimination by partial pivoting(or row pivoting), the basic
approach is to use the largest (in absolute value) element on or below the diagonal in the column
of current interest as the pivotal element for elimination in the rest of that column.
One immediate effect of this will be to force all the multiples used to be not greater than 1
in absolute value. This will inhibit the growth of error in the rest of elimination phase and in
subsequent backward substitution.
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At stage k of forward elimination, it is necessary, therefore, to be able to identify the largest
element from |akk|, |ak+1,k|, . . . , |ank|, where these aik’s are the elements in the current partially
triangularized coefficient matrix. If this maximum occurs in row p, then pth and kth rows of
the augmented matrix are interchange and the elimination proceed as usual. In solving n linear

equations, a total of N =
n(n+ 1)

2
coefficients must be examined.

Example 3.18 Solve the following linear system using the Gaussian elimination with partial piv-
oting

x1 + x2 + x3 = 1
2x1 + 3x2 + 4x3 = 3
4x1 + 9x2 + 16x3 = 11

Solution. For the first elimination step, since 4 is the largest absolute coefficient of first variable
x1, therefore, the first row and the third row are interchange, giving us

4x1 + 9x2 + 16x3 = 11
2x1 + 3x2 + 4x3 = 3
x1 + x2 + x3 = 1

Eliminate first variable x1 from the second and third rows by subtracting the multiples m21 =
2

4

and m31 =
1

4
of row 1 from row 2 and row 3 respectively, gives

4x1 + 9x2 + 16x3 = 11
− 3/2x2 − 4x3 = −5/2
− 5/4x2 − x3 = −7/5

For the second elimination step, −3/2 is the largest absolute coefficient of second variable x2, so

eliminate second variable x2 from the third row by subtracting the multiple m32 =
5

6
of row 2 from

row 3, gives

4x1 + 9x2 + 16x3 = 11
− 3/2x2 − 4x3 = −5/2

1/3x3 = 1/3

Obviously, the original set of equations has been transformed to an equivalent upper-triangular form.
Now using backward substitution, gives, x1 = 1, x2 = −1, x3 = 1, the required solution. •

The following MATLAB commands will gives the same results as we obtained in the preceding
Example 3.18 of the Gaussian elimination method with partial pivoting:

>> B = [1 1 1 1; 2 3 4 3; 4 9 16 11]; x = PP (B); disp(x)
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Program 3.6
MATLAB m-file for Gaussian Elimination by Partial Pivoting
function x=PP(B)
% B = input(′input matrix in form[A/b]′);
[n, t] = size(B);U = B; for M = 1:n-1; mx(M) = abs(U(M,M)); r = M ;
for i = M+1:n; if mx(M) < abs(U(i,M)); mx(M)=abs(U(i,M)); r = i; end; end
rw1(1,1:t)=U(r,1:t); rw2(1,1:t)=U(M,1:t); U(M,1:t)=rw1 ; U(r,1:t)=rw2; for k=M+1:n
m=U(k,M)/U(M,M); for j=M:t; U(k, j) = U(k, j)−m ∗ U(M, j); end;end;
i=n; x(i)=U(i,t)/U(i,i); for i=n-1:-1:1; s=0; for k=n:-1:i+1;
s = s+ U(i, k) ∗ x(k); end; x(i)=(U(i,t)-s)/U(i,i); end; B; U; x; end

Procedure 3.2 [Partial Pivoting]

1. Suppose we are about to work on the ith column of the matrix. Then we search that portion
of the ith column below and including the diagonal, and find the element that has the largest
absolute value. Let p denote the index of the row that contains this element.

2. Interchange row i and p.

3. Proceed with the elimination Procedure 3.1.

3.4.3 Gauss-Jordan Method

This method is a modification of the Gaussian elimination method. The Gauss-Jordan method is
although inefficient for practical calculation but is often useful for theoretical purposes. The basic
of this method is to convert the given matrix into a diagonal form. The forward elimination of the
Gauss-Jordan method is identical to that of Gaussian elimination method. However, Gauss-Jordan
elimination uses backward elimination rather than backward substitution. In the Gauss-Jordan
method the forward elimination and backward elimination need not be separated. This is possible
because a pivot element can be used to eliminate the coefficients not only below but also above
at the same time. If this approach is taken, the form of the coefficients matrix become diagonal
when elimination by the last pivot are completed. The Gauss-Jordan method simply yields a
transformation of the augmented matrix of the form

[A|b] → [I|c],

where I is the identity matrix and c is the column matrix, which represents the possible solution
of the given linear system.
The Gauss-Jordan method particularly well suited to compute the inverse of a matrix through the
transformation

[A|I] → [I|A−1].

Note if the inverse of the matrix can be found, then the solution of the linear system can be
computed easily from the product of matrix A−1 and column matrix b, that is

x = A−1b. (3.26)
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Note that one can get easily the solution of linear system Ax = b and inverse of the coefficient
matrix A together by the Gauss-Jordan method using the augmented matrix of the form

[A|b|I] → [I|x|A−1].

Example 3.19 Apply the Gauss-Jordan method to find the inverse of the coefficient matrix and
also the solution of the linear system Ax = b, where

A =

(
1 2
1 3

)
and b =

(
1
2

)
.

Solution. Consider the following augmented matrix

[A|b|I =

 1 2
... 1

... 1 0

1 3
... 2

... 0 1

 .

Then we have

≡

 1 2
... 1

... 1 0

0 1
... 1

... −1 1

 ≡

 1 0
... −1

... 3 −2

0 1
... 1

... −1 1

 .

Thus we obtain the inverse of the matrix A

A−1 =

(
3 −2

−1 1

)
,

and x1 = −1, x2 = 1, the solution of the given system. •

The above results can be obtained using MATLAB commands, we do the following:

>> Ab = [A|b|I] = [1 2 1 1 0; 1 3 2 0 1]; [I|inv(A)] = GaussJ(Ab);

3.4.4 LU Decomposition Method

This is another direct method to find the solution of the system of linear equations. The LU 
decomposition (or factorization method) is a modification of the elimination method. Here we 
decompose or factorize the coefficient matrix A into the product of two triangular matrices in the 
form A = LU, (3.27)

where L is a lower-triangular matrix and U is the upper-triangular matrix. Both are of same size as 
the coefficients matrix A. To solve a number of linear equations sets in which the coefficients matrices 
are all identical but the right-hand side are different, then the LU decomposition is more efficient 
than elimination method. Specifying the diagonal elements of either L and U makes the factoring 
unique. The procedure based on unity elements on the diagonal of matrix L is called Doolittle’s 
method (or Gauss factorization), while the procedure based on unity elements on the diagonal of 
matrix U is called Crout’s method.
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The general forms of L and U are written as

L =


l11 0 · · · 0
l21 l22 · · · 0
...

...
...

...
ln1 ln2 · · · lnn

 and U =


u11 u12 · · · u1n
0 u22 · · · u2n
...

...
...

...
0 0 · · · unn

 , (3.28)

such that lij = 0 for i < j and uij = 0 for i > j.

Consider a linear system

Ax = b, (3.29)

and let A be factored into the product of L and U , as shown by (3.28). Then the linear system
(3.29) becomes

LUx = b,

which can be written as

Ly = b, where y = Ux.

The unknown elements of matrix L and matrix U are computed by equating corresponding elements
in matrices A and LU in a systematic way. Once the matrices L and U have been constructed, the
solution of system (3.29) can be computed in the following two steps:

1. Solve the lower-triangular system Ly = b.

By using the forward elimination, we will find the components of the unknown vector y, by
using the following steps:

y1 = b1,

yi = bi −
i−1∑
j=1

lijyj , i = 2, 3, . . . , n

 . (3.30)

2. Solve the upper-triangular system Ux = y.

By using the backward substitution, we will find the components of the unknown vector x, by
using the following steps:

xn =
yn
unn

,

xi =
1

uii

yi − n∑
j=i+1

uijxj

 , i = n− 1, n− 2, . . . , 1

 . (3.31)

Thus the relationship of the matrices L and U to the original matrix A is given by the following
theorem.
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Theorem 3.12 If the Gaussian elimination can be performed on the linear system Ax = b without
row interchanges, then the matrix A can be factored into the product of a lower-triangular matrix
L and an upper-triangular matrix U , that is

A = LU,

where the matrices L and U are of the same size as A. •

Theorem 3.13 Let A be an n× n matrix that has an LU factorization, that is

A = LU.

If A has rank n (that is, all pivots are non-zeros), then L and U are uniquely determined by A. •

Now we discuss the two possible variations of the LU decomposition to find the solution of the
nonsingular linear system in the following.

Doolittle’s Method

In Doolittle’s method(which is also called the Gauss factorization), the upper-triangular matrix U
is obtained by forward elimination of the Gaussian elimination method and the lower-triangular
matrix L containing the multiples used in the Gaussian elimination process as the elements below
the diagonal with unity elements on the main diagonal, that is, a11 a12 a13

a21 a22 a23
a31 a32 a33

 =

 1 0 0
m21 1 0
m31 m32 1


 u11 u12 u13

0 u22 u23
0 0 u33

 .

Example 3.20 Construct the LU decomposition of the following matrix A by using the Gauss fac-
torization (that is, the LU decomposition by Doolittle’s method).

Solution. Applying the forward elimination step of Simple Gauss-elimination to the given matrix

A =

 1 2 1
2 5 3
1 3 4

 ,

using the multiples m21 = 2  and m31= 1, we get

≡

 1 2 1
0 1 1
0 1 3

 .

Similarly, by using the multiple m32 = 1, we obtain

≡

 1 2 1
0 1 1
0 0 2

 = U.
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Hence we obtained the LU-decomposition of the given matrix as follows 1 2 1
2 5 3
1 3 4

 =

 1 0 0
2 1 0
1 1 1


 1 2 1

0 1 1
0 0 2

 ,

where the unknown elements of matrix L are the used multiples and the matrix U is same as we
obtained in forward elimination process. •

Example 3.21 Construct the LU decomposition of the following matrix A by using the Gauss
factorization (that is, the LU decomposition by Doolittle’s method). Find the value(s) of α for
which the following matrix

A =

 1 −1 α
−1 2 −α
α 1 1

 ,

is singular. Also, find the unique solution of the linear system Ax = [1, 1, 2]T by using the smallest
positive integer value of α.

Solution. Since we know that

A =

 1 −1 α
−1 2 −α
α 1 1

 =

 1 0 0
m21 1 0
m31 m32 1


 u11 u12 u13

0 u22 u23
0 0 u33

 = LU.

Now we will use only the forward elimination step of the simple Gaussian elimination method to
convert the given matrix A into the upper-triangular matrix U . Since a11 = 1 ̸= 0, so we wish to
eliminate the elements a21 = −1 and a31 = α by subtracting from the second and third rows the
appropriate multiples of the first row. The multiples are m21 = −1 = l21 and m31 = α = l31, so 1 −1 α

0 1 0
0 1 + α 1− α2

 .

As a
(1)
22 = 1 ̸= 0, therefore, we eliminate entry in a

(1)
32 = 1 + α position by subtracting the multiple

m32 =
1 + α

1
= l32 of the second row from the third row, to get

 1 −1 α
0 1 0
0 0 1− α2

 .

Obviously, the original set of equations has been transformed to an upper-triangular form. Thus 1 −1 α
−1 2 −α
α 1 1

 =

 1 0 0
−1 1 0
α 1 + α 1


 1 −1 α

0 1 0
0 0 1− α2

 .
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which is the required decomposition of A. The matrix will be singular if the third diagonal element
1− α2 of the upper-triangular U is equal to zero (Theorem 3.11), gives, α = ±1.
To find the unique solution of the given system we take α = 2 and it gives 1 −1 2

−1 2 −2
2 1 1

 =

 1 0 0
−1 1 0
2 3 1


 1 −1 2

0 1 0
0 0 −3

 .

Write MATLAB m-file Decompd.m to factored a nonsingular matrix A into a unit lower trian-
gular matrix L and an upper triangular matrix U and using the following MATLAB commands as:

>> A = [1 1 − 2;−1 2 − 2; 2 1 1]; Sol = Decomp(A);

Program 3.7
MATLAB m-file for Decomposition of Matrix
function Sol = Decomp(A)
[n,n] = size(A); U=A; L=eye(n); for i=1:n; for k = i=1:n; L(k,i)=U(k,i)/U(i,i);
U(k,i:n)=U(k,i:n)-U(i,i:n)*L(k,i);end;end; Sol=[L,U]; detA = prod(diag(U))

Now solving the lower-triangular system Ly = b for unknown vector y, that is 1 0 0
−1 1 0
2 3 1


 y1

y2
y3

 =

 1
1
2

 .

Performing forward substitution yields

y1 = 1, gives y1 = 1,
−y1 + y2 = 1, gives y2 = 2,
2y1 + 3y2 + y3 = 2, gives y3 = −6.

Using the m-file ForwardSubs.m

functiony = ForwardSubs(L, b)
[n, n] = size(L); y = zeros(n, 1);
fork = 1 : n; y(k)=(b(k)-L(k,1:k-1)*y(1:k-1))/L(k, k) end

and the following MATLAB commands to generate the solution of lower-triangular system as:

>> L = [1 0 0;−1 1 0; 2 3 1]; b = [1; 1; 2]; sol = ForwardSubs(L, b);

Then solving the upper-triangular system Ux = y for unknown vector x, that is 1 −1 2
0 1 0
0 0 −3


 x1

x2
x3

 =

 1
2

−6

 .
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Performing backward substitution yields

x1 − x2 + 2x3 = 1, gives x1 = −1,
x2 = 2, gives x2 = 2,

− 3x3 = −6, gives x3 = 2,

the approximate solution of the given system. •

Using the m-file BackwardSubs.m

functionx = BackwardSubs(U, y)
[n, n] = size(U); x = zeros(n, 1); x(n) = y(n)/U(n, n);
fork = n− 1 : −1 : 1;x(k) = (y(k)− U(k, k + 1 : n) ∗ x(k + 1 : n))/U(k, k); end

and the following MATLAB commands to generate the solution of upper-triangular system as:

>> U = [1 − 1 2; 0 1 0; 0 0 − 3]; y = [1; 1; 2]; sol = BackwardSubs(U, y);

There is an other way to find the values of the unknown elements of the matrices L and U , which
we describe in the following example.

Example 3.22 Construct the LU decomposition of the following matrix using Doolittle’s method

A =

 1 2 4
1 3 3
2 2 2

 .

Solution. Since

A = LU =

 1 0 0
l21 1 0
l31 l32 1


 u11 u12 u13

0 u22 u23
0 0 u33

 .

Performing the multiplication on the right-hand side, gives 1 2 4
1 3 3
2 2 2

 =

 u11 u12 u13
l21u11 l21u12 + u22 l21u13 + u23
l31u11 l31u12 + l32u22 l31u13 + l32u23 + u33

 .

Then equating elements of first column to obtain

1 = u11, u11 = 1,
1 = l21u11, l21 = 1,
2 = l31u11, l31 = 2.

Now equating elements of second column to obtain

2 = u12, u12 = 2,
3 = l21u12 + u22, u22 = 3− 2 = 1,
2 = l31u12 + l32u22, l32 = 2− 4 = −2.
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Finally, equating elements of third column to obtain

4 = u13, u13 = 4,
3 = l21u13 + u23, u23 = 3− 4 = −1,
2 = l31u13 + l32u23 + u33, u33 = 2− 10 = −8.

Thus we obtain  1 2 4
1 3 3
2 2 2

 =

 1 0 0
1 1 0
2 −2 1


 1 2 4

0 1 −1
0 0 −8

 ,

the factorization of the given matrix. •

The general formula for getting elements of L and U corresponding to the coefficient matrix A for
a set of n linear equations can be written as

uij = aij −
i−1∑
k=1

likukj , 2 ≤ i ≤ j

lij =
1

uii

aij − j−1∑
k=1

likukj

 , i > j ≥ 2

uij = a1j , i = 1

lij =
ai1
u11

=
ai1
a11

, j = 1



. (3.32)

Example 3.23 Solve the following linear system by LU decomposition using Doolittle’s method

A =

 1 2 4
1 3 3
2 2 2

 and b =

 −2
3

−6

 .

Solution. Since the factorization of the coefficient matrix A has been already constructed in the
Example 3.22 as  1 2 4

1 3 3
2 2 2

 =

 1 0 0
1 1 0
2 −2 1


 1 2 4

0 1 −1
0 0 −8

 .

Then solving the first system Ly = b for unknown vector y, that is 1 0 0
1 1 0
2 −2 1


 y1

y2
y3

 =

 −2
3

−6

 .

Performing forward substitution yields

y1 = −2, gives y1 = −2,
y1 + y2 = 3, gives y2 = 5,
2y1 − 2y2 + y3 = −6, gives y3 = 8.
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Then solving the second system Ux = y for unknown vector x, that is 1 2 4
0 1 −1
0 0 −8


 x1

x2
x3

 =

 −2
5
8

 .

Performing backward substitution yields

x1 + 2x2 + 4x3 = −2, gives x1 = −6,
x2 − x3 = 5, gives x2 = 4,

− 8x3 = 8, gives x3 = −1,

the approximate solution of the given system. •

We can also write MATLAB m-file called, Doolittle.m to get the solution of the linear system by LU
decomposition by using Doolittle’s method. In order to reproduce above results using MATLAB
commands, we do the following:

>> A = [1 2 4; 1 3 3; 2 2 2]; b = [−2 3 − 6]; sol = Doolittle(A, b);

Program 3.8
MATLAB m-file for using the Doolittle’s Method
function sol = Doolittle(A,b)
[n,n]=size(A); u=A;l=zeros(n,n);
for i=1:n-1; if abs(u(i,i))> 0; for i1=i+1:n; m(i1,i)=u(i1,i)/u(i,i);
for j=1:n; u(i1, j) = u(i1, j)−m(i1, i) ∗ u(i, j);end;end;end;end
for i=1:n; l(i,1)=A(i,1)/u(1,1); end; for j=2:n; for i=2:n; s=0;
for k=1:j-1; s = s+ l(i, k) ∗ u(k, j); end
l(i,j)=(A(i,j)-s)/u(j,j); end; end y(1)=b(1)/l(1,1);
for k=2:n; sum=b(k); for i=1:k-1; sum = sum− l(k, i) ∗ y(i); end
y(k)=sum/l(k,k); end; x(n)=y(n)/u(n,n); for k=n-1:-1:1; sum=y(k);
for i=k+1:n; sum = sum− u(k, i) ∗ x(i); end; x(k)=sum/u(k,k);end; l; u; y; x

Procedure 3.3 [LU Decomposition by Doolittle’s Method]

1. Take the nonsingular matrix, A.

2. If possible, decompose the matrix A = LU using (3.32).

3. Solve linear system Ly = b using (3.30).

4. Solve linear system Ux = y using (3.31).

Example 3.24 Use LU-factorization method with Doolittle’s method (lii = 1) to find values of α
for which the following linear system has unique solution and infinitely many solutions. Write down
the solution for both cases.

x1 + 0.5x2 + αx3 = 0.5
2x1 − 3x2 + x3 = −1
−x1 − 1.5x2 + 2.5x3 = −1
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Solution. We use Simple Gauss-elimination method to convert the following matrix of the given
system by using the multiples m21 = 2,m31 = −1 and m32 = 1/4,

A =

 1 0.5 α
2 −3 1

−1 −1.5 2.5

 ,

into equivalent an upper-triangular matrix form 1 0.5 α
0 −4 1− 2α
0 0 0.5α− 0.25

 ,

to get LU-factorization of A in the following form

A =

 1 0.5 α
2 −3 1

−1 −1.5 2.5

 =

 1 0 0
2 1 0

−1 0.25 1


 1 0.5 α

0 −4 1− 2α
0 0 1.5α+ 2.25

 = LU.

Then by solving the lower-triangular system of the form Ly = [0.5,−1,−1]T and obtained the
solution y = [0.5,−2, 0]T . Now solving the upper-triangular system Ux = y of the form 1 0.5 α

0 −4 1− 2α
0 0 1.5α+ 2.25


 x1

x2
x3

 =

 0.5
−2
0

 .

From last equation we have

(1.5α+ 2.25)x3 = 0,

so for unique solution of the given system (1.5α + 2.25) ̸= 0 (nonsingular), which implies that
x3 = 0. Using backward substitution, we have x2 = 0.5 and x1 = 0.25. Thus, [0.25, 0.5, 0]T is the
unique solution of the given system.
If (1.5α + 2.25) = 0 (singular), that is, α = −1.5, then for this we must have infinitely many
solutions. So to get the infinitely many solutions, we have to solve the following resulting system

x1 + 0.5x2 + αx3 = 0.5
− 4x2 + (1− 2α)x3 = −2

0x3 = 0

By taking α = −1.5 and If we choose x3 = t ∈ R, t ̸= 0, then we have x2 = 0.5+t and x1 = 0.25+t,
so x∗ = [0.25 + t, 0.5 + t, t]T is the infinitely many solutions of the given system. •

Example 3.25 Use LU-factorization method with Doolittle’s method (lii = 1) to find the constant
α such that the following homogeneous linear system has non-trivial solutions. Find these solutions.

x1 + x2 = 0
3x1 + αx2 + 5x3 = 0

7x2 + 3x3 = 0
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Solution. Using Simple Gauss-elimination method, we can easily find fatorization of A as

A =

 1 1 0
3 α 5
0 7 3

 =

 1 0 0
3 1 0
0 7/(α− 3) 1


 1 1 0

0 (α− 3) 5
0 0 3− 35/(α− 3)

 .

Since by one of the property of the determinant

det(A) = det(LU) = det(L) det(U).

So when using LU decomposition by Doolittle’s method, then

det(A) = det(U) =
n∏

i=1

uii = (u11u22 · · ·unn),

where det(L) = 1 because L is lower-triangular matrix and all its diagonal elements are unity. Thus
the determinant of the given matrix A is

|A| = |U | = (α− 3)(3− 35/(α− 3)) = 3α− 44, α ̸= 3.

So |A| = 0, gives, α = 44/3 and for this value of α we have non-trivial solutions. By solving the
lower-triangular system of the form Ly = [0, 0, 0]T , we obtained the solution y = [0, 0, 0]T . Now
solving the upper-triangular system Ux = y of the form 1 1 0

0 35/3 5
0 0 0


 x1

x2
x3

 =

 0
0
0

 .

If we choose x3 = t ∈ R, t ̸= 0, then, x2 = (−3/7)t and x1 = (3/7)t, then the non-trivial solutions
of the given system is x∗ = [3t/7,−3t/7, t]T . •

Crout’s Method

The Crout’s method, in which matrix U has unity on the main diagonal, is similar to Doolittle’s
method in all other aspects. The L and U matrices are obtained by expanding the matrix equation
A = LU term by term to determine the elements of the L and U matrices.

Example 3.26 Construct the LU decomposition of the following matrix using Crout’s method

A =

 1 2 3
6 5 4
2 5 6

 .

Solution. Since

A = LU =

 l11 0 0
l21 l22 0
l31 l32 l33


 1 u12 u13

0 1 u23
0 0 1

 .



126 3.4 Direct Numerical Methods for Linear Systems

Performing the multiplication on the right-hand side, gives 1 2 3
6 5 4
2 5 6

 =

 l11 l11u12 l11u13
l21 l21u12 + l22 l21u13 + l22u23
l31 l31u12 + l32 l31u13 + l32u23 + l33

 .

Then equating elements of first column to obtain

1 = l11,
6 = l21,
2 = l31.

Then equating elements of second column to obtain

2 = l11u12, u12 = 2,

5 = l21u12 + l22, l22 = 5− 12 = −7,

5 = l31u12 + l32, l32 = 5− 4 = 1.

Finally, then equating elements of third column to obtain

3 = l11u13, u13 = 3,

4 = l21u13 + l22u23, u23 = (4− 18)/− 7 = 2,

6 = l31u13 + l32u23 + l33, l33 = (6− 6− 2) = −2.

Thus we get  1 2 3
6 5 4
2 5 6

 =

 1 0 0
6 −7 0
2 1 −2


 1 2 3

0 1 2
0 0 1

 ,

the factorization of the given matrix. •

The general formula for getting elements of L and U corresponding to the coefficient matrix A for
a set of n linear equations can be written as

lij = aij −
j−1∑
k=1

likukj , i ≥ j, i = 1, 2, . . . , n

uij =
1

lii
[aij −

i−1∑
k=1

likukj ], i < j, j = 2, 3, . . . , n

lij = ai1, j = 1

uij =
aij
a11

, i = 1



. (3.33)
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Example 3.27 Solve the following linear system by LU decomposition using Crout’s method

A =

 1 2 3
6 5 4
2 5 6

 and b =

 1
−1
5

 .

Solution. Since the factorization of the coefficient matrix A has been already constructed in the
Example (3.26) as  1 2 3

6 5 4
2 5 6

 =

 1 0 0
6 −7 0
2 1 −2


 1 2 3

0 1 2
0 0 1

 .

Then solving the first system Ly = b for unknown vector y, that is 1 0 0
6 −7 0
2 1 −2


 y1

y2
y3

 =

 1
−1
5

 .

Performing forward substitution yields

y1 = 1, gives y1 = 1,
6y1 − 7y2 = −1, gives y2 = 1,
2y1 + y2 − 2y3 = 5, gives y3 = −1.

Then solving the second system Ux = y for unknown vector x, that is 1 2 3
0 1 2
0 0 1


 x1

x2
x3

 =

 1
1

−1

 .

Performing backward substitution yields

x1 + 2x2 + 3x3 = 1, gives x1 = −2,
x2 + 2x3 = 1, gives x2 = 3,

x3 = −1, gives x3 = −1,

and we obtained the approximate solution x∗ = [−2, 3,−1]T of the given system. •
The above results can be reproduced by using MATLAB command as follows:

>> A = [1 2 3; 6 5 4; 2 5 6]; b = [1 − 1 5]; sol = Crout(A, b);

Program 3.9
MATLAB m-file for the Crout’s Method
function sol = Crout(A, b)
[n,n]=size(A); u=zeros(n,n); l=u; for i=1:n; u(i,i)=1; end; l(1,1)=A(1,1);
for i=2:n; u(1,i)=A(1,i)/l(1,1); l(i,1)=A(i,1); end; for i=2:n; for j=2:n; s=0;
if i <= j; K=i-1; else; K=j-1; end; for k=1:K; s = s+ l(i, k) ∗ u(k, j); end
if j > i; u(i,j)=(A(i,j)-s)/l(i,i); else l(i,j)=A(i,j)-s; end;end;end
y(1)=b(1)/l(1,1); for k=2:n; sum=b(k); for i=1:k-1; sum = sum− l(k, i) ∗ y(i); end
y(k)=sum/l(k,k);end x(n)=y(n)/u(n,n); for k=n-1:-1:1; sum=y(k);
for i=k+1:n; sum = sum− u(k, i) ∗ x(i); end; x(k)=sum/u(k,k); end; l; u; y; x;
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Note that we can also find the LU-decomposition of a matrix A by using simple Gauss-elimination
method. We start with the product matrices of the form IA and convert it to the equivalent form
LU , that is, we have to convert right matrix A to unit upper-triangular matrix U . We describe the
procedure in the following example.

Example 3.28 Solve the following system using LU-decomposition by Crout’s method

x1 + 2x2 = 3
−x1 − 2x3 = 1

−3x1 − 5x2 + x3 = 1

solution. The Crout’s method makes LU factorization a byproduct of Gaussian elimination. To
illustrate, let the given matrix of the system is 1 2 0

−1 0 −2
−3 −5 1

 .

The process begins with the product matrices form

IA =

 1 0 0
0 1 0
0 0 1


 1 2 0

−1 0 −2
−3 −5 1

 .

In each of the steps below, we arrange so that the product of the two matrices is always equal to
the original matrix A. Now the first step of Gaussian elimination on the right factor is to divide
the first row by the pivot element. Then the Crout’s rule copies the pivot element to the matching
element of the left factor at the same time we divide. The next step in Gaussian elimination is
to eliminate all the elements below the pivot element. This is done by multiplying the first row by
below (n− 1) eliminating elements, subtracting the product from the (n− 1) rows, and putting the
result in the (n− 1) rows. The Crout’s rule copies all those eliminating elements into the matching
elements of the left factor. We repeat the same procedure for the remaining pivot elements. Thus
we obtain

A =

 1 0 0
−1 1 0
−3 0 1


 1 2 0

0 2 −2
0 1 1

 .

The product of matrices is still equal to A.

A =

 1 0 0
−1 2 0
−3 1 1


 1 2 0

0 1 −1
0 0 2

 .

The product of matrices is still equal to A.

A =

 1 0 0
−1 2 0
−3 1 2


 1 2 0

0 1 −1
0 0 1

 = LU.
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The product is still A and we have achieved the desired factorization.
Now solving the first system Ly = b for unknown vector y, that is 1 0 0

−1 2 0
−3 1 2


 y1

y2
y3

 =

 3
1
1

 .

Performing forward substitution yields

y1 = 3, gives y1 = 3,
−y1 + 2y2 = 1, gives y2 = 2,

−3y1 + y2 + 2y3 = 1, gives y3 = 4.

Then solving the second system Ux = y for unknown vector x, that is 1 2 0
0 1 −1
0 0 1


 x1

x2
x3

 =

 3
2
4

 .

Performing backward substitution yields

x1 + 2x2 = 3, gives x1 = −9,
x2 − x3 = 2, gives x2 = 6,

x3 = 4, gives x3 = 4,

and we obtained x∗ = [−9, 6, 4]T , the approximate solution of the given system. •

Note that determinant of A for LU decomposition by Crout’s method is

det(A) = det(L) =
n∏

i=1

lii = (l11l22 · · · lnn),

where det(U) = 1 because U is unit upper-triangular matrix.

Procedure 3.4 [LU Decomposition by the Crout’s Method]

1. Take the nonsingular matrix, A.

2. If possible, decompose the matrix A = LU using (3.33).

3. Solve linear system Ly = b using (3.30).

4. Solve linear system Ux = y using (3.31).

Note that factorization method is also used to invert matrices. Their usefulness for this purpose
is based on the fact that triangular matrices are easily inverted. Once the factorization has been
effected, the inverse of a matrix A is found from the formula

A−1 = (LU)−1 = U−1L−1. (3.34)

Then
UA−1 = L−1, where LL−1 = I.

A practical way of calculating the determinant is to use the forward elimination process of the
Gaussian elimination or, alternatively, the LU decomposition.
If no pivoting is used, calculation of the determinant using the LU decomposition is very easy.
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Example 3.29 Find determinant and inverse of the following matrix using LU decomposition by
Doolittle’s method.

A =

 1 −2 1
1 −1 1
1 1 2

 .

Solution. Since we know that

A =

 1 −2 1
1 −1 1
1 1 2

 =

 1 0 0
m21 1 0
m31 m32 1


 u11 u12 u13

0 u22 u23
0 0 u33

 = LU.

Now we will use only the forward elimination step of the simple Gaussian elimination method to
convert the given matrix A into the upper-triangular matrix U . Since a11 = 1 ̸= 0, so we wish
to eliminate the elements a21 = 1 and a31 = 1 by subtracting from the second and third rows the
appropriate multiples of the first row. The multiples are m21 = 1 and m31 = 1, so 1 −2 1

0 1 0
0 3 1

 .

As a
(1)
22 = 1 ̸= 0, therefore, we eliminate entry in a

(1)
32 = 3 position by subtracting the multiple

m32 = 3 of the second row from the third row, to get 1 −2 1
0 1 0
0 0 1

 .

Obviously, the original set of equations has been transformed to an upper-triangular form. Thus 1 −2 1
1 −1 1
1 1 2

 =

 1 0 0
1 1 0
1 3 1


 1 −2 1

0 1 0
0 0 1

 ,

which is the required decomposition of A.
Now we find the determinant of the matrix A as follows:

det(A) = det(U) = u11u22u33 = (1)(1)(1) = 1.

To find the inverse of the matrix A, first we will compute the inverse of the lower-triangular matrix
L−1 from

LL−1 =

 1 0 0
1 1 0
1 3 1


 l′11 0 0

l′21 l′22 0
l′31 l′32 l′33

 =

 1 0 0
0 1 0
0 0 1

 = I,

by using the forward substitution.
To solve the first system  1 0 0

1 1 0
1 3 1


 l′11

l′21
l′31

 =

 1
0
0

 ,
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by using forward substitution, we get, l′11 = 1, l′21 = −1, l′31 = 2. Similarly, the solution of the
second linear system  1 0 0

1 1 0
1 3 1


 0

l′22
l′32

 =

 0
1
0

 ,

can be obtained as, l′22 = 1, l′32 = −3. Finally, the solution of the third linear system 1 0 0
1 1 0
1 3 1


 0

0
l′33

 =

 0
0
1

 ,

gives l′33 = 1. Hence the elements of the matrix L−1 are

L−1 =

 1 0 0
−1 1 0
2 −3 1

 ,

which is the required inverse of the lower-triangular matrix L.
To find the inverse of the given matrix A, we will solve the system

UA−1 =

 1 −2 1
0 1 0
0 0 1


 a′11 a′12 a′13

a′21 a′22 a′23
a′31 a′32 a′33

 =

 1 0 0
−1 1 0
2 −3 1

 = L−1,

by using backward substitution.
We solve the first system  1 −2 1

0 1 0
0 0 1


 a′11

a′21
a′31

 =

 1
−1
2

 ,

by using backward substitution, we get, a′11 = −3, a′21 = −1, a′31 = 2. Similarly, the solution of the
second linear system  1 −2 1

0 1 0
0 0 1


 a′12

a′22
a′32

 =

 0
1

−3

 ,

can be obtained as, a′12 = 5, a′22 = 1, a′32 = −3. Finally, the solution of the third linear system 1 −2 1
0 1 0
0 0 1


 a′13

a′23
a′33

 =

 0
0
1

 ,

can be obtained as, a′13 = −1, a′23 = 0, a′33 = 1. Hence the elements of the inverse matrix A−1 are

A−1 =

 −3 5 −1
−1 1 0
2 −3 1

 .
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For the LU decomposition we have not used pivoting for the sake of simplicity. However, pivoting
is important for the same reason as in the Gaussian elimination. We know that pivoting in the
Gaussian elimination is equivalent to interchanging the rows of coefficients matrix together with the
terms on the right-hand side. This indicates that pivoting may be applied to the LU decomposition
as long as the interchanging is applied to the left and right terms in the same way. When performing
pivoting in the LU decomposition, the changes in the order of the rows are recorded. The same
reordering is then applied to the right-hand side terms before starting the solution in accordance
with the forward elimination and backward substitution steps. •
Since we know that not every matrix has a direct LU decomposition. We define the following
matrix which gives the sufficient condition for the LU decomposition of the matrix. It also, helps
us for the convergence of the iterative methods for solving linear systems.

Definition 3.24 (Strictly Diagonally Dominant Matrix)

A square matrix is said to be strictly diagonally dominant (SDD) if the absolute value of each
element on the main diagonal is greater than the sum of the absolute values of all the other elements
in that row. Thus, strictly diagonally dominant matrix is defined as

|aii| >
n∑

j=1

j ̸=i

|aij |, for i = 1, 2, . . . , n. (3.35)

Example 3.30 The matrix

A =

 7 3 1
1 6 3

−2 4 8

 ,

is strictly diagonally dominant since

|7| > |3|+ |1|, that is, 7 > 4,
|6| > |1|+ |3|, that is, 6 > 4,
|8| > | − 2|+ |4|, that is, 8 > 6,

but the following matrix

B =

 6 −3 4
3 7 3
5 −4 10

 ,

is not strictly diagonally dominant since

|6| > | − 3|+ |4|, that is, 6 > 7,

which is not true. Strictly diagonally dominant matrix occurs naturally in a wide variety of practical
applications, and when solving a strictly diagonally dominant system by Gauss-elimination method,
partial pivoting is never required. •

Theorem 3.14 If a matrix A is strictly diagonally dominant, then:

1. Matrix A is nonsingular.
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2. Gaussian elimination without row interchange can be performed on the linear system Ax = b.

3. Matrix A has LU factorization. •

Example 3.31 Solve the following linear system using the simple Gaussian elimination method
and also, find the LU decomposition of the matrix using Doolittle’s method and Crout’s method

5x1 + x2 + x3 = 7
2x1 + 6x2 + x3 = 9
x1 + 2x2 + 9x3 = 12

solution. Start with the augmented matrix form
5 1 1

... 7

2 6 1
... 9

1 2 9
... 12

 ,

and since a11 = 5 ̸= 0, so we can eliminate the elements a21 and a31 by subtracting from the second
and third rows the appropriate multiples of the first row. In this case the multiples are given

m21 =
2

5
and m31 =

1

5
.

Hence 
5 1 1

... 7

0 28/5 3/5
... 31/5

0 9/5 44/5
... 53/5

 .

As a
(1)
22 = 28/5 ̸= 0, therefore, we eliminate entry in a

(1)
32 position by subtracting the multiple

m32 =
1.8

5.6
= 9/28 of the second row from the third row, to get


5 1 1

... 7

0 28/5 3/5
... 31/5

0 0 43/5
... 43/5

 .

Obviously, the original set of equations has been transformed to an upper-triangular form. Since all
the diagonal elements of the obtaining upper-triangular matrix are nonzero, which means that the
coefficient matrix of the given system is nonsingular and therefore, the given system has a unique
solution. Now expressing the set in algebraic form yields

5x1 + x2 + x3 = 7
(28/5)x2 + (3/5)x3 = 31/5

(43/5)x3 = 43/5
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Now using backward substitution to get the solution of the system as

(43/5)x3 = 43/5, gives x3 = 1,
(28/5)x2 = −(3/5)x3 + 31/5, gives x2 = 1,
5x1 = 7− x2 − x3, gives x1 = 1.

Since we know that in using LU decomposition by Doolittle’s method the unknown elements of matrix
L are the used multiples and the matrix U is same as we obtained in forward elimination process
of the simple Gauss elimination. Thus the LU decomposition of the matrix A can be obtained by
using Doolittle’s method as follows:

A =

 5 1 1
2 6 1
1 2 9

 =

 1 0 0
2/5 1 0
1/5 9/28 1


 5 1 1

0 28/5 3/5
0 0 43/5

 = LU.

Similarly, the LU decomposition of the matrix A by using Crout’s method can be obtained as

A =

 5 1 1
2 6 1
1 2 9

 =

 5 0 0
2 28/5 0
1 9/5 43/5


 1 1/5 1/5

0 1 1/10
0 0 1

 = LU.

Thus the conditions of the Theorem 3.14 are satisfied. •

3.5 Norms of Vectors and Matrices

For solving linear systems, we discuss a method for quantitatively measuring the distance between
vectors inRn, the set of all column vectors with real components, to determine whether the sequence
of vectors that results from using an direct method converges to a solution of the system. To define
a distance in Rn, we use the notation of the norm of a vector.

Vector Norms

It is sometimes useful to have a scalar measure of the magnitude of a vector. Such a measure is
called a vector norm and for a vector x is written as ∥x∥.
A vector norm on Rn is a function, from Rn to R satisfying:

1. ∥x∥ > 0 for all x ∈ Rn.

2. ∥x∥ = 0 if and only if x = 0.

3. ∥αx∥ = |α|∥x∥, for all α ∈ R, x ∈ Rn.

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥, for all x,y ∈ Rn.

There are three norms in Rn that are most commonly used in applications, called l1-norm, l2-norm,
and l∞-norm, and are defined for the given vectors x = [x1, x2, . . . , xn]

T as

∥x∥1 =
n∑

i=1

|xi|, ∥x∥2 =
(

n∑
i=1

x2i

)1/2

, ∥x∥∞ = max
1≤i≤n

|xi|.
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The l1-norm is called the absolute norm, the l2-norm is frequently called the Euclidean norm as it is
just the formula for distance in ordinary three-dimensional Euclidean space extended to dimension
n. Finally, the l∞-norm is called the maximum norm or occasionally the uniform norm. All these
three norms are also called the natural norms.

Example 3.32 Compute lp-norms (p = 1, 2,∞) of the vector x = [−5, 3,−2]T in R3.

Solution. These lp-norms (p = 1, 2,∞) of the given vector are:

∥x∥1 = |x1|+ |x2|+ |x3| = | − 5|+ |3|+ | − 2| = 10.

∥x∥2 = (x21 + x22 + x23)
1/2 =

[
(−5)2 + (3)2 + (−2)2

]1/2
≈ 6.1644.

∥x∥∞ = max{|x1|, |x2|, |x3|} = max{| − 5|, |3|, | − 2|} = 5.

In MATLAB command the built-in norm function computes lp-norms of vectors. If only one ar-
gument is passed to norm, the l2-norm is returned and for two arguments, the second one is used
to specify the value of p. For example,

>> x = [−5 3 − 2]; v = norm(x); v = norm(x, 2); v = norm(x, 1), v = norm(x, inf)

The internal MATLAB constant inf is used to select the l∞-norm.

Matrix Norms

A matrix norm is a measure of how well one matrix approximates another, or, more accurately,
of how well their difference approximates the zero matrix. An iterative procedure for inverting a
matrix produces a sequence of approximate inverses. Since in practices such a process must be
terminated, it is desirable to have some measure of the error of approximate inverse.

So a matrix norm on the set of all n× n matrices is a real-valued function, ∥.∥, defined on this set,
satisfying for all n× n matrices A and B and all real number α as follows:

1. ∥A∥ > 0, A ̸= 0.

2. ∥A∥ = 0, A = 0.

3. ∥I∥ = 1, I is the identity matrix.

4. ∥αA∥ = |α|∥A∥, for some scalar α ∈ R.

5. ∥A+B∥ ≤ ∥A∥+ ∥B∥.

6. ∥AB∥ ≤ ∥A∥∥B∥.

7. ∥A−B∥ ≥
∣∣∣∥A∥ − ∥B∥

∣∣∣.
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Several norms for matrices have been defined, we shall use the following three natural norms l1, l2,
and l∞ for a square matrix of order n:

∥A∥1 = max
j

(
n∑

i=1

|aij |
)

= maximum column-sum.

∥A∥2 = max
∥x∥2=1

∥Ax∥2 = spectral norm.

∥A∥∞ = max
i

 n∑
j=1

|aij |

 = row-sum norm.

The l1-norm and l∞-norm are widely used because they are easy to calculate. The matrix norm
∥A∥2 that corresponds to the l2-norm is related the eigenvalues of the matrix. It sometimes has
special utility because no other norm is smaller than this norm. It therefore, provides the best
measure of the size of a matrix, but is also the most difficult to compute. We will discuss this
natural norm later in the chapter.

For m × n matrix, we can paraphrase the Frobenius norm (or Euclidean norm), which is not a
natural norm and is define as

∥A∥F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

.

It can be shown that

∥A∥F =
√
tr(ATA),

where tr(ATA) is the trace of a matrix ATA, that is, the sum of the diagonal entries of ATA. The
Frobenius norm of a matrix is a good measure of the magnitude of a matrix. It is to be noted that
∥A∥F ̸= ∥A∥2. For a diagonal matrix, all norms have the same values.

Example 3.33 Compute lp-norms (p = 1,∞, F ) of the following matrix

A =

 4 2 −1
3 5 −2
1 −2 7

 .

Solution. The l1-norm is defined as

3∑
i=1

|ai1| = |4|+ |3|+ |1| = 8,

3∑
i=1

|ai2| = |2|+ |5|+ | − 2| = 9,

3∑
i=1

|ai3| = | − 1|+ | − 2|+ |7| = 10,

so

∥A∥1 = max{8, 9, 10} = 10.
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Also, l∞-norm is defined as

3∑
j=1

|a1j | = |4|+ |2|+ | − 1| = 7,

3∑
j=1

|a2j | = |3|+ |5|+ | − 2| = 10,

3∑
j=1

|a3j | = |1|+ | − 2|+ |7| = 10,

so

∥A∥∞ = max{7, 10, 10} = 10.

Finally, we have the lF -norm of the matrix as

∥A∥F = (16 + 4 + 1 + 9 + 25 + 4 + 1 + 4 + 49)1/2 ≈ 10.6301,

the Frobenius norm of the given matrix. •

Like lp-norms of vectors, in MATLAB command the built-in norm function can be used to compute
lp-norms of matrices. The l1-norm, l∞-norm and Frobenius norm of a matrix can be find as

>> A = [4 2 − 1; 3 5 − 2; 1 − 2 − 7]; norm(A, 1); norm(A, inf); norm(A, inf)

3.6 Iterative Methods for Solving Linear Systems

The methods discussed in the previous section for the solution of the system of linear equations
have been direct, which required a finite number of arithmetic operations. The elimination methods
of solving such systems usually yield sufficiently accurate solutions for approximately 20 to 25
simultaneous equations, where most of the unknowns are present in all of the equations. When
the coefficients matrix is sparse (has many zeros), a considerably large number of equations can
be handled by the elimination methods. But these methods are generally impractical when many
hundreds or thousands of equations must be solved simultaneously.

There are, however, several methods which can be used to solve large numbers of simultaneous
equations. These methods are, called iterative methods by which an approximation to the solution
of a system of linear equations may be obtained. The iterative methods are used most often for large
sparse systems of linear equations and efficient in terms of computer storage and time requirement.
Systems of this type arise frequently in the numerical solution of boundary value problems and
partial differential equations. Unlike the direct methods, the iterative methods may not always
yield a solution, even if the determinant of the coefficients matrix is not zero. Here, we consider
just two of these iterative methods. These two forms the basis of a family of methods which are
designed either to accelerate the convergence or to suit some particular computer architecture.
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3.6.1 Jacobi Iterative Method

This is one of the easiest iterative method to find the approximate solution of the system of linear
equations (3.42). To explain its procedure, consider a system of three linear equations as follows:

a11x1 + a12x2 + a13x3 = b1
a21x1 + a22x2 + a23x3 = b2
a31x1 + a32x2 + a33x3 = b3

The solution process starts by solving for the first variable x1 from first equation, second variable
x2 from second equation and third variable x3 from third equation, gives

a11x1 = b1 − a12x2 − a13x3
a22x2 = b2 − a21x1 − a23x3
a33x3 = b3 − a31x1 − a32x2

Divide both sides of the above three equations by their diagonal elements, a11, a22 and a33 respec-
tively, to have

x1 =
1

a11

[
b1 − a12x2 − a13x3

]

x2 =
1

a22

[
b2 − a21x1 − a23x3

]

x3 =
1

a33

[
b3 − a31x1 − a32x2

]
Let x(k) =

[
x
(k)
1 , x

(k)
2 , x

(k)
3

]T
be an initial solution of the exact solution x of the linear system (3.42),

then we define an iterative sequence

x
(k+1)
1 =

1

a11

[
b1 − a12x

(k)
2 − a13x

(k)
3

]

x
(k+1)
2 =

1

a22

[
b2 − a21x

(k)
1 − a23x

(k)
3

]

x
(k+1)
3 =

1

a33

[
b3 − a31x

(k)
1 − a32x

(k)
2

]
(3.36)

where k is the number of iterative steps. Then the form (3.36) is called the Jacobi formula for
system of three equations. For a general system of n linear equations, the Jacobi method is defined
by

x
(k+1)
i =

1

aii

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k)
j

 (3.37)

i = 1, 2, . . . , n, k = 0, 1, 2, . . . ,

provided that the diagonal elements aii ̸= 0 for each i = 1, 2, . . . , n. If the diagonal elements equal
to zero, then reordering of the equations can be performed so that no element in the diagonal
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position equal to zero. As usual with iterative methods, an initial approximation x
(0)
i must be

supplied. If we don’t have knowledge about the exact solution, it is conventional to start with

x
(0)
i = 0 for all i. The iterations defined by (3.37) are stopped when

∥x(k+1) − x(k)∥ < ϵ, (3.38)

or by using other possible stopping criteria

∥x(k+1) − x(k)∥
∥x(k+1)∥

< ϵ, (3.39)

where ϵ is a preassigned small positive number. For this purpose, any convenient norm can be used,
the most usual being the l∞-norm.

Example 3.34 Solve the following system of equations using the Jacobi iterative method, using
ϵ = 10−6 in the l∞-norm.

5x1 − x2 + x3 = 10
2x1 + 8x2 − x3 = 11
−x1 + x2 + 4x3 = 3

Start with the initial solution x(0) = [0, 0, 0]T .

Solution. The Jacobi iterative method for the given system has the form

x
(k+1)
1 =

1

5

[
10 + x

(k)
2 − x

(k)
3

]

x
(k+1)
2 =

1

8

[
11 − 2x

(k)
1 + x

(k)
3

]

x
(k+1)
3 =

1

4

[
3 + x

(k)
1 − x

(k)
2

]
and starting with initial approximation x

(0)
1 = 0, x

(0)
2 = 0, x

(0)
3 = 0, then for k = 0, we obtain

x
(1)
1 =

1

5

[
10 + x

(0)
2 − x

(0)
3

]
=

1

5

[
10 + 0− 0

]
= 2,

x
(1)
2 =

1

8

[
11 − 2x

(0)
1 + x

(0)
3

]
=

1

8

[
11− 0 + 0

]
= 1.375,

x
(1)
3 =

1

4

[
3 + x

(0)
1 − x

(0)
2

]
=

1

4

[
3 + 0− 0

]
= 0.75.

The first and subsequent iterations are listed in Table 3.1.

Note that the Jacobi method converges and after 16 iterations we obtained what is obviously the
exact solution. Ideally the iteration should stop automatically when we obtained the required
accuracy using one of the stopping criteria mentioned by (3.38) or (3.39).
To get the above results using MATLAB command, we do the following:

>> Ab = [A|b] = [5 − 1 1 10; 2 8 − 1 11;−1 1 4 3];
>> x = [0 0 0]; acc = 0.5e− 6; JacobiM(Ab, x, acc);
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Table 3.1: Solution of the Example 3.34

k x
(k)
1 x

(k)
2 x

(k)
3

0 0.000000 0.000000 0.000000
1 2.000000 1.375000 0.750000
2 2.125000 0.968750 0.906250
...

...
...

...
15 2.000000 0.999999 1.000000
16 2.000000 1.000000 1.000000

Example 3.35 Solve the following system of equations using the Jacobi iterative method.

2x1 + 8x2 − x3 = 11
5x1 − x2 + x3 = 10
−x1 + x2 + 4x3 = 3

Start with the initial solution x(0) = [0, 0, 0]T .

Solution. Results for this linear system are listed in Table 3.2. •
Notice that Jacobi method diverges rapidly. Although the given linear system is same as the linear

Table 3.2: Solution of the Example 3.35

k x
(k)
1 x

(k)
2 x

(k)
3

0 0.000000 0.000000 0.000000
1 5.500000 -10.0000 0.750000
2 45.87500 18.25000 4.625000
3 -65.1875 224.0000 7.656250

system of the previous Example 3.34 except the first and second equations are interchanged. From
this example we concluded that Jacobi iterative method is not always convergent.

Program 3.10
MATLAB m-file for the Jacobi Iterative Method for Linear System
function x=JacobiM(Ab,x,acc)
[n,t]=size(Ab); b=Ab(1:n,t); R=1; k=1; d(1,1:n+1)=[0 x]; while R > acc
for i=1:n; sum=0; for j=1:n; if j ˜ =i
sum = sum+Ab(i, j) ∗ d(k, j + 1); end; x(1, i) = (1/Ab(i, i)) ∗ (b(i, 1)− sum);end;end
k=k+1; d(k,1:n+1)=[k-1 x]; R=max(abs((d(k,2:n+1)-d(k-1,2:n+1))));
if k > 10 & R > 100 (’Jacobi Method is diverges’) break; end; end; x=d;

Procedure 3.5 [Jacobi Method]

1. Check the coefficient matrix A is strictly diagonally dominant (for guaranteed convergence).
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2. Initialize the first approximation x(0) and pre-assigned accuracy ϵ.

3. Compute the constant c = D−1b =
bi
aii

, for i = 1, 2, . . . , n.

4. Compute the Jacobi iteration matrix TJ = −D−1(L+ U).

5. Solve for the approximate solutions x
(k+1)
i = TJx

(k)
i + c, i = 1, 2, . . . , n

and k = 0, 1, . . .

6. Repeat step 5 until ∥x(k+1)
i − x

(k)
i ∥ < ϵ.

3.6.2 Gauss-Seidel Iterative Method

This is one of the most popular and widely used iterative method to find the approximate solution
of the system of linear equations. This iterative method is a modification of the Jacobi iterative
method and give us good accuracy by using the most recently calculated values.

From the Jacobi iterative formula (3.37), it is seen that the new estimates for solution x are
computed from the old estimates and only when all the new estimates have been determined are
then used in the right-hand side of the equation to perform the next iteration. But the Gauss-Seidel
method is to make use of the new estimates in the right-hand side of the equation as soon as they
become available. For example, the Gauss-Seidel formula for the system of three equations can be
define an iterative sequence

x
(k+1)
1 =

1

a11

[
b1 − a12x

(k)
2 − a13x

(k)
3

]

x
(k+1)
2 =

1

a22

[
b2 − a21x

(k+1)
1 − a23x

(k)
3

]

x
(k+1)
3 =

1

a33

[
b3 − a31x

(k+1)
1 − a32x

(k+1)
2

]
(3.40)

For a general system of n linear equations, the Gauss-Seidel iterative method defined as

x
(k+1)
i =

1

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 (3.41)

i = 1, 2, . . . , n, k = 0, 1, 2, . . .

The Gauss-Seidel iterative method is sometimes called the method of successive iteration, because
the most recent values of all xi are used in the calculation.

Example 3.36 Solve the following system of equations using the Gauss-Seidel iterative method,
with ϵ = 10−6 in l∞-norm.

5x1 − x2 + x3 = 10
2x1 + 8x2 − x3 = 11
−x1 + x2 + 4x3 = 3
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Start with the initial solution x(0) = [0, 0, 0]T .

Solution. The Gauss-Seidel iteration for the given system is

x
(k+1)
1 =

1

5

[
10 + x

(k)
2 − x

(k)
3

]

x
(k+1)
2 =

1

8

[
11 − 2x

(k+1)
1 + x

(k)
3

]

x
(k+1)
3 =

1

4

[
3 + x

(k+1)
1 − x

(k+1)
2

]
and starting with initial approximation x

(0)
1 = 0, x

(0)
2 = 0, x

(0)
3 = 0, then for k = 0, we obtain

x
(1)
1 =

1

5

[
10 + x

(0)
2 − x

(0)
3

]
=

1

5

[
10 + 0− 0

]
= 2,

x
(1)
2 =

1

8

[
11 − 2x

(1)
1 + x

(0)
3

]
=

1

8

[
11− 4 + 0

]
= 0.875,

x
(1)
3 =

1

4

[
3 + x

(1)
1 − x

(1)
2

]
=

1

4

[
3 + 2− 0.875

]
= 1.03125.

The first and subsequent iterations are listed in Table 3.3.

The above results can be obtained using MATLAB command as follows:

>> Ab = [A|b] = [5 − 1 1 10; 2 8 − 1 11;−1 1 4 3];
>> x = [0 0 0]; acc = 0.5e− 6; GaussSM(Ab, x, acc);

Note that the Gauss-Seidel method converged and required 10 iterations to obtain the correct solution
for the given system, which is 6 iterations less than required by the Jacobi method for the same
Example 3.34.

Table 3.3: Solution of the Example 3.36

k x
(k)
1 x

(k)
2 x

(k)
3

0 0.000000 0.000000 0.000000
1 2.000000 0.875000 1.031250
2 1.968750 1.011719 0.989258
3 2.004492 0.997534 1.001740
...

...
...

...
9 2.000000 0.999999 1.000000
10 2.000000 1.000000 1.000000
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Program 3.11
MATLAB m-file for the Gauss-Seidel Iterative Method for Linear System
function x=GaussSM(Ab,x,acc)
[n,t]=size(Ab); b=Ab(1:n,t);R=1; k=1; d(1,1:n+1)=[0 x]; k=k+1; while R > acc
for i=1:n; sum=0; for j=1:n
if j <= i− 1; sum = sum+Ab(i, j) ∗ d(k, j + 1); elseif j >= i+ 1
sum = sum+Ab(i, j) ∗ d(k − 1, j + 1); end; end; x(1, i) = (1/Ab(i, i)) ∗ (b(i, 1)− sum);
d(k,1)=k-1; d(k,i+1)=x(1,i); end; R=max(abs((d(k,2:n+1)-d(k-1,2:n+1))));
k=k+1; if R > 100 & k > 10; (’Gauss-Seidel method is Diverges’) break ;end;end;x=d;

Example 3.37 Solve the following system of equations using the Gauss-Seidel iterative method.

2x1 + 8x2 − x3 = 11
5x1 − x2 + x3 = 10
−x1 + x2 + 4x3 = 3

Start with the initial solution x(0) = [0, 0, 0]T .

Solution. Results for this linear system are listed in Table 3.4. Note that in this case the Gauss-
Seidel method diverges rapidly. Although the given linear system is same as the linear system of the
previous Example 3.36 except the first and second equations are interchanged. From this example
we concluded that the Gauss-Seidel iterative method is not always convergent. •

Table 3.4: Solution of the Example 3.37

k x
(k)
1 x

(k)
2 x

(k)
3

0 0.000000 0.000000 0.000000
1 5.500000 17.5000 -2.25000
2 -65.6250 -340.375 69.43750
3 1401.719 7068.031 -1415.83

Procedure 3.6 [Gauss-Seidel Method]

1. Check the coefficient matrix A is strictly diagonally dominant (for guaranteed convergence).

2. Initialize the first approximation x(0) ∈ R and pre-assigned accuracy ϵ.

3. Compute the constant c = (D + L)−1b.

4. Compute the Gauss-Seidel iteration matrix TG = −(D + L)−1U .

5. Solve for the approximate solutions x
(k+1)
i = TGx

(k)
i + c, i = 1, 2, . . . , n

and k = 0, 1, . . .

6. Repeat step 5 until ∥x(k+1)
i − x

(k)
i ∥ < ϵ.



144 3.6 Iterative Methods for Solving Linear Systems

From the Examples 3.34 and (3.36), we noted that the solution by the Gauss-Seidel method con-
verges more quickly than the Jacobi method. In general, we may state that if both the Jacobi
method and the Gauss-Seidel method are converge, then the Gauss-Seidel method
converges more quickly. This is generally the case but not always true. In fact, there are some
linear systems for which the Jacobi method converges but the Gauss-Seidel method does not, and
others for which the Gauss-Seidel method converges but the Jacobi method does not.

3.6.3 Matrix Forms of Iterative Methods for Linear System

The iterative methods to solve the system of linear equations

Ax = b, (3.42)

start with an initial approximation x(0) ∈ R to the solution x of the linear system (3.42), and
generates a sequence of vectors {x(k)}∞k=0 that converges to x. Most of these iterative methods
involve a process that converts the system (3.42) into an equivalent system of the form

x = Tx+ c, (3.43)

for some square matrix T and vector c. After the initial vector x(0) is selected, the sequence of
approximate solutions vector is generated by computing

x(k+1) = Tx(k) + c, for k = 0, 1, 2, . . . (3.44)

The sequence is terminated when the error is sufficiently small, that is

∥x(k+1) − x(k)∥ < ϵ, for small positive ϵ. (3.45)

Note that a matrix T is called iteration matrix and a vector c is a column matrix. We can find the
forms of these matrices easily for both iterative methods as follows. Let a matrix A can be written
as

A = L+D + U, (3.46)

where L is strictly lower-triangular, U is strictly upper-triangular, and D is the diagonal parts of
the coefficients matrix A, that is

L =


0 0 0 · · · 0

a21 0 0 · · · 0
a31 a32 0 · · · 0

...
...

...
...

...
an1 an2 an3 · · · 0

 , U =


0 a12 a13 · · · a1n
0 0 a23 · · · a2n
0 0 0 · · · a3n
...

...
...

...
...

0 0 0 · · · 0

 ,

and

D =


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

...
...

0 0 0 · · · ann

 .

Then the linear system (3.42) can be written as

(L+D + U)x = b. (3.47)

Now we find forms of both matrices T and c which help us to solve the linear system.
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Jacobi Iterative Method

The equation (3.47) can be written as

Dx = −(L+ U)x+ b.

Since matrix D is nonsingular, so we can write above equation as

x = −D−1(L+ U)x+D−1b,

which can be put in the form

x(k+1) = TJx
(k) + cj , for k = 0, 1, 2, . . . , (3.48)

which is the matrix form of Jacobi iterative method and where

TJ = −D−1(L+ U) and cj = D−1b, (3.49)

are called Jacobi iteration matrix and Jacobi constant column matrix, respectively and and their
elements are defined by

tij =
aij
aii

, i, j = 1, 2, . . . , n, i ̸= j,

tij = 0, i = j,

ci =
bi
aii

, i = 1, 2, . . . , n.

Note that the diagonal elements of Jacobi iteration matrix TJ are always zero.

Gauss-Seidel Iterative Method

The equation (3.47) can also be written as

(L+D)x = −Ux+ b.

Since lower-triangular matrix (L+D) is nonsingular, so we can write above equation as

x = −(L+D)−1Ux+ (L+D)−1b,

which can be put in the form

x(k+1) = TGx
(k) + cG, for k = 0, 1, 2, . . . , (3.50)

which is the matrix form of Gauss-Seidel iterative method and where

TG = −(L+D)−1U and cG = (L+D)−1b, (3.51)

are called Gauss-Seidel iteration matrix and Gauss-seidel constant column matrix, respectively.
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Example 3.38 Consider the following system

6x1 + 2x2 = 1
x1 + 7x2 − 2x3 = 2

3x1 − 2x2 + 9x3 = −1

(a) Find the matrix form of iterative (Jacobi and Gauss-Seidel) methods.

(b) If x(k) = [x
(k)
1 , x

(k)
2 , x

(k)
3 ]T , then writing the iterative forms of part(a) in the component forms

and find the exact solution of the given system.
(c) Find formulas for the error e(k+1) in the (n+ 1)th step .
(d) Find the second approximation of the error e(2) using part (c) if x(0) = [0, 0, 0]T .

Solution. Since the given matrix A is

A =

 6 2 0
1 7 −2
3 −2 9

 ,

and so

A = L+ U +D =

 0 0 0
1 0 0
3 −2 0

+

 0 2 0
0 0 −2
0 0 0

+

 6 0 0
0 7 0
0 0 9

 .

Jacobi Iterative Method

(a) Since the matrix form of the Jacobi iterative method can be written as

x(k+1) = TJx
(k) + cJ , k = 0, 1, 2, . . . ,

where
TJ = −D−1(L+ U) and cJ = D−1b.

One can easily compute the Jacobi iteration matrix TJ and the vector cJ as follows:

TJ = −



1

6
0 0

0
1

7
0

0 0
1

9



 0 2 0
1 0 −2
3 −2 0

 =



0 −2

6
0

−1

7
0

2

7

−3

9

2

9
0


and c =



1

6

2

7

−1

9


.

Thus the matrix form of Jacobi iterative method is

x(k+1) =



0 −2

6
0

−1

7
0

2

7

−3

9

2

9
0


x(k) +



1

6

2

7

−1

9


, k = 0, 1, 2.
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(b) Now by writing the above iterative matrix form of in the component form, we have


x1

x2

x3

 =



0 −1

3
0

−1

7
0

2

7

−1

3

2

9
0




x1

x2

x3

+



1

6

2

7

−1

9


,

and it is equivalent to

x1 = − 1/3x2 + 1/6
x2 = −1/7x1 + 2/7x3 + 2/7
x3 = −1/3x1 + 2/9x2 − 1/9

Now solving for x1, x2 and x3, we get
x1

x2

x3

 =


1/12

1/4

−1/12

 ,

which is the exact solution of the given system.
(c) Since the error in the (n+ 1)th step is defined as

e(k+1) = x− x(k+1),

therefore, we have

e(k+1) =


1/12

1/4

−1/12

−



0 −2

6
0

−1

7
0

2

7

−3

9

2

9
0


x(k) −



1

6

2

7

−1

9


.

This can be also written as

e(k+1) =


1/12

1/4

−1/12

−



0 −2

6
0

−1

7
0

2

7

−3

9

2

9
0




1/12

1/4

−1/12

+



0 −2

6
0

−1

7
0

2

7

−3

9

2

9
0


e(k) −



1

6

2

7

−1

9


,
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or

e(k+1) =



0 −2

6
0

−1

7
0

2

7

−3

9

2

9
0


e(k),

(because x(k) = x− e(k)) which is the required error in the (n+ 1)th step.
(d) Now finding the first approximation of the error, we have to compute the following

e(1) =



0 −2

6
0

−1

7
0

2

7

−3

9

2

9
0


e(0),

where

e(0) = x− x(0).

Using x(0) = [0, 0, 0]T , we have

e(0) =


1/12

1/4

−1/12

−


0

0

0

 =


1/12

1/4

−1/12

 .

Thus

e(1) =



0 −2

6
0

−1

7
0

2

7

−3

9

2

9
0




1/12

1/4

−1/12

 =


−1/12

−1/28

1/36

 .

Similarly, for the second approximation of the error, we have to compute the following

e(2) =



0 −2

6
0

−1

7
0

2

7

−3

9

2

9
0


e(1),
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or

e(2) =



0 −2

6
0

−1

7
0

2

7

−3

9

2

9
0




−1/12

−1/28

1/36

 =


1/84

5/252

5/252

 ,

which is the required second approximation of the error.

Gauss-Seidel Iterative Method

(a) Now by using Gauss-Seidel method, first we compute the Gauss-Seidel iteration matrix TG and
the vector cG as follows:

TG =



0 −1

3
0

0
1

21

2

7

0
23

189

4

63


and cG =



1

6

11

42

− 41

378


.

Thus the matrix form of Gauss-Seidel iterative method is

x(k+1) =



0 −1

3
0

0
1

21

2

7

0
23

189

4

63


x(k) +



1

6

11

42

− 41

378


, k = 0, 1, 2.

(b) Writing the above iterative form in component form, we get


x1

x2

x3

 =



0 −1

3
0

0
1

21

2

7

0
23

189

4

63




x1

x2

x3

+



1

6

11

42

− 41

378


,

and it is equivalent to

x1 = − 1/3x2 + 1/6
x2 = 1/21x2 + 2/7x3 + 11/42
x3 = 23/189x2 + 4/63x3 − 41/378
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Now solving for x1, x2 and x3, we get
x1

x2

x3

 =


1/12

1/4

−1/12

 ,

which is the exact solution of the given system.
(c) The error in the (n+ 1)th step can be easily computed as

e(k+1) =



0 −1

3
0

0
1

21

2

7

0
23

189

4

63


e(k).

(d) The first and second approximations of the error can be calculated as follows:

e(1) =



0 −1

3
0

0
1

21

2

7

0
23

189

4

63


e(0) = [−1/12,−1/84, 19/756]T ,

and

e(2) =



0 −1

3
0

0
1

21

2

7

0
23

189

4

63


e(1) = [1/252, 5/756, 1/6804]T .

3.6.4 Convergence Criteria of Iterative Methods

Since we noted that the Jacobi method and the Gauss-Seidel method do not always converge to
the solution of the given system of linear equations. Here we need some conditions which make the
both methods converge. The sufficient conditions for the convergence of both iterative methods are
discussed in the following theorems.

Theorem 3.15 (First Sufficient Condition for Convergence)

If the matrix A is strictly diagonally dominant (SDD), then for any choice of initial approxima-
tion x(0) ∈ R both the Jacobi method and the Gauss-Seidel method give sequence {x(k)}∞k=0 of
approximations that converge to the solution of the linear system. •
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Table 3.5: Solution of the Example 3.39

k x
(k)
1 x

(k)
2 x

(k)
3

0 0.000 0.000 0.000
1 1.200 0.667 1.167
2 1.167 1.050 0.544
3 0.889 0.744 0.428
...

...
...

...
7 0.994 0.777 0.572
8 1.004 0.787 0.576

Example 3.39 Rearrange the following linear system of equations

x1 + 6x2 − 3x3 = 4
2x1 + 2x2 + 6x3 = 7
5x1 + 2x2 − x3 = 6

such that the convergence of both iterative methods (Jacobi and Gauss-Seidel) is guaranteed. Use
initial solution x(0) = [0, 0, 0]T , compute approximation solution within accuracy 10−2.

Solution. For the guarantee convergence of iterative methods, the system must be SDD form, so
rearrange the given system in the following form

5x1 + 2x2 − x3 = 6
x1 + 6x2 − 3x3 = 4

2x1 + 2x2 + 6x3 = 7

Jacobi Iterative Method:

x
(k+1)
1 =

1

5

[
6 − 2x

(k)
2 + x

(k)
3

]

x
(k+1)
2 =

1

6

[
4 − x

(k)
1 + 3x

(k)
3

]

x
(k+1)
3 =

1

6

[
7 − 2x

(k)
1 − 2x

(k)
2

]
Starting with x(0) = [0, 0, 0]T , the first and subsequent iterations are listed in Table 3.5.
Gauss-Seidel Iterative Method:

x
(k+1)
1 =

1

5

[
6 − 2x

(k)
2 + x

(k)
3

]

x
(k+1)
2 =

1

6

[
4 − x

(k+1)
1 + 3x

(k)
3

]

x
(k+1)
3 =

1

6

[
7 − 2x

(k+1)
1 − 2x

(k+1)
2

]
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Table 3.6: Solution of the Example 3.39

k x
(k)
1 x

(k)
2 x

(k)
3

0 0.000 0.000 0.000
1 1.200 0.467 0.611
2 1.136 0.783 0.527
3 0.992 0.765 0.581
4 1.010 0.789 0.567
5 0.998 0.784 0.573
6 1.001 0.786 0.571

Starting with initial approximation x(0) = [0, 0, 0]T , the first and subsequent iterations are listed in
Table 3.6. Note that Gauss-Seidel iterative method converges faster than Jacobi iterative method.

There is another sufficient condition for the convergence of both iterative methods which is defined
in the following theorem.

Theorem 3.16 (Second Sufficient Condition for Convergence)

For any initial approximation x(0) ∈ R, the sequence {x(k)}∞k=0 of approximations defined by

x(k+1) = Tx(k) + c, for each k ≥ 0, and c ̸= 0, (3.52)

converges to the unique solution of x = Tx+ c if ∥T∥ < 1 for any natural matrix norm, and the
following error bounds hold:

∥x− x(k)∥ ≤ ∥T∥k∥x(0) − x∥,

∥x− x(k)∥ ≤ ∥T∥k

1− ∥T∥
∥x(1) − x(0)∥.

(3.53)

Note that smaller the value of the ∥T∥, faster the convergence of the iterative methods.

Example 3.40 Consider the following nonhomogeneous linear system Ax = b, where

A =

 5 0 −1
−1 3 0
0 −1 4

 and b =

 1
2
4

 .

Find the matrix form of iterative (Jacobi and Gauss-Seidel) methods and show that Gauss-Seidel
iterative method converges faster than Jacobi iterative method for the given system.

Solution. Here we will show that the l∞-norm of the Gauss-Seidel iteration matrix TG is less than
the l∞-norm of the Jacobi iteration matrix TJ , that is

∥TG∥∞ < ∥TJ∥∞.
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The Jacobi iteration matrix TJ can be obtained from the given matrix A as follows

TJ = −D−1(L+ U) = −

 5 0 0
0 3 0
0 0 4


−1 0 0 −1

−1 0 0
0 −1 0

 =



0 0
1

5

1

3
0 0

0
1

4
0


.

Thus the matrix form of Jacobi iterative method is

x(k+1) =



0 0
1

5

1

3
0 0

0
1

4
0


x(k) +



1

5

2

3

1


, k ≥ 0.

Similarly, Gauss-Seidel iteration matrix TG is defined as

TG = −(D + L)−1U = −

 5 0 0
−1 3 0
0 −1 4


−1 0 0 −1

0 0 0
0 0 0

 ,

and it gives

TG = −



1

5
0 0

1

15

1

3
0

1

60

1

15

1

4



 0 0 −1
0 0 0
0 0 0

 =



0 0
1

5

0 0
1

15

0 0
1

60


.

So the matrix form of Gauss-Seidel iterative method is

x(k+1) =



0 0
1

5

0 0
1

15

0 0
1

60


x(k) +



1

5

11

15

71

60


, k ≥ 0.

Since the l∞-norm of the matrix TJ is

∥TJ∥∞ = max

{
1

5
,
1

3
,
1

4

}
=

1

3
= 0.3333 < 1,
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and the l∞-norm of the matrix TG is

∥TG∥∞ = max

{
1

5
,
1

15
,
1

60

}
=

1

5
= 0.2000 < 1.

Since ∥TG∥∞ < ∥TJ∥∞, which shows that Gauss-Seidel method will converge faster than Jacobi
method for the given linear system. •

Note that the condition ∥T∥ < 1 is equivalent to the condition that a matrix A is to be strictly
diagonally dominant.
For Jacobi method for a general matrix A, the norm of Jacobi iteration matrix is defined as

∥TJ∥ = max
1≤i≤n

n∑
j=1

j ̸=i

∣∣∣∣aijaii

∣∣∣∣ .
Thus for ∥TJ∥ < 1 is equivalent to requiring

n∑
j=1

j ̸=i

|aij | < |aii|,

that is, a matrix A is strictly diagonally dominant.

Example 3.41 Consider the following linear system of equations

4x1 − x2 + x3 = 12
−x1 + 3x2 + x3 = 1
x1 + x2 + 5x3 = −14

(a) Show that both iterative methods (Jacobi and Gauss-Seidel) will converge by
using ∥T∥∞ < 1.

(b) Find second approximation x(2) when the initial solution is x(0) = [4, 3,−3]T .
(c) Compute the error bounds for your approximations.
(d) How many iterations needed to get an accuracy within 10−4.

Solution. From (3.46), we have

A =

 4 −1 1
−1 3 1
1 1 5

 =

 0 0 0
−1 0 0
1 1 0

+

 0 −1 1
0 0 1
0 0 0

+

 4 0 0
0 3 0
0 0 5


= L+ U +D.

Jacobi Method:

(a) Since the Jacobi iteration matrix is defined as

TJ = −D−1(L+ U),
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and by using the given information, we have

TJ = −



1

4
0 0

0
1

3
0

0 0
1

5




0 −1 1

−1 0 1

1 1 0

 =



0
1

4
−1

4

1

3
0 −1

3

−1

5
−1

5
0


.

Then the l∞ norm of the matrix TJ is

∥TJ∥∞ = max

{
2

4
,
2

3
,
2

5

}
=

2

3
< 1.

Thus the Jacobi method will converge for the given linear system.

(b) The Jacobi method for the given system is

x
(k+1)
1 =

1

4

[
12 + x

(k)
2 − x

(k)
3

]

x
(k+1)
2 =

1

3

[
1 + x

(k)
1 − x

(k)
3

]

x
(k+1)
3 =

1

5

[
− 14 − x

(k)
1 − x

(k)
2

]
Starting with initial approximation x

(0)
1 = 4, x

(0)
2 = 3, x

(0)
3 = −3, and for k = 0, 1, we obtain the

first and the second approximations as

x(1) = [4.5, 2.6667,−4.2]T and x(2) = [4.7167, 3.2333,−4.2333]T .

(c) Using the error bound formula (3.53), we obtain

∥x− x(2)∥ ≤ (2/3)2

1− 2/3

∥∥∥∥∥∥∥
 4.5

2.6667
−4.2

−

 4
3

−3


∥∥∥∥∥∥∥ ≤

4

3
(1.2) = 1.6.

(d) To find the number of iterations, we use the formula (3.53) as

∥x− x(k)∥ ≤ ∥TJ∥k

1− ∥TJ∥
∥x(1) − x(0)∥ ≤ 10−4.

It gives
(2/3)k

1/3
(1.2) ≤ 10−4, or (2/3)k ≤ 10−4

3.6
.

Taking ln on both sides, we obtain

k ln(2/3) ≤ ln

(
10−4

3.6

)
, gives k ≥ 25.8789, or k = 26,
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which is the required number of iterations.

Gauss-Seidel Method:

(a) Since the Gauss-Seidel iteration matrix is defined as

TG = −(D + L)−1U,

and by using the given information, we have

TG = −



1

4
0 0

1

12

1

3
0

− 4

60
− 1

15

1

5




0 −1 1

0 0 1

0 0 0

 =



0
1

4
−1

4

0
1

12
− 5

12

0 − 4

60

8

60


.

Then the l∞ norm of the matrix TG is

∥TG∥∞ = max

{
2

4
,
6

12
,
12

60

}
=

1

2
< 1.

Thus the Gauss-Seidel method will converge for the given linear system.

(b) The Gauss-Seidel method for the given system is

x
(k+1)
1 =

1

4

[
12 + x

(k)
2 − x

(k)
3

]

x
(k+1)
2 =

1

3

[
1 + x

(k+1)
1 − x

(k)
3

]

x
(k+1)
3 =

1

5

[
− 12 − x

(k+1)
1 − x

(k+1)
2

]
Starting with initial approximation x

(0)
1 = 4, x

(0)
2 = 3, x

(0)
3 = −3, and for k = 0, 1, we obtain the

first and the second approximations as

x(1) = [4.5, 2.8333,−4.2667]T and x(2) = [4.775, 3.3472,−4.4244]T .

(c) Using the error bound formula (3.53), we obtain

∥x− x(2)∥ ≤ (1/2)2

1− 1/2

∥∥∥∥∥∥∥
 4.5

2.8333
−4.2667

−

 4
3

−3


∥∥∥∥∥∥∥ ≤

1

2
(1.2667) = 0.6334.

(d) To find the number of iterations, we use the formula (3.53) as

∥x− x(k)∥ ≤ ∥TJ∥k

1− ∥TJ∥
∥x(1) − x(0)∥ ≤ 10−4.



Chapter Three Systems of Linear Algebraic Equations 157

It gives

(1/2)k

1/2
(1.2667) ≤ 10−4, or (1/2)k ≤ 10−4

2.5334
.

Taking ln on both sides, we obtain

k ln(1/2) ≤ ln

(
10−4

2.5334

)
, gives k ≥ 14.6084 or k = 15,

which is the required number of iterations. •

Example 3.42 Consider the following system

4x1 + x2 = 7
x1 + 2x2 = 0

2x2 + 3x3 = 1

If x(0) = [0, 0, 0]T , then compute an error bound ∥x − x(10)∥ for the approximation using Gauss-
Seidel method.

Solution. Since we know that error bound formula for the gauss-Seidel method is

∥x− x(k)∥ ≤ ∥TG∥k

1− ∥TG∥
∥x(1) − x(0)∥,

and given k = 10, we have

∥x− x(10)∥ ≤ ∥TG∥10

1− ∥TG∥
∥x(1) − x(0)∥.

So we have to find ∥TG∥ and the first approximation x(1).
Since the Gauss-Seidel iteration matrix is defined as

TG = −(D + L)−1U,

and by using the given information, we have

TG = −

 4 1 0
1 2 0
0 2 3


−1 0 1 0

0 0 0
0 0 0

 .

To find the inverse of the matrix (D + L), we will use Gauss-Jordan method as follows:

[(D + L)|I] =


4 0 0

... 1 0 0

1 2 0
... 0 1 0

0 2 3
... 0 0 1

 ≡


1 0 0

... 1/4 0 0

0 2 0
... −1/4 1 0

0 2 3
... 0 0 1


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≡


1 0 0

... 1/4 0 0

0 1 0
... −1/8 1/2 0

0 0 3
... 1/4 −1 1

 ≡


1 0 0

... 1/4 0 0

0 1 0
... −1/8 1/2 0

0 0 1
... 1/12 −1/3 1/3

 .

Thus

TG = −



1

4
0 0

−1

8

1

2
0

1

12
−1

3

1

3




0 1 0

0 0 0

0 0 0

 =



0 −1

4
0

0
1

8
0

0 − 1

12
0


.

Then the l∞ norm of the matrix TG is

∥TG∥∞ = max

{
1

4
,
1

8
,
1

12

}
=

1

4
= 0.25 < 1.

Now to find the first approximation using Gauss-Seidel method, we will the following formula

x
(k+1)
1 =

1

4

[
7 − x

(k)
2

]

x
(k+1)
2 =

1

2

[
0 − x

(k+1)
1

]

x
(k+1)
3 =

1

3

[
1 − 2x

(k+1)
2

]
Starting with initial approximation x

(0)
1 = 0, x

(0)
2 = 0, x

(0)
3 = 0 and for k = 0, we obtain the first

approximation as

x(1) = [1.7500, 0.8750, 0.9167]T .

Thus

∥x− x(10)∥ ≤ (0.25)10

0.75
(1.75) = 2.2252× 10−6,

the required an error bound. •

Theorem 3.17 If A is a symmetric positive definite matrix with positive diagonal entries, then
the Gauss-Seidel method converges to unique solution of the linear system Ax = b. •

Example 3.43 Solve the following system of linear equations using Gauss-Seidel iterative methods,
using ϵ = 10−5 in the l∞-norm, taking the initial solution x(0) = [0, 0, 0, 0]T .

5x1 − x3 = 1
14x2 − x3 − x4 = 1

−x1 − x2 + 13x3 = 4
− x2 + 9x4 = 3



Chapter Three Systems of Linear Algebraic Equations 159

Table 3.7: Solution by Gauss-Seidel Method

k x
(k)
1 x

(k)
2 x

(k)
3 x

(k)
4

0 0.000000 0.000000 0.000000 0.000000
1 0.200000 0.071429 0.328571 0.341270
2 0.265714 0.119274 0.337307 0.346586
3 0.267461 0.120278 0.337518 0.346698
4 0.267504 0.120301 0.337524 0.346700
5 0.267505 0.120302 0.337524 0.346700

Solution. The matrix

A =


5 0 −1 0
0 14 −1 −1

−1 −1 13 0
0 −1 0 9

 ,

of the given system is symmetric positive definite with positive diagonal entries and Gauss-Seidel
formula for the system is

x
(k+1)
1 =

1

5

[
1 + x

(k)
3

]

x
(k+1)
2 =

1

14

[
1 + x

(k)
3 + x

(k)
4

]

x
(k+1)
3 =

1

13

[
4 + x

(k+1)
1 + x

(k+1)
2

]

x
(k+1)
4 =

1

9

[
3 + x

(k+1)
2

]
Using initial approximation x(0) = [0, 0, 0, 0]T , the first and subsequent iterations are listed in
Table 3.7.
Notice that Gauss-Seidel method converged very fast (only five iterations) and the approximate

solution of the given system [0.267505, 0.120302, 0.337524, 0.346700]T is equal to the exact solution
[0.267505, 0.120302, 0.337524, 0.346700]T upto six decimal places. •

3.7 Errors in Solving Linear Systems

Any computed solution of a linear system must, because of round-off and other errors, be considered
an approximate solution. Here we shall consider the most natural method for determining the
accuracy of a solution of the linear system. One obvious way of estimating the accuracy of the
computed solution x∗ is to compute Ax∗ and to see how close Ax∗ comes to b. Thus if x∗ is an
approximate solution of the given system Ax = b, we compute a vector

r = b−Ax∗, (3.54)
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which is called the residual vector and can be easily calculated. The quantity

∥r∥
∥b∥

=
∥b−Ax∗∥

∥b∥
,

is called the relative residual.

Program 3.12
MATLAB m-file for finding Residual Vector
function r=RES(A,b,x0)
[n,n]=size(A);
for i=1:n; R(i) = b(i); for j=1:n
R(i)=R(i)-A(i,j)*x0(j);end; RES(i)=R(i); end; r=RES’

The smallness of the residual then provides a measure of the goodness of the approximate solution
x∗. If every component of vector r vanishes, then x∗ is the exact solution. If x∗ is a good
approximation then we would expect each component of r to be small, at least in a relative sense.
For example, the following linear system

x1 + 2x2 = 3
1.0001x1 + 2x2 = 3.0001

has the exact solution x = [1, 1]T but has a poor approximate solution x∗ = [3, 0]T . To see how
good this solution is, we compute the residual, r = [0,−0.0002]T , and so ∥r∥∞ = 0.0002. Although
the norm of the residual vector is small, the approximate solution x∗ = [3, 0]T is obviously quite
poor; in fact ∥x− x∗∥∞ = 2.
To get above results using MATLAB command, we do the following:

>> A = [1 2; 1.0001 2]; b = [3 3.0001]; x0 = [3 0];
>> RESID(A, b, x0); x = [1 1]; Error = norm((x− x0), inf);

We can conclude from the residual that the approximate solution is correct to at most three decimal
places. Also, the following linear system

1.0000x1 + 0.9600x2 + 0.8400x3 + 0.6400x4 = 3.4400
0.9600x1 + 0.9214x2 + 0.4406x3 + 0.2222x4 = 2.5442
0.8400x1 + 0.4406x2 + 1.0000x3 + 0.3444x4 = 2.6250
0.6400x1 + 0.2222x2 + 0.3444x3 + 1.0000x4 = 2.2066

has exact solution x = [1, 1, 1, 1]T and having the approximate solution due to the Gaussian elimi-
nation without pivoting is

x∗ = [1.0000322, 0.99996948, 0.99998748, 1.0000113]T ,

and the residual is

r = [0.6× 10−7, 0.6× 10−7,−0.53× 10−5,−0.21× 10−4]T
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The approximate solution due to the Gaussian elimination with partial pivoting is

x∗ = [0.9999997, 0.99999997, 0.99999996, 1.0000000]T ,

and the residual is
r = [0.3× 10−7, 0.3× 10−7, 0.6× 10−7, 0.1× 10−8]T .

We found that all the elements of the residual for second case (with pivoting) are less than 0.6×10−7,
whereas for first case (without pivoting) they are as large as 0.2 × 10−4. Even without knowing
the exact solution, it is clear that the solution obtained in second case is much better than that of
first case. The residual provides a reasonable measure of the accuracy of a solution in those cases
where the error is primarily due to the accumulation of round-off errors.
Intuitively it would seem reasonable to assume that when ∥r∥ is small for a given vector norm, then
the error ∥x− x∗∥ would be small as well. In fact this is true for some systems. However, there are
systems of equations which do not satisfy this property. Such systems are said to be ill-conditioned.

3.7.1 Conditioning of Linear Systems

In solving the linear system numerically we have to see the problem conditioning, algorithm stability,
and cost. Above we discussed efficient elimination schemes to solve a linear system and these
schemes are stable when pivoting is employed. But there are some ill-conditioned systems which
are tough to solve by any method. These types of linear systems are identified in this chapter.
Here, we will present a parameter, the condition number, which quantitatively measures the con-
ditioning of a linear system. The condition number is greater and equal to one and as a linear
system becomes more ill-conditioned, the condition number increases. After factoring a matrix,
the condition number can be estimated in roughly the same time as it takes to solve a few factored
systems (LU)x = b. Hence, after factoring a matrix, the extra computer time needed to estimate
the condition number is usually insignificant. These are systems in which small changes in the
coefficients of the system lead to large changes in the solution. For example, consider a linear
system

x1 + x2 = 2
x1 + 1.01x2 = 2.01

The exact solution is easily verified to be x1 = x2 = 1. On the other hand, the system

x1 + x2 = 2
1.001x1 + x2 = 2.01

has the solution x1 = 10, x2 = −8. Thus change of 1 percent in the coefficients has changed the
solution by a factor of 10. If in the above given system, we substitute x1 = 10, x2 = 8, we find
that the residual are r1 = 0, r2 = 0.09, so that this solution looks a reasonable although it is
grossly in error. In practical problems we can expect the coefficients in the system to be subject
to small errors, either because of round-off or because of physical measurement. If the system is
ill-conditioned, the resulting solution may be grossly in error. Errors of this type, unlike those
caused by round-off error accumulation, can not be avoided by careful programming.
We have seen that for ill-conditioned systems the residual is not necessarily a good measure of the
accuracy of a solution. How then can we tell when a system is ill-conditioned ? In the following we
discuss the some possible indicators of ill-conditioned system.
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Definition 3.25 (Condition Number of a Matrix)

The number ∥A∥∥A−1∥ is called the condition number of a nonsingular matrix A and is denoted by
K(A), that is

cond(A) = K(A) = ∥A∥∥A−1∥. (3.55)

Note that the condition number K(A) for A depends on the matrix norm used and can, for some
matrices, vary considerably as the matrix norm is changed. Since

1 = ∥I∥ = ∥AA−1∥ ≤ ∥A∥∥A−1∥ = K(A),

therefore, the condition number is always in the range 1 ≤ K(A) ≤ ∞ regardless of any natural
norm. The lower limit is attained for identity matrices and K(A) = ∞ if A is singular. So the
matrix A is well-behaved (well-conditioned) if K(A) is close to 1 and is increasingly ill-conditioned
when K(A) is significantly greater than 1, that is, K(A) → ∞.
The condition numbers provide bounds for the sensitivity of the solution of a set of equations to
changes in the coefficient matrix. Unfortunately, the evaluation of any of the condition numbers of
a matrix A is not a trivial task since it is necessary first to obtain its inverse.
So if the condition number of a matrix is very large number then this is one of the indicator of the
ill-conditioned system. An other indicator of ill-conditioning is when the pivots during the process
of elimination suffer a loss of one or more significant figures. Small changes in the right-hand side
terms of the system lead to large changes in the solution, gives another indicator of ill-conditioned
systems. Also, when the elements of the inverse of the coefficient matrix are large compared to the
elements of the coefficients matrix, shows the ill-conditioned system. •

Example 3.44 Compute the condition number of the following matrix using the l∞-norm

A =

 2 −1 0
2 −4 −1

−1 0 2

 .

Solution. Since the condition number of a matrix is defined as

K(A) = ∥A∥∞∥A−1∥∞.

First we calculate the inverse of the given matrix which is

A−1 =



8

13
− 2

13
− 1

13

3

13
− 4

13
− 2

13

4

13
− 1

13

6

13


.

Now we calculate the l∞-norm of both the matrices A and A−1. Since the l∞-norm of a matrix is
the maximum of the absolute row sums, we have

∥A∥∞ = max{|2|+ | − 1|+ |0|, |2|+ | − 4|+ | − 1|, | − 1|+ |0|+ |2|} = 7,
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and

∥A−1∥∞ = max
{∣∣∣ 8

13

∣∣∣+ ∣∣∣−2

13

∣∣∣+ ∣∣∣−1

13

∣∣∣, ∣∣∣ 3
13

∣∣∣+ ∣∣∣−4

13

∣∣∣+ ∣∣∣−2

13

∣∣∣, ∣∣∣ 4
13

∣∣∣+ ∣∣∣−1

13

∣∣∣+ ∣∣∣ 6
13

∣∣∣},
which gives

∥A−1∥∞ =
11

13
.

Therefore,

K(A) = ∥A∥∞∥A−1∥∞ = (7)

(
11

13

)
≈ 5.9231.

Depending on the application, we might consider this number to be reasonably small and conclude
that the given matrix A is reasonably well-conditioned. •

To get above results using MATLAB commands, we do the following:

>> A = [2 − 1 0; 2 − 4 − 1;−1 0 2]; Ainv = inv(A)
>> K(A) = norm(A, inf) ∗ norm(Ainv, inf)

Example 3.45 If the condition number of following matrix A is 8.8671, then find the l∞-norm of
its inverse matrix, that is, ∥A−1∥∞

A =

 10.2 2.4 4.5
−2.3 7.7 11.1
−5.5 −3.2 0.9

 .

Solution. Since the condition number of a matrix is defined as

K(A) = ∥A∥∞∥A−1∥∞.

First we calculate the l∞-norm of the given matrix A which is the maximum of the absolute row
sums, we have

∥A∥∞ = max{17.1000, 21.1000, 9.6} = 21.1000,

and as it is given K(A) = 8.8671, so we have

8.8671 = (21.1000)∥A−1∥∞.

Simplifying this, we get ∥A−1∥∞ = 0.4202. •

Some matrices are notoriously ill-conditioned. For example, consider the 4× 4 Hilbert matrix

H =



1
1

2

1

3

1

4

1

2

1

3

1

4

1

5

1

3

1

4

1

5

1

6

1

4

1

5

1

6

1

7


,
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whose entries are defined by

hij =
1

(i+ j − 1)
, for i, j = 1, 2, . . . , n.

The inverse of the matrix H can be obtained as

H−1 =


16 −120 240 −140

−120 1200 −2700 1680
240 −2700 6480 −4200

−140 1680 −4200 2800

 .

Then the condition number of the Hilbert matrix is

K(H) = ∥H∥∞∥H−1∥∞ = (2.0833)(13620) ≈ 28375,

which is quite large. Note that the condition number of Hilbert matrices increase rapidly as the
size of the matrices increases. Therefore, large Hilbert matrices are considered to be extremely
ill-conditioned.

We might think that if the determinant of a matrix is close to zero, then the matrix is ill-conditioned.
However, this is false. Consider the following matrix

A =

(
10−7 0
0 10−7

)
,

for which detA = 10−14 ≈ 0. One can easily find the condition number of the given matrix as

K(A) = ∥A∥∞∥A−1∥∞ = (10−7)(107) = 1.

The matrix A is therefore perfectly conditioned. Thus a small determinant is necessary but not
sufficient for a matrix to be ill-conditioned.

The condition number of a matrix K(A) using l2-norm can be computed by the built-in function
cond command in the MATLAB as follows:

>> A = [1 − 1 2; 3 1 − 1; 2 0 1]; K(A) = cond(A)

Theorem 3.18 (Error in Linear Systems)

Suppose that x∗ is an approximation to the solution x of the linear system Ax = b and A is a
nonsingular matrix and r is the residual vector for x∗. Then for any natural norm, the error is

∥x− x∗∥ ≤ ∥r∥∥A−1∥, (3.56)

and the relative error is

∥x− x∗∥
∥x∥

≤ K(A)
∥r∥
∥b∥

, provided that x ̸= 0, b ̸= 0. (3.57)
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Proof. Since r = b−Ax∗ and A is nonsingular, then

Ax−Ax∗ = b− (b− r) = r,

which implies that

A(x− x∗) = r, or x− x∗ = A−1r. (3.58)

Taking norm on both side, gives

∥x− x∗∥ = ∥A−1r∥ ≤ ∥A−1∥∥r∥.

Moreover, since b = Ax, then

∥b∥ ≤ ∥A∥∥x∥, or, ∥x∥ ≥ ∥b∥
∥A∥

.

Hence
∥x− x∗∥

∥x∥
≤ ∥A−1∥∥r∥

∥b∥/∥A∥
≤ K(A)

∥r∥
∥b∥

.

The inequalities (3.56) and (3.57) imply that the quantities ∥A−1∥ and K(A) can be used to give
an indication of the connection between the residual vector and the accuracy of the approximation.
If the quantity K(A) ≈ 1, the relative error will be fairly close to the relative residual. But if
K(A) >> 1, then the relative error could be many times larger than the relative residual. •

Example 3.46 Find the condition number of the following matrix (for n = 2, 3, . . .)

An =

[
1 1
1 1− 1/n

]
.

If n = 2 and x∗ = [−1.99, 2.99]T be the approximate solution of the linear system Ax = [1,−0.5]T ,
then find the relative error.

Solution. We can easily find the inverse of the given matrix as

A−1
n =

1

(1− 1/n)− 1

[
1− 1/n −1

−1 1

]
= −n

[
1− 1/n −1

−1 1

]
=

[
1− n n

n −n

]
.

Then the l∞-norm of both matrices An and A−1
n are

∥An∥∞ = 2 and ∥A−1
n ∥∞ = 2n,

and so the condition number of the matrix can be computed as follows:

K(A) = ∥An∥∞∥|A−1
n ∥∞ = (2)(2n) = 4n and lim

n→∞
K(A) = ∞,

which shows that the matrix An is obviously ill-conditioned. Here we expect that the relative error
in the calculated solution to a linear system of the form Anx = b could be as much as 4n times the
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relative residual.
The residual vector (by taking n = 2) can be calculated as

r = b−A2x
∗ =

(
1

−0.5

)
−
(

1 1
1 0.5

)(
−1.99
2.99

)
=

(
0.000

−0.005

)
,

and it gives ∥r∥∞ = 0.005. Now using (3.57), we obtain

∥x− x∗∥
∥x∥

≤ K(A)
∥r∥
∥b∥

= (8)
0.005

1
= 0.0400,

which is the required relative error. •

Example 3.47 Consider a following linear system

x1 + x2 − x3 = 1
x1 + 2x2 − 2x3 = 0

−2x1 + x2 + x3 = −1

(a) Discuss the ill-conditioning of the given linear system.
(b) If x∗ = [2.01, 1.01, 1.98]T be an approximate solution of the given system, then find the residual

vector r and its norm ∥r∥∞.
(c) Estimate the relative error using (3.57).
(d) Use the simple Gaussian elimination method to find approximate error using (3.58).

Solution. (a) Given the matrix

A =

 1 1 −1
1 2 −2

−2 1 1

 ,

and whose inverse can be computed as

A−1 =

 2 −1 0
1.5 −0.5 0.5
2.5 −1.5 0.5

 .

Then the l∞-norm of both matrices are

∥A∥∞ = 5 and ∥A−1∥∞ = 4.5.

Using the values of both matrices norms, we can find the value of the condition number of A as
follows:

K(A) = ∥A∥∞∥|A−1∥∞ = (5)(4.5) = 22.5 >> 1,

which shows that the matrix is ill-conditioned. Thus the given system is ill-conditioned.

>> A = [1 1 − 1; 1 2 − 2;−2 1 1]; K(A) = norm(A, inf) ∗ norm(inv(A), inf)
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(b) The residual vector can be calculated as

r = b−Ax∗ =

 1
0
−1

−

 1 1 −1
1 2 −2

−2 1 1


 2.01

1.01
1.98

 =

 −0.04
−0.07
0.03

 ,

and it gives

∥r∥∞ = 0.07.

>> A = [1 1 − 1; 1 2 − 2;−2 1 1]; b = [1 0 − 1]′;
>> x0 = [2.01 1.01 1.98]′; r = RES(A, b, x0); rnorm = norm(r, inf);

(c) From (3.57), we have
∥x− x∗∥

∥x∥
≤ K(A)

∥r∥
∥b∥

.

By using above parts (a) and (b) and the value ∥b∥∞ = 1, we obtain

∥x− x∗∥
∥x∥

≤ (22.5)
(0.07)

1
= 1.575.

>> RelErr = (K(A) ∗ rnorm)/norm(b, inf);

(d) To solve the linear system Ae = r, where

A =

 1 1 −1
1 2 −2

−2 1 1

 and r =

 −0.04
−0.07
0.03

 ,

and e = x− x∗. Writing the above system in the augmented matrix form
1 1 −1

... −0.04

1 2 −2
... −0.07

−2 1 1
... 0.03

 .

After applying forward elimination step of the simple Gauss elimination method, we obtain
1 1 −1

... −0.04

0 1 −1
... −0.03

0 0 2
... 0.04

 .

Now by using the backward substitution, we obtain the solution

e∗ = [−0.01,−0.01, 0.02]T ,

which is the required approximation of the exact error. •
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>> A = [1 1 − 1 − 0.04; 1 2 − 2 − 0.07;−2 1 1 0.03]; WP (A);

Example 3.48 Consider a linear system Ax = b, where

A =

 2 1 2
1 4 0
1 2 1

 and b =

 1
1
2

 .

(a) Discuss the conditioning of the given linear system.
(b) Suppose that b is changed to b∗ = [1, 1, 1.99]T . How large a relative change can this change

produce in the solution to Ax = b?

Solution. (a) Since the given matrix is

A =

 2 1 2
1 4 0
1 2 1

 ,

and its inverse can be computed as

A−1 =

 4/3 1 −8/3
−1/3 0 2/3
−2/3 −1 7/3

 .

Then the l∞-norm of both matrices are

∥A∥∞ = 5 and ∥A−1∥∞ = 5.

Using the values of both matrices norms, we can find the value of the condition number of A as
follows:

K(A) = ∥A∥∞∥|A−1∥∞ = (5)(5) = 25.

(b) Since the change from b to b∗ is an error δb, that is, b∗ = b+ δb, so

δb =

 −0.01
0
0

 = −r,

and the l∞-norm of this column matrix is, ∥δb∥∞ = 0.01. From the equation (3.57), we get

∥δx∥
∥x∥

≤ 25(0.01)

2
= 0.1250,

the possible relative change in the solution to the given linear system. •
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3.8 Exercises

1. Determine the matrix C given by the following expression

C = 2A− 3B,

if the matrices A and B are

A =

 2 −1 1
−1 2 3
2 1 2

 , B =

 1 1 1
0 1 3
2 1 4

 .

2. Find the product AB and BA for the matrices of the Problem 1.

3. Show that the product AB of the following rectangular matrices is a singular matrix.

A =

 6 −3
1 4
−2 1

 , B =

(
2 −1 −2
3 −4 −1

)
.

4. Let

A =

 1 2 3
0 −1 2
2 0 2

 , B =

 1 1 2
−1 1 −1
1 0 2

 , C =

 1 0 1
0 1 2
2 0 1

 .

(a) Compute AB and BA and show that AB ̸= BA.
(b) Find (A+B) + C and A+ (B + C).
(c) Show that (AB)T = BTAT .

5. Find a value of x and y such that ABT = CT , where

A =

 1 2 3
4 2 0
2 1 3

 , B = [1 x 1], C = [−2 − 2 y].

6. Find the values of a and b such that each of the following matrix is symmetric:

(a) A =

 1 3 5
a+ 2 5 6
b+ 1 6 7

 , (b) B =

 −2 a+ b 2
3 4 2a+ b
2 5 −3

 ,

(c) C =

 1 4 a− b
4 2 a+ 3b
7 3 4

 , (d) D =

 1 a− 4b 2
2 8 6
7 a− 7b 8

 .

7. Which of the following matrices are skew-symmetric ?
(a)

A =

(
1 −5
5 0

)
, B =

(
0 −4
4 0

)
,
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(b)

C =

(
1 9

−9 7

)
, D =

(
1 6

−6 2

)
,

(c)

E =

 0 2 −2
−2 0 4
2 −4 0

 , F =

 3 −3 −3
3 3 −3
3 3 3

 .

8. Compute the determinant of each of the following matrix using cofactor expansion along any
row or column:

A =

 cosx sinx 1
0 3 cosx −3 sinx
0 2 sinx 2 cosx

 , B =

 x y z
0 x2 y
0 y2 x

 , C =

 2x 0 z
0 2y −z
z −z 2z

 .

9. Compute the determinant of each of the following matrix using cofactor expansion along any
row or column:

A =

 3 7 6
0 3 5
7 4 3

 , B =

 11 −6 4
−16 8 6

5 7 12

 , C =

 4 −8 11
10 1 4
7 10 8

 .

10. Find all zeros (values of x such that f(x) = 0) of polynomial f(x) = det(A) where

A =

 x− 1 3 2
3 x 1
2 1 x− 2

 .

11. Let

A =

(
1 1
0 1

)
, B =

(
1 0
1 1

)
,

then show that (AB)−1 = B−1A−1.

12. Find all zeros (values of x such that f(x) = 0) of polynomial f(x) = det(A) where

A =

 x 0 1
2 1 3
0 x 2

 .

13. Compute the adjoint of each matrix A, and find the inverse of it, if it exists:

(a) A =

(
1 2
−3 4

)
, (b) A =

 1 2 −1
2 1 4
1 5 −8

 , (c) A =

 1 1 0
1 0 1
0 1 1

 .
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14. Find all zeros (values of x such that f(x) = 0) of polynomial f(x) = det(A) where

A =


x −8 5 2

−3 x 2 1
3 4 x 1
3 6 −5 17

 .

15. Show that A(Adj A) = (Adj A)A = det(A)I3, if

A =

 2 1 3
−1 2 0
3 −2 1

 .

16. Find the inverse and determinant of the adjoint matrix of each following matrix:

A =

 4 1 5
5 6 3
5 4 4

 , B =

 3 4 −2
2 5 4
7 −3 4

 , C =

 1 2 4
1 4 0
3 1 1

 .

17. Find the inverse and determinant of the adjoint matrix of each following matrix:

A =

 3 2 5
2 5 4
5 4 6

 , B =

 5 3 −2
3 5 6

−2 6 5

 , C =

 1 2 3
4 5 6
7 8 8

 .

18. Find inverse of each of the following matrix using determinant:

A =

 0 1 5
3 1 2
2 3 4

 , B =

 2 4 −2
−4 7 5
5 −4 4

 , C =


0 4 2 −4
6 1 4 −3
4 3 1 3
8 4 −3 2

 .

19. Use matrices in Problem 15, solve the following systems using matrix inversion method:

(a) Ax = [1, 1,−3]T , (b) Bx = [2, 1, 3]T , (c) Cx = [1, 0, 1]T .

20. Solve the following systems using the matrix inversion method:
(a)

x1 + 3x2 − x3 = 4
5x1 − 2x2 − x3 = −2
2x1 + 2x2 + x3 = 9

(b)
x1 + x2 + 3x3 = 2
5x1 + 3x2 + x3 = 3
2x1 + 3x2 + x3 = −1

(c)
4x1 + x2 − 3x3 = −1
3x1 + 2x2 − 6x3 = −2
x1 − 5x2 + 3x3 = −3
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21. Solve the following systems using the matrix inversion method:
(a)

3x1 − 2x2 − 4x3 = 7
5x1 − 2x2 − 3x3 = 8
7x1 + 4x2 + 2x3 = 9

(b)
−3x1 + 4x2 + 3x3 = 11
5x1 + 3x2 + x3 = 12
x1 + x2 + 5x3 = 10

(c)
x1 + 42 − 8x3 = 7
2x1 + 7x2 − 5x3 = −5
3x1 − 6x2 + 6x3 = 4

22. Use the simple Gaussian elimination method to show that the following system does not have
a solution

3x1 + x2 = 1.5
2x1 − x2 − x3 = 2
4x1 + 3x2 + x3 = 0

23. Solve the Problem 21 using the simple Gaussian elimination method.

24. Solve the following systems using the simple Gaussian elimination method:
(a)

x1 − x2 = −2
−x1 + 2x2 − x3 = 5
4x1 − x2 + 4x3 = 1

(b)
3x1 + x2 − x3 = 5
5x1 − 3x2 + 2x3 = 7
2x1 − x2 + x3 = 3

(c)
3x1 + x2 + x3 = 2
2x1 + 2x2 + 4x3 = 3
4x1 + 9x2 + 16x3 = 1

25. Solve the following systems using the simple Gaussian elimination method
(a)

2x1 + 5x2 − 4x3 = 3
2x1 + 2x2 − x3 = 1
3x1 + 2x2 − 3x3 = −5

(b)
2x2 − x3 = 1

3x1 − x2 + 2x3 = 4
x1 + 3x2 − 5x3 = 1
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(c)
x1 + 2x2 = 3

−x1 − 2x3 = −5
−3x1 − 5x2 + x3 = −4

26. For what values of a and b the following linear system has no solution or infinitely many
solutions.
(a)

2x1 + x2 + x3 = 2
−2x1 + x2 + 3x3 = a
2x1 − x3 = b

(b)
2x1 + 3x2 − x3 = 1
x1 − x2 + 3x3 = a
3x1 + 7x2 − 5x3 = b

(c)
2x1 − x2 + 3x3 = 3
3x1 + x2 − 5x3 = a

−5x1 − 5x2 + 21x3 = b

27. Find the value(s) of α so that each of the following linear system has a non-trivial solution:
(a)

2x1 + 2x2 + 3x3 = 1
3x1 + αx2 + 5x3 = 3
x1 + 7x2 + 3x3 = 2

(b)
x1 + 2x2 + x3 = 2
x1 + 3x2 + 6x3 = 5
2x1 + 3x2 + αx3 = 6

(c)
αx1 + x2 + x3 = 7
x1 + x2 − x3 = 2
x1 + x2 + αx3 = 1

28. Find the inverse of each of the following matrix by using simple Gauss elimination method:

A =

 3 3 3
0 2 2
2 4 5

 , B =

 5 3 2
3 2 2
2 6 5

 , C =

 1 2 3
2 5 2
3 4 3

 .

29. Find the inverse of each of the following matrix by using simple Gauss elimination method:

A =

 3 2 3
4 2 2
2 4 3

 , B =

 1 −3 2
3 2 6
2 −6 5

 , C =

 5 2 3
2 5 5
3 2 4

 .
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30. Determine the rank of each of the following matrix:

A =

 3 1 −1
2 0 4
1 −5 1

 , B =

 4 1 6
−3 6 4
5 0 9

 , C =

 17 46 7
20 49 8
23 52 9

 .

31. Solve Problem 25 using the Gaussian elimination with partial pivoting.

32. Let A be an m× n matrix and B be an n× p matrix. Show that the rank of AB is less than
or equal to the rank of A.

33. Solve the following linear systems using the Gaussian elimination with partial and without
pivoting
(a)

1.001x1 + 1.5x2 = 0
2x1 + 3x2 = 1

(b)
x1 + 1.001x2 = 2.001
x1 + x2 = 2

(c)
6.122x1 + 1500.5x2 = 1506.622
2000x1 + 3x2 = 2003

34. The elements of the matrix A, the Hilbert matrix, are defined by

aij = 1/(i+ j − 1), for i, j = 1, 2, . . . , n

Find the solution of the system Ax = b for n = 4 and b = [1, 2, 3, 4]T , using the Gaussian
elimination by partial pivoting.

35. Find the LU decomposition of each matrix A using Doolittle’s method, and then solve the
systems.
(a)

A =


3 −2 1 1

−3 7 4 −3
2 −5 3 4
7 −3 2 4

 , b =


3
2
1
2

 .

(b)

A =


2 −4 5 3
3 5 −4 3
1 6 2 6
7 2 5 1

 , b =


6
5
2
4

 .

(c)

A =


2 2 3 −2
10 2 13 11
2 5 4 6
1 −4 −2 7

 , b =


10
14
11
9

 .
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36. For what value(s) of α each of the following matrix A is singular using Doolittle’s method.

(a) A =

 1 −1 2
−1 3 −1
α −2 3

 , (b) A =

 1 5 7
4 4 α

−2 α 9

 , (c) A =

 2 −4 α
2 4 3
4 −2 5

 ,

(d) A =

 2 α 1− α
2 5 −2
2 5 4

 , (e) A =

 1 −1 3
3 2 3
4 α− 2 7

 , (f) A =

 1 5 α
1 4 α− 2
1 −2 8

 .

37. Find the determinant of each of the following matrix using the LU decomposition by Doolit-
tle’s method:

(a) A =

 2 3 −1
1 2 1
2 1 −6

 , (b) A =

 1 −2 2
2 1 1
1 0 1

 ,

(c) A =

 2 4 1
3 3 2
4 1 4

 .

38. Use the smallest positive integer to find the unique solution each of the linear system of the
problem 38 using LU decomposition by Doolittle’s method.
(a) Ax = [2, 3, 2]T (b) Ax = [5,−6, 2]T (c) Ax = [11, 13, 10]T .
(d) Ax = [−8, 11, 8]T (e) Ax = [32, 23, 12]T (f) Ax = [−11, 43, 22]T .

39. Find the determinant of each of the following matrix using the LU decomposition by Crout’s
method:

(a) A =

 2 2 −1
1 2 1
2 1 −4

 , (b) A =

 2 −1 1
1 2 2
2 0 2

 ,

(c) A =

 4 4 1
5 4 2
1 4 4

 , (d) A =

 2 4 5
3 5 3
4 3 2

 .

40. Find ∥x∥1, ∥x∥2 and ∥x∥∞ for the following vectors.
(a) [2,−1,−6, 3]T (b) [sin k, cos k, 3k]T , for a fixed integer k.

41. Find ∥.∥1, ∥.∥∞ and ∥.∥e for the following matrices.

A =

 3 1 −1
2 0 4
1 −5 1

 , B =

 4 1 6
−3 6 4
5 0 9

 ,

C =

 17 46 7
20 49 8
23 52 9

 , D =


3 11 −5 2
6 8 −11 6

−4 −8 10 14
13 14 −12 9

 .
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42. Consider the following matrices

A =

 −11 7 −8
5 9 6
6 3 7

 , B =

 6 2 7
−12 10 8

3 −15 14

 ,

C =

 5 −6 4
−7 8 5
3 −9 12

 , D =


2 1 −1 1
1 3 5 2

−2 −3 4 5
3 4 −2 4

 .

Find ∥.∥1 and ∥.∥∞ for (a) A3, (b) A2 +B2 + C2 +D2, (c) BC and (d) C2 +D2.

43. Compute the condition numbers of the following matrices relative to ∥.∥∞

(a)



1

3

1

2

1

5

1

2

1

5

1

3

1

5

1

3

1

2


, (b)

 0.03 0.01 −0.02
0.15 0.51 −0.11
1.11 2.22 3.33

 , (c)

 1.11 1.98 2.01
1.01 1.05 2.05
0.85 0.45 1.25

 .

44. The n× n Hilbert matrix H(n) defined by

H
(n)
ij =

1

i+ j − 1
, 1 ≤ i, j ≤ n.

Find the l∞-norm of the 10× 10 Hilbert matrix.

45. The following linear systems have x as the exact solution and x∗ is an approximate solution.

Compute ∥x− x∗∥∞ and K(A)
∥r||∞
∥b∥∞

, where r = b−Ax∗ is the residual vector.

(a)
0.89x1 + 0.53x2 = 0.36
0.47x1 + 0.28x2 = 0.19

x = [1,−1]T

x∗ = [0.702,−0.500]T

(b)
0.986x1 + 0.579x2 = 0.235
0.409x1 + 0.237x2 = 0.107

x = [2,−3]T

x∗ = [2.110,−3.170]T

(c)
1.003x1 + 58.090x2 = 68.12
5.550x1 + 321.8x2 = 377.3

x = [10, 1]T

x∗ = [−10, 1]T
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46. Discuss the ill-conditioning (stability) of the linear system

1.01x1 + 0.99x2 = 2
0.99x1 + 1.01x2 = 2

If x∗ = [2, 0]t be an approximate solution of the system, then find the residual vector r and
estimate the relative error.

47. The exact solution of the following linear system

x1 + x2 = 1
x1 + 1.01x2 = 2

is x = [−99, 100]T . Change the coefficient matrix slightly to

δA =

(
1 1
1 0.99

)
,

and consider the linear system

x1 + x2 = 1
x1 + 0.99x2 = 2

Compute the change solution δx of the system. Is the matrix A ill-conditioned?

48. The exact solution of the following linear system

x1 + 3x2 = 4
1.0001x1 + 3x2 = 4.0001

is x = [1, 1]T . Change the right-hand vector b slightly to δb = [4.0001, 4.0003]T and consider
the linear system

x1 + 3x2 = 4.0001
1.0001x1 + 3x2 = 4.0003

Compute the change solution δx of the system. Is the matrix A ill-conditioned?

49. The exact solution of the following linear system

x1 + x2 = 3
x1 + 1.0005x2 = 3.0010

is x = [1, 2]T . Change the coefficient matrix and the right-hand vector b slightly to

δA =

(
1 1
1 1.001

)
and δb =

(
2.99
3.01

)
,

and consider the linear system

x1 + x2 = 2.99
x1 + 1.001x2 = 3.01

Compute the change solution δx of the system. Is the matrix A ill-conditioned?
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50. Find the condition number of the following matrix

An =

 1 1

1 1− 1

n

 .

Solve the linear system A4x = [2, 2]T and compute the relative residual.

51. Find the Jacobi iteration matrix and its l∞-norm for each of the following matrix.

(a)

 11 −3 2
4 10 3

−2 5 9

 , (b)

 7 1 1
3 13 2

−4 3 14

 ,

(c)


8 1 −1 0
2 13 −2 1

−1 3 15 2
1 4 5 20

 , (d)


7 1 −3 1
1 10 2 −3
1 −5 25 4
1 2 3 17

 .

52. Find the Gauss-Seidel iteration matrix and its l∞-norm for each of the following matrix.

(a)

 3 0 1
1 4 0
0 2 5

 , (b)

 5 2 1
4 9 2
3 1 6

 .

53. Solve the following linear systems using the Jacobi method, start with initial approximation
x(0) = 0 and iterate until ∥x(k+1) − x(k)∥∞ ≤ 10−5 for each system.
(a)

4x1 − x2 + x3 = 7
4x1 − 8x2 + x3 = −21

−2x1 + x2 + 5x3 = 15

(b)
3x1 + x2 + x3 = 5
2x1 + 6x2 + x3 = 9
x1 + x2 + 4x3 = 6

(c)
4x1 + 2x2 + x3 = 1
x1 + 7x2 + x3 = 4
x1 + x2 + 20x3 = 7

54. Consider the linear system Ax = b, where

A =

 −5 1 0
1 5 −1
0 1 2

 and b =

 4
−2
−5

 .

Find the Jacobi iteration matrix TJ and show that ∥TJ∥ < 1. Use Jacobi method to find
first approximate solution x(1) of the linear system by using x(0) = [0, 0, 0]T . Also, compute
the error bound ∥x−x(10)∥. Compute the number of steps needed to get the accuracy within
10−5.
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55. Consider the following system of equations

4x1 + 2x2 + x3 = 1
x1 + 7x2 + x3 = 4
x1 + x2 + 20x3 = 7

(a) Show that the Jacobi method converges by using ∥TJ∥∞ < 1.

(b) If the first approximate solution of the system by Jacobi method is x(1) = [0.25, 0.57, 0.35]T ,
starting with x(0) = [0, 0, 0]T , then compute an error estimate ∥x− x(20)∥∞.

56. If

A =

 4 1 0
1 3 −1
0 −1 4

 and b =

 3
4
5

 .

Find the Jacobi iteration matrix TJ . If the first approximate solution of the given linear
system by the Jacobi method is [3/4, 4/3, 5/4]T , using x(0) = [0, 0, 0]T , then estimate the
number of iterations necessary to obtain approximations accurate to within 10−6.

57. Rearrange the following system such that convergence of Gauss-seidel method is guaranteed.
Then use x(0) = [0, 0, 0]T to find first approximation by Gauss-Seidel method. Also, compute
an error bound ∥x− x(10)∥.

A =

 1 2 4
5 −1 1
0 3 −1

 textrmand b =

 2
1

−1

 .

58. Consider the following system of equations

4x1 + 2x2 + x3 = 11
−x1 + 2x2 = 3
2x1 + x2 + 4x3 = 16

(a) Show that the Gauss-Seidel method converges by using ∥TG∥∞ < 1.

(b) Compute the second approximation x(2), starting with x(0) = [1, 1, 1]T .

(c) Compute an error estimate ∥x− x(2)∥∞ for your approximation.

59. Consider the linear system Ax = b, where

A =

 −5 2 1
1 −10 1
1 1 −4

 , b =

 −3
27
4

 .

Find the Gauss-Seidel iteration matrix TG and show that ∥TG∥ < 1. Use Gauss-Seidel method
to find second approximate solution x(2) of the linear system using x(0) = [−0.5,−2.5,−1.5]T .
Also, compute the error bound.
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60. Consider linear system Ax = b, where the coefficient matrix is

A =

 6 −1 1
1 5 −1
1 2 9

 .

Show that Gauss-Seidel method converges faster than Jacobi method. If the first approximate
solution of the given linear system by the Gauss-Seidel method is [0.5, 0.5, 0.5]T , using x(0) =
[0, 0, 0]T , then estimate the number of iterations necessary to obtain approximations accurate
to within 10−5.

61. Consider the following system

4x1 + x2 − 2x3 = 4
2x1 + 9x2 − 3x3 = 3
x1 − 2x2 + 8x3 = 2

(a) Find the matrix form of both iterative (Jacobi and Gauss-Seidel) methods.

(b) If x(k) = [x
(k)
1 , x

(k)
2 , x

(k)
3 ]T , then writing the iterative forms of part(a) in the component forms

and find the exact solution of the given system.

(c) Find formulas for the error e(k+1) in the (n+ 1)th step .

(d) Find the second approximation of the error e(2) using the part (c) if x(0) = [0, 0, 0]T .

62. Consider the following linear system Ax = b, where

A =

 5 −1 3
4 7 −2
6 −3 9

 and b =

 1
2
3

 .

Show that Gauss-Seidel method converges for the given linear system. If the first approximate
solution of the given linear system by the Gauss-Seidel method is x(1) = [0.2, 0.17, 0.26]T , by
using initial approximation x(0) = [0, 0, 0]T , then compute an upper bound ∥x−x(2)∥∞. Also,
compute number of steps needed to get accuracy within 10−4.

63. Consider the following system

16x1 − 3x2 + 2x3 = 11
x1 + 15x2 − 3x3 = 12
5x1 − 3x2 + 14x3 = 13

(a) Find the matrix form of both iterative (Jacobi and Gauss-Seidel) methods.

(b) If x(k) = [x
(k)
1 , x

(k)
2 , x

(k)
3 ]T , then writing the iterative forms of part(a) in the component forms

and find the exact solution of the given system.

(c) Find formulas for the error e(k+1) in the (n+ 1)th step .

(d) Find the second approximation of the error e(2) using the part (c) if x(0) = [0, 0, 0]T .



Chapter 4

Polynomial Interpolation and
Approximation

4.1 Introduction

In this chapter we describe the numerical methods for the approximation of functions other than
the elementary functions. The main purpose of these techniques is to replace a complicated function
by one which is simpler and more manageable. We sometimes know the value of a function f(x)
at a set of points (say, x0 < x1 < x2 · · · < xn) but we do not have an analytic expression for f(x)
that let us calculate its value at an arbitrary point. We concentrate on techniques which may be
adapted if, for example, we have a table of values of function may have been obtained from some
physical measurement or some experiments or long numerical calculation that can not be cast into
a simple functional form. The task now is to estimate f(x) for an arbitrary point x by, in some
sense, drawing a smooth curve through (and perhaps beyond) the data points xi. If the desired x is
in between the largest and smallest of the data point, then the problem is called interpolation; and
if x is outside that range, it is called extrapolation. In this chapter we shall restrict our attention
to interpolation. It is a rational process generally used in estimating a missing functional value by
taking a weighted average of known functional values at neighbouring data points.

Interpolation scheme must model the function, in between or beyond the known data point, by some
plausible functional form. The form should be sufficiently general so as to be able to approximate
large classes of functions which might arise in practice. The functional form are polynomials,
trigonometric functions, rational functions and exponential functions. However, we shall restrict
our attention to polynomials. The polynomial functions are widely used in practice, since they are
easy to determine, evaluate, differentiate, and integrable. Polynomial interpolation provides some
mathematical tools that can be used in developing methods for approximation theory, numerical
differentiation, numerical integration, and numerical solutions of ordinary differential equations
and partial differential equations. A set of data points we consider here may be equally spaced or
unequally spaced in the independent variable x. Several procedures can be used to fit approximation
polynomials for both cases. For example, Lagrange interpolatory polynomial and Newton divided-
difference interpolatory polynomial. These methods are quite easy to apply. The general form of a
nth-degree polynomial is

f(x) = pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, (4.1)
181
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where n denotes the degree of the polynomial; and a0, a1, . . . , an are constants coefficients. Since
there are (n + 1) coefficients, so (n + 1) data points are required to obtain unique value for the
coefficients. The important property of polynomials that makes them suitable for approximating
functions is due to the following theorem called, the Weierstrass approximation theorem.

Important Points of the Chapter 4

I. In this chapter we look for the approximate solution of a function at the given arbitrary point.
II. We shall use polynomial interpolation (approximation of a function at a point x ∈ [a, b]).
III. Higher the degree of interpolating polynomial better the approximate solution.
IV. We shall use interpolating polynomial at equally and unequally spaced data points.
V. Lagrange and Newton’s polynomials may be used to find approximation of a function.
VI. Newton’s polynomial needs a table of divided differences of a function.
VII. Piecewise linear interpolation can be used to obtain approximate solution of a function.

Theorem 4.1 (Weierstrass Approximation Theorem)

If f(x) is a continuous function in the closed interval [a, b] then for every ϵ > 0 there exists a
polynomial pn(x), where the value of n depends on the value of ϵ, such that for all x in [a, b],

|f(x)− pn(x)| < ϵ. (4.2)

Consequently, any continuous function can be approximated to any accuracy by a polynomial of
high enough degree. •

4.2 Polynomial Interpolation

Suppose we have given a set of (n + 1) data points relating a dependent variables f(x) to an
independent variable x as follows

x x0 x1 · · · xn
f(x) f(x0) f(x1) · · · f(xn)

Generally the data points x0, x1, . . . , xn are arbitrary and assume the interval between two adjacent
points is not the same (unequally spaced) and assume that the data points are organized in such a
way that x0 < x1 < x2 < · · · < xn−1 < xn. But some times this is not happen.
When the data points in a given functional relationship are not equally spaced, the interpolation
problem becomes more difficult to solve. The basis for this assertion lies in the fact that the
interpolating polynomial coefficient will depend on the functional values as well as on the data
points given in the table.

4.2.1 Lagrange Interpolating Polynomials

It is one of the popular and well known interpolation method to approximate the functions at an
arbitrary point x. The Lagrange interpolation method provides a direct approach for determining
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Figure 4.1: Linear Lagrange interpolation.

interpolated values regardless of the data points spacing, that is, it can be fitted to unequally
spaced or equally spaced data. To discuss about the Lagrange interpolation method, we start with
a simplest form of interpolation, that is, linear interpolation. The interpolated value is obtained
from the equation of straight line that passes through two tabulated values, one each side of
required value. This straight line is a first-degree polynomial. The problem of determining a
polynomial of degree one that passes through the distinct points (x0, y0) and (x1, y1) is the same
as approximating the function f(x) for which f(x0) = y0 and f(x1) = y1 by means of first degree
polynomial interpolation.

Linear Lagrange Interpolating Polynomial

Let us consider the construction of a linear polynomial p1(x) passing through two data points
(x0, f(x0)) and (x1, f(x1)), see Figure 4.1. Consider a linear polynomial of the form

f(x) = p1(x) = a0 + a1x. (4.3)

Since a polynomial of degree one has two coefficients, so one might expect to be able to choose two
conditions, which satisfy

p1(xk) = f(xk); k = 0, 1.

When p1(x) passes through point (x0, f(x0)), we have

p1(x0) = a0 + a1x0 = y0 = f(x0),

and if it passes through point (x1, f(x1)), we have

p1(x1) = a0 + a1x1 = y1 = f(x1).

Solving last two equations, gives a unique solution

a0 =
x0y1 − x1y0
x0 − x1

and a1 =
y1 − y0
x1 − x0

. (4.4)
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Putting these values in (4.3), we have

f(x) = p1(x) =

(
x− x1
x0 − x1

)
y0 +

(
x− x0
x1 − x0

)
y1,

Which can also be written as

f(x) = p1(x) = L0(x)f(x0) + L1(x)f(x1), (4.5)

where

L0(x) =
x− x1
x0 − x1

and L1(x) =
x− x0
x1 − x0

. (4.6)

Note that when x = x0, then L0(x0) = 1 and L1(x0) = 0. Similarly, when x = x1, then L0(x1) = 0
and L1(x1) = 1. The polynomial (4.5) is known as linear Lagrange interpolating polynomial and
(4.6) is called the Lagrange coefficient polynomials.

Quadratic Lagrange Interpolating Polynomial

When p2(x) passes through three points (x0, f(x0)), (x1, f(x1)) and (x2, f(x2)), we have quadratic
Lagrange polynomial as follows

f(x) = p2(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2), (4.7)

where the Lagrange coefficients are define as follows:

L0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
,

L1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
,

L2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.

(4.8)

Cubic Lagrange Interpolating Polynomial

Similarly, when p3(x) passes through 4 points (x0, f(x0)), (x1, f(x1)), (x2, f(x2)) and (x3, f(x3)),
we have the following cubic Lagrange polynomial as follows

f(x) = p3(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2) + L3(x)f(x3), (4.9)

where the Lagrange coefficients are define as follows:

L0(x) =
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
,

L1(x) =
(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)
,

L2(x) =
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
,

L3(x) =
(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)
.

(4.10)
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Figure 4.2: General Lagrange interpolation.

Nth Degree Lagrange Interpolating Polynomial

To generalize the concept of the Lagrange interpolation, consider the construction of a polynomial
pn(x) of degree at most n that passes through (n + 1) distinct points (x0, f(x0)), . . . , (xn, f(xn))
(see Figure 4.2) and satisfy the interpolation conditions

pn(xk) = f(xk); k = 0, 1, 2, . . . , n. (4.11)

Assume that there exists polynomial Lk(x) (k = 0, 1, 2, . . . , n) of degree n having the property

Lk(xj) =

{
0 for k ̸= j,
1 for k = j,

(4.12)

and
n∑

k=0

Lk(x) = 1. (4.13)

The polynomial pn(x) is given by

f(x) = pn(x) = L0(x)f(x0) + L1(x)f(x1) + · · ·+ Li−1(x)f(xi−1)

+ Li(x)f(xi) + · · ·+ Ln(x)f(xn) =
n∑

k=0

Lk(x)f(xk). (4.14)

It is clearly a polynomial of degree at most n and satisfy the conditions (4.11) since

pn(xi) = L0(xi)f(x0) + L1(xi)f(x1) + · · ·+ Li−1(xi)f(xi−1)
+ Li(xi)f(xi) + · · ·+ Ln(xi)f(xn),

which implies that
pn(xi) = f(xi).

It remains to be shown how the polynomial Li(x) can be constructed so that they satisfy (4.12).
If Li(x) is to satisfies (4.12), then it must contain a factor

(x− x0)(x− x1) · · · (x− xi−1)(x− xi+1) · · · (x− xn). (4.15)
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Since this expression has exactly n terms and Li(x) is a polynomial of degree n, we can deduce
that

Li(x) = Ai(x− x0)(x− x1) · · · (x− xi−1)(x− xi+1) · · · (x− xn), (4.16)

for some multiplicative constant Ai. Let x = xi, then the value of Ai is chosen so that

Ai =
1

(xi − x0)(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
, (4.17)

where none of the terms in denominator can be zero from the assumption of distinct points. Hence

Li(x) =
n∏

k=0

(
x− xk
xi − xk

)
, i ̸= k. (4.18)

The interpolating polynomial can now be readily evaluated by substituting (4.18) into (4.14) to
give

f(x) = pn(x) =
n∑

i=0

n∏
k=0

(
x− xk
xi − xk

)
f(xi), i ̸= k. (4.19)

This formula is called the Lagrange interpolation formula of degree n and the terms in (4.18) are
called the Lagrange coefficient polynomials.

Uniqueness of Lagrange Interpolating Polynomial

To show the uniqueness of the interpolating polynomial pn(x), we suppose that in addition to the
polynomial pn(x) the interpolation problem has another solution qn(x) of degree ≤ n whose graph
passes through (xi, yi), i = 0, 1, . . . , n. Then define

rn(x) = pn(x)− qn(x),

of the degree not greater than n. Since

rn(xi) = pn(xi)− qn(xi) = f(xi)− f(xi) = 0,

the polynomial rn(x) vanishes at n + 1 point. But by using the following well known result from
the theory of equations: ”If a polynomial of degree n vanishes at n + 1 distinct points, then the
polynomial is identically zero”. Hence rn(x) vanishes identically, or equivalently, pn(x) = qn(x).

Example 4.1 Let f(x) = 0 be defined on the three numbers −h, 0, h, where h ̸= 0. Use Lagrange
interpolating polynomial to construct the polynomial p(x) which interpolate f(x) at the given num-
bers. Then show that this polynomial can be written in the following form

f(x) = p(x) =
1

2h2
[f(−h)− 2f(0) + f(h)]x2 +

1

2h
[f(h)− f(−h)]x+ f(0).

Solution. Given three distinct points x0 = −h, x1 = 0 and x2 = h and using the quadratic Lagrange
interpolating polynomial as follows:

f(x) = p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1) +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2),
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at these data points, we get

f(x) = p2(x) =
(x2 − xh)

(−h)(−2h)
f(−h) +

(x2 − h2)

(h)(−h)
f(0) +

(x2 + xh)

(2h)(h)
f(h).

Separating the coefficients of x2, x and constant term, we get

f(x) = p2(x) =

(
f(−h)

2h2
+

f(0)

−h2
+

f(h)

2h2

)
x2 +

(−hf(−h)

2h2
+

hf(h)

2h2

)
x+

(
−h2f(0)

−h2

)
,

after simplifying, we obtain

f(x) = p(x) =
1

2h2
[f(−h)−2f(0)+f(h)]x2+

1

2h
[f(h)−f(−h)]x+f(0). •

Example 4.2 Let p2(x) be the quadratic Lagrange interpolating polynomial for the data:
(1, 2), (2, 3), (3, α). Find α if the constant term in p2(x) is 5. Find the approximation of f(2.5).

Solution. Consider the quadratic Lagrange interpolating polynomial as follows:

f(x) = p2(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2),

using the given data points, we get

f(x) = p2(x) = L0(x)(2) + L1(x)(3) + L2(x)(α),

where the Lagrange coefficients can be calculate as follows:

L0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 2)(x− 3)

(1− 2)(1− 3)
=

1

2
(x2 − 5x+ 6),

L1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
=

(x− 1)(x− 3)

(2− 1)(2− 3)
= −(x2 − 4x+ 3),

L2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x− 1)(x− 2)

(3− 1)(3− 2)
=

1

2
(x2 − 3x+ 2).

Thus

f(x) = p2(x) =
1

2
(x2 − 5x+ 6)(2)− (x2 − 4x+ 3)(3) +

1

2
(x2 − 3x+ 2)(α).

Separating the coefficients of x2, x and constant term, we get

f(x) = p2(x) =

(
−2 +

α

2

)
x2 +

(
7− 3α

2

)
x+ (−3 + α).

Since the given value of the constant term is 5, using this, we get

(−3 + α) = 5, gives α = 8.

Thus by using α = 8 and x = 2.5, we have

f(2.5) ≈ p2(2.5) = 12.50− 12.50 + 5 = 5,

the required approximation of the function. •
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Example 4.3 Let f(x) = x +
1

x
, with points x0 = 1, x1 = 1.5, x2 = 2.5 and x3 = 3. Find the

quadratic Lagrange polynomial for the approximation of f(2.7). Also, find the relative error.

Solution. Consider the quadratic Lagrange interpolating polynomial as follows:

f(x) = p2(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2).

Since the given interpolating point is x = 2.7, therefore, the best three points for the quadratic
polynomial should be as follows:

x0 = 1.5, x1 = 2.5, x2 = 3,

and the function values at these points are

f(x0) = 2.1667, f(x1) = 2.9, f(x2) = 3.3333.

So using these values, we have

f(x) = p2(x) = 2.1667L0(x) + 2.9L1(x) + 3.3333L2(x),

where

L0(x) =
(x− 2.5)(x− 3)

(1.5− 2.5)(1.5− 3)
=

1

1.5
(x2 − 5.5x+ 7.5),

L1(x) =
(x− 1.5)(x− 3)

(2.5− 1.5)(2.5− 3)
=

1

−0.5
(x2 − 4.5x+ 4.5),

L2(x) =
(x− 1.5)(x− 2.5)

(3− 1.5)(3− 2.5)
=

1

0.75
(x2 − 4x+ 3.75).

Using these Lagrange coefficients in the polynomial and after simplifying, gives

f(x) = p2(x) = 0.0889x2 + 0.3776x+ 1.4003,

which is the required quadratic polynomial. At x = 2.7, we have

f(2.7) ≈ p2(2.7) = 3.0679.

The relative error is

|f(2.7)− p2(2.7)|
|f(2.7)|

=
|3.0704− 3.0679|

|3.0704|
= 0.0008. •

Note that the sum of the Lagrange coefficients is equal to 1 as it should be

L0(2.7) + L1(2.7) + L2(2.7) = −0.0400 + 0.7200 + 0.3200 = 1.

Using MATLAB command the above results can be reproduce as follows:

>> x = [1.5 2.5 3];
>> y = x+ 1/x; x0 = 2.7;
>> sol = lint(x, y, x0);
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Example 4.4 Using the quadratic Lagrange interpolation formula to find the numbers A,B and
C such that p2(1.4) = Af(0) + Bf(1) + Cf(2). If f(0) = 1, f(1) = 2 and f(2) = 3, then find the
approximation of f(1.4).

Solution. Consider the quadratic Lagrange interpolating polynomial as follows:

f(x) = p2(x) = Af(x0) +Bf(x1) + Cf(x2).

Using the given values as x0 = 0, x1 = 1, x2 = 2 and the interpolating point x = 1.4, we obtain

A = L0(1.4) =
(1.4− 1)(1.4− 2)

(0− 1)(0− 2)
= −0.12,

B = L1(1.4) =
(1.4− 0)(1.4− 2)

(1− 0)(1− 2)
= 0.84,

C = L2(1.4) =
(1.4− 0)(1.4− 1)

(2− 0)(2− 1)
= 0.28.

Thus
f(1.4) ≈ p2(1.4) = (−0.12)(1) + (0.84)(2) + (0.28)(3) = 2.4,

the required approximation of the function at the point x = 1.4. •

Example 4.5 Consider the following table:

x 0 3 7

f(x) 2 4 19

(a) Construct the quadratic Lagrange polynomial p2(x) = ax2 + bx+ c to approximate f(x).
(b) Use the polynomial in part (a) to interpolate the function f(x) at x = 4.

Solution. (a) Obviously, a quadratic polynomial can be determined so that it passes through the
three points. Consider the quadratic Lagrange interpolating polynomial as follows:

f(x) = p2(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2), (4.20)

or
f(x) = p2(x) = 2L0(x) + 4L1(x) + 19L2(x). (4.21)

The Lagrange coefficients can be calculate as follows:

L0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

1

21
(x2 − 10x+ 21),

L1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
= − 1

12
(x2 − 7x),

L2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

1

28
(x2 − 3x).



190 4.2 Polynomial Interpolation for Uneven Intervals

Putting these values of the Lagrange coefficients in (4.21), we have

f(x) = p2(x) =
1

84
(37x2 − 55x+ 168),

(with a = 37/84, b = −55/84, c = 2) which is the required quadratic Lagrange polynomial.
(b) Now take x = 4 in the above polynomial, we obtain

f(4) ≈ p2(4) =
1

84

[
37(4)2 − 55(4) + 168

]
= 6.4286,

which is the required estimate value of f(4). •

By using the following MATLAB commands we can easily find the value of the polynomial at the
given point as

>> CP = [37/84 − 55/84 168/84];
>> Sol = polyval(CP, 4);

Note that the sum of the Lagrange coefficients is equal to 1 as it should be

L0(4) + L1(4) + L2(4) = −1

7
+ 1 +

1

7
= 1.

Using MATLAB command the above results can be reproduce as follows:

>> x = [0 3 7]; y = [2 4 19];
>> x0 = 4; sol = lint(x, y, x0);

Program 4.1
MATLAB m-file for the Lagrange Interpolation Method
function fi=lint(x,y,x0)
dxi=x0-x; m=length(x); L=zeros(size(y));
L(1) = prod(dxi(2 : m))/prod(x(1)− x(2 : m));
L(m) = prod(dxi(1 : m− 1))/prod(x(m)− x(1 : m− 1));
for j=2:m-1
num = prod(dxi(1 : j − 1)) ∗ prod(dxi(j + 1 : m));
dem = prod(x(j)− x(1 : j − 1)) ∗ prod(x(j)− x(j + 1 : m));
L(j)=num/dem; end; fi = sum(y. ∗ L);

Example 4.6 (a) Construct the table for (α,M(α)) by evaluating the integral

M(α) =

∫ 1

0
(α− ex) dx,

at α = 1, 3, 5, 6.
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(b) Use the constructed table to find the best approximation of M(4) by using quadratic Lagrange
polynomial. Compute the absolute error.

Solution. (a) Since

M(α) =

∫ 1

0
(α− ex) dx = (αx− ex)

∣∣∣∣1
0
= α− e+ 1,

so by using the given values of α, we get

M(1) = −0.7183, M(3) = 1.2817, M(5) = 3.2817, M(6) = 4.2817.

Thus we have the following table

α 1.00 3.00 5.00 6.00

M(α) −0.7183 1.2817 3.2817 4.2817

(b) Since a quadratic polynomial can be determined so that it passes through the three points, let us
consider the best form of the constructed table for the quadratic Lagrange interpolating polynomial
to approximate M(4) as

α 3.00 5.00 6.00

M(α) 1.2817 3.2817 4.2817

So using the quadratic Lagrange interpolating polynomial

M(α) = p2(α) = L0(α)f(α0) + L1(α)f(α1) + L2(α)f(α2), (4.22)

to get the approximation of M(4), we have

M(4) ≈ p2(4) = 1.2817L0(4) + 3.2817L1(4) + 4.2817L2(4). (4.23)

The Lagrange coefficients can be calculate as follows:

L0(4) =
(4− 5)(4− 6)

(3− 5)(3− 6)
=

1

3
,

L1(4) =
(4− 3)(4− 6)

(5− 3)(5− 6)
= 1,

L2(4) =
(4− 3)(4− 5)

(6− 3)(6− 5)
= −1

3
.

Putting these values of the Lagrange coefficients in (4.23), we obtain

M(4) ≈ p2(4) =
1

3
(1.2817) + 1(3.2817)− 1

3
(4.2817) = 2.2817,

which is the required approximation of M(4) by the quadratic interpolating polynomial.
From the given integral we can obtained the exact value as follows

M(4) =

∫ 1

0
(4− ex) dx = (4x− ex)

∣∣∣∣1
0
= 5− e = 2.2817,

so
|M(4)− p2(4)| = |2.2817− 2.2817| = 0.0000,

is the required absolute error in our approximation. •



192 4.2 Polynomial Interpolation for Uneven Intervals

Example 4.7 Consider the following table:

x 1 2 3

f(x) 2 3 5

If f(x) = p2(x) = a0 + a1x+ a2x
2, then find the approximation of f(1.5).

Solution. Using values of f(x) at x = 1, 2 and 3, we get

2 = a0 + a1 + a2,

3 = a0 + 2a1 + 4a2,

4 = a0 + 3a1 + 9a2.

Now solving this linear system for a0, a1, a2, we obtain

a0 = 2, a1 = −0.5, a2 = 0.5.

Thus
f(x) = p2(x) = 2− 0.5x+ 0.5x2,

and at x = 1.5, we get
f(1.5) ≈ p2(1.5) = 2− 0.75 + 1.125 = 2.375,

the required approximation of f(1.5). •

Example 4.8 Find the missing term in the following table using best Lagrange polynomial:

x 0 1 2 6

f(x) 1 2 ? 3

Solution. Let x0 = 0, x1 = 1 and x2 = 6, then obviously, a quadratic polynomial can be deter-
mined so that it passes through these three points. Consider the quadratic Lagrange interpolating
polynomial as follows:

f(x) = p2(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2), (4.24)

and using function values, gives

f(x) = p2(x) = L0(x) + 2L1(x) + 3L2(x). (4.25)

The Lagrange coefficients can be calculate as follows:

L0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 1)(x− 6)

(0− 1)(0− 6)
=

1

6
(x2 − 7x+ 6),

L1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
=

(x− 0)(x− 6)

(1− 0)(1− 6)
= −1

5
(x2 − 6x),

L2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x− 0)(x− 1)

(6− 0)(6− 1)
=

1

30
(x2 − x).
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Putting these values of the Lagrange coefficients in (4.25), we have

f(x) = p2(x) =
1

6
(x2 − 7x+ 6)(1)− 1

5
(x2 − 6x)(2) +

1

30
(x2 − x)(3),

or

f(x) = p2(x) =
1

15
(−2x2 + 17x+ 15),

which is the required quadratic interpolating polynomial.
Now to find the missing term when x = 2 by using the above polynomial, we have

f(2) ≈ p2(2) =
1

15

[
− 2(2)2 + 17(2) + 15

]
=

41

15
= 2.7333,

which is the missing term in the table. We can also find the missing number by considering a
quadratic polynomial of the form

f(x) = p2(x) = a+ bx+ cx2.

If the curve passes through the points x = 0, 1, 6, then we have

1 = a

2 = a+ b+ c

3 = a+ 6b+ 36c

Solving this system for a, b and c, we obtain

a = 1, b =
17

15
, c = − 2

15
.

Thus

f(x) = p2(x) = 1 +
17

15
x− 2

15
x2,

and at x = 2, it gives

f(2) ≈ p2(2) = 1 +
17

15
(2)− 2

15
(2)2 = 2.7333,

the required value of the missing term. •

Example 4.9 The equation x−9−x = 0 has a solution in [0, 1]. Compute the Lagrange polynomial
on x0 = 0, x1 = 0.5 and x2 = 1. By setting the interpolating polynomial equal to zero and solving
the equation, find an approximate solution to the equation in the given interval [0, 1].

Solution. Let us consider the form of the constructed table for the given function f(x) = x− 9−x

at the given points as
x 0 0.5 1

f(x) −1 1/6 8/9

So using the quadratic Lagrange interpolating polynomial

f(x) = p2(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2) = −L0(x) +
1

6
L1(x) +

8

9
L2(x), (4.26)
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where the values of the Lagrange coefficients can be calculate as follows:

L0(x) =
(x− 0.5)(x− 1)

(0− 0.5)(0− 1)
= 2x2 − 3x+ 1,

L1(x) =
(x− 0)(x− 1)

(0.5− 0)(0.5− 1)
= −4x2 + 4x,

L2(x) =
(x− 0)(x− 0.5)

(1− 0)(1− 0.5)
= 2x2 − x.

Putting these values of the Lagrange coefficients in (4.26), we have

f(x) = p2(x) =
1

18
(−16x2 + 50x− 18),

which is the required quadratic interpolating polynomial. Now setting this polynomial equal to zero,
we get

0 = p2(x) =
1

18
(−16x2 + 50x− 18),

which gives

−16x2 + 50x− 18 = 0, or 8x2 − 25x+ 9 = 0.

Now solving this quadratic equation, one can get

x1 = 2.70985 and x2 = 0.41515.

Thus the approximate solution to the given equation in [0, 1] is x2 = 0.41515. •

Note that we can use Lagrange interpolating polynomial to express the given rational function

R(x) =
f(x)

g(x)
as sums of partial fractions. For this we have to construct the table for the function

f(x) at x values (the zeros of the denominator function g(x)).

Example 4.10 Use quadratic Lagrange polynomial, express the rational function
2x2 − 9x− 9

x3 − 9x
as

sums of partial fractions.

Solution. Given rational function is of the form

f(x)

g(x)
=

2x2 − 9x− 9

x3 − 9x
=

2x2 − 9x− 9

(x+ 3)(x− 0)(x− 3)
,

and it gives the zeros of the function g(x) as x = −3, 0, 3. So the table for the function f(x) at x
values is

x −3 0 3

f(x) 36 −9 −18



Chapter Four Polynomial Interpolation and Approximation 195

The Lagrange coefficients can be calculate as follows:

L0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 0)(x− 3)

(−3− 0)(−3− 3)
=

1

18
(x− 0)(x− 3),

L1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
=

(x+ 3)(x− 3)

(0 + 3)(0− 3)
= −1

9
(x+ 3)(x− 3),

L2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x+ 3)(x− 0)

(3 + 3)(3− 0)
=

1

18
(x+ 3)(x− 0).

By using the quadratic Lagrange interpolating formula

f(x) = p2(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2) = 36L0(x)− 9L1(x)− 18L2(x2),

the polynomial f(x) is given by

f(x) = 2(x− 0)(x− 3) + (x+ 3)(x− 3)− (x+ 3)(x− 0).

Thus
2x2 − 9x− 9

x3 − 9x
=

f(x)

(x+ 3)(x− 0)(x− 3)
=

2

(x+ 3)
+

1

(x− 0)
− 1

(x− 3)
,

is the sums of partial fractions of the given rational function. •

We can easily check this results by using MATLAB command residue. The residue function takes

the ratio of polynomials
f(x)

g(x)
and return the corresponding partial fraction representation of it.

It takes as input the coefficients of the polynomials f(x) and g(x) (in descending powers of x)
and returns the coefficients and the pole values (the zeros of the denominator). If we want to find

the partial fraction expansion R(x) =
2x2 − 9x− 9

x3 − 9x
, the following MATLAB program gives us the

coefficients in the expansion. We write the coefficients of the numerator and the denominator in
separate vectors and MATLAB gives us the coefficients (c) with the corresponding poles (z) in the
expansion. The following MATLAB command lines give the use of the residue function:

>> num = [0 2 − 9 − 9]; den = [1 0 − 9 0];
>> [c, z] = residue(num, den);

Error Formula of Lagrange Polynomial

As with any numerical technique, it is important to obtain bounds for the errors involved. Now we
discuss the error term when the Lagrange polynomial is used to approximate continuous function
f(x). It is not possible, in general, to say how accurately the interpolating polynomial pn approxi-
mates given function f . All can be said with certainty is that f(x)−pn(x) = 0 at x = x0, x1, . . . , xn.
However, it is sometimes possible to obtain a bound on the error f(x)− pn(x) at an intermediate
point x using the following theorem.
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Error Formulas of Linear, Quadratic and Cubic Lagrange Polynomials

If f(x) has second, third and fourth derivatives on interval I and if it is approximated by the
polynomials p1(x), p2(x), p3(x) passing respectively, through 2, 3, 4 data points on I, then the errors
E1, E2, E3 are given by

E1 = f(x)− p1(x) =
f ′′(η(x))

2!
(x− x0)(x− x1), η(x) ∈ I, (4.27)

where p1(x) is the linear Lagrange polynomial (4.5) and a unknown point η(x) ∈ (x0, x1).

E2 = f(x)− p2(x) =
f ′′′(η(x))

3!
(x− x0)(x− x1)(x− x2), η(x) ∈ I, (4.28)

where p2(x) is the quadratic Lagrange polynomial (4.7) and a unknown point η(x) ∈ (x0, x2).

E3 = f(x)− p3(x) =
f (4)(η(x))

4!
(x− x0)(x− x1)(x− x2)(x− x3), η(x) ∈ I, (4.29)

where p3(x) is the cubic Lagrange polynomial (4.9) and a unknown point η(x) ∈ (x0, x3).

Continuing in the similar manner, in the following theorem we define the error formula for the nth
degree Lagrange polynomial (4.14).

Theorem 4.2 (Error Formula of nth Degree Lagrange Polynomial)

If f(x) has (n+1) derivatives on interval I and if it is approximated by a polynomial pn(x) passing
through (n+ 1) data points on I, then the error En is given by

En = f(x)− pn(x) =
f (n+1)(η(x))

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn), η(x) ∈ I, (4.30)

where pn(x) is Lagrange interpolating polynomial (4.14) and a unknown point η(x) ∈ (x0, xn). •

The error formula (4.30) is an important theoretical results because the Lagrange polynomials are
used extensively for deriving numerical differentiation and integration methods. Error bounds for
these techniques are obtained from Lagrange error formula.

Example 4.11 Let f(x) =
√
x− x2 and p2(x) be the quadratic Lagrange interpolating polynomial

on x0 = 0, x1 and x2 = 1. Find the largest value of x1 in (0, 1) for which

f(0.5)− p2(0.5) = −0.25.

Solution. Consider the quadratic Lagrange interpolating polynomial as follows:

f(x) = p2(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2).

At the given values of x0 = 0, x1 = x1, x2 = 1, we have, f(0) = 0, f(x1) =
√
x1 − x21 and f(1) = 0,

gives

f(x) = p2(x) = L0(x)(0) + L1(x)(f(x1

√
x1 − x21)) + L2(x)(0),
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where

L1(x) =
(x− 0)(x− 1)

(x1 − 0)(x1 − 1)
=

x2 − x

x21 − x1
.

Thus

f(x) = p2(x) =
x2 − x

x21 − x1

√
x1 − x21 and p2(0.5) =

−0.25

x21 − x1

√
x1 − x21.

Given

f(0.5)− p2(0.5) = −0.25, gives p2(0.5) = f(0.5) + 0.25 = 0.5 + 0.25 = 0.75,

so

−0.25

√
x1 − x21

(x1 − x21)
= 0.75, or

√
x1 − x21 = −3(x1 − x21).

Thus, taking square on both sides, we get

x1 − x21 = 9(x1 − x21)
2, or (x1 − x21)[1− 9(x1 − x21)] = 0,

which can be also written as
x1(1− x1)[9x

2
1 − 9x1 + 1] = 0.

Solving this equation for x1, we get

x1 = 0, or x1 = 1, or x1 = 0.127322, or x1 = 0.872678.

Thus x1 = 0.872678, the required largest value in the given interval (0, 1). •

Example 4.12 Show that a bound for the error in the linear interpolation is

|f(x)− p1(x)| ≤
h2

8
M, where M = max

x0≤x≤x1

|f ′′(x)| and h = x1 − x0. (4.31)

Solution. Consider two points x0 and x1, then the linear polynomial p1(x) interpolating f(x) at
these points is

f(x) = p1(x) =
(x− x1)

(x0 − x1)
f(x0) +

(x− x0)

(x1 − x0)
f(x1).

By using the given data point, the error formula (4.30) becomes

f(x)− p1(x) =
(x− x0)(x− x1)

2!
f ′′(η(x)),

where η(x) is a unknown point between x0 and x1. Hence

|f(x)− p1(x)| =
∣∣∣∣(x− x0)(x− x1)

2!

∣∣∣∣ |f ′′(η(x))|.

The value of f ′′(η(x)) can not be computed exactly because η(x) is not known. But we can bound
the error by computing the largest possible value for |f ′′(η(x))|. So bound |f ′′(x)| on [x0, x1] can be
obtain

M = max
x0≤x≤x1

|f ′′(x)|,



198 4.2 Polynomial Interpolation for Uneven Intervals

and so for |f ′′(η(x))| ≤ M , we have

|f(x)− p1(x)| ≤
M

2
|(x− x0)(x− x1)|.

Since the maximum of function g(x) = (x − x0)(x − x1) in [x0, x1] occurs at the critical point

x =
(x0 + x1)

2
(g′(x) = 0) and so that maximum is |(x− x0)(x− x1)| =

(x1 − x0)
2

4
.

This follows easily by noting that the function (x− x0)(x− x1) is a quadratic and has two roots x0
and x1, hence its maximum value occurs midway between these roots. Thus, for any x ∈ [x0, x1],
we have

|f(x)− p1(x)| ≤
(x1 − x0)

2

8
M, or |f(x)− p1(x)| ≤

h2

8
M,

where h = x1 − x0. •

Example 4.13 Find the linear Lagrange polynomial that passes through the points (0, f(0)) and

(π, f(π)) and then use it to approximate the function f(x) = 2 cosx at
π

2
. Find absolute error and

an bound for the error in the linear interpolation of f(x).

Solution. Given two points x0 = 0 and x1 = π, then the linear Lagrange polynomial p1(x)

f(x) = p1(x) =
(x− x1)

(x0 − x1)
f(x0) +

(x− x0)

(x1 − x0)
f(x1),

interpolating f(x) at these points is

f(x) = p1(x) =
(x− π)

(0− π)
f(0) +

(x− 0)

(π − 0)
f(π).

By using the function values at the given data point, we get

f(x) = p1(x) =
(x− π)

(0− π)
(2) +

(x− 0)

(π − 0)
(−2) = 2− 4x

π
and f(π/2) ≈ p1(π/2) = 0.

Thus absolute error, |2 cos(π/2) − p1(π/2)| = 0. Since M = max
0≤x≤π

|f ′′(x)| = max
0≤x≤π

| − 2 cosx| = 2

and h = π, so by using the linear Lagrange error formula (4.31), we get

|f(x)− p1(x)| ≤
(π − 0)2

4
=

π2

4
,

which is the required bound of error in the linear interpolation of f(x). •

Example 4.14 Use the quadratic Lagrange interpolating polynomial by selecting the best three
points from {−2, 0, 1, 2, 2.5} on the function defined by f(x) = (x+ 1)1/3 to estimate the cube root

of
3

2
and compute an error bound and absolute error.

Solution. Since the given function is a cube root of (x+1), so by taking x+1 =
3

2
, we have x =

1

2
,

therefore, the best points for the quadratic polynomial are x0 = 0, x1 = 1, and x2 = 2. Consider a
quadratic Lagrange interpolating polynomial as

f(x) = p2(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2), (4.32)
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and at x = 0.5, gives

f(0.5) ≈ p2(0.5) = (1)1/3L0(0.5) + (2)1/3L1(0.5) + (3)1/3L2(0.5). (4.33)

The Lagrange coefficients can be calculate as follows:

L0(0.5) =
(0.5− 1)(0.5− 2)

(0− 1)(0− 2)
= 0.375,

L1(0.5) =
(0.5− 0)(0.5− 2)

(1− 0)(1− 2)
= 0.75,

L2(0.5) =
(0.5− 0)(0.5− 1)

(2− 0)(2− 1)
= −0.125.

Putting these values of the Lagrange coefficients in (4.33), we have

f(0.5) ≈ p2(0.5) = (1)1/3(0.375) + (2)1/3(0.75) + (3)1/3(−0.125) = 1.1396,

which is the required approximation of the

(
3

2

)1/3

.

To compute an error bound for the approximation of the given function in the interval [0, 2], we
use the following quadratic error formula

|f(x)− p2(x)| =
|f (3)(η(x))|

3!
|(x− x0)(x− x1)(x− x2)|.

As

|f (3)(η(x))| ≤ M = max
0≤x≤2

|f (3)(x)|,

and the first three derivatives are

f ′(x) =
1

3
(x+ 1)−2/3, f ′′(x) = −2

9
(x+ 1)−5/3, f (3)(x) =

10

27
(x+ 1)−8/3,

so

M = max
0≤x≤2

∣∣∣∣1027(x+ 1)−8/3

∣∣∣∣ = 10

27
.

Hence

|f(0.5)− p2(0.5)| ≤
10/27

6
|(0.5− 0)(0.5− 1)(0.5− 2)|,

and it gives

|f(0.5)− p2(0.5)| ≤
10(0.375)

162
= 0.0232,

which is desired error bound. Also, we have the absolute error is given as

|f(0.5)− p2(0.5)| = |(1.5)1/3 − 1.1396| = |1.1447− 1.1396| = 0.0051,

which is desired absolute error. •
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Example 4.15 Consider f(x) = sinx and its values are known at five points {0, 0.2, 0.4, 0.6, 0.8}.
If the approximation of sin 0.28 by four degree Lagrange interpolating polynomial is 0.2763591, then
compute the error bound and the absolute error for the approximation.

Solution. To compute an error bound for the approximation of the given function in the interval
[0, 0.8], we use the following error formula for Lagrange polynomial degree four

|f(x)− p4(x)| =
|f (5)(η(x))|

5!
|(x− x0)(x− x1)(x− x2)(x− x3)(x− x4)|,

or

|f(x)− p4(x)| ≤
M

5!
|(x− x0)(x− x1)(x− x2)(x− x3)(x− x4)|.

Since

|f (5)(η(x))| ≤ M = max
0≤x≤0.8

|f (5)(x)| = max
0≤x≤0.8

| cosx| = 1,

so

|f(0.28)−p4(0.28)| ≤
1

120
|0.28(0.28−0.2)(0.28−0.4)(0.28−0.6)(0.28−0.6)(0.28−0.8)| ≤ 3.7×10−6,

which is desired error bound. Also, we have to compute absolute error as

|f(0.28)− p4(0.28)| = | sin 0.28− p4(0.28)| = |0.2763556− 0.2763591| = 3.5× 10−6,

which is desired result. •

Example 4.16 Let p2(x) be the Lagrange polynomial which interpolating f(x) = x3 + x+1 at the
points xi = α+ (i+ 1)h, i = 0, 1, 2, where α is constant and h > 0. Find h such that the error at
x = α is bounded above by 10−3.

Solution. To compute an error bound for the approximation of the given function, we use the
following error formula for the quadratic Lagrange polynomial as

|E| = |f(x)− p2(x)| =
|f (3)(η(x))|

3!
|(x− x0)(x− x1)(x− x2)|,

where

x = α, x0 = (α+ h), x1 = (α+ 2h), x2 = (α+ 3h).

Since

|f (3)(η(x))| ≤ M = max
x0≤x≤x2

|f (3)(x)| = max
x0≤x≤x2

|6| = 6,

so

|E| ≤ 6

6
|(α− (α+ h))(α− (α+ 2h))(α− (α+ 3h))| = 6h3.

Given

|E| < 10−3, so 6h3 < 10−3,

from this we have h < 0.055 and so we can take h = 0.05. •
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Example 4.17 Use the best Lagrange interpolating polynomial to find the approximation of f(1.5)
if f(−2) = 2, f(−1) = 1.5, f(1) = 3.5 and f(2) = 5. Estimate the error bound if the maximum
value of |f (4)(x)| is 0.025 in the interval [−2, 2].

Solution. Since the given number of points are, x0 = −2, x1 = −1, x2 = 1, x3 = 2, therefore the
best Lagrange interpolating polynomial to find the approximation of f(1.5) will be the cubic. The
cubic Lagrange interpolating polynomial for the approximation of the given function is:

f(x) = p3(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2) + L3(x)f(x3),

and taking f(−2) = 2, f(−1) = 1.5, f(1) = 3.5, f(2) = 5 and the interpolating point x = 1.5, we
have

f(1.5) ≈ p3(1.5) = L0(1.5)f(−2) + L1(1.5)f(−1) + L2(1.5)f(1) + L3(1.5)f(2),

or
f(1.5) ≈ p3(1.5) = 2L0(1.5) + 1.5L1(1.5) + 3.5L2(1.5) + 5L3(1.5).

The Lagrange coefficients can be calculate as follows:

L0(1.5) =
(1.5 + 1)(1.5− 1)(1.5− 2)

(−2 + 1)(−2− 1)(−2− 2)
= 0.0521,

L1(1.5) =
(1.5 + 2)(1.5− 1)(1.5− 2)

(−1 + 2)(−1− 1)(−1− 2)
= −0.1458,

L2(1.5) =
(1.5 + 2)(1.5 + 1)(1.5− 2)

(1 + 2)(1 + 1)(1− 2)
= 0.7292,

L3(1.5) =
(1.5 + 2)(1.5 + 1)(1.5− 1)

(2 + 2)(2 + 1)(2− 1)
= 0.3646.

Putting these values of the Lagrange coefficients in the above equation, we get

f(1.5) ≈ p3(1.5) = 2(0.0521) + 1.5(−0.1458) + 3.5(0.7292) + 5(0.3646) = 4.2607,

which is the required cubic interpolating polynomial approximation of the function at the given point
x = 1.5. Note that L0(1.5) + L1(1.5) + L2(1.5) + L3(1.5) = 1.
To compute an error bound for the approximation of the given function in the interval [−2, 2], we
use the following cubic error formula

|f(x)− p3(x)| =
|f (4)(η(x))|

4!
|(x− x0)(x− x1)(x− x2)(x− x3)|.

As
|f (4)(η(x))| ≤ M = max

−2≤x≤2
|f (4)(x)| = 0.025,

so

|f(1.5)− p3(1.5)| ≤
M

4!
|(1.5 + 2)(1.5 + 1)(1.5− 1)(1.5− 2)|,

and it gives

|f(1.5)− p3(1.5)| ≤
(0.025)(2.1875)

24
= 0.0023,

which is desired error bound. •
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Example 4.18 Consider the following table having the data for f(x) = e3x + cos 2x:

x 0.1 0.2 0.4 0.5

f(x) 2.3300 2.7432 4.0168 5.0220

Find the approximation of f(0.45) using the best quadratic Lagrange interpolation formula and also
estimate an error bound and absolute error for the approximation.

Solution. Using the data points 0.2, 0.4, 0.5, the best Lagrange formula to find the interpolating
polynomial to approximate the function is the quadratic polynomial

f(x) = p2(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2),

which implies that

f(x) = p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2),

or
f(x) = p2(x) = 45.72[x2 − 0.9x+ 0.2]− 200.84[x2 − 0.7x+ 0.1]

+ 167.4[x2 − 0.6x+ 0.08].

Thus

f(x) = p2(x) = 12.28x2 − 1.0x2 + 2.452. (4.34)

Take x = 0.45 in the above polynomial (4.34), we have

f(0.45) ≈ p2(0.45) = 4.4887.

The exact value of f(0.45) = 4.4790, so, the absolute error is 0.0097. Now to compute an error
bound of the approximation, we use the following formula

|f(x)− p2(x)| =
|f (3)(η(x))|

3!
|(x− x0)(x− x1)(x− x2)|. (4.35)

Taking the third derivative of the given function, we get

f ′(x) = 3e3x − 2 sin 2x, f ′′(x) = 9e3x − 4 cos 2x,

f ′′′(x) = 27e3x + 8 sin 2x.

Thus

|f (3)(η(x))| = |27e3η(x) + 8 sin 2(η(x))|, for η(x) ∈ (0.2, 0.5),

and it gives

|f (3)(0.2)| = 52.3126 and |f (3)(0.5)| = 127.7374.
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The value of f (3)(η(x)) can not be computed exactly because η(x) is not known. But we can bound
the error by computing the largest possible value for |f (3)(η(x))|. So bound |f (3)(x)| on [0.2, 0.5] can
be obtain

M = max
0.2≤x≤0.5

|f (3)(x)| = 127.7374,

and so for |f (4)(η(x))| ≤ M , we have (4.35) as follows

|f(x)− p2(x)| ≤ (127.7374)(0.000625)/6 = 0.0133,

which is the required error bound for the approximation. •

Example 4.19 Determining spacing h in a table of equally spaced value of the function f(x) = ex

between smallest point a = 1 and largest point b = 2, so that interpolation with a second-degree
polynomial in this table will yield a desired accuracy.

Solution. Suppose that the given table contains the function values f(xi), for the points xi =

1 + ih, i = 0, 1, . . . , n, where n =
(2− 1)

h
. If x ∈ [xi−1, xi+1], then we approximate the function

f(x) by degree 2 polynomial p2(x) which interpolates f(x) at xi−1, xi, xi+1. Then the error formula
(4.30) for these data points becomes

|f(x)− p2(x)| =
∣∣∣(x− xi−1)(x− xi)(x− xi+1)

3!

∣∣∣∣∣∣f ′′′(η(x))
∣∣∣

where η(x) ∈ (xi−1, xi+1). Since the point η(x) is unknown and so, we can not estimate f ′′′(η(x)),
therefore, let

|f ′′′(η(x))| ≤ M = max
1≤x≤2

|f ′′′(x)|.

Then

|f(x)− p2(x)| ≤
M

6
|(x− xi−1)(x− xi)(x− xi+1)|.

Since f(x) = ex and f ′′′(x) = ex, therefore

|f ′′′(η(x))| ≤ M = e2 = 7.3891.

Now to find the maximum value of |(x− xi−1)(x− xi)(x− xi+1)|, take t = (x− xi)/h, gives

max
x∈[xi−1,xi+1]

|(x− xi−1)(x− xi)(x− xi+1| = max
t∈[−h,h]

|(t− h)t(t+ h)| = max
t∈[−h,h]

|t(t2 − h2)|,

using the linear change of variables t = x− xi. As we see the function H(t) = t3 − th2 vanishes at
t = −h and t = h, so the maximum value of |H(t)| on [−h, h] must occurs at one of the extreme of
H(t), which can be found by solving the equation

H ′(t) = 3t2 − h2 = 0, gives, t = ±h/
√
3.

Hence

max
x∈[xi−1,xi+1]

|(x− xi−1)(x− xi)(x− xi+1)| =
2h3

3
√
3
.
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Thus, for any x ∈ [1, 2], we have

|f(x)− p2(x)| ≤
(2h3/3

√
3)e2

6
=

h3e2

9
√
3
,

if p2(x) is chosen as the polynomial of degree 2 which interpolates f(x) = ex at the three tabular
points nearest x. If we wish to obtain six decimal place accuracy this way, we would have to choose
h so that

h3e2

9
√
3
< 5× 10−7, which implies that h3 < 10.5483× 10−7,

and it gives h = 0.01. •

If the derivatives of f can be uniformly bounded by a constant, then we can choose n appropriately
large in order to force the error term to be as small as we want. So, we can find a very accurate
interpolating polynomial. In particular, if we look at the case when we choose to use equally spaced
points (but without pre-determining n), then bounding the derivatives allows us to choose n large
enough (alternatively h small enough) to give an accurate polynomial interpolant. The form of the
error bound Theorem 4.2 is not as useful as the following one for quick calculations.

Theorem 4.3 (Error Bounds for Lagrange Interpolation at Equally Spaced Points)

Assume that f(x) is defined on the interval [a, b], which contains equally spaced points xk = x0+hk.
Additionally, assume that f(x) and the derivatives of f(x) up to the order (n+ 1), are continuous
and bounded on the special intervals [x0, x1], [x0, x2] and [x0, x3], respectively; that is

|f (n+1)(x)| ≤ M for x0 ≤ x ≤ xn,

for n = 1, 2, 3. Then error bounds for linear, quadratic and cubic polynomials are:

|E1(x)| ≤ h2

8
M for x0 ≤ x ≤ x1,

|E2(x)| ≤ h3

9
√
3
M for x0 ≤ x ≤ x2,

|E3(x)| ≤ h4

24
M for x0 ≤ x ≤ x3.

Continue in the similar manner for the interval [x0, xn], for n = 1, 2, . . . , n, we have

|En(x)| ≤
M

4(n+ 1)

(
b− a

n

)n+1

=
M

4(n+ 1)
hn+1, for x0 ≤ x ≤ xn, (4.36)

the general error bound formula. •

Example 4.20 Find an error bound if f(x) = sinx is approximated by an interpolation polynomial
with ten equally spaced data points in [0, 1.6875].
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Solution. Given n = 9 and a = 0, b = 1.6875, then

M = max
0≤x≤1.6875

|f (10)(x)| = max
0≤x≤1.6875

| − sinx| ≤ 1, ∀ x ∈ [0, 1.6875].

Hence, the interpolation error (using Theorem 4.36) can be bounded by

|E9(x)| = | sinx− p9(x)| ≤
1

40

(
1.6875

9

)10

≈ 1.34× 10−9,

for all x ∈ [0, 1.6875]. •

Note that f (n)(x) = ± sinx for even n and f (n)(x) = ± cosx for odd n, so we have a uniform bound
on f (n)(x) for all n. That is |f (n)(x)| ≤ 1 for all x and for all n. In such instance, we can force
interpolation error to 0 by increasing the number of interpolation data points.
On the other hand, if the derivatives of all order for the function f are continuous but we cannot
uniformly the derivatives, then increasing the interpolation data points may not result in smaller
errors.

Example 4.21 Find an error bound if f(x) =
1

x2 + 1
is approximated by an interpolation polyno-

mial with ten equally spaced data points in the interval [−5, 5].

Solution. Given n = 9 and a = −5, b = 5, then

M = max
−5≤x≤5

|f (10)(x)|,

One can find the maximum value of |f (10)(x)| is a very large value. Note that the term

1

40

(
10

9

)10

≈ 0.0717,

so this term will not be small enough to guarantee a reasonable bound on the error. Furthermore,
if we allow n to get larger, then the magnitude of the derivatives of f also get very large very fast.
So adding more interpolation points can increase the oscillation of the interpolating polynomial. •

Example 4.22 Determine an appropriate step size h to construct a table of f(x) = x+ ln(x+ 1)
on the interval [2, 3] when the error for linear Lagrange interpolation is to be bounded by 9× 10−4.
Then use the constructed table to find the approximation of f(2.6) using linear Lagrange polynomial
and compute the absolute error.

Solution. Since we know that error bound formula for the linear Lagrange polynomial is

|E| ≤ Mh2

8
, h = x1 − x0, (4.37)

and it is given that
|E1| ≤ 9× 10−4,

so
Mh2

8
≤ 9× 10−4, where M = max

2≤x≤3
|f ′′(x)|.
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Since

f ′(x) = 1 +
1

x+ 1
and f ′′(x) = − 1

(x+ 1)2
,

so

M = max
2≤x≤3

∣∣∣∣ −1

(x+ 1)2

∣∣∣∣ = 1

9
.

Thus
h2 ≤ 648× 10−4 = 0.0648, gives h = 0.25.

Hence we obtain the required table

x 2 2.25 2.5 2.75 3

f(x) 3.0986 3.4287 3.7528 4.0718 4.3863

for the given function f(x) on [2, 3] with step size h = 0.25.
As x = 2.6, so take two points x0 = 2.5 and x1 = 2.75, then linear Lagrange polynomial p1(x)

f(x) = p1(x) =
(x− x1)

(x0 − x1)
f(x0) +

(x− x0)

(x1 − x0)
f(x1),

and interpolating f(2.6) at these points is

f(2.6) ≈ p1(2.6) =
(2.6− 2.75)

(2.5− 2.75)
(3.7528) +

(2.6− 2.5)

(2.75− 2.5)
(4.0718) = 3.8804.

To compute absolute error in the linear interpolation of f(x), we use the error formula as follows

|f(2.6)− p1(2.6)| = |(2.6 + ln(2.6))− 3.8804| = |3.8809− 3.8804| = 0.0005,

the required error. •

Example 4.23 (a) Let f(x) = (x+1) ln(x+1) be the function defined over the interval [1, 2]. Find
the approximations of (1.9 ln 1.9) using linear, quadratic and cubic Lagrange interpolating polyno-
mials for equally spaced data points defined over the interval [1, 2]. Compute the error bounds for
linear, quadratic and cubic Lagrange interpolating polynomials for equally spaced data points. Also,
compute absolute error for each case.
(b) Determine the step size h and the number of points to be used in the tabulation of the given
function f(x) = (x+ 1) ln(x+ 1) in [1, 2] so that linear, quadratic and cubic interpolations will be
correct to six decimal places.

Solution. (a) For linear Lagrange polynomial, we have h = 2− 1 = 1, so using x0 = 1, x1 = 2 and
x = 0.9, in the linear Lagrange formula, we have

f(0.9) ≈ p1(0.9) = L0(0.9)f(1) + L1(0.9)f(2) = 1.3863L0(0.9) + 3.2958L1(0.9). (4.38)

The Lagrange coefficients can be calculate as follows:

L0(0.9) =
(0.9− 2)

(1− 2)
= 1.1 and L1(0.9) =

(0.9− 1)

(2− 1)
= −0.1.
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Putting these values of the Lagrange coefficients in (4.38), we have

f(0.9) ≈ p1(0.9) = 1.3863(1.1) + 3.2958(−0.1) = 1.1954.

Now for quadratic Lagrange polynomial, we have h =
2− 1

2
= 0.5, so using x0 = 1, x1 = 1.5, x2 = 2

and x = 0.9, in the quadratic Lagrange formula, we have

f(0.9) ≈ p2(0.9) = L0(0.9)f(1) + L1(0.9)f(1.5) + L2(0.9)f(2)

= 1.3863L0(0.9) + 2.2907L1(0.9) + 3.2958L2(0.9). (4.39)

The Lagrange coefficients can be calculate as follows:

L0(0.9) =
(0.9− 1.5)(0.9− 2)

(1− 1.5)(1− 2)
= 1.32,

L1(0.9) =
(0.9− 1)(0.9− 2)

(1.5− 1)(1, 5− 2)
= −0.44,

L2(0.9) =
(0.9− 1)(0.9− 1.5)

(2− 1)(2− 1.5)
= 0.12.

Putting these values of the Lagrange coefficients in (4.39), we have

f(0.9) ≈ p2(0.9) = 1.3863(1.32) + 2.2907(−0.44) + 3.2958(0.12) = 1.2175.

For cubic Lagrange polynomial, we have h =
2− 1

3
= 1/3, so using x0 = 1, x1 = 4/3, x2 = 5/3,

x3 = 2 and x = 0.9, in the cubic Lagrange formula, we have

f(0.9) ≈ p3(0.9) = L0(0.9)f(1) + L1(0.9)f(4/3) + L2(0.9)f(5/3) + L3(0.9)f(2)

= 1.3863L0(0.9) + 1.9770L1(0.9) + 2.6156L2(0.9) + 3.2958L3(0.9). (4.40)

The Lagrange coefficients can be calculate as follows:

L0(0.9) =
(0.9− 4/3)(0.9− 5/3)(0.9− 2)

(1− 4/3)(1− 5/3)(1− 2)
= 1.6449,

L1(0.9) =
(0.9− 1)(0.9− 5/3)(0.9− 2)

(4/3− 1)(4/3− 5/3)(4/3− 2)
= −1.1385,

L2(0.9) =
(0.9− 1)(0.9− 4/3)(0.9− 2)

(5/3− 1)(5/3− 4/3)(5/3− 2)
= 0.6435,

L3(0.9) =
(0.9− 1)(0.9− 4/3)(0.9− 5/3)

(2− 1)(2− 4/3)(2− 5/3)
= −0.1495.

Putting these values of the Lagrange coefficients in (4.40), we have

f(0.9) ≈ p3(0.9) = 1.386(1.6449) + 1.977(−1.1385) + 2.616(0.6435) + 3.296(−0.1495) = 1.220.
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The derivatives of the given function f(x) = (x+ 1) ln(x+ 1) are as follows:

f ′(x) = 1 ln(x+ 1), f ′′(x) =
1

x+ 1
, f ′′′(x) = − 1

(x+ 1)2
, f (4)(x) =

2

(x+ 1)3
.

Now for error bound of linear Lagrange polynomial, we use the formula

|E1| ≤
Mh2

8
,

where h = 2− 1 = 1 and M = max
1≤x≤2

|f ′′(x)| = max
1≤x≤2

∣∣∣∣ 1

x+ 1

∣∣∣∣ = 1

2
. So

|E1| ≤
(1/2)(1)2

8
=

1

16
= 0.0625,

the error bound for the linear Lagrange polynomial.
Similarly, for error bound of quadratic Lagrange polynomial, we use the formula

|E2| ≤
Mh3

9
√
3
,

where h = (2− 1)/2 = 1/2 and M = max
1≤x≤2

|f ′′′(x)| = max
1≤x≤2

∣∣∣∣− 1

(x+ 1)2

∣∣∣∣ = 1

4
. So

|E2| ≤
(1/4)(1/2)3

9
√
3

=
(1/32)

9
√
3

= 0.0020,

the error bound for the quadratic Lagrange polynomial.
Finally, for error bound of cubic Lagrange polynomial, we use the formula

|E3| ≤
Mh4

24
,

where h = (2− 1)/3 = 1/3 and M = max
1≤x≤2

|f (4)(x)| = max
1≤x≤2

∣∣∣∣ 2

(x+ 1)3

∣∣∣∣ = 1

4
. Thus

|E3| ≤
(1/4)(1/3)4

24
=

1

7776
= 0.0001,

the error bound for the cubic Lagrange polynomial. Finally,

|f(0.9)− p1(0.9)| = |1.2195− 1.1954| = 0.0241,

|f(0.9)− p2(0.9)| = |1.2195− 1.2175| = 0.0020,

|f(0.9)− p3(0.9)| = |1.2195− 1.2199| = 0.0004,

are respectively, the absolute error for linear, quadratic and cubic polynomials.
(b) Since we know that the upper bound of error in linear polynomial is

|E1| ≤
Mh2

8
and M =

1

2
,
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therefore,

h2

16
≤ 5× 10−6, or h2 ≤ 80× 10−6.

This gives

h ≤ 0.0089 and n = 112.36 ≈ 113.

As the upper bound of error in quadratic polynomial is

|E2| ≤
Mh3

9
√
3

and M =
1

4
,

therefore,

h3

36
√
3
≤ 5× 10−6, or h3 ≤ 311.7691× 10−6.

This gives

h ≤ 0.0678 and n = 14.7476 ≈ 15.

Finally, as the upper bound of error in cubic polynomial is

|E2| ≤
Mh4

24
and M =

1

4
,

therefore,

h4

96
≤ 5× 10−6, or h4 ≤ 480× 10−6.

This gives

h ≤ 0.1480 and n = 6.7560 ≈ 7.

Thus we need, respectively, 114 points, 16 points and 8 points for the linear, quadratic and cubic
interpolations. •

Example 4.24 Find the cubic Lagrange interpolating polynomial to find the approximation of f(x)

if f(1) = 0.5, f(4/3) = 1, f(5/3) = 2 and f(2) = 3. If |f (4)| ≤ 1

5
for 1 ≤ x ≤ 2, then show that the

error estimate is |f(x)− p3(x)| ≤
1

27
.

Solution. The given number of points are, x0 = 1, x1 = 4/3, x2 = 5/3, x3 = 2,, therefore the cubic
Lagrange interpolating polynomial for the approximation of the given function is:

f(x) = p3(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2) + L3(x)f(x3),

and using the given function values, gives

f(x) = p3(x) = L0(x)(0.5) + L1(x)(1) + L2(x)(2) + L3(x)(3).
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The Lagrange coefficients can be calculate as follows:

L0(1.5) =
(x− 4/3)(x− 5/3)(x− 2)

(1− 4/3)(1− 5/3)(1− 2)
=

(x3 − 5x2 + 74/9x− 40/9)

−2/9
,

L1(1.5) =
(x− 1)(x− 5/3)(x− 2)

(4/3− 1)(4/3− 5/3)(4/3− 2)
=

(x3 − 14/3x2 + 7x− 10/3)

2/27
,

L2(1.5) =
(x− 1)(x− 4/3)(x− 2)

(5/3− 1)(5/3− 4/3)(5/3− 2)
=

(x3 − 13/3x2 + 6x− 8/3)

−2/27
,

L3(1.5) =
(x− 1)(x− 4/3)(x− 5/3)

(2− 1)(2− 4/3)(2− 5/3)
=

(x3 − 4x2 + 47/9x− 20/9)

2/9
.

Putting these values of the Lagrange coefficients in the above equation, we get

f(x) = p3(x) =
1

4
(−9x3 + 45x2 − 62x+ 28),

which is the required cubic interpolating polynomial for the approximation of the function.
Since we know the error of cubic Lagrange polynomial is

f(x)− p3(x) =
f (4)(η(x))

4!
(x− x0)(x− x1)(x− x2)(x− x3),

so

|f(x)− p3(x)| =
|f (4)(η(x))|

4!
|(x− x0)||(x− x1)||(x− x2)||(x− x3)|,

and |f (4)| ≤ 1

5
for 1 ≤ x ≤ 2, we obtain

|f(x)− p3(x)| ≤
1

120
|(x− x0)||(x− x1)||(x− x2)||(x− x3)|.

Now for 1 ≤ x ≤ 2, we deduce that

|x− 1| ≤ 1, |x− 4/3| ≤ 2/3, |x− 5/3| ≤ 2/3, |x− 2| ≤ 1.

Hence, the possible error in the cubic Lagrange polynomial is

|f(x)− p3(x)| ≤
1

120
(1)(2/3)(2/3)(1) = 0.0037.

While the Lagrange interpolation formula is at the heart of polynomial interpolation, it is not, by
any stretch of the imagination, the most practical way to use it. Using this interpolation formula,
there is no restriction on the spacing and order of the tabulating points x0, x1, . . . , xn. Also, the
value of y ( the dependent variable) can be calculated at any point x within minimum and maximum
values of x0, x1, . . . , xn. But just consider for a moment that if we have to add an addition data
point in the previous Example 4.32, in order to find cubic polynomial p3(x), we have to repeat the
whole process again because we can not use the solution of the quadratic polynomial p2(x) in the
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Figure 4.3: Graphical solution of the Example 4.24.

construction of the cubic polynomial p3(x). Therefore one can note that the Lagrange method is
not particular efficient for large values of n, the degree of the polynomial. When n is large and the
data for x is ordered, some improvement in efficiency can be obtained by considering only the data
pairs in the vicinity of the x values for which f(x) is sought.
One will be quickly convinced that there must be better techniques available. In the following
section we discuss some of the more practical approaches to polynomial interpolation. In using
the following scheme the construction of the difference table plays an important role. In using the
Lagrange interpolation scheme there is no need to construct difference table. •

4.2.2 Newton’s General Interpolating Formula

Since we noted in the previous section that for a small number of data point one can easily use
the Lagrange formula of the interpolating polynomial. However, for a large number of data points
there will be many multiplication and more significantly, whenever a new data point is added to
an existing set, the interpolating polynomial has to be completely recalculated. Here, we describe
an efficient way of organizing the calculations so as to overcome these disadvantages.
Let us consider the nth-degree polynomial pn(x) that agrees with the function f(x) at the distinct
numbers x0, x1, . . . , xn. The divided differences of f(x) with respect to x0, x1, . . . , xn are derived
to express pn(x) in the form

f(x) = pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·
+ an(x− x0)(x− x1) · · · (x− xn−1), (4.41)

for appropriate constants a0, a1, . . . , an.
Now to determine the constants, firstly, by evaluating pn(x) at x0, we have

pn(x0) = a0 = f(x0) (4.42)

Similarly, when pn(x) is evaluated at x1, then

pn(x1) = a0 + a1(x1 − x0) = f(x1),

which implies that

a1 =
f(x1)− f(x0)

x1 − x0
. (4.43)
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Divided Differences

Now we express the interpolating polynomial in terms of divided difference.

Firstly, we define the Zeroth divided difference at the point xi by

f [xi] = f(xi), (4.44)

which is simply the value of the function f(x) at xi.

The first-order or first divided difference at the points xi and xi+1 can be defined by

f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi
=

f(xi+1)− f(xi)

xi+1 − xi
. (4.45)

In general, the nth divided difference f [xi, xi+1, . . . , xi+n] is defined by

f [xi, xi+1, . . . , xi+n] =
f [xi+1, xi+2, . . . , xi+n]− f [xi, xi+1, . . . , xi+n−1]

xi+n − xi
. (4.46)

By using this definition, (4.42) and (4.43) can be written as

a0 = f [x0]; a1 = f [x0, x1],

respectively. Similarly, one can have the values of other constants involving in (4.41) such as

a2 = f [x0, x1, x2],
a3 = f [x0, x1, x2, x3],
· · · = · · ·
· · · = · · ·
an = f [x0, x1, . . . , xn].

Putting the values of these constants in (4.41), we get

Table 4.1: Divided difference table for a function y = f(x)
Zero First Second Third

Divided Divided Divided Divided
k xk Difference Difference Difference Difference

0 x0 f [x0]
1 x1 f [x1] f [x0, x1]
2 x2 f [x2] f [x1, x2] f [x0, x1, x2]
3 x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]

f(x) = pn(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

+ · · ·+ f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1), (4.47)
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which can also be written as

f(x) = pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x− x0)(x− x1) · · · (x− xk−1). (4.48)

This type of polynomial is known as the Newton’s interpolatory divided difference polynomial.
Table 4.1 shows the divided difference for a function f(x).

Example 4.25 Construct the fourth divided differences table for f(x) = 4x4 + 3x3 + 2x2 + 10 for
the values x = 3, 4, 5, 6, 7, 8.

Solution. The result are listed in Table 4.2.

From the results in Table 4.2, one can note that the nth divided difference for the nth polynomial
equation is always constant and the (n+1)th divided difference is always zero for the nth polynomial
equation. •

Table 4.2: Divided differences table for f(x) = ex at given points
Zeroth First Second Third Fourth Fifth
Divided Divided Divided Divided Divided Divided

k xk Difference Difference Difference Difference Difference difference

0 3 433
1 4 1258 825
2 5 2935 1677 426
3 6 5914 2979 651 75
4 7 10741 4827 924 91 4
5 8 18058 7317 1245 107 4 0

Using the following MATLAB command one can construct the Table 4.2 as follows:

>> x = [3 4 5 6 7 8];
>> y = 4 ∗ x.ˆ 4+3 ∗ x.ˆ 3+2 ∗ x.ˆ 2+10;
>> D = divdiff(x, y);

Divided differences are now can be used to write the Newton’s interpolating polynomial. Starting
with the constant interpolating polynomial

p0(x) = f [x0].

Linear Newton’s Interpolating Polynomial

The linear Newton’s interpolating polynomial passing through two points (x0, f(x0)) and (x1, f(x1))
can be written as

f(x) = p1(x) = f [x0] + (x− x0)f [x0, x1].
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Quadratic Newton’s Interpolating Polynomial

The quadratic Newton’s interpolating polynomial passing through the points (x0, f(x0)),
(x1, f(x1)) and (x2, f(x2)) can be written in terms of divided differences as

f(x) = p2(x) = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2].

This polynomial can also be written as

f(x) = p2(x) = p1(x) + (x− x0)(x− x1)f [x0, x1, x2],

that is, the interpolating polynomial of degree 2 makes full use of the polynomial of degree 1, simply
adding one extra term to p1(x). This is one of the advantages of the Newton’s polynomial over
Lagrange polynomial.

Cubic Newton’s Interpolating Polynomial

Similarly, the cubic Newton’s interpolating polynomial passing through the points (x0, f(x0)),
(x1, f(x1)), (x2, f(x2)) and (x3, f(x3)) can be written in terms of divided differences as

f(x) = p3(x) = f [x0]+(x−x0)f [x0, x1]+(x−x0)(x−x1)f [x0, x1, x2]+(x−x0)(x−x1)(x−x2)f [x0, x1, x2, x3].

This polynomial can also be written as

f(x) = p3(x) = p2(x) + (x− x0)(x− x1)(x− x2)f [x0, x1, x2, x3],

that is, the interpolating polynomial of degree 3 makes full use of the polynomial of degree 2, simply
adding one extra term to p2(x). Note that using linear polynomial in quadratic polynomial, the
starting point x0 for both polynomials should be same.

Nth Degree Newton’s Interpolating Polynomial

Repeating this entire process again, p3(x), p4(x) and higher degree interpolating polynomials can
be consecutively obtained in the same way. In general, the interpolating polynomial pn(x) passing
through the points (xi, f(xi))(i = 0, 1, . . . , n), can be written in terms of divided differences as

f(x) = pn(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

+ · · ·+ f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1), (4.49)

which can also be written as

f(x) = pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x− x0)(x− x1) · · · (x− xk−1), (4.50)

or

f(x) = pn(x) = f [x0] +
n∑

k=0

f [x0, x1, · · · , xk]
k−1∏
i=0

(x− xi). (4.51)

This type of polynomial is known as the Newton’s interpolatory divided difference polynomial.
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Theorem 4.4 (Newton’s Interpolating Polynomial)

Suppose that x0, x1, . . . , xn are (n + 1) distinct points in the interval [a, b]. There exists a unique
polynomial pn(x) of degree at most n with the property that

f(xi) = pn(xi), for i = 0, 1, . . . , n.

The Newton’s form of this polynomial is

f(x) = pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·+ an(x− x0)(x− x1) · · · (x− xn−1),

where
ak = f [x0, x1, x2, · · · , xk], for k = 0, 1, 2, . . . , n.

•

One can easily show that (4.50) is simply a rearrangement of the Lagrange form defined by (4.14).
For example, the Newton divided difference interpolation polynomial of degree one is

f(x) = p1(x) = f [x0] + f [x0, x1](x− x0),

which implies that

f(x) = p1(x) = f(x0) +

(
f(x1)− f(x0)

x1 − x0

)
(x− x0)

=
(x1 − x0)f(x0) + (x− x0)f(x1)− f(x0)(x− x0)

x1 − x0

=

(
x− x1
x0 − x1

)
f(x0) +

(
x− x0
x1 − x0

)
f(x1),

which is the Lagrange interpolating polynomial of degree one. Similarly, one can show the equivalent
for the nth-degree polynomial.

Example 4.26 Find the Lagrange and the Newton forms of the interpolating polynomial for the
following data

x 0 1 3

f(x) 1 2 3

Write both polynomials in the form a+ bx+ cx2 to verify that they are identical as functions.

Solution. With x0 = 0, x1 = 1 and x2 = 3, we obtain the quadratic Lagrange interpolating
polynomial

f(x) = p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1) +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2)

=
(x− 1)(x− 3)

(0− 1)(0− 3)
(1) +

(x− 0)(x− 3)

(1− 0)(1− 3)
(2) +

(x− 0)(x− 1)

(3− 0)(3− 1)
(3).
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After simplifying, we get

f(x) = p2(x) = 1 +
7

6
x− 1

6
x2,

which is the quadratic Lagrange interpolating polynomial.

Now we construct the divided differences table for the given data points. The result of the divided
difference is listed in Table 4.3.

Since the Newton’s interpolating polynomial of degree 2 is defined as

f(x) = p2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1).

By using Table 4.3, we have

f(x) = p2(x) = 1 + (1)(x− 0) +

(
−1

6

)
(x− 0)(x− 1).

It gives Newton polynomial of the form

f(x) = p2(x) = 1 +
7

6
x− 1

6
x2,

which show that both polynomials are identical as functions. •

Table 4.3: Divided differences table for the Example 4.26
Zeroth Divided First Divided Second Divided

k xk Difference Difference Difference

0 0 1
1 1 2 1

2 3 3
1

2
−1

6

Example 4.27 Show that the Newton’s interpolating polynomial p2(x) of degree 2 satisfies the
interpolation conditions

p2(xi) = f(xi), i = 0, 1, 2.

Solution. Since the Newton’s interpolating polynomial of degree 2 is

f(x) = p2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1).

First take x = x0, we have

p2(x0) = f [x0] + 0 + 0 = f(x0).

Now take x = x1, we have

p2(x1) = f [x0] + f [x0, x1](x1 − x0) + 0 = f(x0) +
f(x1)− f(x0)

x1 − x0
(x1 − x0),
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it gives
p2(x1) = f(x0) + f(x1)− f(x0) = f(x1).

Finally, take x = x2, we have

p2(x2) = f [x0] + f [x0, x1](x2 − x0) + f [x0, x1, x2](x2 − x0)(x2 − x1),

which can be written as

p2(x2) = f [x0] + f [x0, x1](x2 − x0) +
f [x1, x2]− f [x0, x1]

x2 − x0
(x2 − x0)(x2 − x1).

It gives

p2(x2) = f [x0] + f [x0, x1](x2 − x1 + x1 − x0) + f [x1, x2](x2 − x1)− f [x0, x1](x2 − x1),

or
p2(x2) = f [x0] + f [x0, x1](x1 − x0) + f [x1, x2](x2 − x1).

From (4.45), we have

p2(x2) = f [x0] +
f(x1)− f(x0)

x1 − x0
(x1 − x0) +

f(x2)− f(x1)

x2 − x1
(x2 − x1),

which gives
p2(x2) = f(x0) + f(x1)− f(x0) + f(x2)− f(x1) = f(x2).

•

Example 4.28 The cubic Newton’s polynomial p3(x) = 2− (x+ 1) + x(x+ 1)− 2x(x+ 1)(x− 1)
interpolates the first four points in the following table:

x −1 0 1 2 3

f(x) 2 1 2 −7 10

By adding one additional term (3, 10) to p3(x), find Newton’s polynomial p4(x) that interpolates
the whole table and then use it to find the approximation of f(0.5).

Solution. Since the Newton’s polynomial for the whole table data points is the four degree Newton’s
interpolating polynomial and it can be written as

f(x) = p4(x) = p3(x) + x(x+ 1)(x− 1)(x− 2)f [x0, x1, x2, x3].

Now to find to find fourth divided difference f [x0, x1, x2, x3], we have to construct the required
divided differences table. The result are listed in Table 4.4.
Thus the Newton’s interpolating polynomial passing through all the given data points is

f(x) = p4(x) = 2− (x+ 1) + x(x+ 1)− 2x(x+ 1)(x− 1) + 2x(x+ 1)(x− 1)(x− 2).

Thus at x = 0.5, we get
f(0.5) ≈ p4(0.5) = 3.1250,

the required approximation of the function. •
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Table 4.4: Divided differences table for f(x) = ex at given points
Zeroth First Second Third Fourth

Divided Divided Divided Divided Divided
k xk Difference Difference Difference Difference difference

0 -1 2
1 0 1 -1
2 1 2 1 1
3 2 -7 -9 -5 -2
4 3 10 17 13 6 2

Example 4.29 Consider the following table of date points

x 3 1 5 6

f(x) 1 −3 2 4

Find the third divided difference f [3, 1, 5, 6] and use it to find the Newton’s form of the interpolating
polynomial. Find approximation of f(2).

Solution. The third divided differences for the given data points are listed in Table 4.5. The cubic

Table 4.5: Divided difference table for a function y = f(x)
Zero First Second Third

Divided Divided Divided Divided
k xk Difference Difference Difference Difference

0 x0 = 3 f [x0] = 1
1 x1 = 1 f [x1] = −3 f [x0, x1] = 2
2 x2 = 5 f [x2] = 2 f [x1, x2] = 5/4 f [x0, x1, x2] = −3/8
3 x3 = 6 f [x3] = 4 f [x2, x3] = 2 f [x1, x2, x3] = 3/20 f [x0, x1, x2, x3] = 7/40

Newton’s interpolating polynomial passing through the given can be written as

f(x) = p3(x) = f [x0]+(x−x0)f [x0, x1]+(x−x0)(x−x1)f [x0, x1, x2]+(x−x0)(x−x1)(x−x2)f [x0, x1, x2, x3],

so using Table 4.5, we have

f(x) = p3(x) = 1 + 2(x− x0)−
3

8
(x− x0)(x− x1) +

7

40
(x− x0)(x− x1)(x− x2),

or

f(x) = p3(x) =
1

40
[7x3 − 78x2 + 301x− 350].

Thus at x = 2, we get

f(2) ≈ p3(2) =
1

40
[7(2)3 − 78(2)2 + 301(2)− 350] = − 1

10
,

the required approximation of the function at x = 2. •
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Example 4.30 Consider the following table of date points

x −1 3 2 −2 4

f(x) 8 0 −1 15 3

Is this table form a polynomial ? If so, what maximum degree of the polynomial can be obtain to
approximate f(0).

Solution. The result are listed in Table 4.6. Since all the second order differences are the same

Table 4.6: Divided difference table for a function y = f(x)
Zero First Second Third

Divided Divided Divided Divided
k xk Difference Difference Difference Difference

0 x0 = −1 f [x0] = 8
1 x1 = 3 f [x1] = 0 f [x0, x1] = −2
2 x2 = 2 f [x2] = −1 f [x1, x2] = 1 f [x0, x1, x2] = 1
3 x3 = −2 f [x3] = 15 f [x2, x3] = −4 f [x1, x2, x3] = 1 f [x0, x1, x2, x3] = 0
4 x4 = 4 f [x3] = 3 f [x2, x3] = −2 f [x1, x2, x3] = 1 f [x1, x2, x3, x4] = 0

they equal 1, so that means the maximum degree of the polynomial will be quadratic. By using
Table 4.6, it can be written as

f(x) = p2(x) = 8− 2(x+ 1) + 1(x+ 1)(x− 3) = x2 − 4x+ 3.

Thus at x = 0, we get

f(0) ≈ p2(0) = 3,

the required approximation of the function at x = 0.. •

Example 4.31 Repeat the Example 4.30 by adding f(0) = 5, that is, the following table of the data
points of the form

x 0 −1 3 2 −2 4

f(x) 5 8 0 −1 15 3

Solution. The result are listed in Table 4.7. Since we have the value of the fifth order differences,
so that means the maximum degree of the polynomial will be five. By using Table 4.7, it can be
written as

f(x) = p5(x) = 5− 3x+ 0.3333x(x+ 1) + 0.3333x(x+ 1)(x− 3) + 0.1667x(x+ 1)(x− 3)(x− 2)

− 0.0417x(x+ 1)(x− 3)(x− 2)(x+ 2),

f(x) = p5(x) =
1

10000

[
−417x5 + 2501x4 − 416x3 − 5002x2 − 15834x− 50000

]
,

the required fifth degree polynomial. •
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Table 4.7: Divided difference table for a function y = f(x)
k xk ODD 1DD 2DD 3DD 4DD 5DD

0 0 5
1 -1 8 -3
2 3 0 -2 0.3333
3 2 -1 1 1 0.3333
4 -2 15 -4 1 0 0.1667
5 4 3 -2 1 0 0 -0.0417

Example 4.32 Construct the divided differences table for f(x) = x3 + 7x2 + 1 using the values
x = 1, 2, 3, 4, 5. If the approximation of f(3.5) by linear Newton’s polynomial is 134, then find the
best approximation of f(3.5) by using quadratic Newton’s polynomial.

Solution. The result are listed in Table 4.8. Since we know the quadratic Newton’s polynomial has
a form

f(x) = p2(x) = p1(x) + (x− x0)(x− x1)f [x0, x1, x2].

After choosing the best points x0 = 3, x1 = 4, x3 = 5, and Table 4.11, we get

f(3.5) ≈ p2(3.5) = p1(3.5) + (3.5− 3)(3.5− 4)f [3, 4, 5] = 134− (0.25)(19) = 129.25,

and the absolute error

|f(3.5)− p2(3.5)| = |129.625− 129.25| = 0.375.

From the results in Table 4.8, one can note that the nth divided difference for the nth degree
polynomial equation is always constant and the (n+1)th divided difference is always zero for the
nth degree polynomial equation. •

Using the following MATLAB command one can construct the Table 4.8 as follows:

>> x = [1 2 3 4 5]; y = x.ˆ 3+7 ∗ x.ˆ 2+1; D = divdiff(x, y);

Table 4.8: Divided differences table for f(x) = x3 + 7x2 + 1
Zeroth First Second Third Fourth
Divided Divided Divided Divided Divided

k xk Difference Difference Difference Difference Difference

0 1 9
1 2 37 28
2 3 91 54 13
3 4 177 86 16 1
4 5 301 124 19 1 0
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The main advantage of the Newton divided difference form over the Lagrange form is that poly-
nomial pn(x) can be calculated from polynomial pn−1(x) by adding just one extra term, since it
follows from (4.50) that

f(x) = pn(x) = pn−1(x) + f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1). (4.52)

Program 4.2
MATLAB m-file for the Divided Differences of Function
function D=divdiff(x,y)
m = length(x);D = zeros(m,m);D(:, 1) = y(:);
for j=2:m; for i=j:m
D(i, j) = (D(i, j − 1)−D(i− 1, j − 1))/(x(i)− x(i− j + 1)); end; end

Example 4.33 (a) Construct the divided difference table for the function f(x) = ln(x+2) in the
interval 0 ≤ x ≤ 3 for the stepsize h = 1.

(b) Use Newton divided difference interpolation formula to construct the interpolating polynomials
of degree 2 and degree 3 to approximate ln(3.5).

(c) Compute error bounds for the approximations in part (b).

Solution. (a) The results of the divided differences are listed in Table 4.9.

(b) Firstly, we construct the second degree polynomial p2(x) by using the quadratic Newton inter-
polation formula as follows

f(x) = p2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1),

then with the help of the divided differences Table 4.9, we get

f(x) = p2(x) = 0.6932 + 0.4055(x− 0)− 0.0589(x− 0)(x− 1),

which implies that

f(x) = p2(x) = −0.0568x2 + 0.4644x+ 0.6932 and p2(1.5) = 1.2620,

with possible absolute error

|f(1.5)− p2(1.5)| = |1.2528− 1.2620| = 0.0072.

Now to construct the cubic interpolatory polynomial p3(x) that fits at all four points. We only have
to add one more term to the polynomial p2(x):

f(x) = p3(x) = p2(x) + f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2),

and this gives

f(x) = p3(x) = p2(x) + 0.0089(x3 − 3x2 + 2x) and f(1.5) ≈ p3(1.5) = 1.2620− 0.0033 = 1.2587,
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Table 4.9: Divide differences table for the Example 4.33
Zeroth First Second Third
Divided Divided Divided Divided

k xk Difference Difference Difference Difference

0 0 0.6932
1 1 1.0986 0.4055
2 2 1.3863 0.2877 - 0.0589
3 3 1.6094 0.2232 - 0.0323 0.0089

with possible absolute error

|f(1.5)− p3(1.5)| = |1.2528− 1.2587| = 0.0059.

We note that the estimated value of f(1.5) by cubic interpolating polynomial is more closer to the
exact solution than the quadratic polynomial.
(c) Now to compute the error bounds for the approximations in part (b), we use the error formula
(4.30). For the polynomial p2(x), we have

|f(x)− p2(x)| =
|f ′′′(η(x))|

3!
|(x− x0)(x− x1)(x− x2)|.

The third derivative of the given function is given as

f ′′′(x) =
2

(x+ 2)3
and |f ′′′(η(x))| =

∣∣∣ 2

(η(x) + 2)3

∣∣∣, for η(x) ∈ (0, 2).

Then

M = max
0≤x≤2

∣∣∣∣ 2

(x+ 2)3

∣∣∣∣ = 0.25,

and
|f(1.5)− p2(1.5)| ≤ (0.375)(0.25)/6 = 0.0156,

which is the required error bound for the approximation p2(1.5).
Since the error bound for the cubic polynomial p3(x) is

|f(x)− p3(x)| =
|f (4)(η(x))|

4!
|(x− x0)(x− x1)(x− x2)(x− x3)|.

Taking the fourth derivative of the given function, we obtain

f (4)(x) =
−6

(x+ 2)4
and |f (4)(η(x))| =

∣∣∣ −6

(η(x) + 2)4

∣∣∣, for η(x) ∈ (0, 3).

Since
|f (4)(0)| = 0.375 and |f (4)(3)| = 0.0096,

so |f (4)(η(x))| ≤ max
0≤x≤3

∣∣∣∣ −6

(x+ 2)4

∣∣∣∣ = 0.375 and it gives

|f(1.5)− p3(1.5)| ≤ (0.5625)(0.375)/24 = 0.0088,

which is the required error bound for the approximation p3(1.5). •
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Note that in the above Example 4.33, we used the value of the quadratic polynomial p2(1.5)
in calculating the cubic polynomial p3(1.5). It was possible because the initial value for both
polynomials was the same as x0 = 0. But the situation will be quite different if the initial point for
both polynomials will be different. For example, if we have to find the approximate value of ln(4.5),
then the suitable data points for the quadratic polynomial will be x0 = 1, x1 = 2, x2 = 3 and for
the cubic polynomial will be x0 = 0, x1 = 1, x2 = 2, x3 = 3. So for getting the best approximation
of ln(4.5) by the cubic polynomial p3(2.5), we can not use the value of the quadratic polynomial
p2(2.5) in the cubic polynomial p3(2.5). The best way is to use the following cubic polynomial form

p3(2.5) = f [0] + (2.5− 0)f [0, 1] + (2.5− 0)(2.5− 1)f [0, 1, 2]
+ (2.5− 0)(2.5− 1)(2.5− 2)f [0, 1, 2, 3],

which gives

p3(2.5) = 0.6932 + 1.0137− 0.2208 + 0.0166 = 1.5027.

Using the following MATLAB command one can reproduce the results of the Example 4.33 as
follows:

>> x = [0 1 2 3]; y = log(x+ 2);
>> x0 = 1.5; Y = Ndivf(x, y, x0);

Program 4.3
MATLAB m-file for Linear Newton’s Interpolation Method
function Y=Ndivf(x,y,x0)
m = length(x);D = zeros(m,m);D(:, 1) = y(:);
for j=2:m; for i=j:m;
D(i, j) = (D(i, j− 1)−D(i− 1, j− 1))/(x(i)−x(i− j+1)); end; end;
Y = D(m,m) ∗ ones(size(x0));
for i = m− 1 : −1 : 1; Y = D(i, i) + (x0− x(i)) ∗ Y ; end

Example 4.34 Consider the points x0 = 0, x1 = 0.4, x2 = 0.7 and for a function f(x), the divided
differences are f [x2] = 6, f [x1, x2] = 10, f [x0, x1, x2] = 50/7. Use linear and quadratic Newton’s
polynomials to find the approximations of f(0.5).

Solution. First we construct the complete divided differences table for the given data points. Since
we know that the second divided difference is defined as

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
.

Using given values, we have
50

7
=

10− f [x0, x1]

0.7− 0
.

Solving for f [x0, x1], we have, f [x0, x1] = 5. Now we need to find the values of the zeroth divided
differences f [x0] and f [x1] which can be obtained by using the first-order divided differences f [x0, x1]
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and f [x1, x2]. Firstly, we find the value of f [x1] as follows

f [x1, x2] =
f [x2]− f [x1]

x2 − x1

10 =
6− f [x1]

0.7− 0.4

f [x1] = 6− 10(0.3) = 3.

The other zeroth divided difference f [x0] can be computed as follows

f [x0, x1] =
f [x1]− f [x0]

x1 − x0

5 =
3− f [x0]

0.4− 0

f [x0] = 3− 5(0.4) = 1,

which completes the divided differences table as shown by Table 4.10. Using the linear Newton’s

Table 4.10: Divided differences table for the Example 4.34
Zeroth Divided First Divided Second Divided

k xk Difference Difference Difference

0 0 1
1 0.4 3 5

2 0.7 6 10
50

7

polynomial and the divided differences Table 4.10, we get

f(0.5) ≈ p1(0.5) = 3 + (10)(0.5− 0.4) = 3 + 1 = 4,

and then the quadratic Newton’s polynomial and the divided differences Table 4.10, we have

f(0.5) ≈ p2(0.5) = 1 + 5(0.5− 0) +
50

7
(0.5− 0)(0.5− 0.4) = 3.8571,

the approximations of f(0.5) using linear and quadratic Newton’s polynomials respectively. •

Example 4.35 Let x0 = 0.5, x1 = 0.7, x2 = 0.9, x3 = 1.1, x4 = 1.3, x5 = 1.5. Construct the divided
difference table for the function f(x) = ex. Use Newton polynomial p5(x) of degree five to approxi-
mate the function f(x) = ex at x = 0.6 when p4(0.6) = 1.9112. Also, compute an error bound for
your approximation.

Solution. Since the fifth-degree Newton polynomial p5(x) is defined as

f(x) = p5(x) = p4(x) + (x− x0)(x− x1)(x− x2)(x− x3)(x− x4)f [x0, x1, x2, x3, x4, x5],
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and using the given data points, we have

f(0.6) ≈ p5(0.6) = p4(0.6) + (0.1)(−0.1)(−0.3)(−0.5)(−0.7)f [0.5, 0.7, 0.9, 1.1, 1.3, 1.5].

Now we compute the fifth-order divided differences of the function as follows: Thus

Table 4.11: Divided differences table for f(x) = ex at the given points
Zeroth First Second Third Fourth Fifth
Divided Divided Divided Divided Divided Divided

k xk Difference Difference Difference Difference Difference difference

0 0.5 1.6487
1 0.7 2.0138 1.8252
2 0.9 2.4596 2.2293 1.0102
3 1.1 3.0042 2.7228 1.2339 0.3728
4 1.3 3.6693 3.3257 1.5071 0.4553 0.1032
5 1.5 4.4817 4.0620 1.8408 0.4553 0.1260 0.0228

p5(0.6) = 1.9112 + (0.0010)(0.0228) = 1.9112228.

Since the error bound for the fifth-degree polynomial p5(x) is

|f(x)− p5(x)| =
|f (6)(η(x))|

6!
|(x− x0)(x− x1)(x− x2)(x− x3)(x− x4)(x− x5)|.

Taking the sixth derivative of the given function, we have

f (6)(x) = ex,

and
|f (6)(η(x))| = e(η(x)), for η(x) ∈ (0.5, 1.5).

Since
|f (6)(0.5)| = 1.6487 and |f (6)(1.5)| = 4.4817,

so
|f (6)(η(x))| ≤ max

0.5≤x≤1.5
|ex| = 4.4817,

therefore, we get
|f(0.6)− p5(0.6)| ≤ (0.00095)(4.4817)/720 = 0.000006,

which is the required error bound for the approximation p5(0.6). •

Example 4.36 If f(x) = p(x)q(x), then show that

f [x0, x1] = p(x1)q[x0, x1] + q(x0)p[x0, x1].

Also, find the values of p[0, 1] and q[0, 1] when f [0, 1] = 4, f(1) = 5 and p(1) = q(0) = 2.
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Solution. The first-order divided difference can be written as

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
.

Now using f(x1) = p(x1)q(x1) and f(x0) = p(x0)q(x0) in the above formula, we have

f [x0, x1] =
p(x1)q(x1)− p(x0)q(x0)

x1 − x0
.

Adding and subtracting the term p(x1)q(x0), we obtain

f [x0, x1] =
p(x1)q(x1)− p(x1)q(x0) + p(x1)q(x0)− p(x0)q(x0)

x1 − x0
,

which can be written as

f [x0, x1] = p(x1)
q(x1)− q(x0)

x1 − x0
+ q(x0)

p(x1)− p(x0)

x1 − x0
.

Thus

f [x0, x1] = p(x1)q[x0, x1] + q(x0)p[x0, x1].

Given x0 = 0, x1 = 1, f(1) = 5, and f [0, 1] = 4, we obtain

f [0, 1] =
f(1)− f(0)

1− 0
= f(1)− f(0),

or

f [0, 1] = 4 = 5− f(0), gives f(0) = 1,

Also

f(1) = 5 = p(1)q(1) = 2q(1), gives q(1) = 5/2,

and

f(0) = 1 = p(0)q(0) = 2p(0), gives p(0) = 1/2.

Hence

p[0, 1] =
p(1)− p(0)

1− 0
= p(1)− p(0) = 2− 1/2 = 3/2,

and

q[0, 1] =
q(1)− q(0)

1− 0
= q(1)− q(0) = 5/2− 2 = 1/2.

In the case of the Lagrange interpolating polynomial we derived an expression for the truncation
error in the form given by (4.30), namely, that

Rn+1(x) =
f (n+1)(η(x))

(n+ 1)!
Ln(x),

where Ln(x) = (x− x0)(x− x1) · · · (x− xn).
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For the Newton’s divided difference formula, we obtain, following the same reasoning as above

f(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + · · ·
+ f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1)
+ f [x0, x1, . . . , xn, x](x− x0)(x− x1) · · · (x− xn−1)(x− xn),

which can also be written as

f(x) = pn(x) + f [x0, x1, . . . , xn, x](x− x0)(x− x1) · · · (x− xn), (4.53)

or

f(x)− pn(x) = Ln(x)f [x0, x1, . . . , xn, x]. (4.54)

Since the interpolation polynomial agreeing with f(x) at x0, x1, . . . , xn is unique, it follows that
these two error expressions must be equal. •

Theorem 4.5 Let pn(x) be the polynomial of degree at most n that interpolates a function f(x) at
a set of n+ 1 distinct points x0, x1, . . . , xn. If x is a point different from the points x0, x1, . . . , xn,
then

f(x)− pn(x) = f [x0, x1, . . . , xn, x]
n∏

j=0

(x− xj). (4.55)

One can easily shows that the relationship between the divided differences and the derivative. From
(4.46), we have

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
.

Now apply the Mean Value Theorem to the above equation implies that when the derivative f ′

exists, then we have

f [x0, x1] = f ′(η(x)),

for unknown point η(x) lies between x0 and x1. Following theorem generalizes this result. •

Theorem 4.6 (Divided Differences and Derivatives)

Suppose that f ∈ Cn[a, b] and x0, x1, . . . , xn are distinct number in [a, b]. Then for some point
η(x) in the interval (a, b) spanned by x0, . . . , xn exists with

f [x0, x1, . . . , xn] =
f (n)(η(x))

n!
. (4.56)

Example 4.37 Let f(x) = x lnx, and the points x0 = 1.1, x1 = 1.2, x2 = 1.3. Compute the best
approximate value for unknown point η(x) by using the relation (4.56).

Solution. Given f(x) = x lnx, then

f(1.1) = 1.1 ln(1.1) = 0.1048,
f(1.2) = 1.2 ln(1.2) = 0.2188,
f(1.3) = 1.3 ln(1.3) = 0.3411.
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Since the relation (4.56) for the given data points is

f [x0, x1, x2] =
f ′′(η(x))

2!
. (4.57)

To compute the value of the left-hand side of the relation (4.57), we have to find the values of the
first-order divided differences

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
=

0.2188− 0.1048

1.2− 1.1
= 1.1400,

and

f [x1, x2] =
f(x2)− f(x1)

x2 − x1
=

0.3411− 0.2188

1.3− 1.2
= 1.2230.

Using these values, we can compute the second-order divided difference as

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

1.2230− 1.1400

1.3− 1.1
= 0.4150.

Now we calculate the right-hand side of the relation (4.57) for the given points and which gives us

f ′′(x0)

2
=

1

2x0
= 0.4546,

f ′′(x1)

2
=

1

2x1
= 0.4167,

f ′′(x2)

2
=

1

2x2
= 0.3846.

We note that the left-hand side of (4.57) is nearly equal to the right-hand side when x1 = 1.2.
Hence the best approximate value of η(x) is 1.2. •

Properties of Divided Differences

Now we discuss some of the nice properties of the divided differences as follows:

1. Divided difference of a constant is zero. Let f(x) = a, then

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
=

a− a

x1 − x0
= 0.

2. Divided difference of h(x) = af(x), a is constant, is the divided difference of f(x) multiplied
by a. Let h(x) = af(x), then

h[x0, x1] =
h(x1)− h(x0)

x1 − x0
=

af(x1)− af(x0)

x1 − x0
= a

f(x1)− f(x0)

x1 − x0
= af [x0, x1].

3. Divided difference obeys linear property.
Let F (x) = af1(x) + bf2(x), then

F [x0, x1] =
F [x0]− F [x1]

x0 − x1
=

(af1(x0) + bf2(x0))− (af1(x1) + bf2(x1))

x0 − x1

=
(af1(x0)− af1(x1)) + (bf1(x0)− bf2(x1))

x0 − x1

= a

(
f1(x0)− f1(x1)

x0 − x1

)
+ b

(
f2(x0)− bf2(x1)

x0 − x1

)

= af1[x0, x1] + bf2[x0, x1].
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4. If pn(x) is a polynomial of degree n, then the divided differences of order n is always constant
and (n+ 1), (n+ 2), . . . are identically zero.

5. The divided difference is a symmetric function of its arguments, that is, f [x0, x1] = f [x1, x0].
Thus if (t0, t1, . . . , tn) is a permutation of (x0, x1, . . . , xn), then

f [t0, t1, . . . , tn] = f [x0, x1, . . . , xn],

This can be verify easily, since the divided differences on the both sides of the above equation
are the coefficient of xn in the polynomial of degree at most n that interpolates f(x) at the
n + 1 distinct points t0, t1, . . . , tn and x0, x1, . . . , xn. These two polynomials are, of course,
the same.

6. The interpolating polynomial of degree n can be obtained by adding a single term to the
polynomial of degree (n− 1) expressed in the Newton form.

pn(x) = pn−1(x) + f [x0, . . . , xn]
n−1∏
j=0

(x− xj).

7. The divided difference f [x0, . . . , xn−1] is the coefficient of xn−1 in the polynomial that inter-
polates (x0, f0), (x1, f1), . . . , (xn−1, fn−1).

8. A sequence of divided differences may be constructed recursively from the formula

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
,

and the zeroth-order divided difference is defined by

f [xi] = f(xi), i = 0, 1, . . . , n.

9. The another useful property of the divided difference can be obtained by using the definitions
of the divided differences (4.46) and (4.49) which can be extended to the case where some
or all of the points xi are coincident, provided that f(x) is sufficiently differentiable. For
example, define

f [x0, x0] = lim
ϵ→0

f [x0, x0 + ϵ] = lim
ϵ→0

f(x0 + ϵ)− f(x0)

ϵ
= f ′(x0). (4.58)

f [x0, x0, x0] = lim
ϵ→0

f [x0, x0, x0 + ϵ] = lim
ϵ→0

f(x0, x0 + ϵ)− f [x0, x0]

ϵ

= lim
ϵ→0

f(x0+ϵ)−f(x0)
ϵ − f ′(x0)

ϵ

= lim
ϵ→0

f(x0 + ϵ)− f(x0)− ϵf ′(x0)

ϵ2

(
0

0
form

)

= lim
ϵ→0

f ′(x0 + ϵ)− f ′(x0)

2ϵ
(using L′Hôpital’s rule)

=
1

2

[
lim
ϵ→0

f ′(x0 + ϵ)− f ′(x0)

ϵ

]
=

f ′′(x0)

2
.
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For an arbitrary, n ≥ 1, let all the points in the Theorem 4.6 approach x0. This leads to the
definition

f [x0, x0, . . . , x0] =
f (n)(x0)

n!
,

where the left hand side denotes the nth divided difference, all of whose points are x0.

Example 4.38 Let f(x) = e−x and let x0 = 0, x1 = 1. Using (4.56) and the above divide difference
property 9, calculate f [x0, x1, x0], f [x0, x0, x1, x1] and f [x0, x1, x1, x1].

Solution. By using (4.56), we have

f [x0, x0] =
1

1!
f ′(x0) = f ′(x0).

Therefore

f [x0, x1, x0] = f [x0, x0, x1] =
f [x0, x1]− f [x0, x0]

x1 − x0
=

f [x0, x1]− f ′(x0)

x1 − x0
.

Using definition of the first-order divided difference of f(x) at points x0 and x1, we have

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
, gives f [0, 1] =

0.368− 1

1− 0
= −0.632.

Also
f ′(x0) = −e−x0 and f ′(0) = −1.

Using these values, we obtain the value of the second divided difference as

f [0, 1, 0] =
−0.632 + 1

1− 0
= 0.368.

Now to find the value of the third divided difference which is defined as

f [x0, x0, x1, x1] =
f [x0, x1, x1]− f [x0, x0, x1]

x1 − x0
,

and after simplifying, we have

f [x0, x0, x1, x1] =
f ′(x1)− 2f [x0, x1] + f ′(x0)

(x1 − x0)2
.

Thus

f [0, 0, 1, 1] =
−0.368− 2(−0.632)− 1

(1− 0)2
= −0.014.

Finally, the other third divided difference is defined as

f [x0, x1, x1, x1] =
f [x1, x1, x1]− f [x0, x1, x1]

x1 − x0
,

or

f [x0, x1, x1, x1] =
f ′′(x1)/2!− (f ′(x1)− f [x0, x1])/(x1 − x0)

x1 − x0
.



Chapter Four Polynomial Interpolation and Approximation 231

After simplifying, we have

f [x0, x0, x1, x1] =
(x1 − x0)f

′′(x1)− 2f ′(x1) + 2f [x0, x1]

2(x1 − x0)2
.

By using the value of f ′′(1) = e−1 = 0.368, we have

f [0, 1, 1, 1] =
(1− 0)(0.368)− 2(−1) + 2(−0.632)

2(1− 0)2
= 1.104,

the required value. •

Example 4.39 Let f(x) = ln(x+ 2).
(a) Compute the divided differences f [0, 0, 1], f [0, 1, 1] and f [0, 0, 1, 1].
(b) Compute the approximation of ln(2.5) by using cubic Newton’s interpolating polynomial.

Solution. (a) Using f(x) = ln(x+2) and x0 = 0, x1 = 1, we find the third-order divided difference
f [0, 0, 1] as follows:

f [x0, x0, x1] =
f [x0, x1]− f [x0, x0]

x1 − x0
=

f [x0, x1]− f ′(x0)

x1 − x0
,

and so using the given values, we get

f [0, 0, 1] =
f [0, 1]− f ′(0)

1− 0
= f(1)− f(0)− f ′(0) = 1.0986− 0.6932− 0.5 = −0.0946.

Similarly, we obtain

f [0, 1, 1] =
f [1, 1]− f [0, 1]

1− 0
= f ′(1)− f(1) + f(0) = 0.3333− 1.0986 + 0.6932 = −0.0721,

and

f [0, 0, 1, 1] =
f [0, 1, 1]− f [0, 0, 1]

1− 0
= −0.0721 + 0.0946 = 0.0225.

(b) The cubic Newton’s interpolating polynomial has the following form

p3(x) = f [x0]+(x−x0)f [x0, x0]+(x−x0)(x−x0)f [x0, x0, x1]+(x−x0)(x−x0)(x−x1)f [x0, x0, x1, x1],

so using values of part (a) and x = 0.5, we get

ln(2.5) ≈ p3(0.5) = f(0)+(0.5−0)f ′(0)+(0.5−0)(0.5−0)f [0, 0, 1]+(0.5−0)(0.5−0)(0.5−1)f [0, 0, 1, 1],

or
ln(2.5) ≈ p3(0.5) = 0.6932 + 0.25− 0.0237 + 0.0090 = 0.9286,

the required approximation of ln(3.5) and

| ln(2.5)− p3(0.5)| = |0.9163− 0.9285| = 0.0122,

the possible absolute error in the approximation. •
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Example 4.40 Let f(x) = x3 and α ̸= 1, then find the value of α such that f [α, 1, 1] = 1.

Solution. Using f(x) = x3 and x0 = α, x1 = 1, we find the third-order divided difference f [α, 1, 1]
as follows:

f [x0, x1, x1] =
f [x1, x1]− f [x0, x1]

x1 − x0
=

f ′(x1)− f [x0, x1]

x1 − x0
,

and so using the given values, we get

1 = f [α, 1, 1] =
f ′(1)− f [α, 1]

1− α
, gives 1− α = 3− f [α, 1].

From this we get

2 + α =
f [1]− f [α]

1− α
=

1− α3

1− α
= (α2 + α+ 1),

and after simplifying, we get α2 = 1, which means α = −1 (because α ̸= 1) is the required value. •

Example 4.41 If f(x) =
2

x
, find the third-order divided difference f [a, b, c, d] of the function f(x)

and then show that the third divided difference f [1, 1, 1, 2] = −1.

Solution. Since we know that

f [a, b] =
f(b)− f(a)

b− a
=

2

b
− 2

a
b− a

=
2(a− b)

ab(b− a)
= − 2

ab
,

and

f [a, b, c] =
f [b, c]− f [a, b]

c− a
=

− 2

bc
+

2

ab
c− a

=
2(c− a)

abc(c− a)
= − 2

abc
.

Thus

f [a, b, c, d] =
f [b, c, d]− f [a, b, c]

d− a
=

2

bcd
− 2

abc
d− a

= − 2

abcd
,

is the required third-order divided difference f [a, b, c, d] of the given function. using this result, can
find the value of f [1, 1, 1, 2] as follows:

f [1, 1, 1, 2] = − 2

(1)(1)(1)(2)
= −1,

is the value of the third-order divided difference f [1, 1, 1, 2] of the given function.
We can also reproduced this value of f [1, 1, 1, 2] by using divide difference property 6 as follows:

f [1, 1, 1, 2] =
f [1, 1, 2]− f [1, 1, 1]

2− 1
= f [1, 1, 2]− f [1, 1, 1]

=
f [1, 2]− f [1, 1]

2− 1
− f ′′(1)

2!
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=
f(2)− f(1)

2− 1
− f ′(1)

1!
− f ′′(1)

2!

= f(2)− f(1)− f ′(1)− f ′′(1)

2
.

Since f(x) =
2

x
, so we have, f ′(x) = − 2

x2
and f ′′(x) =

4

x3
. Thus

f [1, 1, 1, 2] = f(2)− f(1)− f ′(1)− f ′′(1)

2
= 1− 2 + 2− 2 = −1,

is the required value. •

4.3 Interpolation with Spline Functions

In the previous sections we studied the use of interpolation polynomials for approximating the
values of the functions on closed intervals. An alternative approach is divide the interval into a
collection of subintervals and construct a different approximating polynomial on each subinterval.
Approximation by polynomial of this type is called piecewise polynomial approximation. Here, we
will discuss some of the examples of a piecewise curve fitting techniques; the use of the piecewise
linear interpolation.

Definition 4.1 (Spline Function)

Let a = x0 < x1 < x2 · · · < xn = b. A function s : [a, b] → R is a spline or spline function of degree
m with points x0, x1, . . . , xn if:
1. A function s is a piecewise polynomial such that, on each subinterval [xk, xk+1], s has degree at
most m.
2. A function s is m− 1 times differentiable everywhere. •

A spline is a flexible drafting device that can be constrained to pass smoothly through a set of
plotted data points. Spline functions are a mathematical tool which is an adaptation of this idea.

4.3.1 Piecewise Linear Interpolation

It is the one of the simplest piecewise polynomial interpolation for the approximation of the function,
called linear spline. The linear spline is continuous function and the basic of it is simply connect con-
secutive points with straight lines. Consider the set of seven data points (x0, y0), (x1, y1), (x2, y2),
(x3, y3), (x4, y4), (x5, y5) and (x6, y6) which define six subintervals. These intervals are denoted as
[x0, x1], [x1, x2], [x2, x3], [x3, x4], [x4, x5] and [x5, x6], where x0, x1, x2, x3, x4, x5, and x6 are distinct
x-values. If we use a straight line on each subinterval (see Figure 4.4) then we can interpolate the
data with a piecewise linear function, where

sk(x) = pk(x) =
(x− xk+1)

(xk − xk+1)
yk +

(x− xk)

(xk+1 − xk)
yk+1,
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Figure 4.4: Linear spline.

or

sk(x) = yk +
(yk+1 − yk)

(xk+1 − xk)
(x− xk).

It gives us
sk(x) = Ak +Bk(x− xk), (4.59)

where the values of the coefficients Ak and Bk are given as

Ak = yk and Bk =
(yk+1 − yk)

(xk+1 − xk)
. (4.60)

Note that the linear spline must be continuous at given points x0, x1, . . . , xn and

s(xk) = f(xk) = yk, for k = 0, 1, . . . , n.

Example 4.42 Find the values of unknown coefficients a and b so that the following function is a
linear spline.

s(x) =


a− x, 0 ≤ x ≤ 1,
3x− b, 1 ≤ x ≤ 2,
2x+ 1, 2 ≤ x ≤ 3.

Solution. Since the given function is a linear spline, so s must be continuous at the internal points
1 and 2. Continuity at x = 1 implies that

lim
x→1−

s(x) = lim
x→1+

s(x),

lim
x→1−

a− x = lim
x→1+

3x− b,

a− 1 = 3− b,

and it gives an equation of the from
a+ b = 4.

Now continuity at x = 2 implies that

lim
x→2−

s(x) = lim
x→2+

s(x),

lim
x→2−

3x− b = lim
x→2+

2x+ 1,

6− b = 5,
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and it gives b = 1. Using this value of b, we get a = 3, and so

s(x) =


3− x, 0 ≤ x ≤ 1,
3x− 1, 1 ≤ x ≤ 2,
2x+ 1, 2 ≤ x ≤ 3,

is the linear spline function. •

Example 4.43 Find the linear splines which interpolates the following data

xk 1 2 3 4

yk 1.0 0.67 0.50 0.40

Find the approximation of the function y(x) =
2

x+ 1
at x = 2.9. Compute absolute error.

Solution. Given x0 = 1.0, x1 = 2.0, x2 = 3.0, x3 = 4.0, then using (4.60), we have

A0 = y0 = 1.0, A1 = y1 = 0.67, A2 = y2 = 0.50, A3 = y3 = 0.4,

and

B0 =
(y1 − y0)

(x1 − x0)
=

(0.67− 1.0)

(2.0− 1.0)
= −0.33,

B1 =
(y2 − y1)

(x2 − x1)
=

(0.50− 0.67)

(3.0− 2.0)
= −0.17,

B2 =
(y3 − y2)

(x3 − x2)
=

(0.40− 0.50)

(4.0− 3.0)
= −0.10.

Now using (4.59), the linear splines for three subintervals are define as

s(x) =


s0(x) = 1.0− 0.33(x− 1.0) = 1.33− 0.33x, 1 ≤ x ≤ 2,
s1(x) = 0.67− 0.17(x− 2.0) = 1.01− 0.17x, 2 ≤ x ≤ 3,
s2(x) = 0.50− 0.10(x− 3.0) = 0.80− 0.10x, 3 ≤ x ≤ 4.

The value x = 2.9 lies in the interval [2, 3], so

f(2.9) ≈ s1(2.9) = 1.01− 0.17(2.9) = 0.517.

Also,

|f(2.9)− s1(2.9)| = |0.513− 0.517| = 0.004,

the required absolute error. •

Using MATLAB command window, we can reproduce above results as follows:

>> X = [1 2 3 4]; Y = [1 0.67 0.50 0.40];
>> x = 2.9; s = LSpline(X,Y, x);
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Program 4.4
MATLAB m-file for the Linear Spline Functions
function LS=LSpline(X,Y,x)
n=length(X); for i=n-1:-1:1
D = x−X(i); if (D >= 0); break; end; end
D = x−X(i); if (D < 0); i = 0;D = x−X(1); end
M = (Y (i+ 1)− Y (i))/(X(i+ 1)−X(i));LS = Y (i) +M ∗D; end

4.4 Exercises

1. Use the Lagrange interpolation formula based on the points x0 = 0, x1 = 1, x2 = 2.5 to find

the equation of the quadratic polynomial to approximate f(x) =
2

x+ 2
at x = 2.3.

2. Let f(x) = cos(xπ/4), where x is in radian. Use the quadratic Lagrange interpolation formula
based on the points x0 = 0, x1 = 1, x2 = 2 and x3 = 4 to find the polynomial p2(x) to
approximate the function f(x) at x = 0.5 and x = 3.5.

3. Let f(x) = x+ 2ln(x+ 2). Use the quadratic Lagrange interpolation formula based on the
points x0 = 0, x1 = 1, x2 = 2 and x3 = 3 to approximate f(0.5) and f(2.8). Also, compute
the error bounds for your approximations.

4. Consider the function f(x) = ex
2
and x = 0, 0.25, 0.5, 1. Then use the suitable Lagrange

interpolating polynomial to approximate f(0.75). Also, compute an error bound for your
approximation.

5. Let f(x) = x4 − 2x + 1. Use cubic Lagrange interpolation formula based on the points
x0 = −1, x1 = 0, x2 = 2 and x3 = 3 to find the polynomial p3(x) to approximate the function
f(x) at x = 1.1. Also, compute an error bound for your approximation.

6. Construct the Lagrange interpolation polynomials for the following functions and compute
the error bounds for the approximations:

(a) f(x) = x+ 2x+1, x0 = 0, x1 = 1, x2 = 2.5, x3 = 3.
(b) f(x) = 3x3 + 2x2 + 1, x0 = 1, x1 = 2, x2 = 3.
(c) f(x) = cosx− sinx, x0 = 0, x1 = 0.25, x2 = 0.5, x3 = 1.

7. Consider the following table:

x 0 1 2 3

f(x) 2.0 3.72 8.39 21.06

(a) Construct divided difference table for the tabulated function.
(b) Compute the Newton interpolating polynomials p2(x) and p3(x) at x = 2.2.
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8. Consider the following table:

x 1 2 3 4 5

f(x) 3.60 1.80 1.20 0.90 0.72

(a) Construct divided difference table for the tabulated function.
(b) Compute the Newton interpolating polynomials p3(x) and p4(x) at

x = 2.5, 3.5.

9. Consider the following table of the f(x) =
√
x:

x 4 5 6 7 8

f(x) 2.0000 2.2361 2.4495 2.6458 2.8284

(a) Construct the divided difference table for the tabulated function.
(b) Find the Newton interpolating polynomials p3(x) and p4(x) at x = 5.9.
(c) Compute error bounds for your approximations in part (b).

10. Let f(x) = exsinx, with x0 = 0, x1 = 2, x2 = 2.5, x3 = 4, x4 = 4.5. Then
(a) Construct the divided-difference table for the given data points.
(b) Find the Newton divided difference polynomials p2(x), p3(x) and p4(x) at x = 2.4.
(c) Compute error bounds for your approximations in part (b).
(d) Compute the actual error.

11. Show that if x0, x1 and x2 are distinct then

f [x0, x1, x2] = f [x1, x2, x0] = f [x2, x0, x1]

12. The divided difference form of the interpolating polynomial p3(x) is

p3(x) = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2, x0]
+ (x− x0)(x− x1)(x− x2)f [x0, x1, x2, x3]

By expressing these divided differences in terms of the function values f(xi)(i = 0, 1, 2, 3),
verify that p3(x) does pass through the points (xi, f(xi))(i = 0, 1, 2, 3).

13. Let f(x) = x2 + ex and x0 = 0, x1 = 1. Use the divided differences to find the value of the
second divided difference f [x0, x1, x0].

14. Which of the following functions are linear splines ?

(a) s(x) =


x, 0 ≤ x ≤ 1
2x− 1, 1 ≤ x ≤ 2
x+ 2, 2 ≤ x ≤ 4

(b) s(x) =


2− x, 0 ≤ x ≤ 1
2x− 1, 1 ≤ x ≤ 2
x+ 1, 2 ≤ x ≤ 4
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15. Find the linear spline which interpolates the data:

(0, 3.5), (1, 3.9), (2, 4.7), (3, 5.8)

What are its values at x = 0.55, 1.15 and 2.5 ?

16. Find the linear spline which interpolates the data:

(0, 0), (0.2, 0.18), (0.3, 0.26), (0.5, 0.41)

What are its values at x = 0.15, 0.25, and 0.45 ?

17. Find the linear splines which interpolate the following data:

(0, 0), (1, 1), (16, 2), (81, 3)

Compare interpolated values at x = 0.5, 11.5, and 30.5 to f(x) = 4
√
x.

18. Find the linear splines which interpolate the following data:

(0, 1), (2, 0.9976), (3, 0.9945), (4, 0.9903)

Compare interpolated values at x = 1.5, 2.5, and 3.5 to f(x) = cos(2x).

19. Find the linear splines which interpolate the following data:

(0, 1), (3, 2), (8, 3), (15, 4)

Compare interpolated values at x = 2.5, 5.5, and 10.5 to f(x) =
√
x+ 1.



Chapter 5

Numerical Differentiation and
Integration

5.1 Introduction

In this chapter we deal with techniques for approximating numerically the two fundamental opera-
tions of the calculus, differentiation and integration. Both of these problems may be approached in
the same way. Although both numerical differentiation and numerical integration formulas will be
discussed, it should be noted that numerical differentiation is inherently much less accurate than
numerical integration, and its application is generally avoided whenever possible. Nevertheless, it
has been used successfully in certain applications.

Engineers are frequently confronted with the problem of differentiating functions which are defined
in tabular or graphical form rather than as explicit functions. The interpretation of experimentally
obtained data is a good example of this. A similar situation involves the integration of functions
which have explicit forms that are difficult or impossible to integrate in terms of elementary func-
tions. Graphical techniques, employing the construction of tangents to curves and the estimation
of areas under curves, are commonly used in solving such problems, when great accuracy is not
a prerequisite for the results. However, there are occasions when a higher degree of accuracy is
desired, and, for these, various numerical methods are available.

Important Points of the Chapter 5

I. In this chapter we shall find the approximate solutions of derivative (first- and second-order) and
antiderivative (definite integral only).

II. Given data points should be equally spaced only (length of each subinterval should be same).
Smaller the length of the interval better the approximation.

III. Numerical methods for differentiation and integration can be derived using Lagrange interpo-
lating polynomial at equally-spaced data points.

IV. Error term for each numerical method will be discuss which helps to look for the maximum
239
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error in the approximation.

V. Two-point formula (for first derivative) and three-point formulas (for first and second deriva-
tives) for numerical differentiation and Trapezoidal and Simpson’s rules for numerical integration
will be discuss here.

5.2 Numerical Differentiation

Firstly, we discuss the numerical process for approximating the derivative of the function f(x) at
the given point. A function f(x), known either explicitly or as a set of data points, is replaced by
a simpler function. A polynomial p(x) is the obvious choice of approximating function, since the
operation of differentiation is then easily performed. The polynomial p(x) is differentiated to obtain
p′(x), which is taken as an approximation to f ′(x) for any numerical value of x. Geometrically, this
is equivalent to replacing the slope of f(x), at x, by that of p(x). Here, numerical differentiation
are derived by differentiating interpolating polynomials.

We now turn our attention to the numerical process for approximating the derivative of a function
f(x) at x, that is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, provided the limit exits. (5.1)

In principle, it is always possible to determine an analytic form (5.1) of a derivative for a given func-
tion. In some cases, however, the analytic form is very complicated, and a numerical approximation
of the derivative may be sufficient for our purpose.

The formula (5.1) provides an obvious way to get an approximation to f ′(x); simply compute

Dhf(x) =
f(x+ h)− f(x)

h
, (5.2)

for small values of stepsize h, called numerical differentiation formula for (5.1).

Numerical differentiation is a much less satisfactory process because the seemingly obvious approx-
imations are not always a good as they seem. Therefore, this process should, for this reason, be
avoided if at all possible. We study it mainly as a means to end of solving differential equations
by various numerical methods, based on the approximations we shall obtain for the derivatives of
a function. We study it also, because it often happens that the thing we want to differentiate is
not known function. We may, for instance, be given a table of speeds of a body observed at certain
times, and wish to estimate its acceleration at these time.

Numerical differentiation is useful in estimating the derivative of a function when either function
f(x) is difficult to differentiate easily, or it is not known as explicit expression in x but the values
of the function are described only in terms of tabulated data. Generally, it is considered that
numerical differentiation is basically an unstable process which means that small errors made in the
initial computations may cause greatly magnified errors in the final result. In fact, we may not
always expect reasonable results even when the original data are known to be more accurate.

Here, we shall derive some formulas for estimating derivatives but we should avoid as far as possible,
numerically calculating derivatives higher than the first, as the error in their evaluation increases
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with their orders. In spite of some inherent shortcomings, numerical differentiation is important
to derive formulas for solving integrals and the numerical solution of both ordinary and partial
differential equations.
There are three different approaches for deriving the numerical differentiation formulas. The first
approach is based on the Taylor expansion of a function about a point, the second is to use difference
operators, and the third approach to numerical differentiation is to fit a curve with a simple form to a
function, and then to differentiate the curve-fit function. For example, the polynomial interpolation
or spline methods of the Chapter 4 can be used to fit a curve to tabulated data for a function and
the resulting polynomial or spline can then be differentiated. When a function is represented by a
table of values, the most obvious approach is to differentiate the Lagrange interpolation formula

f(x) = pn(x) +
f (n+1)(η(x))

(n+ 1)!

n∏
i=0

(x− xi), (5.3)

where the first term pn(x) of the right hand side is the Lagrange interpolating polynomial of degree
n and the second term is its error term.
It is interesting to note that the process of numerical differentiation may be less satisfactory than
interpolation the closeness of the ordinates of f(x) and pn(x) on the interval of interest does not
guarantee the closeness of their respective derivatives. Note that the derivation and analysis of
formulas for numerical differentiation is considerably simplifies when the data is equally spaced. It
will be assumed, therefore, that the points xi are given by xi = x0 + ih, (i = 0, 1, . . . , n) for some
fixed tabular interval h.

5.3 Numerical Differentiation Formulas

Here, we will find the approximation of first and second derivative of a function at a given arbi-
trary point x. For the approximation of the first derivative of a function we will use two-point
formula, three-point formula, and Richardson’s extrapolation formula. While for second derivative
approximation we will discuss three-point formula only.

5.3.1 First Derivative Numerical Formulas

To obtain general formula for approximation of the first derivative of a function f(x), we consider
that {x0, x1, . . . , xn} are (n+1) distinct equally spaced points in some interval I and function f(x)
is continuous and its (n + 1)th derivatives exist in the given interval, that is, f ∈ Cn+1(I). Then
by differentiating (5.3) with respect to x and at x = xk, we have

f ′(xk) =
n∑

i=0

f(xi)L
′
i(xk) +

f (n+1)(η(xk))

(n+ 1)!

n∏
i=0

i ̸=k

(xk − xi). (5.4)

The formula (5.4) is called the (n+1)-point formula to approximate f ′(xk). From this formula we
can obtain many numerical differentiation formulas but here we shall discuss only three formulas to
approximate (5.1) at given point x = xk. First one is called the two-point formula which we can get
from (5.4) by taking n = 1 and k = 0. The second numerical differentiation formula is called the
three-point formula which can be obtained from (5.4) when n = 2 and k = 0, 1, 2. Finally, we will
discuss the five-point formula to approximate (5.1) by using (5.4) when n = 4 and k = 0, 1, 2, 3, 4.
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Figure 5.1: Forward-difference approximations.

Two-point Formula

Consider two distinct points x0 and x1, then, to find the approximation of (5.1), the first derivative
of a function at given point, take x0 ∈ (a, b), where f ∈ C2[a, b] and that x1 = x0 + h for some
h ̸= 0 that is sufficiently small to ensure that x1 ∈ [a, b]. Consider the linear Lagrange interpolating
polynomial p1(x) which interpolate f(x) at the given points is

f(x) = p1(x) =

(
x− x1
x0 − x1

)
f(x0) +

(
x− x0
x1 − x0

)
f(x1). (5.5)

By taking derivative of (5.5) with respect to x and at x = x0, we obtain

f ′(x)|x=x0 ≈ p′1(x)|x=x0 = − f(x0)

x0 − x1
+

f(x1)

x1 − x0
.

Simplifying the above expression, we have

f ′(x0) ≈ −f(x0)

h
+

f(x0 + h)

h
,

which can be written as

f ′(x0) ≈
f(x0 + h)− f(x0)

h
= Dhf(x0). (5.6)

It is called the two-point formula for smaller values of h. For h > 0, sometime the formula (5.6) is
also called the two-point forward-difference formula because it involves only differences of a func-
tion values forward from f(x0). The two-point forward-difference formula has a simple geometric
interpretation as the slope of the forward secant line, as shown in Figure 5.1.
If h < 0, then the formula (5.6) is also called the two-point backward-difference formula, which can
be written as

f ′(x0) ≈
f(x0)− f(x0 − h)

h
. (5.7)

In this case, a value of x behind the point of interest is used. The formula (5.7) is useful in cases
where the independent variable represents time. If x0 denotes the present time, the backward-
difference formula uses only present and past samples, it does not rely on future data samples that
may not yet be available in a real time application.
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Figure 5.2: Backward-difference approximations.

The geometric interpretation of the two-point backward-difference formula, as the slope of the
backward secant line, is shown in Figure 5.2.

Example 5.1 Let f(x) = ex and h = 0.1, h = 0.01. Use two-point forward difference formula to
approximate f ′(2). For which value of h we have better approximation and why ?

Solution. Using the formula (5.6), with x0 = 2, we have

f ′(2) ≈ f(2 + h)− f(2)

h
.

Then for h = 0.1, we get

f ′(2) ≈ f(2.1)− f(2)

0.1
≈ e2.1 − e2

0.1
= 7.7712.

Similarly, by using h = 0.01, we obtain

f ′(2) ≈ (e2.01 − e2)

0.01
= 7.4262.

Since the exact solution of f ′(2) = e2 is, 7.3891, so the corresponding actual errors with h = 0.1
and h = 0.01 are, −0.3821 and −0.0371 respectively. This shows that the approximation obtained
with h = 0.01 is better than the approximation with h = 0.1. •

The above results can be easily achieved with MATLAB commands as follows:

>> x0 = 2.0; h = 10.ˆ −(1 : 2); df = (exp(x0 + h)− exp(x))./h;

Similarly, by using the formula (5.7), with x0 = 2, we have

f ′(2) ≈ f(2)− f(2− h)

h
,
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then for h = 0.1, we have

f ′(2) ≈ f(2)− f(1.9)

0.1
=

e2 − e1.9

0.1
= 7.0316.

For h = 0.01, we have

f ′(2) ≈ e2 − e1.99

0.01
= 7.3522.

The corresponding actual errors with h = 0.1 and h = 0.01 are, 0.3575 and 0.0369 respectively,
which shows that the approximation with h = 0.01 is better than the approximation with h = 0.1.
Note that the both errors for h = 0.1 and h = 0.01 by using the backward-difference‘ formula
is better than the forward-difference formula for the same values of h. The MATLAB symbolic
toolbox contains commands for obtaining the symbolic derivative of symbolically written function
which are as follows:

>> syms x;
>> f = x.ˆ 2. ∗ cos(x); df = diff(f, 1); subs(ddf, 1);

Error Term of Two-point Formula

The formula (5.6) is not very useful, therefore, let us attempt to find the error involves in our first
numerical differentiation formula (5.6). Consider the error term for the linear Lagrange polynomial
which can be written as

f(x)− p1(x) =
f ′′(η(x))

2!

1∏
i=0

(x− xi),

for some unknown point η(x) ∈ (x0, x1). By taking derivative of above equation with respect to x
and at x = x0, we have

f ′(x0) − p′1(x0) =

(
d

dx
f ′′(η(x))

∣∣∣
x=x0

)
(x− x0)(x− x1)

2

+
f ′′(η(x0))

2

(
d

dx
(x2 − x(x0 + h)− xx0 + x0(x0 + h))

∣∣∣
x=x0

)
.

Since
d

dx
f ′′(η(x)) = 0 only if x = x0, so error in the forward-difference formula (5.6) is

EF (f, h) = f ′(x0)−Dhf(x0) = −h

2
f ′′(η(x)), where η(x) ∈ (x0, x1), (5.8)

which is called the error formula of the two-point formula (5.6). Hence the formula (5.6) can be
written as

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(η(x)), where η ∈ (x0, x1). (5.9)

The formula (5.9) is more useful than the formula (5.6) because now on a large class of function,
an error term is available along with the basic numerical formula. Note that the error term in
(5.9) has two parts; a power of h and a factor involving some higher-order derivative of f(x) which



Chapter Five Numerical Differentiation and Integration 245

gives us an indication of the class of function to which the error estimate is applicable. The h term
in the error makes the entire expression converge to zero as h approaches zero. The rapidity of
this convergence will depend on the power of h. These remarks apply to many error estimates in
numerical analysis. There will usually be a power of h and a factor telling us to what smoothness
class of the function must belong so that the estimate is valid.

Note that the formula (5.9) may also be derived from the Taylor’s theorem. Expansion of function
f(x1) about x0 as far as term involving h2 gives

f(x1) = f(x0) + hf ′(x0) +
h2

2!
f ′′(η(x)). (5.10)

From this the result follows by subtracting f(x0) both sides and dividing both sides by h and put
x1 = x0 + h.

Note that for a linear function, f(x) = ax + b, the approximate formula (5.6) is exact; that is, it
yields the correct value of first derivative of the function f(x) for any nonzero value of h.

Example 5.2 Let f(x) = x3 be defined in the interval [0.2, 0.3]. Use the error formula (5.8) of
two-point formula for the approximation of f ′(0.2) to compute a value of η.

Solution. Since the exact value of the first derivative of the function at x0 = 0.2 is

f ′(x) = 3x2 and f ′(0.2) = 3(0.2)2 = 0.12,

and the approximate value of f ′(0.2) using two point formula is

f ′(0.2) ≈ f(0.3)− f(0.2)

0.1
=

(0.3)3 − (0.2)3

0.1
= 0.19,

so error E can be calculated as

E = 0.12− 0.19 = −0.07.

Using the formula (5.6) and f ′′(η) = 6η, we have

−0.07 = −0.1

2
6η,

and solving for η, we get η = 0.233. •

Example 5.3 Let f(x) = x2 cosx and h = 0.1. Then
(a) Compute the approximate value of f ′(1) using forward difference two-point formula (5.6).
(b) Compute the error bound for your approximation using the formula (5.8).
(c) Compute the absolute error.
(d) What best maximum value of stepsize h required to obtain the approximate value of f ′(1) correct

to 10−2.

Solution. (a) Given x0 = 1, h = 0.1, then by using the formula (5.6), we have

f ′(1) ≈ f(1 + 0.1)− f(1)

0.1
=

f(1.1)− f(1)

0.1
= Dhf(1).
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Thus

f ′(1) ≈ (1.1)2 cos(1.1)− (1)2 cos(1)

0.1
≈ 0.5489− 0.5403

0.1
= 0.0860,

which is the required approximation of f ′(x) at x = 1.

(b) To find the error bound, we use the formula (5.8), which gives

EF (f, h) = −0.1

2
f ′′(η(x)), where η(x) ∈ (1, 1.1),

or

|EF (f, h)| =
∣∣∣− 0.1

2

∣∣∣|f ′′(η(x))|, for η ∈ (1, 1.1).

The second derivative f ′′(x) of the function can be found as

f(x) = x2 cosx, gives f ′′(x) = (2− x2) cosx− 4x sinx.

The value of the second derivative f ′′(η(x)) cannot be computed exactly because η(x) is not known.
But one can bound the error by computing the largest possible value for |f ′′(η(x))|. So bound |f ′′|
on [1, 1.1] can be obtain

M = max
1≤x≤1.1

|(2− x2) cosx− 4x sinx| = 3.5630,

at x = 1.1. Since |f ′′(η(x))| ≤ M , therefore, for h = 0.1, we have

|EF (f, h)| ≤
0.1

2
M = 0.05(3.5630) = 0.1782,

which is the possible maximum error in our approximation.

The MATLAB symbolic toolbox contains commands for obtaining the symbolic derivative of sym-
bolically written function which are as follows:

>> syms x;
>> f = x.ˆ 2. ∗ cos(x); df = diff(f, 1); ddf = diff(f, 2); subs(df, 1);

(c) Since the exact value of the derivative f ′(1) is 0.2392, therefore the absolute error |E| can be
computed as follows:

|E| = |f ′(1)−Dhf(1)| = |0.2391− 0.0860| = 0.1531.

(d) Since the given accuracy required is 10−2, so

|EF (f, h)| = | − h

2
f ′′(η(x))| ≤ 10−2,

for η(x) ∈ (1, 1.1). This gives

h

2
M ≤ 10−2, or h ≤ (2× 10−2)

M
.

Using M = 3.5630, we obtain

h ≤ 2

356.3000
= 0.0056,

which is the best maximum value of h to get the required accuracy. •
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The truncation error in the approximation of (5.9) is roughly proportional to stepsize h used in its
computation. The situation is made worse by the fact that the round-off error in computing the

approximate derivative (5.6) is roughly proportion to
1

h
. The overall error therefore is of the form

E = ch+
δ

h
,

where c and δ are constants. This places serve restriction on the accuracy that can be achieved
with this formula.
Now we discuss little more about the role of the round-off error in the numerical differentiation.
Consider the formula (5.6) which is

f ′(x0) ≈
f(x0 + h)− f(x0)

h
= Dhf(x0).

If h is small, then we can reasonably assume that f(x0) and f(x0 + h) have similar magnitude
and, therefore, similar round-off errors. Let the actual function values used in the computation be
denoted by f̃0 and f̃1 with

f(xi)− f̃i = ϵi, for i = 0, 1,

the errors in the function values. Thus the actual quantity calculated is

D̃hf(x0) =
f̃1 − f̃0

h
.

For the error in this quantity, replace f̃i by f(xi)− ϵi, for i = 0, 1, we obtain

f ′(x0)− D̃hf(x0) = f ′(x0)−
(f(x1)− ϵ1)− (f(x0)− ϵ0)

h

= f ′(x0)−
f(x1)− f(x0)

h
+

ϵ1 − ϵ0
h

.

Then the overall error is given by

|f ′(x0)− D̃hf(x0)| ≤
∣∣∣f ′(x0)−

f(x1)− f(x0)

h

∣∣∣+ ∣∣∣ϵ1 − ϵ0
h

∣∣∣ ≤ ∣∣∣h
2
f ′′(η(x0))

∣∣∣+ 2δ

h
,

the errors ϵ0, ϵ1 are generally random in some interval [−δ, δ].
It is the second term on the right side of this error bound which leads to the growth of error as
h → 0. If

|f(xi)− f̃i| ≤
1

2
× 10−t = δ,

and t is the required decimal digits of accuracy, then the maximum rounding error in the two-point

formula is
10−t

h
. While the truncation error

∣∣∣h
2
f ′′(η(x0))

∣∣∣ decreases with h, the rounding error

increases. The total error, E(h), therefore has a minimum with respect to h. If

E(h) = Etrunc + Eround =
h

2
M +

10−t

h
,
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where M = max
x0≤x≤x1

|f ′′(η(x0))|, then

dE

dh
=

M

2
− 10−t

h2
.

A minimum of E(h) satisfies the equation
dE

dh
= 0, that is

dE

dh
=

M

2
− 10−t

h2
= 0.

solving for h, we obtain

h = hopt =

√
2

M
× 10−t,

which gives the optimal value for h. Thus the minimum error is

E(hopt) =
M

2

√
2

M
× 10−t +

10−t√
2

M
× 10−t

=
√
2M × 10−t.

Example 5.4 Consider f(x) = x2 cosx and x0 = 1. To show the effect of rounding error, the
values f̃i are obtained by rounding f(xi) to seven significant digits, compute the total error for
h = 0.1 and also, find the optimum h.

Solution. Given |ϵi| ≤
1

2
× 10−7 = δ and h = 0.1. Now to calculate the total error, we use

E(h) =
h

2
M +

10−t

h
,

where
M = max

1≤x≤1.1
|(2− x2) cosx− 4x sinx| = 3.5630.

Then

E(h) =
0.1

2
(3.5630) +

10−7

0.1
= 0.17815 + 0.000001 = 0.178151.

Now to find the optimum h, we use

h = hopt =

√
2

M
× 10−t =

√
2

3.5630
× 10−7 = 0.00024,

which is the smallest value of h, below which the total error will begin to increase.

Note that for
h = 0.00024, E(h) = 0.000844,
h = 0.00015, E(h) = 0.000934,
h = 0.00001, E(h) = 0.010018.

A similar effect is present for all numerical differentiation formulas.
The numerical differentiation formulas are often judge by the power of h in the error term. Since h
is always small, so the higher power of h involve will give better approximation. In this assessment,
the formula (5.9) acts poorly, as the error term involved h of power one. A superior formulas can
be obtained by deriving some useful three-point formulas together with error terms which involved
h2 using the formula (5.4) by taking n = 2. •
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Three-point Central Difference Formula

Consider the quadratic Lagrange interpolating polynomial p2(x) to the three distinct equally spaced
points x0, x1, and x2, with x1 = x0 + h and x2 = x0 + 2h, for smaller value h, we have

f(x) = p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2).

Now taking the derivative of the above expression with respect to x and then take x = xk, for
k = 0, 1, 2, we have

f ′(xk) ≈ (2xk − x1 − x2)

(x0 − x1)(x0 − x2)
f(x0) +

(2xk − x0 − x2)

(x1 − x0)(x1 − x2)
f(x1)

+
(2xk − x0 − x1)

(x2 − x0)(x2 − x1)
f(x2). (5.11)

Three different numerical differentiation formulas can be obtained from (5.11) by putting xk = x0,
or xk = x1 or xk = x2, which are use to find the approximation of the first derivative of a function
defined by the formula (5.1) at the given point. Firstly, we take xk = x1, then the formula (5.11)
becomes

f ′(x1) ≈ (2x1 − x1 − x2)

(x0 − x1)(x0 − x2)
f(x0) +

(2x1 − x0 − x2)

(x1 − x0)(x1 − x2)
f(x1)

+
(2x1 − x0 − x1)

(x2 − x0)(x2 − x1)
f(x2).

After, simplifying, and replacing x0 = x1 − h, x2 = x1 + h, we obtain

f ′(x1) ≈
f(x1 + h)− f(x1 − h)

2h
= Dhf(x1). (5.12)

It is called the three-point central-difference formula for finding the approximation of the first
derivative of a function at the given point x1.
Note that the formulation of the formula (5.12) uses data points that are centered about the point
of interest x1 even though it does not appear in the right side of (5.12).

The geometric interpretation of the central-difference formula is shown in Figure 5.3.

Error Formula of Central Difference Formula

The formula (5.12) is not very useful, therefore, let us attempt to find the error involve in the
formula (5.12) for numerical differentiation. Consider the error term for the quadratic Lagrange
polynomial which can be written as

f(x)− p2(x) =
f ′′′(η(x))

3!

2∏
i=0

(x− xi),
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Figure 5.3: Central-difference approximations.

for some unknown point η(x) ∈ (x0, x2). By taking derivative of the above equation with respect
to x and then taking x = x1, we have

f ′(x1)− p′2(x1) =

(
d

dx
f ′′′(η(x))

∣∣∣
x=x1

)
(x− x0)(x− x1)(x− x2)

6

+
f ′′′(η(x1))

6

(
(x− x1)(x− x2) + (x− x0)(x− x2) + (x− x0)(x− x1)

∣∣∣
x=x1

)
.

Since
d

dx
f ′′′(η(x)) = 0 only if x = x1, therefore the error formula of the central-difference formula

(5.12) can be written as

EC(f, h) = f ′(x1)−Dhf(x1) = −h2

6
f ′′′(η(x1)), (5.13)

where η(x1) ∈ (x1 − h, x1 + h). Hence the formula (5.12) can be written as

f ′(x1) =
f(x1 + h)− f(x1 − h)

2h
− h2

6
f ′′′(η(x1)), (5.14)

where η(x1) ∈ (x1 − h, x1 + h). The formula (5.14) is more useful than the formula (5.12) because
now on a large class of function, an error term is available along with the basic numerical formula.

Note that for a quadratic function, f(x) = ax2 + bx + c, the approximate formula (5.12) is exact;
that is, it yields the correct value of first derivative of a function f(x) for any nonzero value of h.

Example 5.5 Let f(x) = x2 + cosx and h = 0.1. Then
(a) Compute the approximate value of f ′(1) by using three-point central difference formula (5.12).
(b) Compute the error bound for your approximation using (5.13).
(c) Compute the absolute error.
(d) What is the best maximum value of stepsize h required to obtain the approximate value of

f ′(1) correct to 10−2.
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Solution. (a) Given x1 = 1, h = 0.1, then using the formula (5.12), we have

f ′(1) ≈ f(1 + 0.1)− f(1− 0.1)

2(0.1)
=

f(1.1)− f(0.9)

0.2
= Dhf(1).

Then

f ′(1) ≈ [(1.1)2 + cos(1.1)]− [(0.9)2 + cos(0.9)]

0.2
≈ 1.6636− 1.4316

0.2
= 1.1600.

(b) By using the error formula (5.13), we have

EC(f, h) = −(0.1)2

6
f ′′′(η(x1)), for η(x1) ∈ (0.9, 1.1),

or

|EC(f, h)| =
∣∣∣− (0.1)2

6

∣∣∣|f ′′′(η(x1))|, for η(x1) ∈ (0.9, 1.1).

Since
f ′′′(η(x1)) = sin η(x1).

This formula cannot be computed exactly because η(x1) is not known. But one can bound the error
by computing the largest possible value for |f ′′′(η(x1))|. So bound |f ′′′| on [0.9, 1.1] is

M = max
0.9≤x≤1.1

| sinx| = 0.8912,

at x = 1.1. Thus, for |f ′′′(η(x1))| ≤ M and h = 0.1, gives

|EC(f, h)| ≤
0.01

6
M =

0.01

6
(0.8912) = 0.0015,

which is the possible maximum error in our approximation.

(c) Since the exact value of the derivative f ′(1) is, 0.2391, therefore, the absolute error |E| can be
computed as follows

|E| = |f ′(1)−Dhf(1)| = |(2− sin 1)− 1.1600| = |1.1585− 1.1600| = 0.0015.

(d) Since the given accuracy required is 10−2, so

|EC(f, h)| =
∣∣∣− h2

6
f ′′′(η(x1))

∣∣∣ ≤ 10−2,

for η(x1) ∈ (0.9, 1.1). Then
h2

6
M ≤ 10−2.

Solving for h and taking M = 0.8912, we obtain

h2 ≤ 6

0.8912
= 0.0673, and h ≤ 0.2594.

So the best value of h is 0.25. •
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To get above results using the MATLAB commands, we do the following:

>> x0 = 1.0; h = 0.1;
>> df = (x0 + h).ˆ 2 + cos(x0 + h)− (x0− h).ˆ 2 + cos(x0− h)./(2. ∗ h);

Note that the formula (5.14) may also be derived from the Taylor’s theorem. The second degree
Taylor’s expansion f(x) about x1, for f(x1 + h) and f(x1 − h), gives

f(x1 + h) = f(x1) + hf ′(x1) +
h2

2!
f ′′(x1) +

h3

3!
f ′′′(η1(x)),

and

f(x1 − h) = f(x1)− hf ′(x1) +
h2

2!
f ′′(x1)−

h3

3!
f ′′′(η2(x)).

Subtracting above two equations, the results is

f(x1 + h)− f(x1 − h) = 2hf ′(x1) +
h3

3!

[
f ′′′(η1(x)) + f ′′′(η2(x))

]
.

Since f ′′′(x) is continuous, the intermediate value theorem can be used to find a value of η(x) so
that

f ′′′(η1(x)) + f ′′′(η2(x))

2
= f ′′′(η(x)),

which is the required formula (5.14). •

Three-point Forward and Backward Difference Formulas

Similarly, the two other three-point formulas can be obtained by taking xk = x0 and xk = x2 in
the formula (5.11). Firstly, by taking xk = x0 in the formula (5.11) and then after simplifying, we
have

f ′(x0) ≈
−3f(x0) + 4f(x0 + h)− f(x0 + 2h)

2h
= Dhf(x0), (5.15)

which is called the three-point forward-difference formula which is use to approximate the formula
(5.1) at given point x = x0. The error term of this approximation formula can be obtain in the
similar way as we obtained for the central-difference formula and it is

EF (f, h) =
h2

3
f ′′′(η(x0)), (5.16)

where η(x0) ∈ (x0, x0 + 2h). Similarly, taking xk = x2 in the formula (5.11), and after simplifying,
we obtain

f ′(x2) ≈
f(x2 − 2h)− 4f(x2 − h) + 3f(x2)

2h
= Dhf(x2), (5.17)

which is called the three-point backward-difference formula which is use to approximate the formula
(5.1) at given point x = x2. It has the error term of the form

EB(f, h) =
h2

3
f ′′′(η(x2)), (5.18)

where η(x2) ∈ (x2 − 2h, x2).
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Note that the backward-difference formula (5.17) can be obtained from the forward-difference for-
mula by replacing h with −h. Also, note that the error in (5.12) is approximately half the error
in (5.15) and (5.17). This is reasonable since in using the central-difference formula (5.12) data
is being examined on both sides of point x1, and for others in (5.15) and (5.17) only on one side.
Note that in using the central-difference formula, a function f(x) needs to be evaluated at only
two points, whereas in using the other two formulas, we need the values of a function at three
points. The approximations in using the formulas (5.15) and (5.17) are useful near the ends of the
required interval, since the information about a function outside the interval may not be available.
Thus the central-difference formula (5.12) is superior to both the forward-difference formula (5.15)
and the backward-difference formula (5.17). The central-difference represents the average of the
forward-difference and the backward-difference.

Example 5.6 Consider the following table for set of data points

x 1 1.6 2 2.3 2.8 3 3.9 4 4.8 5

f(x) 0.00 0.47 0.69 0.83 1.03 1.10 1.36 1.39 1.57 1.61

(a) Use three-point formula for smaller value of h to find approximation of f ′(3).
(b) The function tabulated is lnx, find error bound and absolute error for the approximation

of f ′(3).
(c) What is the best maximum value of stepsize h required to obtain the approximate value of f ′(3)

within the accuracy 10−4.

Solution. (a) For the given table of data points, we can use all three-points formulas as for the
central difference we can take

x0 = x1 − h = 2, x1 = 3, x2 = x1 + h = 4, gives h = 1,

for the forward difference formula we can take

x0 = 3, x1 = x0 + h = 3.9, x2 = x0 + 2h = 4.8, gives h = 0.9,

and for the backward difference formula we can take

x0 = x2 − 2h = 1.6, x1 = x2 − h = 2.3, x2 = 3, gives h = 0.7.

Since we know that smaller the vale of h better the approximation of the derivative of the function,
therefore, for the given problem, backward difference is the best formula to find approximation of
f ′(3) as

f ′(3) ≈ f(1.6)− 4f(2.3) + 3f(3)

2(0.7)
≈ [0.47− 4(0.83) + 3(1.10)]

1.4
= 0.3214.

(b) Using error term of backward difference formula, we have

EB(f, h) =
h2

3
f ′′′(η), or |EB(f, h)| ≤

h2

3
|f ′′′(η)|.

Taking |f ′′′(η(x2))| ≤ M = max
1.6≤x≤3

|f ′′′(x)| = max
1.6≤x≤3

|2/x3| = 0.4883. Thus using h = 0.7, we obtain

|EB(f, h)| ≤
(0.7)2

3
(0.4883) = 0.0798,
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the required error bounds for the approximations. To compute the absolute error we do as

|E| = |f ′(3)− 0.3214| = |0.3333− 0.3214| = 0.0119.

(c) Since the given accuracy required is 10−4, so

|EB(f, h)| =
∣∣∣h2
3
f ′′′(η)

∣∣∣ ≤ 10−4,

for η ∈ (1.6, 3). Then
h2

3
M ≤ 10−4.

Solving for h by taking M = 0.4883, we obtain

h2 ≤ 3× 10−4

0.4883
= 0.0248,

and so h = 0.025 the best maximum value of h. •

Example 5.7 Use the best three-point formula to find approximation of f ′(1.5) using the following
table for set of data points

x 1 1.6 2 2.3 2.8 3 3.9 4 4.8 5

f(x) 0.00 0.47 0.69 0.83 1.03 1.10 1.36 1.39 1.57 1.61

Solution. The best three-point formula for this problem is the central difference because this formula
does not need the value of f(1.5) which is not given in the table while the other two need this value.
Since x1 = 1.5, so by taking x1 + h = 2 and x1 − h = 1, gives h = 0.5, we have

f ′(1.5) ≈ (f(2)− f(1))

2(0.5)
=

(0.69− 0.0)

1
= 0.69,

the required approximation of f ′(1.5). •

Example 5.8 Use the three-point formulas (5.12), (5.15) and (5.17) to approximate the first
derivative of the function f(x) = ex at x = 2, take h = 0.1. Also, compute the error bound
for each approximation.

Solution. Given f(x) = ex and h = 0.1, then

Central-difference formula:

f ′(2) ≈ (f(2.1)− f(1.9))

2h
=

(e2.1 − e1.9)

0.2
= 7.4014.

Forward-difference formula:

f ′(2) ≈ −3f(2) + 4f(2.1)− f(2.2)

2h
≈ −3e2 + 4e2.1 − e2.2

0.2
= 7.3625.
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Backward difference formula:

f ′(2) ≈ f(1.8)− 4f(1.9) + 3f(2)

2h
≈ e1.8 − 4e1.9 + 3e2

0.2
= 7.3662.

Since the exact solution of the first derivative of the given function at x = 2 is 7.3891, so the
corresponding actual errors are, −0.0123, 0.0266 and 0.0229 respectively. This shows that the ap-
proximate solution got by using the central-difference formula is closer to exact solution as compared
with the other two difference formulas.
The error bounds for the approximations got by (5.12), (5.15), and (5.17) are as follows:

Central-difference formula:

EC(f, h) = −h2

6
f ′′′(η(x1)), or |EC(f, h)| ≤

h2

6
|f ′′′(η(x1))|.

Taking |f ′′′(η(x1))| ≤ M = max1.9≤x≤2.1 |ex| = e2.1 and h = 0.1, we obtain

|EC(f, h)| ≤
(0.1)2

6
e2.1 = 0.0136.

Forward-difference formula:

EF (f, h) =
h2

3
f ′′′(η(x0)), or |EF (f, h)| ≤

h2

3
|f ′′′(η(x0))|.

Taking |f ′′′(η(x0))| ≤ M = max
2≤x≤2.2

|ex| = e2.2 and h = 0.1, we obtain

|EF (f, h)| ≤
(0.1)2

3
e2.2 = 0.0301.

Backward difference formula:

EB(f, h) =
h2

3
f ′′′(η(x2)), or |EB(f, h)| ≤

h2

3
|f ′′′(η(x2))|.

Taking |f ′′′(η(x2))| ≤ M = max1.8≤x≤2 |ex| = e2 and h = 0.1, we obtain

|EB(f, h)| ≤
(0.1)2

3
e2 = 0.0246.

Thus we got the required error bounds for the approximations. •

Example 5.9 Let f(x) = (x lnx+ x) and x = 0.9, 1.3, 1.6, 2.1, 2.5, 3.1. Then
(a) Find the approximate value of f ′(1.9) using three-point formula for smaller value of h.
(b) Compute the error bound for your approximation.
(c) Compute the absolute error.
(d) What is the best maximum value of stepsize h required to obtain the approximate value of f ′(1.9)

within the accuracy 10−2.
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Solution. (a) For the given data points we can use all three-points difference formulas with
central difference at x0 = 1.3, x1 = 1.9, x2 = 2.5, forward difference at x0 = 1.9, x1 = 2.5, x2 = 3.1,
and backward difference at x0 = 1.3, x1 = 1.6, x2 = 1.9. But the value of h = 0.3 for the backward
difference formula is smaller than both the other formulas with h = 0.6. So the best three-point
formula for this case is the following backward difference formula

f ′(x2) ≈
f(x2 − 2h)− 4f(x2 − h) + 3f(x2)

2h
= Dhf(x2).

Thus using x2 = 1.9, x2 − h = 1.6, and x2 − 2h = 1.3, we have

f ′(1.9) ≈ f(1.3)− 4f(1.6) + 3f(1.9)

2(0.3)
,

and using f(x) = x lnx+ x, we obtain

f ′(1.9) ≈ (1.3 ln 1.3 + 1.3)− 4(1.6 ln 1.6 + 1.6) + 3(1.9 ln 1.9 + 1.9)

0.6
≈ 2.6527,

the required approximation of f ′(1.9).

(b) By using the backward difference error

EB(f, h) =
(0.3)2

3
f ′′′(η(x2)), for η(x1) ∈ (1.3, 1.9),

we get

|EC(f, h)| =
∣∣∣(0.3)2

3

∣∣∣|f ′′′(η(x1))|, for η(x2) ∈ (1.3, 1.9).

Since
f ′′′(η(x2)) = −1/(η(x2))

2.

This formula cannot be computed exactly because η(x2) is not known. But one can bound the error
by computing the largest possible value for |f ′′′(η(x2))|. So bound |f ′′′| on [1.3, 1.9] is

M = max
1.3≤x≤1.9

| − 1/x2| = 1/(1.3)2 = 0.5917.

Thus, for |f ′′′(η(x2))| ≤ M and h = 0.1, gives

|EB(f, h)| ≤
0.09

3
M =

0.09

3
(0.5917) = 0.0178,

which is the possible maximum error in our approximation.

(c) Since the exact value of the derivative f ′(1.9) is, 2.6419, therefore, the absolute error |E| can
be computed as follows

|E| = |f ′(1)−Dhf(1.9)| = |2.6419− 2.6527| = 0.0108.

(d) Since the given accuracy required is 10−2, so

|EB(f, h)| =
∣∣∣h2
3
f ′′′(η(x2))

∣∣∣ ≤ 10−2
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for η(x2) ∈ (1.3, 1.9). Then
h2

3
M ≤ 10−2.

Solving for h and taking M = 0.5917, we obtain

h2 ≤ 3

59.17
= 0.0507, or h ≤ 0.2252,

and so h = 0.2 the best maximum value of h. •

5.3.2 Second Derivative Numerical Formula

It is also possible to estimate second and higher order derivatives numerically. Formulas for higher
derivatives can be found by differentiating the interpolating polynomial repeatedly or using the
Taylor’s theorem. Since the two-point and three-point formulas for the approximation of the first
derivative of a function were derived by differentiating the Lagrange interpolation polynomials
for f(x) but the derivation of the higher-order can be tedious. Therefore, we shall use here the
Taylor’s theorem for finding the three-point central-difference formulas for finding approximation
of the second derivative f ′′(x) of a function f(x) at the given point x = x1. The process used to
obtain numerical formulas for first and second derivatives of a function can be readily extended to
third- and higher-order derivatives of a function.

Three-point Central Difference Formula

To find the three-point central-difference formula for the approximation of the second derivative of
a function at given point, we use the third-order Taylor’s theorem by expanding a function f(x)
about a point x1 and evaluate at x1 + h and x1 − h. Then

f(x1 + h) = f(x1) + hf ′(x1) +
1

2
h2f ′′(x1) +

1

6
h3f ′′′(x1) +

1

24
h4f (4)(η1(x)),

and

f(x1 − h) = f(x1)− hf ′(x1) +
1

2
h2f ′′(x1)−

1

6
h3f ′′′(x1) +

1

24
h4f (4)(η2(x)),

where (x1 − h) < η2(x) < x1 < η1(x) < (x1 + h).
By adding these equations and simplifies, we have

f(x1 + h) + f(x1 − h) = 2f(x1) + h2f ′′(x1) +
(f (4)(η1(x)) + f (4)(η2(x)))

24
h4.

Solving this equation for f ′′(x1), we obtain

f ′′(x1) =
f(x1 − h)− 2f(x1) + f(x1 + h)

h2
− h4

24

[
f (4)(η1(x)) + f (4)(η2(x))

]
.

If f (4) is continuous on [x1 − h, x1 + h], then by using the Intermediate Value Theorem, the above
equation can be written as

f ′′(x1) =
f(x1 − h)− 2f(x1) + f(x1 + h)

h2
− h4

12
f (4)(η(x1)).
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Then the following formula

f ′′(x1) ≈
f(x1 − h)− 2f(x1) + f(x1 + h)

h2
= D2

hf(x1), (5.19)

is called the three-point central-difference formula for the approximation of the second derivative
of a function f(x) at the given point x = x1.

Example 5.10 Let f(x) = x lnx+x and x = 0.9, 1.3, 2.1, 2.5, 3.2. Then find the approximate value

of f ′′(x) =
1

x
at x = 1.9. Also, compute the absolute error.

Solution. Given f(x) = x lnx+ x, then one can easily find second derivative of the function as

f ′(x) = lnx+ 2 and f ′′(x) =
1

x
.

To find the approximation of f ′′(x) =
1

x
at the given point x1 = 1.9, we use the three-point formula

(5.19)

f ′′(x1) ≈
f(x1 + h)− 2f(x1) + f(x1 − h)

h2
= D2

hf(x1).

Taking the three points 1.3, 1.9 and 2.5 (equally spaced), giving h = 0.6, we have

f ′′(1.9) ≈ f(2.5)− 2f(1.9) + f(1.3)

0.36

≈ ((2.5 ln 2.5 + 2.5)− 2(1.9 ln 1.9 + 1.9) + (1.3 ln 1.3 + 1.3))

0.36

≈ 4.7907− 6.2391 + 1.6411

0.36
= 0.5353 = D2

hf(1.9).

Since the exact value of f ′′(1.9) is
1

1.9
= 0.5263, therefore, the absolute error |E| can be computed

as follows:

|E| = |f ′′(1.9)−D2
hf(1.9)| = |0.5263− 0.5353| = 0.009.

Note that the error term of the three-point central-difference formula (5.19) for the approximation
of the second derivative of a function f(x) at the given point x = x1 is of the form

EC(f, h) = −h2

12
f (4)(η(x1)), (5.20)

for some unknown point η(x1) ∈ (x1 − h, x1 + h).

Note that for a cubic function, f(x) = ax3 + bx2 + cx + d, the difference formula (5.19) is exact;
that is, it yields the correct value of f ′′(x) for any nonzero value of stepsize h. •
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Example 5.11 Let f(x) = x2 + cosx. Then
(a) Compute the approximate value of f ′′(x) at x = 1, taking h = 0.1 using (5.19).
(b) Compute the error bound for your approximation using (5.20).
(c) Compute the absolute error.
(d) What is the best maximum value of stepsize h required to obtain the approximate value of

f ′′(1) within the accuracy 10−2.

Solution. (a) Given x1 = 1, h = 0.1, then the formula (5.19) becomes

f ′′(1) ≈ f(1 + 0.1)− 2f(1) + f(1− 0.1)

(0.1)2
= D2

hf(1),

or

f ′′(1) ≈ f(1.1)− 2f(1) + f(0.9)

0.01

≈ [(1.1)2 + cos(1.1)]− 2[12 + cos(1)] + [(0.9)2 + cos(0.9)]

0.01

≈ 1.6636− 3.0806 + 1.4316

0.01
≈ 1.4600 = D2

hf(1).

(b) To compute the error bound for our approximation in part (a), we use the formula (5.20) and
have

EC(f, h) = −h2

12
f (4)(η(x1)), for η(x1) ∈ (0.9, 1.1),

or

|EC(f, h)| =
∣∣∣− h2

12

∣∣∣|f (4)(η(x1))|, for η(x1) ∈ (0.9, 1.1).

The fourth derivative of the given function at η(x1) is

f (4)(η(x1)) = cos η(x1),

and it cannot be computed exactly because η(x1) is not known. But one can bound the error by
computing the largest possible value for |f (4)(η(x1))|. So bound |f (4)| on the interval (0.9, 1.1) is

M = max
0.9≤x≤1.1

| cos η(x1)| = 0.4536,

at x = 1.1, Thus, for |f (4)(η(x))| ≤ M , we have

|EC(f, h)| ≤
h2

12
M.

Taking M = 0.4536 and h = 0.1, we obtain

|EC(f, h)| ≤
0.01

12
(0.4536) = 0.0004,

which is the possible maximum error in our approximation.
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By using the MATLAB symbolic commands:

>> syms x;
>> f = x.ˆ 2 + cos(x); ddf = diff(f, 2); ddddf = diff(f, 4); subs(ddf, 1);

(c) Since the exact value of f ′′(1) is

f ′′(1) = (2− 12) cos 1− 4(1) sin 1 = −2.8256,

therefore, the absolute error |E| can be computed as follows:

|E| = |f ′′(1)−D2
hf(1)| = |1.4597− 1.4600| = 0.0003.

(d) Since the given accuracy required is 10−2, so

|EC(f, h)| =
∣∣∣− h2

12
f (4)(η(x1))

∣∣∣ ≤ 10−2,

for η(x1) ∈ (0.9, 1.1). Then for |f (4)(η(x1))| ≤ M , we have

h2

12
M ≤ 10−2.

Solving for h2, we obtain

h2 ≤ (12× 10−2)

M
=

(12× 10−2)

0.4536
= 0.2646,

and it gives the value of h as
h ≤ 0.5144.

Thus the best maximum value of h is 0.5. •

Using the following MATLAB commands, we can easily achieved the above results:

>> x0 = 1.0; h = 0.1;
>> ddf = ((x0 + h).ˆ 2 + cos(x0 + h)− 2. ∗ x0.ˆ 2 + cos(x0) + ...

(x0− h).ˆ 2 + cos(x0− h))./(h. ˆ 2)

The central-difference formula is probably the most used approximation for derivatives. Many real
problems are modeled by second-order differential equations, involving either ordinary or partial
derivatives. These equations cannot be solved analytically. To solve the equations numerically
requires the replacement of the second-order derivatives by the difference formula (5.19).

Example 5.12 The function f(x) satisfies a given equation f ′′(x) = x2f(x) and the conditions
f(0) = 1, f(0.2) = 3. Use the central-difference formula (5.19) for f ′′(x) and the stepsize h = 0.1
to estimate the value of f(0.1).

Solution. Given x1 = 0.1 and h = 0.1, then using the central-difference formula for the second
derivative of a function

f ′′(x1) ≈
f(x1 − h)− 2f(x1) + f(x1 + h)

h2
,
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we obtain

f ′′(0.1) = (0.1)2f(0.1) ≈ f(0)− 2f(0.1) + f(0.2)

0.01
,

which is equal to

(0.01)f(0.1) ≈ 1− 2f(0.1) + 3

0.01

(0.0001)f(0.1) ≈ (4− 2f(0.1)).

Solving for f(0.1), we obtain

f(0.1) ≈ 4

2 + 0.0001
≈ 1.9999,

the required solution. •

Example 5.13 Consider following set of data points

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1.0 1.1 1.2
f(x) 1.00 1.10 1.18 1.26 1.32 1.38 1.43 1.47 1.52 1.54 1.55 1.56

Use the table, find the best approximation of f ′(0.75) and the worst approximations of f ′(0.1) and
f ′′(0.6) by using three-point formulas.

Solution. For the best approximation of f ′(0.75), we have to take small value of h = 0.15, so
using the central difference three-point formula (5.12), we get

f ′(0.75) ≈ f(0.9)− f(0.6)

2(0.15)
≈ 1.52− 1.43

0.3
= 0.3,

while the exact value of f ′(0.75) is 0.3184. For the worst approximation of f ′(0.1), we have to take
big value of h = 0.5, so using the forward difference three-point formula (5.15), we get

f ′(0.1) ≈ −3f(0.1) + 4f(0.6)− f(1.1)

2(0.5)
≈ −3(1.1) + 4(1.43)− 1.55

1
≈ 0.87.

Similarly, for the worst approximation of f ′′(0.6), we have to take big value of h = 0.6, so using
the central difference three-point formula (5.19), we get

f ′′(0.6) ≈ f(1.2)− 2f(0.6) + f(0.0)

0.36

≈ 1.56− 2(1.43) + 1.0

0.36
≈ −0.8333,

the required worst approximation. •

5.4 Formulas for Computing Derivatives

For convenience, we collect following some useful central-difference, forward-difference and backward-
difference formulas for computing different orders derivatives.
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5.4.1 Central Difference Formulas

The central-difference formula (5.12) for first derivative f ′(x1) of a function required that a function
can be computed at points that lies on both sides of x1. The Taylor series can be used to obtain
central-difference formulas for higher derivatives. The most usable are those of order O(h2) and
O(h4) and are given as follows:

f ′(x0) =
f1 − f−1

2h
+O(h2)

f ′(x0) =
−f2 + 8f1 − 8f−1 + f−2

12h
+O(h4)

f ′′(x0) =
f1 − 2f0 + f−1

h2
+O(h2)

f ′′(x0) =
−f2 + 16f1 − 30f0 + 16f−1 − f−2

12h2
+O(h4)

f ′′′(x0) =
f2 − 2f1 + 2f−1 − f−2

2h3
+O(h2)

f ′′′(x0) =
−f3 + 8f2 − 13f1 + 13f−1 − 8f−2 + f−3

8h3
+O(h4)

f (4)(x0) =
f2 − 4f1 + 6f0 − 4f−1 + f−2

h4
+O(h2)

f (4)(x0) =
−f3 + 12f2 − 39f1 + 56f0 − 39f−1 + 12f−2 − f−3

6h4
+O(h4)

5.4.2 Forward and Backward Difference Formulas

If a function cannot be evaluated at points that lie on both sides of x0, then the central-difference
formula cannot be used to approximate the derivatives of a function. When a function can be
evaluated at equally spaced points that lie to the right (or left) of point x0, then forward-(or
backward-)difference formula can be used. These formulas can be derived by using the Taylor
series, the Lagrange interpolating polynomials, or the Newton interpolating polynomials. Some of
them are mostly usable to find derivatives of a function are as follows:

f ′(x0) =
−3f0 + 4f1 − f2

2h
+O(h2)

f ′(x0) =
3f0 − 4f−1 + f−2

2h
+O(h2)

f ′′(x0) =
2f0 − 5f1 + 4f2 − f3

h2
+O(h2)

f ′′(x0) =
2f0 − 5f−1 + 4f−2 − f−3

h2
+O(h2)

f ′′′(x0) =
−5f0 + 18f1 − 24f2 + 14f3 − 3f4

2h3
+O(h2)

f ′′′(x0) =
5f0 − 18f−1 + 24f−2 − 14f−3 + 3f−4

2h3
+O(h2)

f (4)(x0) =
3f0 − 14f1 + 26f2 − 24f3 + 11f4 − 2f5

h4
+O(h2)

f (4)(x0) =
3f0 − 14f−1 + 26f−2 − 24f−3 + 11f−4 − 2f−5

h4
+O(h2)
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5.5 Numerical Integration

Numerical integration has a history extending back to the invention of calculus and before. It is used
to integrate tabulated functions or to integrate functions whose integrals are either impossible or
very difficult to obtain analytically. Even when analytical integration is easy, numerical integration
may save time and effort if only the numerical value of the integral is desired. Consequently,
numerical methods of integration represent a natural alternative whenever conventional methods
fail to yield a solution.
Now for numerical integration, we wish to find an approximation to the definite integral

I(f) =

∫ b

a
f(x)dx, (5.21)

assuming that f(x) is integrable . If f(x) ≥ 0 on the given interval [a, b], then geometrically, the
integral (5.21) is equivalent to replacing the area under the graph of f(x), the x-axis and between
the ordinates x = a and x = b.
The fundamental theorem of calculus shows that integration is the inverse process to differentiation.
If we can find a function F (x), called the antiderivative of f(x), that is, F ′(x) = f(x), then we can
evaluate the integral (5.21) using the relation

I(f) =

∫ b

a
f(x)dx = F (b)− F (a). (5.22)

Sometimes considerable skill is required to obtain F (x), perhaps by making a change of variable
or integrating by parts. But in many cases F (x) cannot be found by elementary methods. In
such cases the computation of the integral (5.21) by means of formula (5.22) may be either too
difficult or practically impossible. Even if F (x) can be found, it may still more convenient to use
a numerical method to estimate the integral (5.21) if the evaluation of F (x) required a great deal
of computation. Moreover, in practical applications, a function f(x) often given in tabular form
and then the entire concept of antiderivative is meaningless. An obvious approach is to replace a
function f(x) in the integral (5.21) by an approximating polynomial p(x), that is

I(f) =

∫ b

a
f(x)dx ≈

∫ b

a
p(x)dx.

Numerical integration formulas are derived by integrating interpolation polynomials. Therefore,
different interpolation formulas will leads to different numerical integration methods.
The definite integral (5.21) may be interpreted as the area under the curve of y = f(x) from a to
b as shown by Figure 5.4.
It should be noted that any areas beneath the x-axis are counted as negative. Many numerical
methods for integration are based on using this interpretation of the integral to derive approx-
imations to it by dividing the interval [a, b] into a number of smaller subintervals. By making
simple approximations to the curve y = f(x) in the small subinterval its area may be obtained
and on summing all the contributions we obtain an approximation to a integral in the interval
[a, b]. Variations of this technique are derived by taking groups of subintervals and fitting different
degree polynomials as approximations for each of these groups. The lead of accuracy obtained is
dependent on the number of intervals used and the nature the approximation function.
There are several methods available in the literature for numerical integration but the most com-
monly methods may be classified into two groups.
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Figure 5.4: Definite integral for f(x)

(a) The Newton-Cotes formulas that employ functional values at equally spaced data points.

(b) The Gaussian quadrature formulas that employ unequally spaced data points determined by
certain properties of orthogonal polynomials.

Firstly, we shall discuss the Newton-Cotes formulas which has two different types, called, the closed
Newton-Cotes formulas and the open Newton-Cotes formulas. In the first type, we shall discuss
in some details the two mostly usable formulas, called the Trapezoidal rule and the Simpson’s
rule which can be derived by integrating the Lagrange interpolating polynomials of degree 1 and
2 respectively. In the second type we shall consider some good formulas. The use of the closed
Newton-Cotes and other integration formulas of order higher than the Simpson’s rule is seldom
necessary in most engineering applications and can be use for those cases where extremely high
accuracy is required.

Example 5.14 Find the numerical integration rule using the points x0 = 0, x1 = 1 and x2 = 2 for
approximating the integral ∫ 3

0
f(x)dx,

for f(x) = 1, x, x2. Use the resulting rule to estimate the integral∫ 3

0
(x2 + 1)dx.

Solution. Consider

I =

∫ 3

0
f(x)dx ≈ a0f(x0) + a1f(x1) + a2f(x2),

then for f(x) = 1, we have

I =

∫ 3

0
1dx ≈ a0f(0) + a1f(1) + a2f(2),

and it gives

3 ≈ a0 + a1 + a2.
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Similarly, for f(x) = x and f(x) = x2, we get

9

2
≈ a1 + 3a2 and 9 ≈ a1 + 9a2,

respectively. Now solving the following linear system

3 ≈ a0 + a1 + a2
9/2 ≈ 0 + a1 + 2a2
9 ≈ 0 + a1 + 4a2

we obtain a0 = 3/4, a1 = 0, a2 = 9/4. Thus the required integration rule is∫ 3

0
f(x)dx ≈ 3f(0) + 9f(2)

4
,

and with f(x) = x2 + 1, we get∫ 3

0
(x2 + 1)dx ≈ 3(0 + 1) + 9(4 + 1)

4
= 12.

One can easily compute the true integral as∫ 3

0
(x2 + 1)dx = (x3/3 + x)

∣∣∣∣∣
3

0

= 12.

Thus the above integration rule gave the exact solution for the given function. •

Using MATLAB symbolic toolbox we can easily obtained symbolic integration of function as

>> syms x;
>> f = x.ˆ 2 + 1; I = int(f);
>> a = 0; b = 3; A = int(f, a, b); subs(A);

Example 5.15 Find α such that the integration formula

∫ 1

0

f(x)√
x

≈ Af(0) +Bf(α) +Cf(1) may

be exact for polynomials up to degree 3.

Solution. Consider

I =

∫ 1

0

f(x)√
x

= Af(0) +Bf(α) + Cf(1),

then by taking f(x) = 1, x, x2 and x3, we get

2 = A + B + C,
2/3 = 0 + Bα + C,
2/5 = 0 + Bα2 + C,
2/7 = 0 + Bα3 + C.

Subtracting second equation from third equation, gives, Bα(α − 1) = −4/15, and then subtracting
third equation from fourth equation, gives, Bα2(α− 1) = −4/35. Thus

−4/35 = Bα2(α− 1) = α[Bα(α− 1)] = α(−4/15), or − 4/35 = α(−4/15),

and solving for α, it gives, α = 3/7. •
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5.6 Newton-Cotes Formulas

The usual strategy in developing formulas for numerical integration is similar to that for numer-
ical differentiation. We pass a polynomial through points of a function and then integrate this
polynomial approximation to a function. This allows us to integrate a function known only as a
table of values. Some common formulas based on polynomial interpolation are referred to as the
Newton-Cotes formulas.

An (n + 1)-point Newton-Cotes formula for approximating the definite integral (5.21) is obtained
by replacing the integrand f(x) by the nth-degree Lagrange polynomial that interpolates the values
of f(x) at equally spaced data points

a = x0 < x1 < . . . < xn = b.

Note that if the end-points a and b of the given interval [a, b] are in the set of interpolating points;
then the Newton-Cotes formulas are called closed; otherwise, it is said to be open.

5.6.1 Closed Newton-Cotes Formulas

An (n+1)-point closed Newton-Cotes formula used points xi = x0+ ih, for, i = 0, 1, 2, . . . , n, where

x0 = a, xn = b and h =
b− a

n
, has the form (see Figure 5.5)

∫ b

a
f(x)dx =

∫ xn

x0

f(x)dx ≈
n∑

i=0

aif(xi), (5.23)

where

ai =

∫ xn

x0

Li(x)dx =

∫ xn

x0

n∏
j=0

j ̸=i

(x− xj)

(xi − xj)
dx. (5.24)

The following theorem describes the error analysis associated with the above closed Newton-Cotes
formulas.

Theorem 5.1 (Close Newton-Cotes Formulas)

Suppose that
n∑

i=0

aif(xi) denotes the (n+1)-point closed Newton-Cotes formula with x0 = a, xn = b,

and h = (b− a)/n. There exists η(x) ∈ (a, b) for which

∫ b

a
f(x)dx =

n∑
i=0

aif(xi) +
hn+3f (n+2)(η(x))

(n+ 2)!

∫ n

0
t2(t− 1) · · · (t− n)dt, (5.25)

if n is even and f ∈ Cn+2[a, b]. For f ∈ Cn+1[a, b], and n is odd, then

∫ b

a
f(x)dx =

n∑
i=0

aif(xi) +
hn+2f (n+1)(η(x))

(n+ 1)!

∫ n

0
t(t− 1) · · · (t− n)dt. (5.26)
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Figure 5.5: Close Newton-Cotes approximation

Different numerical integration formulas can be obtained by using the formulas (5.25) and (5.26) to
approximate the definite integral (5.21). By using the formula (5.26) for n = 1, we have well-known
numerical integration formula, called, the Trapezoidal rule. Similarly, by using the formula (5.25)
for n = 2, we have one of the best integration rule called, the Simpson’s rule. We shall discuss
the formulation of both these rules and also discuss about their error terms. Later we shall also
consider some more closed Newton-Cotes formulas.

Simple Trapezoidal Rule

It is one of the oldest and good numerical method for approximating the definite integral (5.21).
It is based on approximating a function in each subinterval by a straight line.
To derive the Trapezoidal rule for one-strip (one interval), let us consider the first degree Lagrange
interpolating polynomial with equally spaced data points, that is, x0 = a, x1 = b and h = x1 − x0,
then

f(x) = p1(x) =

(
x− x1
x0 − x1

)
f(x0) +

(
x− x0
x1 − x0

)
f(x1). (5.27)

Taking integral on both sides of (5.27) with respect to x between the limits x0 and x1, we have∫ x1

x0

f(x)dx ≈ f(x0)

x0 − x1

∫ x1

x0

(x− x1)dx+
f(x1)

x1 − x0

∫ x1

x0

(x− x0)dx,

which implies that∫ x1

x0

f(x)dx ≈ f(x0)

x0 − x1

[
(x− x1)

2

2

∣∣∣∣∣
x1

x0

]
+

f(x1)

x1 − x0

[
(x− x0)

2

2

∣∣∣∣∣
x1

x0

]
≈ (x1 − x0)

2
[f(x0) + f(x1)],

and by taking h = x1 − x0, we get∫ b=x1

a=x0

f(x)dx ≈ T1(f) =
h

2
[f(x0) + f(x1)]. (5.28)

Then T1(f) is called the simple Trapezoidal rule or the Trapezoidal rule for one trapezoid or one
strip and can be use for the approximation of the definite integral (5.21). The reason for calling
this formula the Trapezoidal rule is that when f(x) is a function with positive values, the integral
(5.21) is approximated by the area in the trapezoid, see Figure 5.6.
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Figure 5.6: Simple Trapezoidal rule.

Example 5.16 Approximate the following integral∫ 2

1

1

x+ 1
dx,

using the simple Trapezoidal rule and compute the absolute error.

Solution. Given f(x) =
1

x+ 1
and h = 1, so using the simple Trapezoidal rule (5.28), gives

T1(f) =
1

2
[f(1) + f(2)] = 0.4167.

The exact solution of the given integral is

I(f) = ln(3/2) = 0.4055, so |ET1(f)| = |I(f)− T1(f)| = |0.4055− 0.4167| = 0.0112,

is the required absolute error. •

Composite Trapezoidal Rule

It is evident that the Newton-Cotes formulas produce accurate approximations to the definite
integral (5.21) only when the limits a and b are close together, that is, the integration interval is
not large. Formulas based on low-degree interpolating polynomials are clearly unsuitable since it
is then necessary to use large values of h. Also, note that higher-order Newton-Cotes formulas will
not necessarily produce more accurate approximations to the given integral. This difficulty can
be avoided by using a piecewise approach; the integration interval is divided into subintervals and
low-order formulas are applied on each of these. The corresponding integration rules are said to
be in composite form, and the most suitable formula of this type make use of the Trapezoidal rule.
The interval [a, b] is partitioned into n subintervals (xi−1, xi), i = 1, 2, . . . , n with a = x0 and
b = xn of equal width h = (b − a)/n and the rule for a single interval (the simple rule (5.28)) is
applied to each subinterval or a grouping of subintervals (see Figure 5.7). Since the Trapezoidal
rule requires only one interval for application, there is no restriction on the integer n. We define
the composite Trapezoidal rule in the form of the following theorem.
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Figure 5.7: Composite Trapezoidal rule.

Theorem 5.2 (Composite Trapezoidal Rule)

Let f ∈ C2[a, b], n may be odd or even, h = (b − a)/n, and xi = a + ih for each i = 0, 1, 2, . . . , n.
Then the composite Trapezoidal rule for n subintervals can be written as∫ b=xn

a=x0

f(x)dx ≈ Tn(f) =
h

2

[
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

]
. (5.29)

Proof. Since for the composite form of the Trapezoidal rule, the interval is divided into n equal

subintervals of width h so that h =
b− a

n
, and (n+1) distinct points a = x0 < x1 < x2 . . . < xn = b,

then we have ∫ b

a
f(x)dx =

∫ x1

x0

f(x)dx+

∫ x2

x1

f(x)dx+ · · ·+
∫ xn

xn−1

f(x)dx.

Applying the Trapezoidal rule (5.28) for one strip to each of these integral, we have∫ b=xn

a=x0

f(x)dx ≈ h

2
[f(x0) + f(x1)] +

h

2
[f(x1) + f(x2)] + · · ·+ h

2
[f(xn−1) + f(xn)].

Note that each of the interior point is counted twice and therefore has a coefficient of two whereas
the endpoints are counted once and therefore has a coefficient one. •

Example 5.17 Evaluate the integral

∫ 1

0
e4xdx by using the Trapezoidal rule with n = 1, 2, 4, 8.

Also compute the corresponding absolute errors.

Solution. For n = 1, we use the formula (5.28) for h = 1, as follows

T1(f) =
1

2

[
f(0) + f(1)

]
= 27.7991.

For n = 2, using the formula (5.29) and h = 0.5, we have

T2(f) =
0.5

2

[
f(0) + 2f(0.5) + f(1)

]
= 17.5941.
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For n = 4, using the formula (5.29) and h = 0.25, we have

T4(f) =
0.25

2

[
f(0) + 2[f(0.25) + f(0.5) + f(0.75)] + f(1)

]
= 14.4980.

Finally, for n = 8, using (5.29) and h = 0.125, we have

T8(f) =
0.125

2

[
f(0) + 2[f(0.125) + f(0.25) + f(0.375) + f(0.5)

+ f(0.625) + f(0.75) + f(0.875)] + f(1)
]
= 13.6776.

Since the exact value of the given integral is

I(f) =
1

4
[e4 − 1] = 13.4000.

So the corresponding absolute errors are, 14.3991, 4.1941, 1.0980 and 0.2776, respectively, which
decrease by a factor of about four at each stage. •

Example 5.18 Suppose that f(0.25) = f(0.75) = α. Find α if the composite Trapezoidal rule with

n = 2 gives the value 2 for

∫ 1

0
f(x) dx and with n = 4 gives the value of 1.75.

Solution. For n = 2, using the formula (5.29) and h = 0.5, we have∫ 1

0
f(x) dx = 2 ≈ T2(f) =

0.5

2

[
f(0) + 2f(0.5) + f(1)

]
,

which is equivalent to
8 ≈ f(0) + 2f(0.5) + f(1).

For n = 4, using the formula (5.29) and h = 0.25, we have∫ 1

0
f(x) dx = 1.75 ≈ T4(f) =

0.25

2

[
f(0) + 2(2α) + 2f(0.5) + f(1)

]
,

which is equals to

8(1.75) ≈ f(0) + 2f(0.5) + f(1) + 4α, or 8(1.75) ≈ 8 + 4α.

(using 8 ≈ f(0) + 2f(0.5) + f(1)). Solving for α, we get α ≈ 1.5, the required value. •

Note that the Trapezoidal rule of integration involves no restriction relative to number of data
points involved. This is not the case with elaborate methods yet to discussed. This is one reason
why it is one of the favorite numerical integration method used in mathematics and engineering.

Error Terms for Trapezoidal Rule

Now we discuss the error formulas for the Trapezoidal rule. This formula will lead to a better
understanding of the method, showing both their weakness and strengths, and it will allow im-
provements of the method. We discuss the error for the simple Trapezoidal rule (5.28) in the from
of the following theorem and then we use it to define the error for the composite Trapezoidal rule
(5.29).
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Theorem 5.3 (Error term for Simple Trapezoidal Rule)

Let f ∈ C2[a, b], and h = (b− a). The local error that the simple Trapezoidal rule (5.28) makes in
estimating the definite integral (5.21) is

ET1(f) = −h3

12
f ′′(η(x)), (5.30)

where η(x) ∈ (a, b).

Proof. Consider two points a = x0 < x1 = b with h = x1 − x0. From the linear Lagrange
interpolation formula with error term, we have

f(x) = p1(x) +
f ′′(η(x)(x))

2!

1∏
i=0

(x− xi). (5.31)

By integrating (5.31) with respect to x and between x0 and x1, we have∫ x1

x0

f(x)dx =

∫ x1

x0

p1(x)dx+
1

2

∫ x1

x0

f ′′(η(x))
1∏

i=0

(x− xi)dx. (5.32)

The error term for the Trapezoidal rule of one strip can be obtained as follows:

ET1(f) =
1

2

∫ x1

x0

f ′′(η(x))(x− x0)(x− x1)dx.

Note that f ′′(η(x)) is a continuous function of x and the term (x−x0)(x−x1) is negative on (a, b),
therefore, by using the Mean Value Theorem for integrals, we have

ET1(f) =
f ′′(η(x))

2

∫ x1

x0

(x− x0)(x− x1)dx.

Now to solve the integral on the right side of above equation, we use the change of variable

x− x0 = uh, x− x1 = (u− 1)h, and dx = hdu

then we have

ET1(f) =
f ′′(η(x))

2

∫ 1

0
huh(u− 1)hdu =

f ′′(η(x))h3

2

∫ 1

0
(u2 − u)du.

Thus

ET1(f) = −h3f ′′(η(x)))

12
, (5.33)

for some η(x) ∈ (a, b). Then the formula (5.32) can be written as∫ b=x1

a=x0

f(x)dx =
h

2
[f(x0) + f(x1)]−

h3

12
f ′′(η(x)), (5.34)

for η(x) ∈ (a, b), which is the simple Trapezoidal rule with its error term.
The formula (5.33) indicates that the local error of the Trapezoidal rule is proportional to second
derivative f ′′. So, if the Trapezoidal rule is used to integrate each of f(x) = 1, x, x2, x3, . . ., then
results have no error for f(x) = 1 and f(x) = x but there are error for x2 and higher power of x.
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Example 5.19 Compute the local error for the Trapezoidal rule (5.28) using the integral∫ 2

1

1

x+ 1
dx.

Solution. Given f(x) =
1

x+ 1
, and [a, b] = [1, 2], then the second derivative of the function is

f ′′(x) =
2

(x+ 1)3
.

Since the error formula for the simple Trapezoidal rule is

ET1(f) = −h3

12
f ′′(η(x)), where η(x) ∈ (1, 2).

This formula cannot be computed exactly because η(x) is not known. But one can bound the error
by computing the largest possible value for |f ′′(η(x))|. Bound |f ′′(η(x))| on [1, 2] is

M = max
1≤x≤2

∣∣∣ 2

(x+ 1)3

∣∣∣ = 0.25.

Then, for |f ′′(η(x))| ≤ M , we have

|ET1(f)| ≤
h3

12
M.

Using M = 0.25 and h = 1, we get

|ET1(f)| ≤
0.25

12
= 0.0208.

Comparing this with the absolute error 0.0112, this bound is about 2 times the actual error. •

Example 5.20 Let f(x) = x3 + 1 defined on the interval [0.1, 0.2]. Find the value of unknown
point η(x) by using the local error for the simple Trapezoidal rule (5.28).

Solution. Given f(x) = x3 + 1, and [a, b] = [0.1, 0.2], we use the formula (5.28) for h = 0.1, as
follows

ApproxV alue =
0.1

2

[
f(0.1) + f(0.2)

]
=

0.1

2

[
[(0.1)3 + 1] + [(0.2)3 + 1]

]
= 0.10045.

We know that

ExactV alue =

∫ 0.2

0.1
(x3 + 1) dx = (x4/4 + x)

∣∣∣∣0.2
0.1

= [(0.2)4/4 + 0.2]− [(0.1)4/4 + 0.1] = 0.100375,

so we have the error

E = (ExactV alue)− (ApproxV alue) = 0.100375− 0.10045 = −0.000075.

since the second derivative of the given function is f ′′(x) = 6x, so by using the local error for the
Trapezoidal rule (5.28), we have

−0.000075 = −(0.1)3

12
(6η(x)),

gives the value of η(x) = 0.15. •
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Error Term for Composite Trapezoidal Rule

The global error of the Trapezoidal rule (5.29) equals the sum of n local errors of the Trapezoidal
rule (5.28), that is

ETn(f) = −h3

12
f ′′(η1(x))−

h3

12
f ′′(η2(x))− · · · − h3

12
f ′′(ηn(x)),

which can also written as

ETn(f) = −h3

12

n∑
i=1

f ′′(ηi(x)), for ηi(x) ∈ (xi−1, xi),

or

ETn(f) = −h3

12
nf ′′(η(x)),

where f ′′(η(x)) is the average of the n individual values of the second derivative. Since n =
b− a

h
,

thus the global error in the composite Trapezoidal rule (5.29) is

ETn(f) = −h2

12
(b− a)f ′′(η(x)), η(x) ∈ (a, b). (5.35)

Hence ∫ b

a
f(x)dx =

h

2

[
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

]
− h2

12
(b− a)f ′′(η(x)), (5.36)

for η(x) ∈ (a, b), is the composite Trapezoidal rule with its error term.
Note that whereas the simple Trapezoidal rule (5.28) has a truncation error of order h3, the com-
posite Trapezoidal rule (5.29) has an error of order h2. This means that when h is halved and the
number of subintervals is doubled the error decreases by a factor of approximately four (assuming
that f ′′(η(x)) remains fairly constant throughout [a, b]). Of course, it is also possible to express the

truncation error in terms of n rather than h. Since h =
b− a

n
, it follows that the global truncation

error (5.35) is of order O(n2).

Example 5.21 (a) Find approximation of

∫ 2

1
f(x) dx, taking h = 0.2 by using following set of

data points

x 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
f(x) 0.368 0.366 0.361 0.354 0.355 0.335 0.323 0.311 0.298 0.284 0.271

The function tabulated is xe−x, compute error bound and the absolute error for the approximation
using Trapezoidal rule.
(b) How many subintervals approximate the given integral to an accuracy of at least 10−6 ?

Solution. (a) Given h = 0.2, so we have the select following set of data points for Trapezoidal
rule as

x 1.0 1.2 1.4 1.6 1.8 2.0

f(x) 0.368 0.361 0.355 0.323 0.298 0.271
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so the composite Trapezoidal rule (5.29) for six points can be written as∫ 2

1
f(x) dx ≈ T5(f) =

h

2

[
f(x0) + 2

(
f(x1) + f(x2) + f(x3) + f(x4)

)
+ f(x5)

]
,

and by using the given values, we get∫ 2

1
f(x) dx ≈ 0.1

[
0.368 + 2(0.361 + 0.355 + 0.323 + 0.298) + 0.271

]
= 0.3313.

The second derivative of the function f(x) = xe−x can be obtain as

f ′(x) = (1− x)e−x and f ′′(x) = (x− 2)e−x.

Since η(x) is unknown point in (1, 2), therefore, the bound |f ′′| on [1, 2] is

M = max
1≤x≤2

|f ′′(x)| = max
1≤x≤2

|(x− 2)e−x| = 0.3679,

at x = 1. Thus the error formula (5.35) becomes

|ET5(f)| ≤
(0.2)2(1)

12
(0.3679) = 0.0012,

which is the possible maximum error in our approximation.
We can easily computed the exact value of the given integral as∫ 2

1
xe−x dx = (−xe−x − e−x)

∣∣∣2
1
= 0.3298.

Thus the absolute error |E| in our approximation is given as

|E| = |0.3298− T5(f)| = |0.3298− 0.3313| = 0.0015.

(b) To find the minimum subintervals for the given accuracy, we use the formula (5.35) such that

|ETn(f)| ≤
| − (b− a)3|

12n2
M ≤ 10−6,

where h = (b− a)/n. Since M = 0.3679, then solving for n2, we obtain

n2 ≥ 30658.3333, gives n ≥ 175.0952.

Hence to get the required accuracy, we need 176 subintervals or 177 points. •

Example 5.22 Consider the integral I(f) =

∫ 2

1
ln(x+ 1)dx; n = 6.

(a) Compute the approximation of the integral using the composite Trapezoidal rule.
(b) Compute the error bound for your approximation using the formula (5.35).
(c) Compute the absolute error.
(d) How many subintervals approximate the given integral to an accuracy of at least 10−4 using the
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composite Trapezoidal rule ?

Solution. (a) Given f(x) = ln(x+1), n = 6, and so h =
2− 1

6
=

1

6
, then the composite Trapezoidal

rule (5.29) for n = 6, can be written as

T6(f) =
1/6

2

[
ln(1 + 1) + 2

(
ln
(7
6
+ 1

)
+ ln

(8
6
+ 1

)
+ ln

(9
6
+ 1

)

+ ln
(10
6

+ 1
)
+ ln

(11
6

+ 1
))

+ ln(2 + 1)
]
.

Hence ∫ 2

1
ln(x+ 1)dx ≈ T6(f) =

1

12
[0.6932 + 2(4.5591) + 1.0986] = 0.9092.

(b) The second derivative of the function can be obtain as

f ′(x) =
1

(x+ 1)
and f ′′(x) =

−1

(x+ 1)2
.

Since η(x) is unknown point in (1, 2), therefore, the bound |f ′′| on [1, 2] is

M = max
1≤x≤2

|f ′′(x)| =
∣∣∣ −1

(x+ 1)2

∣∣∣ = 0.25.

Thus the error formula (5.35) becomes

|ET6(f)| ≤
(1/6)2

12
(0.25) = 0.0006,

which is the possible maximum error in our approximation in part (a).
(c) The absolute error |E| in our approximation is given as

|E| = |(3 ln 3− 2 ln 2− 1)− T6(f)| = |0.9095− 0.9092| = 0.0003.

(d) To find the minimum subintervals for the given accuracy, we use the formula (5.35) such that

|ETn(f)| ≤
| − (b− a)3|

12n2
M ≤ 10−4,

where h = (b− a)/n. Since M = 0.25, then solving for n2, we obtain

n2 ≥ 208.3333, gives n ≥ 14.4338.

Hence to get the required accuracy, we need 15 subintervals. •

To use MATLAB command for the composite Trapezoidal rule, first we define a function m-file as
fn.m for the function as follows:

function y = fn(x)
y = log(x+ 1);
>> T6 = TrapezoidalR(′fn′, 1, 2, 6)
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Figure 5.8: Simple Simpson’s rule.

Program 5.1
MATLAB m-file for the Composite Trapezoidal Rule
function TN=TrapezoidR(fn,a,b,n);
h=(b-a)/n; s=(feval(fn,a)+feval(fn,b))/2;
for k=1:n-1; x = a+ h ∗ k s=s+feval(fn,x); end TN = s ∗ h;

Suppose that, due to rounding, the fi are in error by at most
1

2
× 10−t. Then we see from (5.29)

that the error in the composite Trapezoidal rule due to rounding is not greater than

1

2
h[1 + 2 + 2 + · · ·+ 2 + 1]× 10−t = nh(

1

2
× 10−t) =

1

2
(b− a)× 10−t.

Thus, rounding errors do not seriously affect the accuracy of this quadrature rule. This is generally
true of numerical integration unlike numerical differentiation, as we saw earlier in the chapter.

Simple Simpson’s Rule

The Trapezoidal rule approximates the area under a curve by the area of trapezoid formed by
connecting two points on the curve by straight line. The Simpson’s rule gives a more accurate
approximation since it consists of connecting three points on the curve by second-degree parabola
and the area under the parabola to obtain the approximate area under the curve, see Figure 5.8.

Let us consider the second-degree Lagrange interpolating polynomial, with equally spaced base
points, that is, x0 = a, x1 = a+ h and x2 = a+ 2h, with h = (b− a)/2, then

f(x) = p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2).

Taking integral on both sides of the above equation with respect to x between the limits x0 and
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x2, we have ∫ x2

x0

f(x)dx ≈ f(x0)

(x0 − x1)(x0 − x2)

∫ x2

x0

(x− x1)(x− x2)dx

+
f(x1)

(x1 − x0)(x1 − x2)

∫ x2

x0

(x− x0)(x− x2)dx

+
f(x2)

(x2 − x0)(x2 − x1)

∫ x2

x0

(x− x0)(x− x1)dx,

which implies that ∫ b

a
f(x)dx ≈ f(x0)

2h2
I1 +

f(x1)

−h2
I2 +

f(x2)

2h2
I3,

where

I1 =

∫ x2

x0

(x− x1)(x− x2)dx; I2 =

∫ x2

x0

(x− x0)(x− x2)dx; I3 =

∫ x2

x0

(x− x0)(x− x1)dx.

Solving above three integrals by using integration by parts, we obtain the values of I1, I2 and I3 as
follows

I1 =
2h3

3
, I2 = −4h3

3
, I3 =

2h3

3
.

By using these values, we have∫ b

a
f(x)dx ≈ f(x0)

2h2

(
2h3

3

)
+

f(x1)

−h2

(
−4h3

3

)
+

f(x2)

2h2

(
2h3

3

)
.

Simplifying, gives ∫ b

a
f(x)dx ≈ S2(f) =

h

3
[f(x0) + 4f(x1) + f(x2)]. (5.37)

which is called the simple Simpson’s rule or Simpson’s rule for two strips (or 3 points).

Example 5.23 Approximate the following integral∫ 2

1

1

x+ 1
dx,

using simple Simpson’s rule. Compute the actual error.

Solution. Since f(x) =
1

x+ 1
and h = (2 − 1)/2 = 0.5, then by using Simpson’s rule (5.37), we

have

S2(f) =
0.5

3

[
f(1) + 4f(1.5) + f(2)

]
= (0.1667)[0.5 + 1.6 + 0.3333] = 0.4056.

Hence ∫ 2

1

1

x+ 1
dx ≈ S2(f) = 0.4056.

Since the exact solution of the given integral is, 0.4055, therefore, the actual error is

ES2 = I(f)− S2(f) = −0.0001.
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To compare this error with the error got by using the simple Trapezoidal rule, the error in Simpson’s
rule is much smaller than for the Trapezoidal rule by a factor of about 123, a significant increase
in accuracy. •

Example 5.24 Use simple Simpson’s rule to show that∫ 1.6

1

2

x
dx < 1 <

∫ 1.7

1

2

x
dx.

Solution. Given f(x) =
2

x
and take h = (1.6 − 1)/2 = 0.3, then by using Simpson’s rule (5.37),

we have

S2(f) =
0.3

3

[
f(1) + 4f(1.3) + f(1.6)

]
= (0.1)[2 + 6.1538 + 1.25] = 0.9404.

Now taking h = (1.7− 1)/2 = 0.35, then by using Simpson’s rule (5.37), we have

S2(f) =
0.35

3

[
f(1) + 4f(1.35) + f(1.7)

]
= (0.1167)[2 + 5.9260 + 1.1764] = 1.0623.

Hence
0.9404 < 1 < 1.0623,

the required result. •

Example 5.25 Let f be defined by

f(x) =

{
x2 − x+ 1, if 0 ≤ x ≤ 1,
2x− 1, if 1 ≤ x ≤ 2.

Approximate the integral

∫ 2

0
f(x)dx by using Simpson’s rule with n = 2.

Solution. Since one can know that∫ 2

0
f(x)dx =

∫ 1

0
f(x)dx+

∫ 2

1
f(x)dx,

and we are given ∫ 2

0
f(x)dx =

∫ 1

0
(x2 − x+ 1)dx+

∫ 2

1
(2x− 1)dx.

First we find the approximation of the first integral on the right hand side of above equation for
n = 2, using the formula (5.37) and h = 0.5, we have

I1(f) =
0.5

3

[
f(0) + 4f(0.5) + f(1)

]
=

0.5

3

[
1 + 3 + 1

]
= 0.8333.

Now we find the approximation of the second integral on the right hand side of above equation for
n = 2, using the formula (5.37) and h = 0.5, we have

I2(f) =
0.5

3

[
f(1) + 4f(1.5) + f(2)

]
=

0.5

3

[
1 + 8 + 3

]
= 2.0000.

Hence ∫ 2

0
f(x)dx = I1(f) + I2(f) ≈ 0.8333 + 2.000 = 2.83333,

the required approximation of the given integral. •
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Figure 5.9: Composite Simpson’s Rule.

Composite Simpson’s Rule

Just as with the simple Trapezoidal rule (5.28), the simple Simpson’s rule (5.37) can be improved
by dividing the integration interval [a, b] into a number of subintervals of equal width h; where

h =
b− a

n
. Since the simple Simpson’s rule (5.37) requires a interval consisting of three points

(pair of strips). In practice, we usually take more than three points and add the separate results
for the different pairs of strips (see Figure 5.9). Since the simple Simpson’s rule requires a pair of
strips for application, so there is restriction on the integer n, which must be even. We define the
composite Simpson’s rule in the form of the following theorem.

Theorem 5.4 (Composite Simpson’s Rule)

Let f ∈ C4[a, b], n be even, h = (b − a)/n, and xi = a + ih for each i = 0, 1, 2, . . . , n. Then the
composite Simpson’s rule for n subintervals can be written as

∫ b

a
f(x)dx ≈ Sn(f) =

h

3

f(a) + 2

n/2−1∑
i=1

f(x2i) + 4

n/2∑
i=1

f(x2i−1) + f(b)

. (5.38)

Proof. Since for the composite form of the Simpson’s rule, the interval is divided into n equal

subintervals of width h so that h =
b− a

n
. For this rule to work, n must be even number and the

total number of (n+1) distinct points a = x0 < x1 < x2 . . . < xn = b should be odd. The total
integral can be represented as∫ xn

x0

f(x)dx =

∫ x2

x0

f(x)dx+

∫ x4

x2

f(x)dx+ · · ·+
∫ xn

xn−2

f(x)dx.

Substitute the simple Simpson’s rule (5.37) for the individual integral yields

∫ xn
x0

f(x)dx ≈ h

3
[f(x0) + 4f(x1) + f(x2)] +

h

3
[f(x2) + 4f(x3) + f(x4)]

+ · · ·+ h

3
[f(xn−2) + 4f(xn−1) + f(xn)].
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To avoid the repetition of terms, we summed them. Note that each of the odd interior point is
counted four and therefore has a coefficient of four whereas each of the even interior point is
counted two and therefore has a coefficient of two. The endpoints are counted once and therefore
has a coefficient one. •

Example 5.26 Let f be defined by

f(x) =

{
x2 − x+ 1, if 0 ≤ x ≤ 1,
2x− 1, if 1 ≤ x ≤ 2.

Approximate the integral

∫ 2

0
f(x)dx by using Simpson’s rule with n = 4.

Solution. Since one can know that∫ 2

0
f(x)dx =

∫ 1

0
f(x)dx+

∫ 2

1
f(x)dx,

and we are given∫ 2

0
f(x)dx =

∫ 1

0
(x2 − x+ 1)dx+

∫ 2

1
(2x− 1)dx = I1(f) + I2(f).

First we find the approximation of the first integral on the right hand side of above equation for
n = 4, using the formula (5.38) and h = 0.25, we have

I1(f) ≈
0.5

3

[
f(0) + 4(f(0.25) + f(0.75)) + 2f(0.5) + f(1)

]
≈ 0.25

3

[
8
]
≈ 0.8333.

Now we find the approximation of the second integral on the right hand side of above equation for
n = 4, using the formula (5.38) and h = 0.25, we have

I2(f) ≈
0.5

3

[
f(1) + 4(f(1.25) + f(1.75)) + 2f(1.5) + f(2)

]
≈ 0.25

3

[
24
]
≈ 2.0000.

Hence ∫ 2

0
f(x)dx = I1(f) + I2(f) ≈ 0.8333 + 2.000 = 2.83333,

the required approximation of the given integral. •

Example 5.27 Suppose that f(1) = 0.5, f(1.2) = 0.9, [f(1.25) + f(1.75)] = α, f(1.5) = 1.5,
f(1.6) = 1.65, f(1.95) = 1.95 and f(2) = 2. Find the approximate value of α if the best composite

Simpson’s rule gives the value, 1.35, for the integral

∫ 2

1
f(x) dx.

Solution. Since we need equally spaced data points, so take f(1) = 0.5, [f(1.25) + f(1.75)] = α,

f(1.5) = 1.5 and f(2) = 2, gives n = 4, so h =
2− 1

4
= 0.25. By using the composite formula

(5.38) for n = 4, we have∫ 2

1
f(x) dx ≈ 0.25

3

[
f(1) + 4[f(1.25) + f(1.75)] + 2f(1.5) + f(2)

]
.
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Now using the given values, we obtain

1.35 ≈ 1

12
[0.5 + 4(α) + 2(1.5) + 2], or 12(1.35)− 5.5 ≈ 4α,

gives α ≈ 2.675. •

Example 5.28 Evaluate the integral

∫ 1

0
e4xdx by using the Simpson’s rule with n = 2, 4, 8. Also,

compute the corresponding actual errors.

Solution. For n = 2, using the formula (5.37) and h = 0.5, we have

S2(f) =
0.5

3

[
f(0) + 4f(0.5) + f(1)

]
= 14.1924.

For n = 4, using the formula (5.38) and h = 0.25, we have

S4(f) =
0.25

3

[
f(0) + 4[f(0.25) + f(0.75)] + 2f(0.5) + f(1)

]
= 13.4659.

For n = 8, using the formula (5.38) and h = 0.125, we have

S8(f) =
0.125

3

[
f(0) + 4[f(0.125) + f(0.375) + f(0.625) + f(0.875)]

+ 2[f(0.25) + f(0.5) + f(0.75)] + f(1)
]
= 13.4041.

Note that the exact value of the given integral is 13.39995, and so the corresponding errors are,
0.79245, 0.06595 and 0.00411 respectively, which decrease by a factor of about 16 at each stage. •

To use the MATLAB command for the composite Simpson’s rule, first we define a function m-file
as fn.m for the function as follows:

function y = fn(x)
y = exp(4 ∗ x);
>> S2 = SimpsonR(′fn′, 0, 1, 2)

Program 5.2
MATLAB m-file for the Composite Simpson’s Rule
function SN=SimpsonR(fn,a,b,n);
h=(b-a)/n; s=feval(fn,a)+feval(fn,b);
for k=1:2:n-1; s = s+ 4 ∗ feval(fn, a+ k ∗ h); end
for k=2:2:n-2; s = s+2∗feval(fn, a+k∗h); end; SN = (s∗h)/3;

One can note that these results are more accurate than those obtained in the previous Example 5.17
using the Trapezoidal rule (for same number of function evaluations). The main disadvantage of
the Simpson’s rule is that it can only be used when the given interval [a, b] is divided in to an even
number of subintervals.



282 5.6 Newton-Cotes Formulas

Error Terms for Simpson’s Rule

Now we discuss the local error and the global error formulas for Simpson’s rule.

Theorem 5.5 (Error Term for Simple Simpson’s Rule)

Let f ∈ C4[a, b], and h = (b − a)/2. The local error that the Simpson’s rule makes in estimating
the definite integral (5.21) is

ES2(f) = −h5

90
f (4)(η(x)), (5.39)

where η(x) ∈ (a, b).

Proof. Consider three equally spaced points a = x0 < x1 < x2 = b. From the quadratic Lagrange
interpolation formula with error term, we have

f(x) = p2(x) +
f ′′′(η(x))

3!

2∏
i=0

(x− xi), (5.40)

and by integrating (5.40) with respect to x, we have

∫ b

a
f(x)dx =

∫ b

a
p2(x)dx+

1

6

∫ b

a
f ′′′(η(x)(x))

2∏
i=0

(x− xi)dx. (5.41)

The second term on the right hand side of the (5.41)

ES2(f) =
1

6

∫ b

a
f ′′′(η(x)(x))(x− x0)(x− x1)(x− x2)dx, (5.42)

is called the error term of the Simpson’s rule for n = 2.

In this way it provides only an O(h4) error term, involving f ′′′(η(x)). By approaching the problem
in another way, a higher-order term involving f (4)(η(x)) can be obtained.

Consider the two intervals from xi−1 to xi and xi to xi+1, with h = (xi − xi−1), and also, assume
that F (x) is the indefinite integral of a function f(x) which we are trying to integrate, then the
exact value of the integral from xi−1 to xi+1 is

Ii(f) =

∫ xi+1

xi−1

f(x)dx = F (xi+1)− F (xi−1). (5.43)

The approximated value calculated by using the Simpson’s rule is

S2i(f) =
h

3
[f(xi−1) + 4f(xi) + f(xi+1)]. (5.44)

Then the error define in using the Simpson’s rule on this two intervals is

Ei(f) = Ii(f)− S2i(f) (5.45)
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Now by expanding f(x) about x = xi to get f(xi−1) in terms of a function and derivatives at x = xi
by using the Taylor’s series, we have

f(xi−1) = f(xi) + (xi−1 − xi)f
′(xi) +

(xi−1 − xi)
2

2!
f ′′(xi)

+
(xi−1 − xi)

3

3!
f ′′′(xi) +

(xi−1 − xi)
4

4!
f (4)(xi) + · · · (5.46)

Since we know that h = (xi − xi−1), or −h = (xi−1 − xi), therefore

f(xi−1) = f(xi)− hf ′(xi) +
h2

2!
f ′′(xi)−

h3

3!
f ′′′(xi) +

h4

4!
f (4)(xi)− · · · (5.47)

Similar way we expand f(xi+1) about xi, we get

f(xi+1) = f(xi) + (xi+1 − xi)f
′(xi) +

(xi+1 − xi)
2

2!
f ′′(xi)

+
(xi+1 − xi)

3

3!
f ′′′(xi) +

(xi+1 − xi)
4

4!
f (4)(xi) + · · · , (5.48)

or

f(xi+1) = f(xi) + hf ′(xi) +
h2

2!
f ′′(xi) +

h3

3!
f ′′′(xi) +

h4

4!
f (4)(xi) + · · · (5.49)

So by using (5.47) and (5.49), we get (5.44) of the form

S2i(f) =
h

3

[
{f(xi)− hf ′(xi) +

h2

2!
f ′′(xi)−

h3

3!
f ′′′(xi) +

h4

4!
f (4)(xi)− · · ·}+ {4f(xi)}

+ {f(xi) + hf ′(xi) +
h2

2!
f ′′(xi) +

h3

3!
f ′′′(xi) +

h4

4!
f (4)(xi) + · · ·}

]
,

which implies that

S2i(f) =
h

3

[
6f(xi) +

2h2

2!
f ′′(xi) +

2h4

4!
f (4)(xi) + · · ·

]

= 2hf(xi) + 2f ′′(xi)
h3

3!
+ 2f (4)(xi)

h5

3(4!)
+ · · · (5.50)

Now we use the same procedure for F (x) as we used for f(x) to get

F (xi−1) = F (xi)− hF ′(xi) +
h2

2!
F ′′(xi)−

h3

3!
F ′′′(xi) +

h4

4!
F (4)(xi)−

h5

5!
F (5)(xi) + · · · , (5.51)

and

F (xi+1) = F (xi) + hF ′(xi) +
h2

2!
F ′′(xi) +

h3

3!
F ′′′(xi) +

h4

4!
F (4)(xi) +

h5

5!
F (5)(xi) + · · · (5.52)

Then by using (5.51) and (5.52), we got (5.43) of the form

Ii(f) = 2hF ′(xi) + 2F ′′′(xi)
h3

3!
+ 2F (5)(xi)

h5

5!
+ · · · (5.53)
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But we know that

F ′(x) = f(x), F ′′(x) = f ′(x), F ′′′(x) = f ′′(x), F (4)(x) = f ′′′(x), F (5)(x) = f (4)(x),

therefore, (5.53) can be written as

Ii(f) = 2hf(xi) + 2f ′′(xi)
h3

3!
+ 2f (4)(xi)

h5

5!
+ · · · (5.54)

So by using (5.50) and (5.54), we get (5.45) of the form

Ei(f) = −
[
2hf(xi) + 2f ′′(xi)

h3

3!
+ 2f (4)(xi)

h5

3(4!)
+ · · ·

]

+

[
2hf(xi) + 2f ′′(xi)

h3

3!
+ 2f (4)(xi)

h5

5!
+ · · ·

]

= −2f (4)(xi)
h5

3(4!)
+ 2f (4)(xi)

h5

5!
+ higher terms in h7 + · · · (5.55)

Assuming that h is small, we may neglect the terms in h7 and above, and get the approximate
error as follows:

Ei(f) ≈ f (4)(xi)h
5
[
2

5!
− 2

3(4!)

]
≈ − 1

90
f (4)(xi)h

5, (5.56)

which is the desired local error for Simpson’s rule. •

Since (5.56) indicates that the error of the Simpson’s rule is proportional to fourth derivative f (4).
If the Simpson’s rule is used to integrate f(x) = 1, x, x2 and x3, then the results have no error.
In more general terms, the Newton-Cotes closed formula of odd order n is exact if the integrand is a
polynomial of order n or less, whereas that of an even n is exact when the integrand is a polynomial
of order n+ 1 or less.

Example 5.29 Compute the local error for the Simpson’s rule using the following integral∫ 2

1

1

x+ 1
dx.

Solution. Given f(x) =
1

x+ 1
, and [a, b] = [1, 2], then the fourth derivative of the function can be

obtain as

f ′ =
−1

(x+ 1)2
, f ′′ =

2

(x+ 1)3
, f ′′′ =

−6

(x+ 1)4
, f (4) =

24

(x+ 1)5
.

Since the error formula for the Simpson’s rule is

ES2(f) = −h5

90
f (4)(η(x)), where η(x) ∈ (1, 2),

or

|ES2(f)| =
∣∣∣− h5

90

∣∣∣∣∣∣f (4)(η(x))
∣∣∣, for η(x) ∈ (1, 2).
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This formula cannot be computed exactly because η(x) is not known. But one can bound the error
by computing the largest possible value for |f (4)|. Bound |f (4)| on [1, 2] is

M = max
1≤x≤2

=
∣∣∣ 24

(x+ 1)5

∣∣∣ = 0.75.

Then for |f (4)(η(x))| ≤ M , we have

|ES2(f)| ≤
h5

90
M.

Taking M = 0.75 and h = 0.5, we get

|ES2(f)| ≤
(0.03125)

90
(0.75) = 0.0003.

Comparing this with the actual error −0.0001, this bound is about 3 times the actual error. •

Error Term for Composite Simpson’s Rule

Since the composite Simpson’s rule (5.38) requires that the given interval [a, b] is divided into even
number of subintervals and each application of the simple Simpson’s rule requires two subintervals,

therefore, the global error of the composite Simpson’s rule (5.38) is the sum of
n

2
local truncation

error of the simple Simpson’s rule with n =
b− a

h
, that is,

ESn(f) = −h5

90
f (4)(η1(x))−

h5

90
f (4)(η2(x))− · · · − h5

90
f (4)(ηn/2(x)),

which implies that

ESn(f) = −h5

90
(
n

2
)

[ n/2∑
i=1

f (4)(ηi(x))

n/2

]
.

Thus by using the Intermediate Value Theorem, we have

ESn(f) = −(b− a)

180
h4f (4)(η(x)), (5.57)

for η(x) ∈ (a, b) and nh = b − a. Then the formula (5.57) is known as the global error of the
Simpson’s rule. •

Note that the truncation error in the composite Simpson’s rule is of order h4. This means that
when h is halved and the number of subintervals is doubled the error decreases by a factor of
approximately 16, considerably better than the composite Trapezoidal rule.

Example 5.30 (a) Find the approximation of

∫ 1.2

0
f(x) dx taking h = 0.3 by using the following

set of data points:

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
f(x) 1.00 1.10 1.18 1.26 1.32 1.38 1.43 1.47 1.50 1.52 1.54 1.55 1.56
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The function tabulated is x+ cosx, compute error bound and absolute error for the approximation
by Simpson’s rule.
(b) How many subintervals approximate the given integral to within accuracy of 10−6 ?

Solution. (a) Given h = 0.3, so to select the following set of data points for Simpson’s rule as

x 0.0 0.3 0.6 0.9 1.2

f(x) 1.00 1.26 1.43 1.52 1.56

so the composite Simpson’s rule (5.38) for five points can be written as∫ 1.2

0
f(x) dx ≈ S4(f) =

h

2

[
f(x0) + 4(f(x1) + f(x3)) + 2f(x2) + f(x4)

]
,

and by using the given values, we get∫ 1.2

0
f(x) dx ≈ 0.1

[
1.0 + 4(1.26 + 1.52) + 2(1.43) + 1.56

]
= 1.6521.

The fourth derivative of the function f(x) = x+ cosx can be obtain as

f ′(x) = 1− sinx, f ′′(x) = − cosx, f ′′′(x) = sinx, f (4)(x) = cosx.

Since η(x) is unknown point in (0, 1.2), therefore, the bound |f (4)| on [0, 1.2] is

M = max
0≤x≤1.2

|f (4)| = max
0≤x≤1.2

| cosx| = 1.0,

at x = 1. Thus the error formula (5.57) becomes

|ES4(f)| ≤
(0.2)4(1.2)

180
(1.0) = 0.0001,

which is the possible maximum error in our approximation.
We can easily computed the exact value of the given integral as∫ 1.2

0
(x+ cosx) dx = (x2/2 + sinx)

∣∣∣1.2
0

= 1.6520.

Thus the absolute error |E| in our approximation is given as

|E| = |0.3298− T5(f)| = |1.6520− 1.6521| = 0.0001.

(b) To find the minimum subintervals for the given accuracy, we use the formula (5.57) such that

|ESn(f)| ≤
| − (b− a)5|

180n4
M ≤ 10−6,

where h = (b− a)/n. Since M = 1., then solving for n4, we obtain

n4 ≥ 16589, gives n ≥ 11.3489.

Hence to get the required accuracy, we need 12 subintervals or 13 points. •
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Example 5.31 Consider the integral I(f) =

∫ 2

1
ln(x+ 1)dx; n = 6.

(a) Find the approximation of the give integral using the composite Simpson’s rule.
(b) Compute the error bound for the approximation using the formula (5.57).
(c) Compute the absolute error.
(d) How many subintervals approximate the given integral to an accuracy of at least 10−4 using

the composite Simpson’s rule ?

Solution. (a) Given f(x) = ln(x+1), n = 6, and so h =
2− 1

6
=

1

6
, then the composite Simpson’s

rule (5.38) for n = 6, can be written as

S6(f) =
1/6

3

[
ln(1 + 1) + 4(ln

(7
6
+ 1

)
+ ln

(9
6
+ 1

)
+ ln

(11
6

+ 1
))]

+
[
2
(
ln
(8
6
+ 1

)
+ ln

(10
6

+ 1
))

+ ln(2 + 1)
]
.

Hence ∫ 2

1
ln(x+ 1)dx ≈ S6(f) =

1

18

[
0.6932 + 4(2.7309) + 2(1.8281) + 1.0986

]
= 0.9095.

(b) Since the fourth derivative of the function is

f (4)(x) =
−6

(x+ 1)4
.

Since η(x) is unknown point in (1, 2), therefore, the bound |f (4)| on [1, 2] is

M = max
1≤x≤2

|f (4)(x)| =
∣∣∣ −6

(x+ 1)4

∣∣∣ = 6/16 = 0.375.

Thus the error formula (5.57) becomes

|ET6(f)| ≤
(1/6)4

180
(0.375) = 0.000002,

which is the possible maximum error in our approximation in part (a).
(c) The absolute error |E| in our approximation is given as

|E| = |3 ln 3− 2 ln 2− 1− S6(f)| == 0.0000003.

(d) To find the minimum subintervals for the given accuracy, we use the error formula (5.57)
which is

|ESn(f)| ≤
(b− a)5

180n4
M ≤ 10−4.

Since we know M = 0.375, then we have

n4 ≥ 20.83333, gives n ≥ 2.136435032.

Hence to get the required accuracy, we need 4 subintervals (because n should be even) that ensures
the stipulated accuracy. •
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To find the approximate value of the given integral within the given accuracy, we use MATLAB
command which gives us the approximate solution and the number of subintervals n. First we
define m-file as fn.m for the function, so after finding the value of M , it simply compute n using
(5.57) and then calls the previously defined SimpsonR function, we have the results:

function y = fn(x)
y = log(x+ 1);
>> k = ErrorSR(′fn′, 0, 1, 0.375, 1e− 4)

Program 5.3
MATLAB m-file for computing Error term of the
Composite Simpson’s Rule
L = abs(b− a);n = ceil(L ∗ sqrt(sqrt(L ∗M/180/eps)));
if mod(n, 2) == 1;n = n+ 1; end; k=SimpsonR(fn,a,b,n);

Example 5.32 Determine the number of subintervals n required to approximate

I(f) =

∫ 2

0

1

x+ 4
dx,

with an error less than 10−4 using Simpson’s rule.

Solution. we have to use the error formula (5.57) which is

|ESn(f)| ≤
(b− a)

180
h4M ≤ 10−4.

Given the integrand is f(x) =
1

x+ 4
, and we have f (4)(x) =

24

(x+ 4)5
. The maximum value of

|f (4)(x)| on the interval [0, 2] is 3/128, and thus M =
3

128
. Using the above error formula, we get

3

(90× 128)
h4 ≤ 10−4, or h ≤ 2

5
4
√
15 = 0.7872.

Since n =
2

h
=

2

0.7872
= 2.5407, so the number of subintervals n required is n ≥ 4. •

5.7 Exercises

1. Let f(x) = (x − 1)ex and take h = 0.01. Calculate approximation to f ′(2.3) using the two-
point forward-difference formula and compute the actual error and an error bound for you
approximation.

2. Solve the Problem 1 for the f(x) = (x2 + x+ 1)e2x with h = 0.05.
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3. By using the following data: (1.2, 11.6), (1.29, 13.8), (1.3, 14), (1.31, 14.3), (1.4, 16.8). Compute
the best approximations of f ′(1.3) using the two-point forward-difference formula.

4. Let f(x) = sin(x + 1). Compute the approximation of f ′(
π

4
) using the two-point formula.

Compute actual error and error bound.

5. Use the three-point central-difference formula to compute the approximate value for f ′(5)
with f(x) = (x2 + 1) lnx and h = 0.05. Compute the actual error and the error bound for
you approximation.

6. Use the three-point central-difference formula to compute the approximate value for f ′(2)
with f(x) = ex/2 + 2 cosx, and h = 0.01. Compute actual error and error bound.

7. Solve the Problem 3 to find the best approximation of f ′(1.3) using the three-point forward-
difference and backward-difference formulas.

8. By using the following data: (1.0, 2.0), (1.5, 1.94), (2.0, 2.25), (3.0, 3.11). Find the best approx-
imate values for f ′(1.5), f ′(1.0), and f ′(3.0) using suitable three-point formulas.

9. Use all three-point formulas to compute the approximate value for f ′(2) for the derivative of
f(x) = ex/2 + x3, taking h = 0.1. Also, compute the actual errors and error bounds for your
approximation.

10. Use all three-point formulas to compute the approximate value for f ′(2.2) for the derivative
of f(x) = x2ex − x+ 1, taking h = 0.2. Compute actual errors and error bounds.

11. Use the most accurate three-point formula to determine approximations that will complete
the following table.

x f(x) f ′(x)

8.1 16.94410

8.3 17.56492

8.5 18.19056

8.7 18.82091

12. The data in the Problem 11 were taken from the function f(x) = x lnx. Compute the actual
errors and error bounds.

13. Let f(x) = x + ln(x + 2), with h = 0.1. Use the three-point formula to approximate f ′(2).
Find error bound for your approximation and compare the actual error to the bound.

14. Let f(x) = e−2x, with points x = 0.25, 0.5, 0.75, 1.25, 1.50. Use the three-point central-
difference formula to approximate f ′(1.0). Compute error bound for your approximation.

15. Approximate the integral

∫ 2

0
x2e−x2

dx, using suitable composite rules with n = 4, and n = 6.
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16. The following values of a function f(x) = tanx/x are given

x f(x) x f(x)

1.00 1.5574 1.40 4.1342
1.10 1.7862 1.50 9.4009
1.20 2.1435 1.60 -21.3953
1.30 2.7709

Find

∫ 1.6

1.0
f(x)dx, using the Trapezoidal rule with h = 0.1.

17. Use a suitable composite integration formula to approximate

∫ 1

0

dx

2ex − 1
, with n = 5.

18. Use a suitable composite integration formula for the approximation of the integral

∫ 2

1

dx

3− x
,

with n = 5. Compute an upper bound for your approximation.

19. Use the composite Trapezoidal rule for the approximation of the integral

∫ 3

1

dx

7− 2x
with

h = 0.5. Also, compute an error term.

20. Find the stepsize h so that the absolute value of the error for the composite Trapezoidal rule

is less than 5× 10−4 when it is used to approximate the integral

∫ 7

2

dx

x
.

21. Estimate the integral

∫ 1

−1

dx

1 + x2
using the Simpson’s rules with n = 8.

22. Use the composite Trapezoidal and the Simpson’s rules to approximate the integral

∫ 2

1

dx

4x+ 1
such that the error does not exceed 10−2.

23. Evaluate

∫ 1

0
ex

2
dx by the Simpson’s rule choosing h small enough to guarantee five decimal

accuracy. How large can h be ?

24. Use a suitable composite integration rule to find the best approximate value of the integral∫ 2

1

√
1 + sinx dx, with h = 0.1. Estimate the error bound.



Chapter 6

Numerical Solution of Ordinary
Differential Equations

6.1 Introduction

The differential equations are of fundamental importance in engineering mathematics because many
physical laws of biology, chemistry, ecology, economics, business, etc., and relations appear mathe-
matically in the form of such equations. We know that many differential equations can be solved
explicitly in terms of elementary functions of calculus. For example, the explicit solution of the
differential equation

dy

dx
= ex−y,

can be obtained easily as
y(x) = ln(ex + C),

and using initial condition y(0) = 1, we get

y(x) = ln(ex + e− 1).

We can use the MATLAB command dsolve (MATLAB’s symbolic differential equation solver) which
produces the general solution to the differential equation, or the specific solution to an associated
initial-value problem.

>> syms x y;
>> y = dsolve(′Dx = exp(x− y)′,′ x′);
>> y = dsolve(′Dx = exp(x− y)′,′ y(0) = 1′,′ x′); pretty(y)

But there are many differential equations which cannot be solved explicitly in terms of the
functions of calculus. For example, the solutions of the differential equation of the form

dy

dx
= e−x2

,

are the integral, or antiderivatives of e−x2
,

y(x) =

∫
e−x2

dx+ C,

291
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but it is known that these integrals cannot be expressed in terms of the functions of calculus.
We will refer to solutions that can be explicitly written in terms of elementary functions or special
functions as formula or symbolic solutions-whether they were obtained via hand-calculation or via
dsolve. When we cannot solve a differential equation in this way, or if the formula we find to
complicated, we turn to numerical methods to solve as initial-value problem. This is similar to
a situation in calculus: if we cannot find an antiderivative in terms of elementary functions, we
turn to a numerical method such as Trapezoidal rule or Simpson’s rule to evaluate a definite integral.

Important Points of the Chapter 6

I. In this chapter we shall find the approximate solutions of the differential equations.
II. Differential equation may be ordinary differential equation (only one independent variable) or
partial differential equation (more than one independent variable).
III. Given data points should be equally spaced only (length of each subinterval should be same).
Smaller the length of the interval better the approximation.
IV. Given differential equations may be linear or nonlinear and first degree and first-order.
V.We shall discuss the first-order ordinary differential equations and sets of simultaneous first-order
differential equations, since, one can easily find that nth-order differential equation may be solved
by transforming it to a set of n-simultaneous first-order differential equations. All the specified
conditions are on the same endpoints. These are initial-value problems. Many numerical methods
are discussed for the approximate solutions of such initial value problem.
VI. We shall use single step numerical methods for the approximate solution of the ordinary dif-
ferential equations.

6.2 Ordinary Differential Equations

Here, we will discuss about the ordinary differential equations and their numerical solutions.

Definition 6.1 (Differential Equation)

An equation which involving functions and their derivatives. For example, the following equations

(a)
dy

dx
= 3x, (b)

d2y

dx2
+ 4

dy

dx
+ y = 0,

(c)
dy

dx
= x2 + y2, (d)

(
d3y

dx3

)2

− 5
d2y

dx2
+ 2y = 5,

are differential equations. •

For the sake of completeness, we shall define some of the standard terms for differential equations.

Definition 6.2 (Dependent Variable)

It is the variable that has being differentiated. For example, in each of above differential equations
(a)-(d), y is the dependent variable. •
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Definition 6.3 (Independent Variable)

It is the variable with respect to which the differentiation is performed. For example, in each of
above differential equations (a)-(d), x is the independent variable. •

Definition 6.4 (Order of Differential Equation)

The order of the differential equation is the order of the highest derivative involved. For example,
the differential equations (a) and (c) are of first-order since the highest derivatives that appear is
of first-order, whereas the differential equations (b) and (d) are respectively, the second-order and
the third-order. •

Definition 6.5 (Degree of Differential Equation)

The degree of the differential equation is the power to which the highest-order derivative is raised.
For example, the differential equations (a)-(c) are of degree 1 while the differential equation (d) is
of degree 2. •

Definition 6.6 (Linear Differential Equation)

An differential equation is linear if

(1) The dependent variable y and all its derivatives are of the first degree, that is, the power of
each term involving y or its derivatives is one.

(2) Each coefficient depends on only independent variable x or constant.

For example, the above differential equations (a) and (b) are the linear differential equations while
the differential equations (c) and (d) are the nonlinear differential equations. •

Definition 6.7 (Initial Conditions)

When all of the conditions are given at starting value of independent variable x to solve a given
differential equation, is called a initial condition. When the conditions are given at the endpoints
of x-values, then the conditions are called the boundary conditions. •

6.2.1 Classification of Differential Equations

There are two major types of differential equations, called, ordinary differential equations (ODE)
and partial differential equations (PDE). If an equation contains only ordinary derivatives of one
or more dependent variables, with respect to a single independent variable, it is then said to be
an ordinary differential equation. For example, all the differential equations (a)-(d) are ordinary
differential equations because there is only one independent variable, called x.
An equation involving the partial derivatives of one or more dependent variables of two or more
independent variables is called it partial differential equation. For example, the following differential
equation

∂2y

∂x2
= c

∂2y

∂t2
,
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is the partial differential because it involves two independent variables, x and t. Although partial
differential equations are very useful and important, their study demands a good foundation in the
theory of ordinary differential equations. Consequently, in this chapter the discussion that follows
we shall confine our attention to ordinary differential equations.
As a mathematical form, the ordinary differential equation is a very useful tool. It is used in mod-
eling of a wide variety of physical phenomena, that is, chemical reactions, satellite orbits, vibrating
or oscillating systems, electrical networks, and so on. In many cases, the independent variable
represents time so that a differential equation describes change, with respect to time, in the system
being modeled. The solution of a differential equation will be representation of the state of the sys-
tem at any point in time and one can use it to study the behavior of the system. Consequently, the
problem of finding the solution of a differential equation play an important role in scientific research.

The solution of a differential equation is the function which satisfies the differential equation.
In solving a differential equation analytically, one usually compute a general solution containing
arbitrary constant. The simplest form of the differential equation is

y′ = f(x), (6.1)

with f(x) a given function. The general solution of this equation is

y(x) =

∫
f(x)dx+ C, (6.2)

where C is an arbitrary constant. For example, the differential equation of the form

y′ = cosx, (6.3)

has general solution of the form
y(x) = sinx+ C. (6.4)

The more general equation is
y′ = f(x, y(x)). (6.5)

Since the general solution of differential equation is depends on an arbitrary constant C, so this
constant can be calculated by specifying the value of function y(x) at a particular point x0

y(x0) = y0.

The point x0 is called initial point, and the number y0 is called the initial value. We call the
problem of solving

y′ =
dy

dx
= f(x, y); x0 ≤ x ≤ xn, y(x0) = y0, (6.6)

the initial-value problem (IVP). For example, for finding the solution of the differential equation
(6.3) satisfying y(π) = 1, we have the value of the constant C = 1, so (6.4) becomes

y(x) = sinx+ 1,

and it is called the particular solution of the differential equation (6.3), or called the solution of
the initial-value problem

y′ = cosx, y(π) = 1.
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The main concern of this chapter is approximating the solution to the problem (6.6). The initial-
value problems are problems in which the value of the dependent variable y is known at a point
x0. Such a large number of methods are available to handle problems of this type that one may
have difficulty in deciding which to use. Solving initial-value problem numerically we will assume
that the solution is being sought on a given finite interval x0 ≤ x ≤ xn with h = (b − a)/n,
where x0 = a, xn = b and n be the number of subintervals. In this chapter the most widely used
numerical methods are discussed in some details to find the solution of the initial-value problem. If
the analytical process of finding a exact solution y(x) is not feasible, it is still useful to know whether
a solution exists and unique using numerical methods. To make precise preceding discussion, we
give the following theorem which gives a sufficient condition for the existence and uniqueness of
the initial-value problem (6.6).

Theorem 6.1 (Existence and Uniqueness Theorem)

Let f(x, y) and
∂f

∂y
be continuous functions of x and y at all points (x, y) in some neighborhood of

the initial point (x0, y0). Then there is a unique function y(x) defined on some interval [x0−ϵ, x0+ϵ]
and satisfying

y′(x) = f(x, y(x)), y(x0) = y0, x ∈ [x0 − ϵ, x0 + ϵ], ϵ > 0 (6.7)

For example, the initial-value problem

y′(x) = 2xy2, y(0) = 1,

has a unique solution

y(x) =
1

1− x2
, −1 < x < 1,

because the both functions

f(x, y) = 2xy2,
∂f

∂y
= 4xy,

are continuous for all (x, y). Note that this example also showed that the continuity of the function

f(x, y) and
∂f

∂y
for all (x, y) does not imply the existence of a y(x) that is continuous for all x.

6.3 Numerical Methods for Solving IVP

By a numerical method for solving the initial-value problem (6.6) is meant a procedure for finding
approximate values y0, y1, . . . , yn of the exact solution y(x) at the given points x0 < x1 < . . . < xn.
We will let yi denote the numerical value obtained as approximation to the exact solution y(xi), with
xi = x0 + ih for i = 0, 1, . . . , n, where h (constant) is the size of the interval. Numerical methods
for differential equations are of great importance to the engineer and physicist because practical
problems often lead to differential equations that cannot be solved by any analytical method or to
equations for which the solutions in terms of formulas are so complicated that are often prefers to
calculate a table of values by applying a numerical method to such an equation.
Two different types of numerical methods are available to solve initial-value problem (6.6). These
are called the single-step and the multi-steps methods. The methods discussed will vary in complex-
ity, since in general, the greater the accuracy of a method, the greater is its complexity. We shall
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discuss many numerical methods for solving the approximate solution of the initial-value problems
(6.6) and the error analysis of each of the methods is explained in detail. Firstly, we discuss the
single-step methods for solving the problem (6.6).

6.4 Single-Step Methods for IVP

This type of method called self-starting, refers to estimate y′(x), from a initial condition y(x0) = y0
and y′0 = f(x0, y0) from (6.6) and proceed step-wise. In the first-step we compute an approximate
value y1 of the solution y(x) at x = x1 = x0 + h. In the second-step we compute an approximate
value y2 of that solution at x = x2 = x0 + 2h and so on. Although these methods generally use
functional evaluation information for xi and xi+1, they do not retain that information for direct
use in future approximations. All the information used by these methods is consequently obtained
within the interval over which the solution is being approximated. Among of them we will discuss
here, the Euler’s method , the Taylor’s method of higher-orders, and the Runge-Kutta method of
different orders.

6.4.1 Euler’s Method

One of the simplest and most straight forward numerical method for solving first-order ordinary
differential equation of the form (6.6) is called method of Euler. This method is not an efficient
numerical method and so seldom used, but it is relatively easy to analysis and many of the ideas
involved in the numerical solution of differential equations are introduced most simply with it.
In principle, the Euler’s method uses the forward difference formula approximation of y′(x) which
we discussed in the previous Chapter 5. That is

y′ =
dy

dx
≈ y(xi+1)− y(xi)

h
, (6.8)

where h is the stepsize and it is equal to xi+1 − xi. Given that
dy

dx
= f(x, y) and the initial

conditions x = x0, y(x) = y(x0), we have

y(x1)− y(x0)

h
≈ f(x0, y(x0)), or y(x1) ≈ y(x0) + hf(x0, y(x0)),

which shows that y(x1) is approximately given by y(x0) + hf(x0, y(x0)). We can now use this
approximation for y(x1) to estimate y(x2), that is

y(x2) ≈ y(x1) + hf(x1, y(x1)),

and so on. In general,

y(xi+1) ≈ y(xi) + hf(xi, y(xi)), i = 0, 1, . . . , n− 1.

Taking yi ≈ y(xi), for each i = 1, 2, . . . , n, we have

yi+1 = yxi + hf(xi, yi), i = 0, 1, . . . , n− 1. (6.9)

This simple integration strategy is known as the Euler’s method, or the Euler-Cauchy method. It
is called an explicit method because the value of y(x) at the next step is calculated only from the
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Figure 6.1: Geometrically interpretation of the Euler’s method.

value of y(x) at the previous step. Given the approximate formula, one can solve for yi+1 in terms
of xi, yi and f(xi, yi), all of which are known. Note that the above formula (6.9) can be derive
by using the Taylor series expansion of the unknown solution y(x) to the problem (6.6) about the
point x = xi, for each i = 0, 1, . . . , n− 1

y(xi+1) = y(xi) + (xi+1 − xi)y
′(xi) +

(xi+1 − xi)
2

2!
y′′(ηi) = y(xi) + hy′(xi) +

h2

2!
y′′(ηi), (6.10)

where unknown point ηi lies in the interval (xi, xi+1). For the smaller value of stepsize h, the higher
power h2 will be very small and may be neglected. Using f(xi, yi) to evaluate y′(xi) and yi ≈ y(xi),
we have the formula (6.9).
Geometrically interpretation of the method is shown by Figure 6.1.

Example 6.1 Use the Euler’s method to find the approximate value of y(1) for the given initial-
value problem

y′ = xy + x, 0 ≤ x ≤ 1, y(0) = 0, with h = 0.1, 0.2.

Compare your approximate solutions with the exact solution y(x) = −1 + ex
2/2.

Solution. Since f(x, y) = xy + x, and x0 = 0, y0 = 0, then

yi+1 = yi + hf(xi, yi), for i = 0, 1, . . . , 9

Then for h = 0.1 and taking i = 0, we have

y1 = y0 + hf(x0, y0) = y0 + h(x0y0 + x0) = 0 + (0.1)[(0)(0) + (0)] = 0.0000.

Similar way, we have other approximations by taking xi = xi−1 + h, i = 1, 2, . . . , 9, as follows

y2 = 0.0100, y3 = 0.0302, y4 = 0.0611, y5 = 0.1036, y6 = 0.1587,

y7 = 0.2283, y8 = 0.3142, y9 = 0.4194, y10 = 0.5471,

with possible absolute error

|y(1)− y10| = |0.6487− 0.5471| = 0.1016.



298 6.4 Single-Step Methods for IVP

Similarly, the approximations for h = 0.2, give

y1 = 0.0000, y2 = 0.0400, y3 = 0.1232, y4 = 0.2580, y5 = 0.4592,

with possible absolute error

|y(1)− y5| = |0.6487− 0.4592| = 0.1895.

It showed that the result for h = 0.1 is better than the h = 0.2 and for both cases the approximation
is not even correct to 1 decimal place. Clearly, the results using this method are inferior to those
we will obtain in the coming methods. However, the accuracy of the Euler’s method could be
considerable improved by using smaller value of h than 0.1. •
Note that before calling MATLAB function Euler1 which defined below, we must define MATLAB
function fun1 as follows:

function f = fun1(x, y)
f = x ∗ y + y;

Given Euler1.m and fun1.m the results obtained manually in the preceding example are reproduced
with following MATLAB command:

>> [x′, y′] = Euler1(′fun1′, 0, 1, 0, 10); [x′, y′] = Euler1(′fun1′, 0, 1, 0, 5)

The same results are obtained with the following statements that define MATLAB command as an
inline function object:

>> sol = inline(′x ∗ y + x′,′ x′,′ y′); [x′, y′] = Euler1(sol, 0, 1, 0, 10); disp([x′, y′])

Example 6.2 Use the Euler’s method to find the approximate value of y(1.4) for the given initial-
value problem

1

x
y′ − y2 = 0, y(1) = 1, with n = 2.

Compare your approximate solutions with the exact solution y(x) = 2/(3− x2).

Solution. Since f(x, y) = xy2, and x0 = 1, y0 = 1, h = 0.2, then using the Euler’s method

yi+1 = yi + hf(xi, yi), for i = 0, 1, . . . , n− 1,

for i = 0, we have

y1 = y0 + hf(x0, y0) = y0 + h(x0y
2
0) = 1 + (0.2)[(1)(1)] = 1.2.

Similar way, we have other approximations by taking i = 1, as follows

y2 = y1 + hf(x1, y1) = y1 + h(x1y
2
1) = 1.2 + (0.2)[(1.2)(1.44)] = 1.5456,

the required approximation of y(1.4) and

|y(1.4)− y2| = |1.9231− 1.5456| = 0.3775,

is the possible absolute error. •
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6.4.2 Analysis of the Euler’s Method

The preceding Example 6.1 demonstrates that the error in applying the Euler’s method is reduced
when h is reduced. The question of how well the Euler’s method for solving the initial-value problem
(6.6) works is closely related to the truncation error of the method. There are two types of such
error, local and global truncation error.
In case of local truncation error one consider the size of the error made during one step and for
global truncation error, one can consider the errors in the entire interval x0 ≤ x ≤ xn over which
the solution is sought.
We turn to the Taylor series to find an expression that represents the error, we have

y(x+ h) = y(x) + hy′(x) +
h2

2!
y′′(η(x)),

for unknown η(x) ∈ [x, x+ h].
If y(xi+1) is the true value of y(x), then the Taylor series expression at xi is

y(xi+1) = y(xi) + hf(xi, yi) +
h2

2!
y′′(η(xi)), η(xi) ∈ (xi, xi+1)

as y′ = f(xi, yi). The Euler’s formula uses the recurrence relation

yi+1 = y(xi) + hf(xi, yi),

to estimate yi+1 assuming that y(xi) is the true solution. The error in yi+1 is given by yi+1−y(xi+1)
which can be written as

yi+1 − y(xi+1) = (y(xi) + hf(xi, yi))− (y(xi) + hf(xi, yi) +
h2

2!
y′′(η(xi))) = −h2

2!
y′′(η(xi)), (6.11)

for i = 0, 1, . . . , n − 1. We call the term −h2

2
y′′(η(xi)), the local truncation error for the Euler’s

method. It is of order h2.
Note that this error term only applies in the region (xi, xi+1), hence it is only the error in estimating
yi+1 from y(xi). It does not take into account the compounded error from previous estimates. If
we assume that the error is increasing linearly with n, then the error will be proportional to nh2,

but n is dependent on h as h =
xn − x0

n
, so the error will be proportional to

xn − x0
h

h2 = (xn − x0)h,

which is order h. This error is called the global truncation error.
The analysis above leads to important theorem in the analysis of numerical methods.

Theorem 6.2 For the differential equations
dy

dx
= f(x, y), if the leading term in the local truncation

error involves hp+1, for some integer p, then the global error, for small h, is of order hp, that is

yi+1 − y(xi+1) ≈ chp,

where c does not depend on stepsize h. •
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Note that the Euler’s method is called the first-order method because of its local truncation error
given by the formula (6.11), since this arises on each application of the method. Thus, in generating
the solution point (xk, yk) the truncation error appears k times, once for each application of the
method.

Program 6.1
MATLAB m-file for Euler Method
function sol=Euler1(fun1,a,b,y0,n)
h=(b-a)/n; x=a+(0:n)*h; y(1)=y0;
for k = 1 : n; y(k+1) = y(k)+h∗feval(fun1, x(k), y(k)); end; sol=[x’,y’];

Since the Euler’s method is an iterative method so, it may be converge or diverge. If divergence
occurs, then the procedure should be terminated because there may be no solution.

6.4.3 Higher-Order Taylor Methods

The basis for many numerical techniques finding the approximate solution of the initial-value prob-
lem can be depend to the Taylor’s series, as we used this series in the previous section in finding
the Euler’s method which also called the Taylor’s method of order one. One can, of course, develop
the Taylor’s method for higher-order to obtain better accuracy, and in general, one expect that
higher the order of the method, greater the accuracy for a given stepsize. The Taylor’s method is
relatively easy to use, however, the necessity of calculating the higher derivatives makes the Taylor’s
method completely unsuitable. Nevertheless, it is of great theoretical interest because the most
of the practical methods attempt to achieve the same accuracy as the Taylor’s method of a given
order without the disadvantage of having to calculate the higher derivatives. Assuming that the
solution y(x) of the initial-value problem (6.6) has (n + 1) continuous derivatives and expanding
y(x) in terms of its nth degree Taylor polynomial about xi, we get

y(xi+1) = y(xi) + hy′(xi) +
h2

2!
y′′(xi) + · · ·

+
hn

n!
y(n)(xi) +

hn+1

(n+ 1)!
y(n+1)(η(xi)), (6.12)

for some η(xi) ∈ (xi, xi+1). The derivatives in this expansion are not known explicitly since the
solution is not known. However, if f is sufficiently differentiable, they can be obtained by taking
the total derivative of (6.6) with respect to x, keeping in mind that f is an implicit function of y.
Thus

y′ = f(x, y) = f
y′′ = f ′ = fx + fyf
y′′′ = f ′′ = fxx + 2fxyf + fyyf

2 + fxfy + f2
y f

...

(6.13)

Continuing in this manner, we can express any derivative of y in terms of f(x, y) and its partial
derivatives. It is already clear, however, that unless f(x, y) is a very simple function, the higher
total derivatives become increasingly complex. Now substituting these results into (6.12), gives

y(xi+1) = y(xi) + hf(xi, y(xi)) +
h2

2!
f ′(xi, y(xi)) + · · ·
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+
hn

n!
f (n−1)(xi, y(xi)) +

hn+1

(n+ 1)!
f (n)(η(xi), y(η(xi))). (6.14)

By taking yi ≈ y(xi), that the approximation to the exact solution at xi, for each i = 0, 1, . . . , n−1,
we have

yi+1 = yi + hf(xi, yi) +
h2

2!
f ′(xi, yi) + · · ·+ hn

n!
f (n−1)(xi, yi). (6.15)

Then this formula is called the Taylor’s method of order n. The last term of (6.14), called remainder,
shows that the local error of Taylor’s method of order n is

E =
hn+1

(n+ 1)!
f (n)(ηi, y(η(xi))) =

hn+1

(n+ 1)!
y(n+1)(η(xi)), (6.16)

for some xi < η(xi) < xi+1.

Example 6.3 Use the Taylor’s method of order 2 to find the approximate value of y(1) for the
given initial-value problem.

y′ = xy + x, 0 ≤ x ≤ 1, y(0) = 0, with h = 0.2

Compare your approximate solution with the exact solution y(x) = −1 + ex
2/2.

Solution. Since f(x, y) = xy + x, and x0 = 0, y0 = 0, then

yi+1 = yi + hf(xi, yi) +
h2

2
f ′(xi, yi), for i = 0, 1, 2, 3, 4

where f ′(xi, yi) = yi + x2i yi + x2i + 1. Then for i = 0, we have

y1 = y0 + h(x0y0 + x0) +
h2

2
(y0 + x20y0 + x20 + 1) = 0 + (0.2)(0) + (0.02)(1) = 0.0200,

and similar way, we have for i = 1, 2, 3, 4, as follows

y2 = 0.0820, y3 = 0.1937, y4 = 0.3694, y5 = 0.6334,

with absolute possible error

|y(1)− y5| = |0.6487− 0.6334| = 0.0153.

It showed that the result is entirely correct to 1 decimal place. Clearly, the result using this method
is better than the Euler’s method and it could be considerable improved by using smaller value of
h than 0.2. •

Note that before calling MATLAB functions tayl1 and fun1, we must define MATLAB function
dfun1 as follows:
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function f = dfun1(x, y)
f = y + x. ˆ 2 ∗ y + x.ˆ 2 + 1;

Given tayl1.m, fun1.m and dfun1.m, the results obtained manually in the preceding example are
reproduced with following MATLAB commands:

>> [x′, y′] = tayl1(′fun1′,′ dfun1′, 0, 1, 0, 5); disp([x′, y′])

Example 6.4 Show that Taylor’s method of order 2 for the initial-value problem

eyy′ − ex = 0, 0 ≤ x ≤ 1, y(0) = 1, with h = 0.5,

is

yi+1 = yi + he(xi−yi)
[
1 +

h

2

(
1− e(xi−yi)

)]
, i ≥ 0.

What are the values of y0, y1, y2. Compare your approximate solution with the exact solution y(x) =
ln(ex + e− 1).

Solution. Since the Taylor’s method of order 2 is

yi+1 = yi + hf(xi, yi) +
h2

2
f ′(xi, yi), for i ≥ 0,

and the given function is f(x, y) = ex−y with its first derivative f ′(x, y) = ex−y[1− ex−y]. So using
these values, we have

yi+1 = yi + hexi−yi +
h2

2

[
ex−y

(
1− ex−y

)]
, for i ≥ 0,

or

yi+1 = yi + he(xi−yi)
[
1 +

h

2

(
1− e(xi−yi)

)]
, i ≥ 0.

Now for i = 0, we have

y1 = y0 + he(x0−y0)
[
1 +

h

2

(
1− e(x0−y0)

)]
,

and using x0 = 0, y0 and h = 0.5, we get y1 as follows

y1 = 1 + (0.5)e(0−1)
[
1 +

0.5

2

(
1− e(0−1)

)]
= 1.2130.

Similar way, we have the value of y2 for taking i = 1, as follows

y2 = y1 + he(x1−y1)

[
1 +

h

2

(
1− e(x1−y1)

)]

= 1.2130 + (0.5)e(0.5−1.2130)

[
1 +

0.5

2

(
1− e(0.5−1.2130)

)]
= 1.4893.

the required approximation of y(x) at x = 1. Thus

|y(1)− y2| = |1.4899− 1.4893| = 0.0006,

is the possible absolute error in our approximation. •
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Program 6.2
MATLAB m-file for Taylor’s Method of order 2
function sol=tayl1(fun1,dfun1,a,b,y0,n)
h=(b-a)/n; x = a+ (0 : n) ∗ h; y(1)=y0; for k=1:n
y(k + 1) = y(k) + h ∗ feval(fun1, x(k), y(k)) + (h.ˆ 2 ∗ feval(dfun1, x(k), y(k)))/2; end;
sol = [x′, y′];

Example 6.5 Use the Taylor’s method of order 3 to find the approximate value of y(1) for the
given initial-value problem

4y′ − y = 0, 0 ≤ x ≤ 1, y(0) = 1, with n = 2.

Compare your approximate solution with the exact solution y(x) = ex/4.

Solution. Since the Taylor’s method of order 3 is

yi+1 = yi + hf(xi, yi) +
h2

2!
f ′(xi, yi) +

h3

3!
f ′′(xi, yi),

for i = 0, 1, . . . , n − 1, and using the given values x0 = 0, y0 = 1 and f(x, y) = 1/4y, we get,
f ′(x, y) = 1/16y and f ′′(x, y) = 1/64y. So using these values we obtain Taylor’s method of order 3
of the form

yi+1 = yi + h(1/4yi) +
h2

2
(1/16yi) +

h3

6
(1/64yi).

Then for i = 0, we have

y1 = y0

[
1 +

h

4
+

h2

32
+

h3

384

]
,

and by taking y0 = 1, h = 0.5, we get

y(0.5) ≈ y1 = 1(1 + 0.125 + 0.0078 + 0.0003) = 1.1331,

and similar way, we have other approximation for taking i = 1, as follows

y(1) ≈ y2 = y1(1 + 0.125 + 0.0078 + 0.0003) = 1.1331(1.1331) = 1.2839,

the required approximation of y(1) and

|y(1)− y2| = |1.2840− 1.2839| = 0.0001,

is the possible absolute error. •

Example 6.6 Show that third order Taylor’s method for the given initial-value problem

y′ − 2x+ y = 0, y(0) = −1,

is

yi+1 = yi + (2x−yi)h+

(
h2

2
− h3

6

)
[2(1− xi) + yi], i = 0, 1, . . . , n− 1.
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Use it to find approximation of y(0.1).

Solution. Using f(x, y) = 2x−y, f ′(x, y) = 2(1−x)+y, f ′′(x, y) = 2(x−1)−y, then the Taylor’s
method of order 3 gets the form

yi+1 = yi + h[2xi − yi] +
h2

2
[2(1− xi) + yi] +

h3

6
[2(xi − 1)− yi],

and after simplifying, we get

yi+1 = yi + (2xi − yi)h+

(
h2

2
− h3

6

)
[2(1− xi) + yi].

Now by taking i = 0 in the above formula, we obtain

y(x1) ≈ y1 = y0 + (2x0 − y0)h+

(
h2

2
− h3

6

)
[2(1− x0) + y0],

by using x0 = 0, y0 = 1 and h = 0.1, we obtain,
y(0.1) ≈ y1 = −1 + 0.1 + (0.005− 0.0002)(2− 1) = −0.8952, the required approximation. •

In using the Taylor’s method, we replace the infinite Taylor series for f(x + h) by a partial sum.
The local truncation error is inherent in any algorithm that we might choose.

If we retain term up to and including hn in the series, then the local truncation error is the sum of
all the remaining terms that we do not include by Taylor’s method. These terms can be compressed
into a single term of the form

hn+1

(n+ 1)!
f (n+1)(η(x), y(η(x))),

for some unknown point η(x). We say that the local truncation error is order hn+1. An error of
this sort is present in each step of the numerical solution. The accumulation of all the many local
truncation error gives rise to the global truncation error which must be of order hn because the

number of steps necessary to reach on arbitrary point x, having started at x0, is
x− x0

h
. Choosing

n large so that this error is small.

6.4.4 Runge-Kutta Methods

Since we studied that the Euler’s method is not very useful in practical problems because it requires
a very small stepsize for reasonable accuracy. the Taylor’s method of higher-order is difficult to use
because it needs to obtain higher total derivatives of y(x). An important group of methods which
allow us to obtain greater accuracy at each step and yet require only initial value of y(x) to be given
with the differential equation are called the Runge-Kutta methods. The Runge-Kutta methods
attempt to obtain greater accuracy, and at the same time avoid the need of higher derivatives by
evaluating the function f(x, y) at selected points on each subintervals. These methods can be used
to generate not only starting values but, in fact, in whole solution. They are self-starting and easy
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to program for a digital computer. We shall begin by showing how to derive the simplest formulas
in this class. These are of the form

yi+1 = yi + (w1k1 + w2k2), (6.17)

where

k1 = hf(xi, yi) and k2 = hf(xi + ah, yi + bk1).

The parameters w1, w2, a, and b are chosen in order to make the formula (6.17) as accurate as
possible, that is, to make the order of accuracy as large as possible. To this end, we substitute the
exact value y(x), y(xi+1) by the local solution into the formula (6.17) and expand about the point
xi. The parameters are then chosen to make the resulting expansion agree as much as possible with
the Taylor series for y(xi+1) about xi. Upon substituting into (6.17), we first expanding y(xi+1) in
the Taylor series through terms of order h3, we obtain

y(xi+1) = y(xi) + hy′(xi) +
h2

2!
y′′(xi) +

h3

3!
y′′′(xi) + · · · (6.18)

Since

y′ = f(x, y)

y′′ = f ′(xi, yi) = (fx + fyf)i

y′′′ = f ′′(xi, yi) = (fxx + 2fxyf + fyyf
2 + fxfy + f2

y f)i +O(h4). (6.19)

So

y(xi+1) = y(xi) + hf(xi, yi) +
h2

2!
(fx + ffy)i

+
h3

3!
(fxx + 2fxyf + fyyf

2 + fxfy + f2
y f)i +O(h4), (6.20)

where the subscripts on f denote partial derivatives with respect to the indicated variables, and
the subscript i means that all functions involved are to be evaluated at (xi, yi). Now using the
Taylor’s expansion for functions of two variables, we find that

k2 = hf(xi + ah, yi + bk1) = h[f + h(afx + bffy)

+
h2

2
(a2fxx + 2abffxy + b2f2fyy) +O(h4)]i. (6.21)

Now we substitute this expression for k2 into (6.17), gives

yi+1 = yi + h[w1f(xi, yi) + w2f(xi + ah, yi + bk1)]

= yi + h[(w1 + w2)f ]i + h2w2[(afx + bffy)]i

+
h3

2
w2[a

2fxx + 2abffxy + b2f2fyy]i +O(h4). (6.22)
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Figure 6.2: Geometrically interpretation of the Modified Euler method.

On comparing (6.20) and (6.22), we see that to make the corresponding powers of h and h2 agree,
we must have

w1 + w2 = 1 and a =
1

2w2
= b.

This is a system of two nonlinear equations in the four unknowns a, b, w1, and w2 and its solution
can be written in the form

b = a =
1

2w2
, w1 = 1− w2. (6.23)

There are many solutions to (6.23) depending on the choices of w2. These choices leads to the
numerical method which has order 2 and some of them do correspond to any of the standard
numerical integration formulas. Taking the first choice when w2 = 1/2, we have

yi+1 = yi +
h

2
[f(xi, yi) + f(xi+1, yi + hf(xi, yi))]. (6.24)

Runge-Kutta Method of Order Two (Modified Euler’s Method)

The equation (6.24) can be written in a standard form as

yi+1 = yi +
h

2
[k1 + k2], (6.25)

where

k1 = f(xi, yi) and k2 = f(xi+1, yi + hk1),

for each i = 0, 1, . . . n − 1. Then the relation (6.25) is called the Runge-Kutta method of order
2 which is also known as the Modified Euler’s method. This method corresponds to using the
Trapezoidal rule to estimate the integral where a preliminary (full) Euler step is taken to obtain
the (approximate) value at xi+1. Geometrically interpretation of the method is shown by Figure 6.2.
The local error of this formula is, however, of order h3, whereas that of the Euler’s method is h2.
We can therefore expect to be able to use a large stepsize with this formula.
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Example 6.7 Use Runge-Kutta method of order two (Modified Euler’s method) to find the approx-
imate value of y(1) for the given initial-value problem

y′ = xy + x, 0 ≤ x ≤ 1, y(0) = 0, with h = 0.2.

Compare your approximate solution with the exact solution y(x) = −1 + ex
2/2.

Solution. Since f(x, y) = xy + x, and x0 = 0, y0 = 0, then for i = 0, we have

k1 = f(x0, y0) = (x0y0 + x0) = 0.0000
k2 = f(x1, y0 + hk1) = (x1(y0 + hk1) + x1) = (0 + 0.2) = 0.2000,

and using these values, we have

y1 = y0 +
h

2
[k1 + k2] = 0 + 0.1(0 + 0.2000) = 0.0200.

Continuing in this manner, we have

k1 = 0.204, k2 = 0.4243, then y2 = 0.0828,
k1 = 0.4331, k2 = 0.7017, then y3 = 0.1963,
k1 = 0.7178, k2 = 1.0719, then y4 = 0.3753,
k1 = 1.1002, k2 = 1.5953, then y5 = 0.6449,

with possible error
|y(1)− y5| = |0.6487− 0.6449| = 0.0039

The results of the Example 6.7 can be obtained by using the following MATLAB command as
follows:

>> sol = mod1(′fun1′, 0, 1, 0, 5);

So there is a significant improvement in accuracy of this method as compared with the Euler’s
method but the problem of accuracy still remains however since error will accurate from step to
step. In particular, since the function f(x, y) calculated repeatedly from values of y(x) which
include the accumulated error, these errors may grow in an unpredictable way.

Example 6.8 Use the Runge-Kutta method of order two (the Modified Euler’s method) to find the
approximate value of y(1.4) for the given initial-value problem

xy′ + y′ − 2y = 0, y(1) = 4, with n = 2.

and compare your approximate solution with the exact solution y(x) = (x+ 1)2.

Solution. Since f(x, y) =
2y

x+ 1
, and x0 = 1, y0 = 4, h = (1.4 − 1)/2 = 0.2, then for i = 0, we

have

k1 = f(x0, y0) =
2y0

x0 + 1
= 4,

k2 = f(x1, y0 + hk1) =
2(y0 + hk1)

x1 + 1
= 4.3636,
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and by using these values, we have

y(1.2) ≈ y1 = y0 +
h

2
[k1 + k2] = 4 + 0.1(4 + 4.3636) = 4.8364.

Similar manner, we have the other approximation for taking i = 1, as follows

k1 = 4.3967 and k2 = 4.7631,

and by using these values, we have

y(1.4) ≈ y2 = y1 +
h

2
[k1 + k2] = 4.8364 + 0.1(4.3967 + 4.7631) = 5.7523,

the required approximation of y(1.4) and

|y(1.4)− y2| = |5.7600− 5.7523| = 0.0077,

is the possible absolute error. •

Example 6.9 Use the Runge-Kutta method of order two (the Modified Euler’s method) to find the
approximate value of y(1.2) for the given initial-value problem

x2y′ − y = 0, y(1) = 2, with n = 2.

and compare your approximate solution with the exact solution y(x) = e(x−1)/x.

Solution. Since f(x, y) = x−2y and x0 = 1, y0 = 2, h = (1.2 − 1)/2 = 0.1, then for i = 0, we
have

k1 = f(x0, y0) = f(1, 2) = (1)−2(2) = 2,

k2 = f(x1, y0 + hk1) = f(1.1, 2.2) = (1.1)−2(2.2) = 1.8182,

and by using these values, we have

y(1.1) ≈ y1 = y0 +
h

2
[k1 + k2] = 2 + 0.05(2 + 1.8182) = 2.1909.

Similar manner, we have the other approximation for taking i = 1, as follows

k1 = 1.8107 and k2 = 1.6035,

and by using these values, we have

y(1.2) ≈ y2 = y1 +
h

2
[k1 + k2] = 2.1909 + 0.05(1.8107 + 1.6035) = 2.3616,

the required approximation of y(1.2) and

|y(1.2)− y2| = |2.3627− 2.3616| = 0.0011,

is the possible absolute error. •
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Example 6.10 Use the Runge-Kutta method of order two (the Modified Euler’s method) to find
the approximate value of y(0.2) for the given initial-value problem

2 sinxy′ − y sin 2x = 0, y(0) = 1, with n = 2.

and compare your approximate solution with the exact solution y(x) = esinx.

Solution. Since f(x, y) = y cosx and x0 = 0, y0 = 1, h = (0.2 − 0)/2 = 0.1, then for i = 0, we
have

k1 = f(x0, y0) = f(0, 1) = 1 cos 0 = 1,

k2 = f(x1, y0 + hk1) = f(0.1, 1.1) = (1.1) cos 0.1 = 1.0945,

and by using these values, we have

y(0.1) ≈ y1 = y0 +
h

2
[k1 + k2] = 1 + 0.05(1 + 1.0945) = 1.1047.

Similar manner, we have the other approximation for taking i = 1, as follows

k1 = 1.0992 and k2 = 1.1904,

and by using these values, we have

y(0.2) ≈ y2 = y1 +
h

2
[k1 + k2] = 1.1047 + 0.05(1.0992 + 1.1904) = 1.2192,

the required approximation of y(1.2) and

|y(0.2)− y2| = |1.2198− 1.2192| = 0.0006,

is the possible absolute error. •

The modified Euler’s method is classified as a predictor-corrector method. This means that in the
case of the modified Euler’s method the initial-value problem is given by the formula

y
(k)
i+1 = yi + hf(xi, yi), (6.26)

which is called the predictor and this is corrected by the repeated application of the formula

y
(k+1)
i+1 = yi +

h

2

[
f(xi, yi) + f(xi+1, y

(k)
i+1)

]
, k = 0, 1, 2, . . . (6.27)

for each i = 0, 1, . . . , n−1. This is called the corrector. There are many predictor-corrector formulas
and some provide much greater accuracy than the relatively the modified Euler’s method. These
methods however, require accurate estimates for a number of initial values of y(x) before they can
be used. We shall discuss some of those predictor-corrector formulas latter in the chapter.

Program 6.3
MATLAB m-file for the Modified Euler’s Method
function sol=mod1(fun1,a,b,y0,n)
h = (b− a)/n;x = a+ (0 : n) ∗ h; y(1) = y0; for k = 1 : n
k1 = feval(fun1, x(k), y(k)); k2 = feval(fun1, x(k) + h, y(k) + h ∗ k1);
y(k + 1) = y(k) + h ∗ (k1 + k2)/2; end; sol = [x′, y′];
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6.5 Exercises

1. Find the general solution of the differential equation y′ =
x

y
.

In Problems 2− 20 solve each of the following initial-value problem using indicated method.

2. Put following differential equations into a form for numerical solution by Euler’s method.
(a) y + 2yy′ − y′ = 0; (b) ln y′ = x2 − y2; (c) y′ − x2y′ = y.

3. Solve the following initial-value problems using the Euler’s method.

(a) y′ = y + x2, x = 0(0.2)1, y(0) = 1.

(b) y′ = (x− 1)(x+ y + 1), x = 0(0.2)1, y(0) = 1.

4. Solve the following initial-value problems and compare the numerical solutions obtained with
the Euler’s method using the values of h = 0.1 and h = 0.2. Compare the results to the
actual values.

(a) y′ = 1 + x2, 0 ≤ x ≤ 1, y(0) = 0, y(x) = tanx.

(b) y′ = 2(y + 1), 0 ≤ x ≤ 1, y(0) = 0, y(x) = e2x − 1.

(c) y′ = 2(y − 1)2, 1 ≤ x ≤ 2, y(1) = 0.5, y(x) = (2x− 1)/2x.

5. Solve the following initial-value problems using the Taylor’s method of order two.

(a) y′ = 2x2 − y, x = 0(0.2)1, y(0) = −1.

(b) y′ = 3x2y, x = 0(0.2)1, y(0) = 1.

(c) y′ = x/y − x, x = 0(0.2)1, y(0) = 2.

6. Solve the initial-value problems by using Taylor’s method of order three of the Problem 3.

7. Solve the following initial-value problems using the Modified Euler’s method.

(a) y′ = y2x2, x = 1(0.2)2, y(1) = −1.

(b) y′ = x− y/2x, x = 1(0.02)1.10, y(1) = 0.25.

(c) y′ = 1/y2 − yx, x = 1(0.2)2, y(1) = 1.

8. Solve the following initial-value problems and compare the numerical solutions obtained with
the Modified Euler’s method using the values of h = 0.05 and h = 0.1 and compare the results
with the actual values.

(a) y′ = x+
3y

x
, 1 ≤ x ≤ 2, y(1) = 0, y(x) = x3 − x2.

(b) y′ =
√
y, 0 ≤ x ≤ 1, y(0) = 1, y(x) = (x+ 2)2/4.

(c) y′ = 4− 3y, 0 ≤ x ≤ 1, y(0) = 5, y(x) = 4/3 + 11/3e−3x.
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9. Solve the following initial-value problems using the Modified Euler’s method.

(a) y′ = (x+ 1)y, x = 0.5(0.2)1.5, y(0.5) = 1.

(b) y′ = −xy2, x = 0(0.2)1, y(0) = 2.

(c) y′ = t2 + x2, x = 1(0.2)2, y(1) = −1.

Answers to Selected Exercises
Chapter 2

1. x10 = −1.84141 3. (a) x16 = 0.35173 (b). x15 = 0.97300

5. (a) x8 = 1.53906 (b) |α− x8| ≤
3− 1

28
= 0.00781

7. (b) x3 = 0.58705 (c) |α− x3| ≤
(0.41218)3

1− 0.41218
|0.5− 0| = 0.05957

9. k = 1, g′(1) = −1
2 ̸= 0, a linear convergence.

11. (b) k = max
3≤4

|g′(x)| = 4/9, x0 = 3, x1 = 10/3, n = 8

13. x3 = 0.0667 15. x3 = 1.532, quadratic convergence, 17. g′(α) =
1

2

19. x4 = 0.567 21. f ′′′(1) = 6 ̸= 0, 23. (a) x23 = 1.00, (b) x4 = 0.99, (c). x4 = 1.00

25. g′(
√
2) = −0.414214 ̸= 0, 27. x(3) = 1.08828, y(3) = 0.84434

Chapter 3

3. |AB| = 0 5. x = −3, y = 2 7.(a) B 9. det(A) = 86

21. (a) x = [1.16, 0.88,−1.32]T 23. (c) x = [0.6429,−2.2798,−1.9345]T

25. (a) x = [−1.33, 3, 2.33]T 31. (c) x = [−1, 2, 3]T

33. (a) WP: x = [−500.0, 333.7]T PP : x = [−499.98, 333.7]T

35. (a) x = [0.74,−0.84, 1.05,−1.96]T 37. (c) −5 39. (a) −3

41. ∥A∥ = 6, 7, 5.53 43. (c) K(A) = 39.64 45. (a) 0.5, 11.80

47. δx = [−100, 101]T , K(A) = 404 49. δx = [−17, 20]T , K(A) = 8004

51. (a) ∥TJ∥ = 70 (b) ∥TJ∥ = 0.5 (c) ∥TJ∥ = 0.5

53. (a) x(13) = [2, 4, 3]T (b) x(22) = [1, 1, 1]T (c) x(12) = [−0.1016, 0.5391, 0.3281]T

55. ∥TJ∥ = 0.75, ∥X −X(20)∥ = 0.0072

57. A = [5 − 1 1; 0 3 − 1; 1 2 4], X(1) = [0.2,−0.333, 0.6167]T , ∥X −X(10)∥ = 0.00011
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59. ∥TG∥ = 0.6, X(2) = [−0.9490,−2.9854,−1.9836]T , ∥X −X(2)∥ = 0.3780

Chapter 4

1. p2(2.3) = 0.4548 3. p2(0.5) = 2.3212, EB = 0.0313, p2(2.8) = 5.9399, EB = 0.007111

5. p3(1.1) = −3.686, EB = 3.73308 7. (b) p2(2.2) = 10.284, p3(2.2) = 10.1224

9. (b) p3(5.9) = 2.429, p4(5.9) = 2.429, (c) E3 = 0.0005742, E4 = 0.00000004

11. All three divided differences can be expanded as

(x2 − x1)f0 − (x2 − x0)f1 + (x1 − x0)f2
(x2 − x1)(x2 − x0)(x1 − x0)

13. f [0, 1, 0] = 0.7183, 15. s0(0.55) = 3.7200, s1(1.15) = 4.0210, s2(2.5) = 5.2500

17. s0(0.15) = 0.1350, s1(0.25) = 0.2200, s2(0.45) = 0.3725

19. s0(2.5) = 1.833, s1(5.5) = 2.5, s2(10.5) = 3.357, E0 = 0.0375, E1 = 0.0495, E2 = 0.034

Chapter 5

1. (a). 23.1059, −0.16529, 0.16673 (b). 22.77676, 0.16386, 0.16457

3. FD = 30.0, BD = 20.00 5. 21.2946, 0.0002, 0.0002

7. FD = 21.294, 0.0004, 0.0004 BD = 21.294, 0.0004, 0.0004

9. CD = 13.3697, 0.0106, 0.01, FD = 13.34, 0.02, 0.02, BD = 13.34, 0.02, 0.02

11. FD = f ′(8.1) = 3.09, CD = f ′(8.3) = 3.12, CD = f ′(8.5) = 3.14, BD = f ′(2.4) = 3.16

13. Approx = 1.24999992, EB = 0.00000008, AE = 0.00000010097

17. T5(f) = 0.49557207 19. T4(f) = 0.84166667, EB = 0.3333333

21. S8(f) = 1.57078431 23. h = 0.0543 and n = 18

Chapter 6

1. y2 − x2 = c 3. (a) y(0.25) ≈ 1.5876

3. (a) y(0.25) ≈ 1.5876 5. y(1) ≈ 0.1463 7. y(2) ≈ −0.3075

9. Heun’s Method (a) y(1.5) ≈ 7.0236 Midpoint Method (a) y(1.5) ≈ 6.9937
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algebraic form, 106
algorithm, 1
approximate area, 276
approximate number, 4
approximating function, 240
approximating functions, 182
approximation polynomials, 181
approximation theory, 181
area, 263
augmented matrix, 78

backward substitution, 101, 103
backward-difference formula, 242, 253
band matrix, 87
bisection method, 9
Bolzano’s method, 9
boundary value problems, 137

central-difference formula, 249
chord, 38
coefficient matrix, 78
cofactor, 90, 91
column matrix, 78
composite form, 268
condition number, 162
consistent system, 77
continuous function, 8, 12, 182
Crout’s method, 125
cubic function, 258

definite integral, 263
determinant, 88, 95
diagonal matrix, 85

direct method, 116
discretization error, 1
divided difference, 212
divided differences, 211
Doolittle’s method, 118

elementary functions, 181
elimination methods, 137
equivalent system, 102
error bound, 5, 202, 245
error formula, 244
error term, 244
Euclidean, 136
exact number, 4
exponential functions, 181
extrapolation, 181

factorization method, 116
first divided difference, 212
five-point formula, 241
fixed-point, 16
fixed-point method, 17
forward elimination, 103
forward-difference formula, 242, 253
Frobenius norm, 136
full rank, 100

Gauss factorization, 118
Gauss-Jordan method, 115
Gauss-Seidel iterative method, 141
Gaussian elimination method, 101
Gaussian quadrature, 264
geometric interpretation, 242
global error, 273
Graphical techniques, 239

higher derivatives, 257
homogeneous system, 79
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identity matrix, 82
ill-conditioned systems, 161
inconsistent system, 77
integration by parts, 277
interpolating point, 189
interpolating polynomial, 186, 242
interpolation, 181
interpolation conditions, 185
interval-halving method, 9
inverse matrix, 84
invertible matrix, 83, 84
iterative methods, 137

Jacobi method, 138
Jacobian matrix, 65

Lagrange coefficient polynomials, 184
Lagrange coefficients, 189, 191, 195, 201, 210
Lagrange interpolation, 182, 185
Lagrange interpolatory polynomial, 181
Laplace Expansion Theorem, 92
linear combination, 76
linear convergent method, 8
linear equation, 74
linear equations, 73
linear function, 245
linear independent, 76
linear polynomial, 183
linear spline, 233
local error, 272
lower-triangular matrix, 86
LU decomposition, 116

Maclaurin’s series expansion, 6
matrix inversion method, 99
matrix norm, 135
matrix of cofactor, 92
maximum error, 251
method of elimination, 100
method of tangents, 29
minor, 90
minors, 91
modified Newton’s method, 48
multiple root, 8
multiple roots, 43
multiples, 102

multiplicity, 45

Newton divided difference, 221
Newton divided difference interpolation, 215
Newton interpolation, 221
Newton’s method, 30, 38
Newton-Cotes formulas, 264
nonhomogeneous system, 100
nonlinear algebraic equations, 7
nonsingular matrix, 83
numerical differentiation, 239
numerical formula, 250
Numerical integration, 263
numerical integration, 239

order of multiplicity, 50
overdetermined system, 75

partial derivatives, 70
partial pivoting, 114
percentage error, 5
piecewise curve fitting, 233
piecewise linear interpolation, 233
piecewise polynomial, 233
piecewise polynomial approximation, 233
pivot element, 102, 107
pivotal equation, 102
pivoting strategy, 113
pole values, 195
polynomial functions, 181
polynomial interpolation, 210
product matrix, 81

quadratic convergent method, 8
quadratic function, 250
quadratic polynomial, 189
quadrature rule, 276

rank, 100
rank deficient, 100
rate of convergence, 21, 55
rational functions, 181
rectangular array, 79
rectangular matrix, 83
relative error, 5
round-off errors, 6
rounding error, 248
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scalar matrix, 85, 96
secant line, 242
secant method, 39, 41
significant digits, 248
simple root, 8
Simpson’s rule, 276
simultaneous equations, 73
simultaneous linear systems, 75
skew matrix, 87
skew symmetric matrix, 87
slope, 38
sparse matrix, 88
spline, 233
square matrix, 82
strictly diagonally dominant matrix, 132
strictly lower-triangular matrix, 86
strictly upper-triangular matrix, 85
subdiagonal, 88
superdiagonal, 88
symmetric matrix, 86
system of linear equations, 74
system of nonlinear equations, 67
system of two equations, 66

tabulated data, 241
Taylor’s series, 283
The fixed point, 26
three-point formula, 241
three-point formulas, 248
total error, 248
transcendental equation, 7
transpose matrix, 83
Trapezoidal rule, 267
triangular form, 101
triangular system, 101
tridiagonal matrix, 88
trigonometric functions, 181
trivial solution, 100
truncation error, 6
two-point formula, 241

underdetermined system, 75
unique solution, 75
upper-triangular matrix, 85

vector norm, 134

Weierstrass approximation theorem, 182

zero matrix, 82
Zeroth divided difference, 212




