MATH 151

Graph Lecture 8

By Khaled A Tanash

ktanash@ksu.edu.sa

Exercise 1: Find the degree of each vertices of following graph so find the sequence degree

Exercise 2: Represent the graph by adjacency matrix

Exercise 3: Represent the graph by incidence matrix

Exercise 4: Determine whether the graph is bipartite. If so provide a bipartite graph representation.
i.

ii.

iii.

iv.

V.

Exercise 5: Let G be the simple graph represented by the adjacency matrix A below.
i. Draw the graph G

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

ii. Determine whether the graph is bipartite. If so, provide a bipartite representation.

Exercise 6: Let G be a graph such that $V=\{a, b, c\}$ and $\operatorname{deg}(b)=2 \operatorname{deg}(a)$ $\operatorname{deg}(c)=3 \operatorname{deg}(a)$ where $|E|=9$. Find $\operatorname{deg}(a)$

Exercise 7: Let G be a graph such that $V=\{a, b, c, d, f\}$ and $\operatorname{deg}(a)=\operatorname{deg}(b)=\operatorname{deg}(c)=\operatorname{deg}(d)=1$ where $|E|=4$. Find $\operatorname{deg}(f)$

Exercise 8: Is there a graph has degree sequence $0,1,1,2,3,4,5,5$. why?

Exercise 9: Is there a simple graph has degree sequence 1,2,3,3,5,6. why?

Exercise 10: Let G be a graph has degree-sequence $n, n, n, n, 2 n, 2 n, 3 n$ and $E(G)=11$. Find n

Exercise 11: If G is a graph with 9 edges and the degree-sequence 1,3, x, x Find x

Exercise 12: Let G be a graph with degree-sequence 1, a, a, a^{2} knowing that G has 8 edges, find all possible value of a.

Exercise 13: Determine the number of edges for the complement of $K_{10,14}$

Exercise 14: Find the number of edges of complement $K_{4,7}$

Exercise 15: Find the number n of vertices of complete graph having $10 n$ edges.

Exercise 16: Find the number of vertices of complete graph have 55 edges

Exercise 17: If $K_{5, n}$ having the same number of edges of K_{n}. Find the value of n.

Exercise 18: If the number of vertices equal number of edges in $K_{n, n}$ find n

Exercise 19: If you know the number of vertices of $K_{m, m^{2}}$ is 42 . Find the number of edges

Exercise 20: Let G be a graph represented by incidence matrix
Find $|E(G)|$ and $|E(\bar{G})|$
$\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Exercise 21: Represent $\bar{K}_{2,3}$. Then determine whether $\bar{K}_{2,3}$ is bipartite graph or not

Exercise 22: There is a graph has 8 vertices and 18 edges regular. why?

Exercise 23: If the number of edges of K_{n} is $4 n$. Find n

Exercise 24: If G be a graph with $3 n$ vertices, such that n vertices have degree 2 and $2 n$ vertices have degree 1 . Find n if you know $E(G)=20$

Exercise 25: If G is a complete graph with 21 edges. How many vertices dose G have?

Exercise 26: If G is a complete graph with 45 edges. How many vertices dose G have?

Exercise 27: If G is a simple graph with 15 edges and \bar{G} has 13 edges. How many vertices dose G have?

Exercise 28: If G is a simple graph with n vertices and 30 edges and \bar{G} has 36 edges. How many vertices dose G have?

Exercise 29: If G is a 4-reguler graph with 8 vertices. Find the number of edges for its complement \bar{G}.

Exercise 30: Find all possible numbers of vertices of complete bipartite graphs $K_{m, n}$ having 12 edges.

Exercise 31: Given an example of complete graph which is not complete bipartite.

Exercise 32: Given an example of complete bipartite graph which is not complete.

Exercise 33: For the graph below:
i. Find the adjacency matrix A with respect to the ordering of vertices a, b, c, d

ii. Use the matrix A to find the number of paths of length 3 between a and b

Exercise 34: Determine whether the following graphs H and G are isomorphic i.

ii.

iv.

Graph

vii.

Khaled A Tanash

viii.

