MATH 151

Graph

Lecture 8

By Khaled A Tanash

ktanash@ksu.edu.sa

KnaledAtanash

Exercise 1: Find the degree of each vertices of following graph so find the sequence degree

Exercise 2: Represent the graph by adjacency matrix

Exercise 4: Determine whether the graph is bipartite. If so provide a bipartite graph representation.

ii.

Graph

Exercise 5: Let G be the simple graph represented by the adjacency matrix A below.

i. Draw the graph G

- $A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$
- ii. Determine whether the graph is bipartite. If so, provide a bipartite representation.

Exercise 6: Let *G* be a graph such that $V = \{a, b, c\}$ and deg(b) = 2deg(a)deg(c) = 3deg(a) where |E| = 9. Find deg(a)

Exercise 7: Let G be a graph such that $V = \{a, b, c, d, f\}$ and $\deg(a) = \deg(b) = \deg(c) = \deg(d) = 1$ where |E| = 4. Find $\deg(f)$

Math 151	Graph	Khaled A Tanash

Exercise 8: Is there a graph has degree sequence 0,1,1,2,3,4,5,5. why?

Exercise 9: Is there a simple graph has degree sequence 1, 2, 3, 3, 5, 6. why?

Exercise 10: Let G be a graph has degree-sequence n, n, n, n, 2n, 2n, 3n and E(G) = 11. Find n

•

Exercise 11: If G is a graph with 9 edges and the degree-sequence 1,3,x,x Find x

Exercise 12: Let G be a graph with degree-sequence $1, a, a, a^2$ knowing that G has 8 edges, find all possible value of a.

Exercise 13: Determine the number of edges for the complement of $K_{10,14}$

Math 151	Graph	Khaled A Tanash

Exercise 14: Find the number of edges of complement $K_{4,7}$

Exercise 15: Find the number n of vertices of complete graph having 10n edges.

Exercise 16: Find the number of vertices of complete graph have 55 edges

Math 151	Graph	Khaled A Tanash

Exercise 17: If $K_{5,n}$ having the same number of edges of K_n . Find the value of n.

Exercise 18: If the number of vertices equal number of edges in $K_{n,n}$ find n

Exercise 19: If you know the number of vertices of K_{m,m^2} is 42. Find the number of edges

Math 151	Graph	Khaled A Tanash

Exercise 20: Let *G* be a graph represented by incidence matrix

Find |E(G)| and $|E(\overline{G})|$

[1	1	1
1	0	0
0	1	0
0	0	1

Exercise 21: Represent $\overline{K}_{2,3}$. Then determine whether $\overline{K}_{2,3}$ is bipartite graph or not

Math 151	Graph	Khaled A Tanash

Exercise 22: There is a graph has 8 vertices and 18 edges regular. why?

Exercise 23: If the number of edges of K_n is 4n. Find n

Exercise 24: If G be a graph with 3n vertices, such that n vertices have degree 2 and 2n vertices have degree 1. Find n if you know E(G) = 20

Exercise 25: If G is a complete graph with 21 edges. How many vertices dose G have?

Exercise 26: If *G* is a complete graph with 45 edges. How many vertices dose *G* have?

Exercise 27: If G is a simple graph with 15 edges and \overline{G} has 13 edges. How many vertices dose G have?

Math 151 Graph	Khaled A Tanash
----------------	-----------------

Exercise 28: If G is a simple graph with n vertices and 30 edges and \overline{G} has 36 edges. How many vertices dose G have?

Exercise 29: If G is a 4-regular graph with 8 vertices. Find the number of edges for its complement \overline{G} .

Math 151	Graph	Khaled A Tanash
----------	-------	-----------------

Exercise 30: Find all possible numbers of vertices of complete bipartite graphs $K_{m,n}$ having 12 edges.

Exercise 31: Given an example of complete graph which is not complete bipartite.

Exercise 32: Given an example of complete bipartite graph which is not complete.

Exercise 33: For the graph below:

i. Find the adjacency matrix A with respect to the ordering of vertices a, b, c, d

ii. Use the matrix A to find the number of paths of length 3 between a and b

Exercise 34: Determine whether the following graphs H and G are isomorphic

ii.

