Coupled Oscillations

Definition:

* linear chain of » i1dentical bodies (mass m) con-

nected to one another and to fixed endpoints by
1dentical 1deal springs (spring constant k)

» distances from equilibrium x;, 1=1...n

» zero 1mitial velocities: friction 1gnored



Many important physics systems involved coupled oscillators. Coupled oscillators are
oscillators connected 1n such a way that energy can be transferred between them. The motion of
coupled oscillators can be complex, and does not have to be periodic. However, when the
oscillators carry out complex motion, we can find a coordinate frame in which each oscillator
oscillates with a very well defined frequency ( normal coordinates )

A solid 1s a good example of a system that can be described 1n terms of coupled oscillations.
The atoms oscillate around thewr equilibrium positions, and the interaction between the atoms 1s
responsible for the coupling. To start our study of coupled oscillations, we will assume that the
forces mvolved are spring-like forces (the magnmitude of the force is proportional to the
magnitude of the displacement from equilibrium).



Two Coupled Harmonic Oscillators

Consider a system of two objects of mass M. The two objects are attached to two springs
with spring constants x (see Figure 1). The interaction force between the masses 1s represented
by a third spring with spring constant x;,, which connects the two masses.

Figure 1. Two coupled harmonic oscillators.

We will assume that when the masses are 1n their equilibrium position, the springs are also 1n
their equilibrium positions. The force on the left mass is equal to



We will assume that when the masses are in their equilibrium position, the springs are also 1n
their equilibrium positions. The force on the left mass is equal to

F = —kx +Ky, (%, —x ) == (K + Ky, ) 0 + K%, = My,
The force on the right mass 1s equal to

F, =—Kkx, + Ky, (‘xl -x,)= _(K+K12 )x, +K,x, = My,
The equations of motion are thus

(12.1)

Mx, +(Kk+K, )x, —K,x, =0



Since it is reasonable to assume that the resulting motion has an oscillatory behavior, we
consider following trial functions:

xl (I) _ Bleicuf

Substituting these trial functions into the equations of motion we obtain the following conditions:

(K”-l-K’u —Mmz]Bl ~K;,B, =0
—i, B, + (K +Ky —Mmz)Bz =0

These equations only will have a non-trivial solution if

2
K+K, Mo —K, 0



Note: the trivial solution 1s B; = B, = 0. The requirement for a non-trivial solution requires that
the angular frequency of the system 1s equal to one of the following two characteristic
frequencies (the so called eigen frequencies):

o, -+ /K+ﬂ2;‘12

For each of these frequencies, we can now determine the amplitudes B, and B,. Let us first
consider the eigen frequency @,. For this frequency we obtain the following relations between

B, and B,:
(K_‘Hfu —(+2ky,))B, Kk, B, =K, B, ~k,B, =K, (B, + B,) =0

or B, =-B,. For the eigen frequency @, we obtain the following relations between B, and B.:



(x+K, —x)B, —K,B, =Kx,,B, —Kk,B, =K, (B, — B,) =0
or B; = B,. The most general solution of the coupled harmonic oscillator problem 1s thus
xl (f) _ Bl+€+ﬁ01f + Bl—g—ﬁwlf _I_BE-I'E"-ECU?f _I_Bz—e—iwga‘
xz (r) — _Bl+€+fwlf _ BI—E—M}IF +Bz+€+im2f T+ Bz—e—imzf
Another approach that can be used to solve the coupled harmonic oscillator problem 1s to carry

out a coordinate transformation that decouples the coupled equations. Consider the two
equations of motion. If we add them together we get

M (% +x,)+Kk(x +x,)=0



If we subtract from each other we get
M (% —%,)+ (K +2k;, )(x —x,) =0

Based on these two equations 1t 1s clear that in order to decouple the equations of motion we
need to mtroduce the following variables

1, =x +x,

s

b

1
X = é("h +m)

1
X9 = E{ﬂﬂ = M)

#



Substituting these expressions for x; and x; into Equation 12.1, we find

M(#H, + #g) + (k + 2k9)my + kng = 0}
M(1y —nq) + (k + 2K9)m — ke =0

which can be solved (by adding and subtracting) to yield

Mij + (k + 2k9)m =0
Mmng + kng =0

The solutions to the decoupled equations of motion are

m(t)=Cle™ +C e ™

n,(1)=C,"e“" +C, e™



We note that the solution 77, corresponds to an asymmetric motion of the masses, while the
solution 77, corresponds to an asymmetric motion of the masses (see Figure 2). Since higher
frequencies correspond to higher energies, the asymmetric mode (out of phase) has a higher
energy.

o = ﬂ]] {a = (IJL_:-
i — — olf— i —
Antisymmetrical mode Symmetrical mode
(out of phase) (in phase)

Figure 2. Normal modes of oscillation.
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