Motion in a Noninertial
Reference Frame

Ch. 10



10.1 Introduction

an absolute inertialframe, i.e., a frame that is at absolute rest and one in which Newton's
laws are absolutely valid.

Experience has shown that, if relativistic effects can be neglected, the motion of a particle in
an inertial reference frame is correctly described by the Newtonian equation F = p. In the
event that the particle is not required to move in some complicated manner and if rectangular
coordinates are used to describe the motion, then usually the equations of motion are
relatively simple. However, if either of these restrictions is removed, the equations can
become quite complex and difficult to manipulate.

In order to describe, for example, the motion of a particle on or near the surface of the Earth,
it is clearly tempting to do so by choosing a coordinate system fixed with respect to the Earth.
We know, however, that the Earth undergoes a complicated motion, compounded of many
different rotations (and, hence, accelerations) with respect to an inertial reference frame
identified with the "fixed" stars. The Earth coordinate system is, therefore, a noninertial frame
of reference



10.2 Rotating Coordinate Systems

Let us consider two sets of coordinate axes; let one set be the "fixed"

or inertial axes, and let the other be in motion with respect to the inertial system.

We shall designate these axes as the "fixed" and "rotating" axes, respectively, and shall
use x.” as coordinatesin the fixed system and x; as coordinates in the rotating system.

If we choose some point P, as in Fig. , we clearly have
r=R+r

where r' is the radius vector of P /n the fixed
system and where r is the radius vector of Pin
the rotating system. The vector R locates the
origin of the rotating system in the fixed
system.




if the x; system undergoes an infinitesimal rotation 60 , corresponding to some
arbitrary infinitesimal displacement, the motion of P (which, for the moment, we
consider to be at rest in the x; system) may be described as

"dr) _do
(dr)figeq = dO X1 - (Enﬁd “a T
do
= ;'E — (%: | ﬁ“d-—- W Xr (for P fixed in x; system)

Now, if we allow the point P to have velocity (dr/dlt),,.... with respect to the x;

system, this velocity must be added to w x r to obtain the time rate of change of r in

the fixed system :
(ﬁ) = (ﬁ) + o Xr
dIf fixed_ dt

rotating



In fact, for an arbitrary vector Q, we have

Bl

(i)™ (3) om0

dt dt rotating

We note, for example, that the angular acceleration @ is the same in
both the fixed and rotating systems:

(dm) _d_m) + 0 X0=0
dt | tixea (di rotating B

since ® X ® vanishes and where o designates the common value in the
two systems.



Equation may now be used to obtain the expression for the velocity of the point P as
measured in the fixed coordinate system.

), (4
df ]‘ixed_ ~dI fixed dt fized

dr’’ Jr:fR) (dr)
soO that il — (= bl
(dt -')fi:ud (dt : fix:d+ dt rotating Texr

If we define

_ dr’ e dR) o dr
Tf = I'J.- = (E)ﬁ“d P V = R‘r = (‘Et_ o . ‘Fr = r,. (E;)

rotating



we may write vi=V+v.+@Xr

where

v, = velocity relative to the fixed axes

VY = linear velocity of the moving origin
v, = velocity relative to the rotating axes
o = angular velocity of the rotating axes

® X r = velocity due to the rotation of the moving axes




Consider a vectorr = x,e, + xse; + x3e3 in the rotating system. Let the fixed
and rotating systems have the same origin. Find £’ in the fixed system by direct
differentiation if the angular velocity of the rotating system is @ in the fixed

system.
Solution. 'We begin by taking the time derivative directly

(fa:)m dt( e )

= g(xief + x;é) (10.7)

The first term is simply r, in the rotating system, but what are the &7

’ (dr)
rr = | ——
dt rotating



d
(,z) 4 Se, (10.8)
dt / fixed *

Look at Figure 10-2 and examine which components of w; tend to rotate e;.

We see that ws tends to rotate e; toward the —eq direction and that wg tends to
rotate e, toward the +e, direction. We therefore have

Xg d
_Ef = W9 — mﬁﬂﬁ (lo'ga’)

-

The angular velocity components o, rotate the system around the e; axis,
so that, for example, wg tends to rotate e, toward the + e, direction.



Similarly, we have

de
— = —wse, + e, (10.9b)
dt
de
?: — m2e1 - WIEE (10.9‘:)

In each case, the direction of the time derivative of the unit vector must be per-
pendicular to the unit vector in order not to change its magnitude.
Equations 10.9a—c can be written

éi =w Xe (10.10)
and Equation 10.8 becomes
d
(""E) — i'r + Em X xt"Ei
Al / fixed '
=1 +wXr (10.11)



10.3 Centrifugal and Coriolis force

We have seen that Newton's equation F = ma is valid only in an inertial frame of
reference. Therefore, the expression for the force on a particle may be obtained from

= Wa, = m
/ dt fixed

where the differentiation must be carried out with respect to the fixed system.

]
we have VI—V-I-V + ® X I

Differentiating the last equation , we have

(@)= () () roxrrox (§)
At / gxed dl / sived At / fixed At / fiyed = (1



We denote the first term by

=%
T\ dt Jgee

The second term may be evaluated by substituting v, for Q in the following
equation from the previous section:

Q) _(4Q
(d‘f)ﬁxeﬂ“ (dt)mtating-l-m X Q

So the second term becomes,

(dv,,. (dv,. + @ X
= v?‘
dt fixed dt rotatng

=a, Tt wXyv,

where a_, is the acceleration in the rotating coordinate system.



The last term may be obtained directly

mx(—d—r) “mx(ﬁ) + ®w X (0 X 1)
df fixed dt rotating

=wXv,+towX (wXr)

Substituting these terms into equation (1), we have

F=ma,= mﬁf+ ma,+t mwXr+ mowX (o Xr) +2mw X v,

To an observer in the rotating coordinate system, the effective force on a
particle is given by

Ffﬁsmarzf‘—mﬁfﬂmﬁlxr-mmx(mxﬂ*?mmxvf = (2)



Fe=ma, =F - mR;— m& Xr— mw X (& X1) — 2me> X v,

The first term, F, is the sum of the forces _z_icting on the particle as measured in
the fixed inertial system. The second (—mR /) and third (—m X r) terms result
because of the translational and angular acceleration, respectively, of the mov-
ing coordinate system relative to the fixed system.

The quantity —m X (@ X r) is the usual centrifugal force term and reduces
to mw?r for the case in which @ is normal to the radius vector. Note that the
minus sign implies that the centrifugal force is directed outward from the center
of rotation

The last term in Equaton 10.25 is a totally new quantity that arises from the
motion of the particle in the rotating coordinate system. This term is called the
Coriolis force. Note that the Coriolis force does indeed arise from the motion of
the particle, because the force is proportional to v, and hence vanishes if there

is no moton.



wxr

-0 X (Wxr)

Diagram indicating that the vector —@ X (@ X r) points outward,
away from the axis of rotation along w. The term —m® X (@ X r)
is the usual centrifugal force.



In eq. (2 ) (let Rf and @ be zero for simplicity) , we get
F . = ma, + (noninertial terms)

where the “noninertial terms” are identified as the centrifugal and Coriolis
“forces.” Thus, for example, if a body rotates about a fixed force center, the only
real force on the body is the force of attraction toward the force center (and
gives rise to the centripetal acceleration). An observer moving with the rotating
body, however, measures this central force and also notes that the body does not
fall toward the force center. To reconcile this result with the requirement that
the net force on the body vanish, the observer must postulate an additional
force—the centrifugal force. But the “requirement” is artificial; it arises solely
from an attempt to extend the form of Newton’s equation to a noninertial sys-
tem, and this can be done only by introducing a fictitious “correction force.”
The same comments apply for the Coriolis force; this “force” arises when an at-
tempt is made to describe motion relative to the rotating body.



A student is performing measurements with a hockey puck on a large merry
go-round with a smooth (frictionless) horizontal, flat surface. The merry-go-
round has a constant angular velocity @ and rotates counterclockwise as seen
from above. (a) Find the effective force on the hockey puck after it is given a
push. (b) Plot the path for various initial directions and velocities of the puck as
observed by the person on the merry-go-round that pushes the puck.

Solution. The first three terms for F 4 in Equation 10.25 are zero, so the effec-
tive force as observed by the person on the merry-go-round 1s

Fg= —mow X (w0 Xr) —2mw X v, (10.26)

We have taken the frictional force to be zero. Remember that v, is the velocity
as measured by the observer on the rotating surface. The effective accelera-
tion 1s
Ftﬁ'
A = = "X (wXr)— 2w X v, (10.27)



T'he velocity and position are given by integration, in turn, of the acceleration.

V.o = Jamd; - Jv,__,fdt (10.28)

We put the origin of our rotating coordinate system at the center of the
merry-go-round. We will need the initial positions and velocities of the puck to
plot the motion. For this example, we let the radius of the merry-go-round be
R and the velocities be in units of wR. The initial position of the puck will always
be at an (x, y) position of (—0.5R, 0).

(b)

(d)

The motion of the hockey puck of Example 10.2 as observed in the
rotating system for various initial directions and velocities v, at the
times T noted. The angular velocity w(1 rad/s) is out of the page.

In each of the cases above, the puck will move in a straight line in the fixed sys-
tem, because there is no friction or external force in the plane.



10.3 Motion Relative to the Earth

The motion of Earth with respect to an inertial reference frame is dominated by
Earth’s rotation about its own axis. The effects of the other motions (e.g., the
revolution about the Sun and the motion of the solar system with respect to the
local galaxy) are small by comparison. If we place the fixed inertial frame x"y'2’
at the center of Earth and the moving reference frame xyz on the surface of
Earth, we can describe the motion of a moving object close to the surface of

Earth as shown in Figure . We denote the forces as measured in the fixed

inertial system as F = § + mg,, where S represents the sum of the external
forces other than gravitation, and mg, represents the gravitational attraction

to Earth.

where M, is the mass of Earth, R is the radius of Earth, and the unit vector ey is
a unit vector along the direction of R



The effective force F.4 as measured in the moving
system placed on the surface of Earth becomes,

Fe=8+ mg, — mii__.r— mw Xr— mw X (0w Xr)
—2mw X v, (10.30)

We let Earth’s angular velocity @ be along the inertial
system’s z'-direction (e’).The value of w is 7.3 X 107% rad/s,

which is a relatively slow rotation, The value of w is practically

constant in time, and the term @ X r will be neglected.

x'

In order to study the motion of an object near Earth’s surface, we
place a fixed inertal frame x'y'z" at the center of Earth and the
moving frame xyz on Earth’s surface.



According to Equation [fd Q) = [%Jr_ ) + o x Q

we have for the third term above,
R;=® X (0w X R) (10.31)
Equation 10.30 now becomes

Feg=S+mg,— moX[oX(r+R)] —2nmw Xv, (10.32)

The second and third terms (divided by m) are what we experience (and meas-
ure) on the surface of Earth as the effective g,

g=g,— o X [w X (r+R)] (10.33)

The second term of Equation 10.33 is the centrifugal force. Because we are lim-
iting our present consideration to motion near the surface of Earth, we have
r<< R, and the @ X (® X R) term totally dominates the centrifugal force.



The value of w?R is 0.034 m/s?, and this is a significant enough amount
{0.35%) of the magnitude of g to be considered. The direction of the cen-
trifugal term (—w X [@ X (r + R)] is outward from the axis of the rotating
Earth. The direction of a plumb bob will include the centrifugal term. Because
of this fact, the direction of g at a given point is in general slightly different from
the true vertical
@ t -0 x (@x R)

A

Near Earth’s surface the terms g, (Earth’s gravitational field vector)
and —w X (@ X R) (main centrifugal term) make up the effective g
(other smaller terms have been neglected). The effect of the centrifu-
gal term on g is exaggerated here.



Coriolis Force Effects

The angular velocity vector @, which represents Earth’s rotation about its axis, is
directed in a northerly direction. Therefore, in the Northern Hemisphere,
has a component w, directed outward along the local vertical. If a particle is pro-
jected in a horizontal plane (in the local coordinate system at the surface of
Earth) with a velocity v,, then the Coriolis force —2m® X v, has a component in
the plane of magnitude 2mw,v, directed toward the right of the particle’s motion
(see Figure'), and a deflection from the original direction of motion results,

T X Wy Deflected path

In the Northern Hemisphere, a particle projected in a horizontal plane
will be directed toward the right of the particle’s motion. In the
Southern Hemisphere, the direction will be to the left.



Find the horizontal deflection from the plumb line caused by the Conolis force

acting on a particle falling freely in Earth’s gravitational field from a height £
above Earth’s surface.

Solution. We use Equauon 10.34 with the applied forces S = 0. If we set

F. = ma,, we can solve for the acceleration of the particle in the rotating coor-
dinate system fixed on Earth.

a,=g— 2w Xv,

The acceleration due to gravity g is the effective one and is along the plumb line.
We choose a zaxis directed vertically outward (along —g) from the surface of



The coordinate system on Earth’s surface for finding the horizontal
deflection of a falling particle from the plumb line caused by the
Coriolis force. The vector e, is in the southerly direction, and e, 18 1n
the easterly direction.



Because we have chosen the origin O of the rotating coordinate system to
lie in the Northern Hemisphere, we have

W, = —wCOS A
w, = ()
W, = wSsIin A

Although the Coriolis force produces small velocity components in the e,
and e, directions, we can certainly neglect x and § compared with Z, the vertical

velocity. Then, approximately,
0

0

where we obtain Z by considering a fall from rest. Therefore, we have

S
Il

3.
IR

"
W



it

—wcos A (0 wsin A
0 0 —gt

XV,

= —(wgt cos A)e,

The components of g are

g«=0
g ="0
£~ &

so the equations for the components of a, (neglecting terms* in @?; become



(@a),=x =0
(a,), = § = 2wgt cos A
(@), =% = —¢

Thus, the effect of the Coriolis force is to produce an acceleration in the e,
or easterly, direction. Integrating y twice, we have

1
(1) = gmgtscns A

where y = 0 and y = 0 at ¢ = 0. The integration of Zyields the familiar result for
the distance of fall,

1
z(1) = 2(0) — '2;312

and the time of fall from a height 2 = z(0) is given by

t = V2h/g



Hence the result for the eastward deflection d of a particle dropped from rest at
a height £ and at a northern latitude A is*

1 }8 3
d = —w®cos A —h~
3 g

An object dropped from a height of 100 m at latitude 45° is deflected approxi-
mately 1.55 cm (neglecting the effects of air resistance).




The effect of the Coriolis force on the motion of a pendulum produces a preces-
ston, or rotation with time of the plane of oscillation. Describe the motion of
this system, called a Foucault pendulum.*

Solution. 'To describe this effect, let us select a set of coordinate axes with oni-
gin at the equilibrium point of the pendulum and zaxis along the local vertical.
We are interested only in the rotation of the plane of oscillation—that is, we
wish to consider the motion of the pendulum bob in the xy plane (the hori-
zontal plane). We therefore limit the motion to oscillations of small amplitude,
with the horizontal excursions small compared with the length of the pendu-
lum. Under this condition, % is small compared with % and y and can be neg-
lected.



The equation of motion is
T
a, =g + o 200 X v, (10.42)

where T/m is the acceleration produced by the force of tension T in the pendu-
lum suspension (Figure 10-11). We therefore have, approximately,

X
T = —T.2
* {
y T T'% (10.43)
T.=T
As before, g.=0 and W, = —WCcos A

@, = wsin A




Suspension point
\ at great height

Geometry for the Foucault pendulum. The acceleration g vector is
along the —z-direction, and the tension T is separated into x-, y-,
and z-components.



with

Therefore,

so that

(V)= &
V), =3
(v)., =2 =0
e, e, €.
WwXv = |—wcosA 0 wsinA
X y 0
(®XvVv), = —jowsin A
(@ X V), = xwsinA
(w Xv,), = —jywcosA

(10.44)



Thus, the equations of interest are

N T x .
(ar}x =X = _E'_! + 2}&1311'11‘
Ty (10.45)
(a), =j= — w1 2xw sin A

For small displacements, T = mg. Defining a? = T/ml = g/, and writing @, =
@ sin A, we have

I

X + a’x

I

ﬂw;i}
(10.46)

¥+ a?y = —20,%

We note that the equation for ¥ contains a term in j and that the equation
for § contains a term in % Such equations are called coupled equations. A solu-
tion for this pair of coupled equations can be effected by adding the first of the
above equations to i times the second:

(¥ + 1)) + a®(x+ &) = 2w, (ix— §) = —2iw,(k+ @)



If we write
g= x + 1y
we then have
j+ 2iwg + a®q = 0

This equation is identical with the equation that describes damped oscillations
(Equation 3.35), except that here the term corresponding to the damping factor

is purely imaginary.



The solution 1is

g(t) = exp[—iwi][A exp(\/—mf — a? ) + Bexp( -V —-w? — a2 )] (10.47)

It Earth were not rotating, so that w, = 0, then the equation for g would
become

Ej'+{x?q‘ = (), w, =0

from which it is seen that a corresponds to the oscillation frequency of the pen-
dulum. This frequency is clearly much greater than the angular frequency of
Earth’s rotation. Therefore, @ 2> w,, and the equation for ¢(¢) becomes

g(t) = e~ ™4(Ae™ + Be ) (10.48)

We can interpret this equation more easily if we note that the equation for
g’ has the solution

g = x'(@t) + iy (t) = Ae™ + Be =
Thus,
q(t) = ql’(t] . e—iwzf



or x(t) + iy(t) = [{(x'(t) + &' (t)] - e” ™2
= (x' + iy')(ﬂﬂﬁ w,t ~ 18N w,t)

= (x'cos w,t + y'sin w,t) + #{—x'sin w,t + y'cos w,t)
Equating real and imaginary parts,

x(t) = x' cosw;t + y' sin w,!
¥t) = —x'sin w,t + 5 cos w,t

We can write these equations in matrix form as

()Y [ coswgt sinwt\{ x'(t)
(.)l{f)) a (_ sin &Jzt COS W:E) (yr(t)) (10.49)



trom which (x, y) may be obtained from (x’, y') by the application of a rotation

matrix of the familiar form
cos @ siné
A= 0.
(— sinf  cos 6) (10.50)

Thus, the angle of rotation is § = w,¢, and the plane of oscillation of the pendu-

lum therefore rotates with a frequency @, = @ sin A. The observation of this ro-
tation gives a clear demonstration of the rotation of Earth *
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