Dynamics of a System of
Particles

Ch.9



9.1 Introduction

Newton’s Third Law plays a prominent role in the dynamics of a system of
particles because of the internal forces between the particles in the system. We
need to make two assumptions concerning the internal forces:

1. The forces exerted by two particles @ and 3 on each other are equal in mag-
nitude and opposite in direction. Let f,3 represent the force on the ath

particle due to the Bth particle. The so-called “weak” form of Newton’s
Third Law is

2. The forces exerted by two particles @ and B8 on each other, in addition to
being equal and opposite, must lie on the straight line joining the two parti-
cles. This more restrictive form of Newton's Third Law, often called the
“strong” form, is displayed in




9.2 Center of Mass

We now extend our discussion from a single particle to a system of n particles. The mass of this system is denoted
by M:

M=>m,
x

where the summation over a runs from a =1 to a = n. If the vector connecting the origin with the a th particle is
r,.» then the vector which defines the position of the center of mass of the system is

R=%§:m,ra

Since it is often convenient to specify the position of a particle with respect to the center of mass as

r,=r,—R

CM.




For a continuous distribution of mass, the summation is replaced by an integral,

R = ﬂl’IJ'r dm (9.4)

The location of the center of mass of a body is uniquely defined, but the position

vector R depends on the coordinate system chosen. If the origin in Figure 9-2
were chosen elsewhere, the vector R would be different.

Find the center of mass of a solid hemisphere of constant density.

Solution. Let the density be p, the hemispherical mass be M, and the radius be a.

e =45
%mﬁ



We want to choose the origin of our coordinate system carefully (Figure 9-3)
to make the problem as simple as possible. The position coordinates of R are

(X, Y, Z). From symmetry, X = 0, Z= (. This should be obvious from
Equation 9.4,
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because we are integrating over an odd power of a variable with symmetric
limits. For ¥, however, the limits are asymmetric.

1 [
Y= — d
MLT "

Construct dm so it is placed at a constant value of y. A circular slice perpendicu-
lar to the y-axis suffices (see Figure 9-3).

dm = pdV = pm(a® — y*)dy
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The position of the center of mass is (0, 3a/8, 0).




9.3 Linear Momentum of a System

One part is the resultant of all forces whose origin lies outside of the
system; this is called the external force, F{'. The other part is the resultant of
the forces arising from the interaction of all of the other n — 1 particles with the
ath particle; this is called the internal force, f,. Force f, is given by the vector
sum of all the individual forces f g,

£ = %fﬁ (9.5)

where f,5 represents the force on the ath particle due to the Bth particle. The
total force acting on the ath particle is therefore

F,=F¢9 + f, (9.6)
Also, according to the weak statement of Newton’s Third Law, we have
fﬂﬁ - fﬂﬂ' (9-1}

Newton’s Second Law for the ath particle can be written as

ﬁﬂ' = mﬂﬁﬂ = FE.':} + fﬂ {9‘7}



or

2

d
Ja(mara) = F + 2 g 9.8)
Summing this expression over a, we have
d2
T 2mr, = 2FY + 22fe 9.9)
aE S

where the terms a = 8 do not enter in the second sum on the right-hand side,
because f,, = 0. The summation on the left-hand side just yields MR (see
Equation 9. 3), and the second time derivative is MR. The first term on the right-
hand side is the sum of all the external forces and can be written as

DF =F (9.10)

The second term on the right-hand side in Equation 9.9 can be expressed* as

DOf .= D fo= 2 (fa+f
z B .:Eﬂ(“ﬁ-l_'ﬂu}

af#a
a# 3

which vanishes™ according to Equation 9.1. Thus, we have the first important
result

MR =F (9.11)



L. The center of mass of a system moves as if it were a single particle of mass equal to the
lotal mass of the system, acted on by the lotal external force, and independent of
the nature of the internal forces (as long as they follow £,5 = —fg,, the weak form of
Newton's Third Law).

The total linear momentum of the system is

d d .
P=2mi,=— 2mr,=—(MR) = MR (9.12)
& df « dil
and
P=MR=F (9.13)

Thus, the total linear momentum of the system is conserved if there is no exter-
nal force. From Equations 9.12 and 9.13, we note our second and third impor-

tant results:

II. The linear momentum of the system is the same as if a single particle of mass M were
localed at the position of the center of mass and moving in the manner the center of
Mass mouves.

IIL. The total linear momentum for a system free of external forces is constant and equal fo
the linear momentum of the center of mass (the law of conservation of linear mo-

mentum for a system).



A chain of uniform linear mass density p, length b, and mass M (p = M/b) hangs
as shown in Figure 9-4. At time ¢ = 0, the ends A and B are adjacent, but end B
is released. Find the tension in the chain at point A after end B has fallen a dis-
tance x by (a) assuming free tall and (b) by using energy conservation.

Solution. (a) In the case of free fall, let’s assume the only forces acting on the
system at time { are the tension T acting vertically upward at point A and the

gravitational force Mg pulling the chain down. The center of mass momentum
reacts to these forces such that

P=Mg~T (9.14)

The nght side of the chain, with mass p(é — x)/2, is moving at the speed %, and
the left side of the chain is not moving. The total momentum of the system is
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Example 9.2. (a) A chain of uniform linear mass density hangs at points
A and B before B is released at time £t = 0. (b) At time ¢ the end B has
fallen a distance x.



therefore

and
P=LI-# + 5(b ~ )] 9.15)

For free fall, we have x = gt*/2, so that

=g
and
p=" ~
= 2(gx"-"ﬁ'f’rgww) =Mg—T
and finally,

M
T = mf(&“ + 1) (9.16)



9.4 Angular Momentum of the System

The angular momentum of the ath particle about the origin is given by

. . . Lﬂ'. = rtx x p-:l.
Summing this expression over q,

L=3L,=3(r, Xp)=2 (r, X mf,)

= Y (F, + R) x m(F, + R)

=2 m[(F, XF,) + (F, X R) + (R xF,) + (R X R)]

The middle two terms can be written as

(Emara) x R + R x (Emara)

The middle two terms vanishes since
Yok, =Y mr, — R) =Y mr, — RY m,

= MR — MR =0




Thatis, 2, m  r’, specifies the position of the center of mass in the center-of mass
coordinate system, and is therefore a null vector. Thus,

L=MRXR+YF, Xp,
=R XP+ )T, Xp,

and the total angular momentum is the sum of the angular momentum of the center of
mass about the origin and the angular momentum of the system about the position of
the center of mass.

The time derivative of the angular momentum of the ath particle is,
i‘a: =T, X p,

i—‘n: =Ty X (FE:'} + Z faﬁ]
f

Summing this expression over a, we have

L=YL, =Y xF)+ Y (r, xf,)

o, ff Fa



It is easy to verify that the last term may be written as

Z {rr: X fx.ﬂ} — Z [(r:r X f:rﬁ} + (rﬂ X fﬂa)]

a,fl #Fa o< f)

Now, the vector connecting the ath and Bth particles is defined to be

Ieyp =1, — Ip
and then since f,; = —f;,, we have
Z (rm X faﬁ} — Z (ru: - rﬁ) X [ﬁtﬂ
a,f#a a<f

— Z (ruﬁ X faﬂ)

x<fB



But, since we have limited the discussion to the case of central forces,
f,s is directed along the line joining m, with my, ie., along r,; Hence,

ra.ﬂ X ft!ﬂ = O
and
L=>Y(, xF®)

The right-hand side of this expression is just the sum of all of the external
torques:

L — ZNE] — N@©



Thus, if the external torques about a given axis vanish, then the total angular
momentum of the system about that axis remains constant in time.

we may then state that the total internal torque must vanish if the internal
forces are central in character, i.e., if faﬁ = — /fga, and the angular momentum

of an isolated system cannot be altered without the application of external
forces.



__oxaeeos

A light string of length a has bobs of mass m; and my(ms > m;) on its ends. The
end with m, is held and m., is whirled vigorously by hand above the head in a
counterclockwise direction (looking down from above) and then released.

Describe the subsequent motion, and find the tension in the string after
release.




Solution. The system is shown in Figure 9-7. The center of mass is a distance
b= [m/(m + my)]afrom mass my. After being released, the only forces on the
system are the gravitational forces on m; and m,. Assume that v, is the initial ve-
locity of the center of mass CM. The CM will continue in a parabolic path
under the influence of gravity as if all the mass (m; + my) were concentrated at
the CM. But when released, mass m, is rotating around m; rapidly. Because no
external torque exists, the system will continue to rotate. But now both m; and
ms rotate about the CM, and the angular momentum is conserved. If mass mo is
traveling with the linear velocity v, when released, then we must have v = b9
[similarly, v; = (a — b}é]. The tension in the string is, however, due

to the centrifugal reaction of the masses rotating, which is, in this case,

+ my (6)? .
Centrifugal force = b Tension

, . mymead?
Tension = myb0? = mﬂ( e 7)92 e -

m1+m m1+m9



9.5 Energy of the System

The final conservation theorem, that of energy, may be derived for a system of
particles as follows .

Consider the work done on the system in moving it from a
Configuration 1, in which all the coordinates r, are specified, to a

Configuration 2, in which the coordinates r, have some different specification.

We can write the total work done on the system as the sum of the work done on
individual particles

Wi, = 2 f F,dr,



_ZJ' —m, dl"‘ dt _ZL dr(_m v, ) t

where T = 2 %



Using the relation i, =t +R

we have r,-f, = v: = () +R) (f) +R)

I

(fLFL) + 2(F.*R) + (R*R)
= v + 2(,-R) + V2

where v’ = r’ and where V is the velocity of the center of mass. Then

1 1 o
=D -mat = "2+2—m{,,V2+R«EEmﬂrr;r
a 2 a a 92 dl «

L.
2 "

But, by a previous argument, 2 m,r, = 0, and the last term vanishes. Thus,

Tzz—;-mavf+%MV2 = (1)




which can be stated:
VIIL. The total kinetic energy of the system is equal to the sum of the kinetic energy of a par-

ticle of mass M moving with the velocity of the center of mass and the kinetic energy of
motion of the individual particles relative to the center of mass.

In another way , the work done can be written as follow :

Wis = ngL”*drﬂ + 2 rfaﬂ-drﬂ
1 1

a, B+ a

If the forces F{f and f g are conservative, then they are derivable from potential
functions, and we can write

The first term in equation of work becomes



E Ft{r'f}tdrﬂ—_"
L |

And the second term In equation of work becomes

> J?faﬂ-drﬂ = -2 | dl, =

o, B¥ o

The total work becomes

2
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We obtained this equation assuming that both the external and internal
forces were derivable from potentials. In such a case, the fotal potential energy
(both internal and external) for the system can be written as

Then,

=
i
|
<
I
S
i
=

From equation (1) and (2)

or L +U =T+ U




which expresses the conservation of energy for the system. This result is valid for
a system in which all the forces are derivable from potentials that do not depend
explicitly on the time; we say that such a system is conservative.

VIIL.  The total energy for a conservative system is constant.

A projectile of mass M explodes while in flight into three fragments

One mass (m, = M/2) travels in the original direction of the projectile, mass m,
(= M/6) travels in the opposite direction, and mass mg (= M/3) comes to rest.
The energy E released in the explosion is equal to five times the projectile’s ki-
netic energy at explosion. What are the velocities?

Solution. Let the velocity of the projectile of mass M be v. The three fragments
have the following masses and velocities:



M :
m; = X v, = kv Forward direction, k, > 0
M . : .
my = Vo = —hkyv  Opposite direction, k, > 0
M
My = 3 vg = 0 At rest
,’#'-‘ h;_;‘u l /
‘.-"" — "’ Before
- v ) explosion
/| P
#*”_..."" “ﬁ""._ﬁ\f.ﬂ
..-*"H 3
-’ Q‘ After
Q explosion

Example 9.4. A projectile of mass M explodes in flight into three
fragments of masses my, m,, and ma.



The conservation of linear momentum and energy give

M M
MU*—’EI:]‘{?—EREI! (1)
1 M 1M
E+ EMvE = E;mu}? (kgv)ﬂ (2)

From Equation (1), k; = 3k — 6, which we can insert into Equation (2):

1 1 My? M 2
5(—2—Mvﬂ) + oMot = R+ g Bk — 6)7

which reduces to &/ — 3k, = 0, giving the results k, = 0 and k, = 3. For k, = 0,
the value of k; = —6, which is inconsistent with k, > 0. For k, = 3, the value of
ks = 3. The velocities become

v; = 3v
Vo = —3v

1."3:
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