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8.7  Planetary Motion—Kepler's Problem
The equation for the path of a particle moving under the influence of a
central force whose magnitude is inversely proportional to the square of
the distance, can be obtained from :

The integral can be easily evaluated if the variable is changed to u = l/r
And if the origin of Θ is defined so that the integration constant is zero, we 
find





Let us now define the following constants 

Then equation (1) can be written as:  

This is the equation of a conic section with one focus at the origin ; the quantity ε is 
called the eccentricity and 2α is termed the latus rectum of the  orbit. The minimum 
value for r occurs when cos θ is a maximum, i.e., for θ = 0. Thus, the choice of zero 
for  the intgral constant  corresponds to  measuring θ from r min,  which position is 
called the pericenter;  rmax corresponds  to the apocenter.



Various values of the eccentricity 
(and, hence, of the energy E) 
classify  the orbits according to 
different conic sections



For the case of planetary motion, the orbits are ellipses with major and minor 
axes {a and b, respectively) given by

The geometry of elliptic orbits in terms of the parameters α, ε, a, and b is 
shown in Fig , P and P' are the foci. From this diagram we see that  the apsidal 
distances (rmin and  rmax as measured from the foci to the orbit) 
are given by :



In order to find the period for elliptic motion, we rewrite Equation for the areal 
velocity as

Since the entire area A of the ellipse is swept out in one complete period τ,

Now, the area of an ellipse is given by A = πab, and using a and b from  Eqs. (2 ), we 
find



This result, that the square of the period is proportional to the cube of the major axis of 
the elliptic orbit, is known as Kepler's Third Law . Note that Kepler's actual statement of 
his conclusion was that the squares of the periods of the planets were proportional to 
the  cubes of the major axes of their orbits, with the same proportionality  constant for 
all planets. In this sense, the statement is only approximately  correct, since the reduced 
mass is different for each planet. In particular, since the gravitational force is given by

we identify k = G m1 m2. Therefore, the expression for the square of the  period becomes

so that Kepler's statement is valid only if the mass m1 of a planet can be  neglected with 
respect to the mass m2 of the Sun.
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