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7.1 Introduction
In solving a problem by using the Newtonian procedure, however, it is 
necessary to know all of the forces since the quantity F which appears in the 
fundamental equation is the total  force acting on a body.

in particular situations it may be difficult or even impossible to obtain 
explicit expressions for the forces of constraint.

In order to circumvent some of the practical difficulties which arise in
attempts to apply Newton's equations to particular problems, alternative
procedures may be developed.

Such a method is contained in Hamilton's Principle and the equations of 
motion which result  from the application of this principle are called 
Lagrange's equations.



7.2 Hamilton's Principle
Hamilton's Principle may be stated as follows :

Of all the possible paths along which a dynamical system may move from 
one point to another within a specified time interval (consistent with any 
constraints), the actual path followed is that which minimizes the time 
integral of the difference between the kinetic and potential energies.

we shall confine our attention to conservative systems. In rectangular 
coordinate system. Such that:



If we define the difference of these quantities to be

Hamilton's Principle becomes

These are the Lagrange equations of motion for the particle and the quantity
L is called the Lagrange function or Lagrangian for the particle.

By the same manner as in ch.6 , we can drive the following equation



As an example, let us obtain the Lagrange equation of motion for
the one-dimensional harmonic oscillator. In this case the Lagrangian is

By appling Lagrange equation, we get directly 

Another example as in the case of the plane pendulum we have for the
Lagrangian function

which is identical with the Newtonian equation of motion.



We now treat θ as if it were a rectangular coordinate and apply the 
Lagrange equation of motion, we obtain : 

which again is identical with the Newtonian equation.

important characteristic of the method employed in the two simple  
examples above is the fact that nowhere in the calculations did 
there enter any statement regarding force. Thus, the equations of motion
were obtained only by specifying certain properties associated with the
particle (the kinetic and potential energies), and without the necessity of
explicitly taking into account the fact that there was an external agency
acting on the particle (the force). 



7.3 Generalized coordinates
In order to specify the state of a system, it is necessary to use n radius 
vectors. Since each radius vector consists of a triple of numbers 3n
quantities must be specified in order to describe the positions of all the 
particles.

If there exist equations of constraint which relate some of these coordinates 
to others 
In fact, if there are m equations of constraint, then (3n — m) coordinates 
are independent, and the system is said to possess   s =(3n — m) degrees of 
freedom. 

it is possible to choose any s parameters, as long as they completely specify 
the state of the system. These s quantities need not even have the 
dimensions of length.



A set of independent generalized coordinates whose number equals the 
number s of degrees of freedom of the system and which are not 
restricted by the constraints will be called a proper set of generalized 
coordinates.

In addition to the generalized coordinates, we may define a set of 
quantities which consists of the time derivatives of the qi , we call them 
the generalized velocities. 



the equations connecting the xαi and the qi explicitly contain the time, 
then the set of transformation equations is given by

the inverse transformations is

there are also m = 3n — s equations of constraint of the form













-we may now restate Hamilton's Principle as follows:
-Of all the possible paths along which a dynamical system may move 
from one point to another in configuration space within a specified 
time interval, the actual path followed is that which minimizes the 
time integral of the Lagrangian function for the system.

-the Lagrangian must be invariant with respect to coordinate 
transformations. We are therefore assured that no matter what 
generalized coordinates are chosen for the description of a system, 
the Lagrangian will have the same value for a given condition of the 
system.

7.4 Lagrange's Equations of Motion in 
Generalized Coordinates



-we express the Lagrangian in terms of the 

-the validity of Lagrange's equations requires the following two conditions :

1- As stated earlier, we shall consider only the motion of systems subject to 
conservative forces. Such forces may always be derived from potential 
functions,
2- the equations of constraint must be relations that connect the coordinates 
of the particles and may be functions of the time



-Solution :

- First in Cartesian coordinates :

-Where U = 0 at y = 0, the lagrangian will be 



-We have two generalized coordinates  ( x, y ) , the equations of motion are :

- Second in Polar coordinates :

-Where U = 0 at y = 0, the lagrangian will be 



-We have two generalized coordinates  ( r, θ ) , the equations of motion are :



Example 7.4 :
Consider the motion of a particle of mass m that 
is constrained to move  on the surface of a cone 
of half-angle a and which is subject to a 
gravitational force.
Solution : 
Since the problem possesses cylindrical 
symmetry, we choose r, θ, and z as the 
generalized coordinates. 
We have, however, the equation of constraint

z = r cot α
there are only two degrees of freedom for the 
system and therefore there are only two proper 
generalized coordinates



-the square of the velocity is

-if we choose U(z = 0) = 0 , The potential energy is 

-so that the Lagrangian is



-We note first that L does not explicitly contain θ.
Therefore dL/d θ = 0, and the  Lagrange equation for the coordinate θ is

This is, expresses the conservation of angular momentum about the axis of symmetry
The Lagrange equation for r is

And ,



-Use eq. (1) , (2) in Lagrange equation, we obtain :

- and 

-Now mutiply by ( - sin2α ) and divide by ( m ) we obtain the equation of motion for the 
coordinate r. :



Example 7.5 :
A point of support of a simple pendulum of length b moves on a massless rim of
radius a rotating with constant angular velocity ω. Obtain the expression for the 
Cartesian components of the velocity and acceleration of the mass m. Obtain also 
the angular acceleration for angle θ.
Solution : 
We choose the origin of our coordinate system to be at the center of the rotating 
rim. The Cartesian components of mass m become

And the velocities 

And the acceleration  in Cartesian coordinates  will be 





-It should be clear that the generalized coordinates is only 
θ , the kinetic energy and potential energy are 

Where U = 0 at y = 0, the lagrangian will be 

-So that, 



-Now applying Lagrange equation of motion,

-Divide by  ( mb2 ) and rearrange ;



-Example 7.6 :

-Solution : 







-Example 7.8 :

-Solution : 





7.5 Lagrange's Equations with Undetermined 
Multipliers



-Example 7.9 :

-Solution : 
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Example 7.10 :

-Solution : 









The Conservation of Energy:
According to our previous arguments, time is homogeneous within an inertial 
reference frame. Therefore, the Lagrangian that describes a closed system (i.e., a 
system which does not interact with anything outside the system) cannot depend 
explicitly on the time

7.9 Conservation theorms









The Conservation of Linear Momentum:
Since space is homogeneous in an inertial reference frame, the Lagrangian of a closed 
system will be unaffected by a translation of the entire system in space. Consider an 
infinitesimal translation of every radius vector ra such that   ra ra + δr; this 
amounts to translating the entire system by δr .





The Conservation of Angular Momentum:
one characteristic of an inertial reference frame is that space is isotropie; i.e., the 
mechanical properties of a closed system are unaffected by the orientation of the system. 
In particular, the Lagrangian of a closed system will not change if the system is rotated
through an infinitesimal angle 
If a system is rotated about a certain axis by an infinitesimal angle δθ,  Since (δθ is 
arbitrary, we must have





the Lagrangian is expressed in generalized coordinates and define the generalized 
momenta according to

The Lagrange equations of motion are then expressed by

Using the definition of the generalized momenta for the Hamiltonian may be written 
as

This equation is written in a manner which stresses the fact that the Hamiltonian is 
always considered as a function of

7.10 The Canonical Equations of Motion—Hamiltonian Dynamics



By using the previous equation we find 

Hamilton's equations of motion;  because of their symmetrical appearance, they are 
also known as the canonical equations of motion. The description of motion by 
means of these equations is termed Hamiltonian dynamics.

The last equation expresses the fact that if H does not explicitly contain  the 
time, then the Hamiltonian is a conserved quantity.



There are 2s canonical equations and they replace the s Lagrange  equations. (Recall 
that s = 3n — m is the number of degrees of freedom of  the system.) But the 
canonical equations are first-order differential equations, whereas the Lagrange 
equations are of second-order.

In order to use the  canonical equations in solving a problem, the Hamiltonian must 
first be constructed as a function of the generalized coordinates and momenta.




















	Slide Number 1
	7.1 Introduction
	7.2 Hamilton's Principle
	Slide Number 4
	Slide Number 5
	Slide Number 6
	7.3 Generalized coordinates
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	7.4 Lagrange's Equations of Motion in Generalized Coordinates
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62

