Hamilton s Principle—Lagrangian
and

Hamiltonian Dynamics

Ch. 7



/.1 Introduction

In solving a problem by using the Newtonian procedure, however, it is
necessary to know a// of the forces since the quantity F which appears in the
fundamental equation is the tota/ force acting on a body.

in particular situations it may be difficult or even impossible to obtain
explicit expressions for the forces of constraint.

In order to circumvent some of the practical difficulties which arise in
attempts to apply Newton's equations to particular problems, alternative

procedures may be developed.

Such a method is contained in Hamilton's Principle and the equations of
motion which result from the application of this principle are called
Lagrange’s equations.



/.2 Hamilton's Principle

Hamilton's Principle may be stated as follows :

Of all the possible paths along which a dynamical system may move from
one point to another within a specified time interval (consistent with any
constraints), the actual path followed is that which minimizes the time
integral of the difference between the kinetic and potential energies.

t2
5j (T — U)dt =0

we shall confine our attention to conservative systems. In rectangular
coordinate system. Such that:

T=Tk); U= Ux)



If we define the difference of these quantities to be

L.L=T-U
:L(xiaif}

Hamilton's Principle becomes

5J L(x,-., il)dt — 0

I

By the same manner as in ch.6, we can drive the following equation

cl. d ¢L

-————— =0, i=1,273

Cx;  dt éx,
These are the Lagrange equations of motion for the particle and the quantity
L is called the Lagrange function or Lagrangian for the particle.



As an example, let us obtain the Lagrange equation of motion for
the one-dimensional harmonic oscillator. In this case the Lagrangian is

L=T-U =1mx* — lkx?
By appling Lagrange equation, we get directly

mx + kx = 0

which is identical with the Newtonian equation of motion.

Another example as in the case of the plane pendulum we have for the
Lagrangian function

L= 1ml?0?> — mgl(1 — cos )



We now treat @ as if it were a rectangular coordinate and apply the
Lagrange equation of motion, we obtain :

é-l—%sinb‘:[]

which again is identical with the Newtonian equation.

important characteristic of the method employed in the two simple
examples above is the fact that nowhere in the calculations did

there enter any statement regarding force. Thus, the equations of motion
were obtained only by specifying certain properties associated with the
particle (the kinetic and potential energies), and without the necessity of
explicitly taking into account the fact that there was an external agency
acting on the particle (the force).



/.3 Generalized coordinates

In order to specify the state of a system, it is necessary to use n radius
vectors. Since each radius vector consists of a triple of numbers 3n
guantities must be specified in order to describe the positions of all the
particles.

If there exist equations of constraint which relate some of these coordinates
to others

In fact, if there are m equations of constraint, then (3n — m) coordinates
are independent, and the system is said to possess s =(3n — m) degrees of
freedom.

it is possible to choose any s parameters, as long as they completely specify
the state of the system. These s quantities need not even have the
dimensions of length.



A set of independent generalized coordinates whose number equals the
number s of degrees of freedom of the system and which are not
restricted by the constraints will be called a proper set of generalized
coordinates.

In addition to the generalized coordinates, we may define a set of
quantities which consists of the time derivatives of the g;, we call them
the generalized velocities.



the equations connecting the x and the g;explicitly contain the time,
then the set of transformation equations is given by

x=12,...,
xz,f = xa,f(Qja t)a ’ 2 &

= S dapdnt) =123
J=12...s

¢ -
R
I

the inverse transformations is
qj = Qj(xa.iﬁ I)
d;j = qj(Xsis Xgir 1)

there are also m = 3n — s equations of constraint of the form

fi:ﬂ(xa:.ist)a | = 1-,2,---,??1



Find a suitable set of generalized coordinates for a point particle moving on the
surface of a hemisphere of radius R whose center is at the origin.

Solution. Because the motion always takes place on the surface, we have
2+ 2+ 22— R2=0, 220 (7.10)

Let us choose as our generalized coordinates the cosines of the angles between
the x-, y-, and z-axes and the line connecting the particle with the origin.

Therefore,

X b z
W= ®Tg =5 (7.11)

R!
But the sum of the squares of the direction cosines of a line equals unity. Hence,
it Gt a= (7.12)

This set of ¢; does not constitute a proper set of generalized coordinates, because
we can write ¢ as a function of ¢, and g.:

=V1- g — ¢ (7.13)



We may, however, choose ¢ = x/R and ¢, = y/R as proper generalized coordi-

nates, and these quantities, together with the equation of constraint (Equation
7.13)

z=VR? — x2 — 2 (7.14)

are sufficient to uniquely specify the position of the particle. This should be an
obvious result, because only two coordinates (e.g., latitude and longitude) are
necessary to specify a point on the surface of a sphere. But the example illus-
trates the fact that the equations of constraint can always be used to reduce a
trial set of coordinates to a proper set of generalized coordinates.




w2

Use the (x, y) coordinate system of Figure 7-1 to find the kinetic energy 7, po-
tential energy U, and the Lagrangian L for a simple pendulum (length €, mass
bob m) moving in the x, y plane. Determine the transformation equations from
the (x, y) rectangular system to the coordinate 6. Find the equation of motion.

Solution. We have already examined this general problem in Sections 4.4 and
7.1. When using the Lagrangian method, it is often useful to begin with y
rectangular coordinates and transform to the most obvious system with the
simplest generalized coordinates. In this case, the kinetic and potential energies
and the Lagrangian become

T= 1 mx® + 1 my- ' ¢
2 9 ") :
: 0
U= mgy |
1 1 o
L=T—U=-—mx?2 + - THJTE ~ mgy Example 7.2. A simple pendulum
2 2 of length € and bob of mass m.



Inspection of Figure 7-1 reveals that the motion can be better described by
using 6 and 6. Let’s transform x and y into the coordinate 6 and then find Lin

terms of 6.
x = {sin @
y = —¢{ cos @

We now find for x and y

% = €6 cos 6

= €6 sin 6

L= g(fﬂé?msﬂﬁ + €262sin? ) + mgf cos § = gfﬂéﬂ + mg€ cos 6

The only generalized coordinate in the case of the pendulum is the angle 6,
and we have expressed the Lagrangian in terms of 6 by following a simple
procedure of finding L in terms of x and y, finding the transformation equations,
and then inserting them into the expression for L. If we do as we did in the
previous section and treat 6 as if it were a rectangular coordinate, we can find the
equation of motion as follows:



30 = “mg’f sin 6
ol .

— = mf?0

a6

We insert these relations into Equation 7.4 to find the same equation of motion
as found previously.

9’4—%51119:0



/.4 Lagrange's Equations of Motion in
Generalized Coordinates

-we may now restate Hamilton's Principle as follows:

-Of all the possible paths along which a dynamical system may move
from one point to another in configuration space within a specified
time interval, the actual path followed is that which minimizes the
time integral of the Lagrangian function for the system.

-the Lagrangian must be invariant with respect to coordinate
transformations. We are therefore assured that no matter what
generalized coordinates are chosen for the description of a system,
the Lagrangian will have the same value for a given condition of the
system.



-we express the Lagrangian in terms of the X,; and x, ; or the g; and ¢,
[= T(xa.l) o U(xa,f)
T(q;,4,,t) — U(g;, 1)

|

L d oL
S0, =12,
cq;  drig;

-the validity of Lagrange's equations requires the following two conditions :

1- As stated earlier, we shall consider only the motion of systems subject to
conservative forces. Such forces may always be derived from potential
functions,

2- the equations of constraint must be relations that connect the coordinates
of the particles and may be functions of the time



EXAMPLE 7.5

Consider the case of projectile motion under gravity in two dimensions
Find the equations of motion in both Cartesian and polar coordinates.

-Solution :

e,
-~

- First in Cartesian coordinates :

1 1
- - vl + — o2 . =
me 5 ™) U= mgy

-Where U =0 aty =0, the lagrangian will be

L=T- U:§m£?+%mj2—mgy



-We have two generalized coordinates ( x,y ), the equations of motion are :

X y:
%_EG_L_O oL  doL _
dx  ditox dy dtay
d . d, .
O—amx——o mg dt(my)-—O
¥=10 y= —g

- Second in Polar coordinates :

T= -'E-mi'*ﬂ + Em{ré}? - U= mgrsin 6

-Where U =0aty =0, the lagrangian will be

1 1 .
L=T-U= §m+2 + Emr?{?f — mgrsin 6



-We have two generalized coordinates (r, 8 ), the equations of motion are :

6:
oL _doL_ oL _doL_
ar dtor | 30 dtod
mréQ“mgsinG—ﬁ(mi')=0 —m rcosG-—g( r20) = 0
dt | g dt
r6* — gsin - r=0 ~grcos 8 — 2rif — 126 = 0

The equations of motion expressed by (x.y) are clearly simpler than those of (1. 6)



Example 7.4 :

Consider the motion of a particle of mass m that

is constrained to move on the surface of a cone

of half-angle a and which is subject to a

gravitational force. z

Solution:

Since the problem possesses cylindrical
symmetry, we chooser, 6, and z as the
generalized coordinates.

We have, however, the equation of constraint

z=rcota |

there are only two degrees of freedom for the o
system and therefore there are only two proper 2
generalized coordinates x7




-the square of the velocity is

02 =2 4 r?0? + 22

P2+ r20% + % cos? a
= 2 csc? o + r20?
-if we choose Ufz =0) =0, The potential energy is
U = mgz = mgrcotu

-so that the Lagrangian is

L = Ym(? csc? o + r20%) — mgrcot a



-We note first that L does not explicitly contain 6.
Therefore dL/d 6 = 0, and the Lagrange equation for the coordinate & /s

d oL oL
= () —f— .. = mr‘fl = const.
dt 66 o8

This is, expresses the conservation of angular momentum about the axis of symmetry
The Lagrange equation for r /s

¢L dJL

ar'dra;-*o

And,

L = Ym(? csc? o + r20%) — mgr cot «



-Use eq. (1), (2) in Lagrange equation, we obtain :

-Now mutiply by ( - sin2a ) and divide by ( m ) we obtain the equation of motion for the
coordinate 1. :

F —rf?sina + gsinacoso = 0



Example 7.5 :

A point of support of a simple pendulum of length 6 moves on a massless rim of
radius a rotating with constant angular velocity w. Obtain the expression for the
Cartesian components of the velocity and acceleration of the mass m. Obtain also
the angular acceleration for angle 6.

Solution :

We choose the origin of our coordinate system to be at the center of the rotating
rim. The Cartesian components of mass m become

x = g cos wt+ bsin 6
y = asin wt — b cos 6

And the velocities ‘
x = —aqw sin wi + b0 cos B}

y = aw cos wt + b sin 8
And the acceleration in Cartesian coordinates will be

¥= —aw?cos ot + b(B cos O — #2sin 8)

j = —aw?sin wt + b(d sin 6 + 02¢os 6)






-It should be clear that the generalized coordinates is only
0, the kinetic energy and potential energy are

1
= §m(xﬂ + 5]2}

U= mgy
Where U =0 aty =0, the lagrangian will be

L=T-U= g[ﬂ:ﬂmE + 5202 + 2bbaw sin (6 — wt)]
—mg(a sin wt — b cos 6)

-So that,

4% - b2 + mbaw(d 0 — wt
ry m w( w) COS wi)

aL :
i mbbaw cos(0 — wt) — mgbsin 0

-




-Now applying Lagrange equation of motion,

-Divide by ( mb?) and rearrange ;

Ll E
H=mTﬂcns(H-mt) —%sinﬂ



-Example 7.6 :
A bead slides along a smooth wire bent in the shape of a parabola z = er
(Figure 7-5). The bead rotates in a circle of radius R when the wire is rotating

about its vertical symmetry axis with angular velocity w. Find the value of .
-Solution :

2

Because the problem has cylindrical symmetry, we choose 1, 6, and z as
the generalized coordinates. The kinetic energy of the bead is

T = g[ﬁ + 2% + (r9?))
If we choose U= 0 at z = 0, the potential energy term is
U= mgz
But 7, z, and 6 are not independent. The equation of constraint for the parabola is
2= o

z= 2¢crr



We also have an explicit time dependence of the angular rotation
6 = wt
6= w

We can now construct the Lagrangian as being dependent only on 7, because
there is no direct 8 dependence.

L=T—-U

= %1(1?'E + 4c2r%72 + rw?) — mger?

al. m
— = — (97 + 822y
ar 2(2r ﬂrzﬂ

daol. m

EE——— E—— = — g + 1 E .E + E e

T 2(2? Bcrr 8c2r? 1)
ol.

— 9,29 _
o m(4c*ri® + re® — 2gcr) 5



Lagrange’s equation of motion becomes
F(1 + 4c2r?) + #%(4c%) + r(2gc — w?) =0

which is a complicated result. If, however, the bead rotates with r = R = constant,
then ¥ = ¥ = 0, and Equation 7.49 becomes

R(2gc — w?) =0
and

w?

C



-Example 7.8 :

Consider the double pulley system shown in Figure Use the coordinates in-
dicated, and determine the equations of motion.

-Solution :
Consider the pulleys to be massless, and let /; and J be the lengths of /' \
rope hanging freely from each of the two pulleys. The distances xand yare ___ _____[ ____ O I, pemm e
measured from the center of the two pulleys. @
]':I'iI!] . fy = x
th = X
Mo

i
. —-_— — + —-_— L] + L
L mi h — x+ ¥) xt+ ¥

Wiy




d
I’E-:Etul_x—l_fi_j’}:_i_j'

1 1 1

T = —muvi + —myvg + —myv}
2“"11 Emﬂi 253
1

2
Let the potential energy U= 0 at x = 0.

U=U, + U, + U,
= —mgx — mog(h — x+ y) — mag(l; — x+ I — y)

Because T and U have been determined, the equations of motion can be ob-
tained using Equation 7.18. The results are

= gmiEt  ome(§ = ) + Jmy(—k = §)°

mX + mo(¥ — §) + mg(Z+ §) = (my — my — my)g
—ma(X — §) + my(¥+ §) = (mg — my)g
Equations 7.56 and 7.57 can be solved for ¥ and §¥.



7.5 Lagrange's Equations with Undetermined
Multipliers

If the constraint relations for a problem are given in differential form rather
than as algebraic expressions, we can incorporate them directly into Lagrange’s
equations by using the Lagrange undetermined multipliers ; that is, for

constraints expressible as

i B i=1,2, ...,
E dqj 0 {k=l,2,...,m

the Lagrange equations are

ol d ol
. + 2 M)
g, dtag k

W _

.i'




the undetermined multpliers A,(t) are closely related to the forces of constraint.

The generalized forces of constraint Q; are given by

Q_f:tha_ﬁ

k ada.
-Example 7.9 : %

Let us consider again the case of the disk rolling down an inclined plane (see
Example 6.5 and Figure 6-7). Find the equations of motion, the force of con-
straint, and the angular acceleration.

-Solution : \

The equation of constraint is

f(p,0) =9y—RO=0 — (1) @




The kinetic energy may be separated into translational and rotational terms

1 1 .

T=_ My + - I6*
0V T g
1

1 .
S "2 4 — 202
5 M5* + 3 MR? 6

where M is the mass of the disk and R is the radius; [ = % MR? is the moment of
inertia of the disk about a central axis. The potential energy is

U= Mg({—y) sin a

where [ is the length of the inclined surface of the plane and where the disk is
assumed to have zero potential energy at the bottom of the plane. The
Lagrangian is therefore

L=T-U
1 1

= 'Q-My“’ + ;ﬂmﬂéﬂ + Mg(y — 1) sin



The system has only one degree of freedom if we insist that the rolling takes
place without slipping. We may therefore choose either y or 8 as the proper co-
ordinate and use Equation (1) to eliminate the other. Alternatively, we may
continue to consider both y and € as generalized coordinates and use the
method of undetermined multipliers. The Lagrange equations in this case are

dl. d oL d
-

- 0
dy diaoy dy

(7.70)

Performing the differentiations, we obtain, for the equations of motion,

Mgsina — My + A =0 (7.71a)
— é MR2 — AR=0 (7.71b)

Also, from the constraint equation, we have
y= R6 (7.72)



These equations (Equations 7.71 and 7.72) constitute a soluble system for the
three unknowns y, 6, A. Differentiating the equation of constraint (Equation
7.72), we obtain

|
6 = R (7.73)
Combining Equations 7.71b and 7.73, we find
1
A= — EM}"' (7.74)
and then using this expression in Equation 7.71a there results
. 2gsina
y = 3 (7.75)
with
Mg sin a
A= - 3 (7.76)
so that Equation 7.71b yields g = Qg;;: 2 (7.77)

Thus, we have three equations for the quantities §, 6, and A that can be imme-
diately integrated.



We note that if the disk were to slide without friction down the plane, we
would have §¥ = gsin a. Therefore, the rolling constraint reduces the accelera-
tion to % of the value of frictionless sliding. The magnitude of the force of fric-
tion producing the constraint is just A—that is, (Mg/3) sina.

The generalized forces of constraint, Equation 7.66, are

af Mg sina
Q= A dy = A= 3
af MgR sin «

Q 06 3

Note that , and Qg are a force and a torque, respectively, and they are the gen-
eralized forces of constraint required to keep the disk rolling down the plane
without slipping.



Example 7.10 :

A particle of mass m starts at rest on top of a smooth fixed hemisphere of radius

a. Find the force of constraint, and determine the angle at which the particle
leaves the hemisphere.

-Solution :

Because we are considering the possibility of the particle
leaving the hemisphere, we choose the generalized
coordinates to be rand 6. The constraint equation is

f(r,@) =r—a=0 (7.80)

The Lagrangian is determined from the kinetic and
potential energies:

T= g(%2 + 7262)

U= mgr cos 6
L=T-U

= g(f? + 1292) — mgr cos 6 (7.81)



where the potential energy is zero at the bottom of the hemisphere. The
Lagrange equations, Equation 7.65, are
oL  ddL N ’l@‘" _
ar  dtar or
ol. daL d
A UL
00 dtod 06

0 (7.82)

0 (7.83)

Performing the differentiations on Equation 7.80 gives

of of
_— = l = = .
Pyl (7.84)
Equations 7.82 and 7.83 become
mr62 — mgcos@ — m¥+ A =0 (7.85)
mgr sin 0 — mr26 — 2mrif = 0 (7.86)

Next, we apply the constraint r = a to these equations of motion:

r=a, r=0=7%



Equations 7.85 and 7.86 then become

mab? — mgcosf + A =0 (7.87)
mgasin § — ma26 = 0 (7.88)

From Equation 7.88, we have
§ = %sin 6 (7.89)

We can integrate Equation 7.89 to determine 92,

ddo_df _dods _ .db
dtdt dt dédt  do

6 = (7.90)

We integrate Equation 7.89,

a

Jé db = gJSin 6 do (7.91)



which results in

gﬂ —
8 oo+ 8 (7.92)

2 a a

where the 1nttgratmn constant is g/a, because @ =0att= 0when6=0.
Substituting 82 from Equanﬂn 7.92 into Equation 7.87 gives, after solving for A,

= mg(3 cos 8 — 2) (7.93)

which 1s the force of constraint. The particle falls off the hemisphere at angle 6,
when A = 0.

A=0=mg(3cosb, — 2) (7.94)
(2
8, = Cos (5) (7.95)

As a quick check, notice that the constraint force is A = mgat 8 = 0 when the
particle is perched on top of the hemisphere.



7.9 Conservation theorms

The Conservation of Energy:

According to our previous arguments, time is homogeneous within an inertial
reference frame. Therefore, the Lagrangian that describes a closed system (i.e., a
system which does not interact with anything outside the system) cannot depend

explicitly on the time
== (7.124)
so that the total derivative of the Lagrangian becomes

433

where the usual term, 4L /3¢, does not now appear. But Lagrange’s equations are



oL _ d oL

% = at3q, (7.126)
Using Equation 7.126 to substitute for 4L/dg, in Equation 7.125, we have
-3 440, 3o or M3 A(pL)_
Y ai dtaq, J EM;, dt T ai\Taq.
so that E 7.197
dt( q"aq}) (7.127)

The quantity in the parentheses is therefore constant in time; denote this con-
stant by — A

L — E ¢;—~ = —H = constant (7.128)
L aq?



where we exclude the possibility of an explicit time dependence in the transfor-
mation equations. Therefore, U= U(g), and aU/a¢; = 0. Thus

oL _o(T—U) aT
69, 9g; 9,
Equation 7.128 can then be written as

oT
(r— U)_E.éj_: -

- H (7.129)
j ﬂqj

and, using Equation 7.122, we have

(T-U)—2T=—-H or T+ U= E= H = constant (7.130)



The total energy Eis a constant of the motion for this case.

The function H, called the Hamiltonian of the system, may be defined as in
Equation 7.128 (but see Section 7.10). It is important to note that the Hamiltonian
H s equal to the total energy E only if the following conditions are met:

1. The equations of the transformation connecting the rectangular and gen-
eralized coordinates (Equation 7.116) must be independent of the time,
thus ensuring that the kinetic energy is a homogeneous quadratic function
of the ¢;.

2. The potential energy must be velocity independent, thus allowing the elimi-
nation of the terms dU/d¢; from the equation for H (Equation 7.129).



The Conservation of Linear Momentum:

Since space is homogeneous in an inertial reference frame, the Lagrangian of a closed
system will be unaffected by a translation of the entire system in space. Consider an
infinitesimal translation of every radius vector ra such that ra == ra + 6r; this
amounts to translating the entire system by 6r.

L dL

Now, we consider only a displacement, so that the dx; arc not functions of
the time. Thus.

dx; d
éx aE[— ;i—rbx 0
Therefore, oL becomes
il
ol.=>% —ox;, =0
Z OX; X

Since each of the dx; is an indepcnclﬂnl displacement, 8L will vanish 1denti-
cally only if each of the partial derivatives of L vanishes:
oL

T
6xi



dﬁ![._

Then, according to Lagrange’s equations, — =0
dt CX;
and,
L
P const
X

Thus, the homogeneity of space implies that the linear momentum p of a
closed system 1s constant in time.

This result may also be interpreted according to the following statement:
If the Lagrangian of a system (not necessarily closed) 1s invariant with
respect to translation in a certain direction, then the linear momentum of
the system in that direction 1s constant in time.



The Conservation of Angular Momentum:

one characteristic of an inertial reference frame is that space is isotropie; i.e., the
mechanical properties of a closed system are unaffected by the orientation of the system.
In particular, the Lagrangian of a closed system will not change if the system is rotated

through an infinitesimal angle

If a system is rotated about a certain axis by an infinitesimal angle 68, Since (66 is
arbitrary, we must have

X p) =0

and,
r X p = const.

Butr X p = L; thercfore, the angular momentum of the particle is constant
In time.



TABLE 7-1

Characteristic

of inertial frame Property of Lagrangian Conserved quantity
Time homogeneous Not explicit function of time Total energy

Space homogeneous Invariant to translaton Linear momentum

Space isotropic Invariant to rotation Angular momentum




7.10 The Canonical Equations of Motion—Hamiltonian Dynamics

the Lagrangian is expressed in generalized coordinates and define the generalized
momenta according to

AL
0g;

ﬂ :

The Lagrange equations of motion are then expressed by
. dlL

.?'_3%_

Using the definition of the generalized momenta for the Hamiltonian may be written
as

H(gy» pro 1) = %—@f — L(gy G» 0

This equation is written in a manner which stresses the fact that the Hamiltonian is
always considered as a function of H = Hiq,, ps, t); L= L(g, 4, 1)



By using the previous equation we find

__oH
= ap, | | |
ﬁ oH Hamilton’s equations of motion
—f, = —
ag;
and
_OL _9dH
ol ot

Hamilton's equations of motion, because of their symmetrical appearance, they are
also known as the canonical equations of motion. The description of motion by
means of these equations is termed Hamiltonian dynamics.

The last equation expresses the fact that if 4 does not explicitly contain the
time, then the Hamiltonian is a conserved quantity.



There are 2s canonical equations and they replace the s Lagrange equations. (Recall
that s =3n — m is the number of degrees of freedom of the system.) But the

canonical equations are first-order differential equations, whereas the Lagrange
equations are of second-order.

In order to use the canonical equations in solving a problem, the Hamiltonian must
first be constructed as a function of the generalized coordinates and momenta.



Use the Hamiltonian method to find the equations of motion of a particle of
mass m constrained to move on the surface of a cylinder defined by

x* + y2 = R? The particle is subject to a force directed toward the origin and
proportional to the distance of the particle from the origin: F = —kr.

Solution. The situation is illustrated in Figure 7-9. The potential corresponding
to the force F 1s 1

2
= DKRE + 20 (7.164)

We can write the square of the velocity in cylindrical coordinates (see Equation
1.101) as

U= —kr? = %k{x2+ y2 + 2%)

v? = R? + R29% + 32 (7.165)
But in this case, Ris a constant, so the kinetic energy is

T= % m(R202 + i2) (7.166)



We may now write the Lagrangian as

1 . 1
L=T—-U=-m(R?0% + 1?) —ER(RE+

2

The generalized coordinates are 8 and z,

and the generalized momenta are

ol .
= — = mR?6
Ps ¥
_L_
P 0z

z?) (7.167)

(7.168)

(7.169)

Example 7.11. A particle is constrained to move
on the surface of a cylinder.



We may now write the Lagrangian as

1 .
L=T-U=g m(R262 + 32) — ék(RE + 22) (7.167)
The generalized coordinates are 6 and z, and the generalized momenta are
oL
= — = mR% (7.168
ps = ¥ )
aL :

Because the system is conservative and because the equations of transformation
between rectangular and cylindrical coordinates do not explicitly involve the
time, the Hamiltonian His just the total energy expressed in terms of the vari-
ables 6, p,, z, and #.. But 8 does not occur explicitly, so

H(z pop) = T+ U

2




where the constant term % kR? has been suppressed. The equations of motion

are therefore found from the canonical equations:

. oH
. dH
h=-"" =k (7.172)
| _0H _ _t
6= = i (7.173)
;=M _P (7.174)
ap, m

Equations 7.173 and 1.174 just duplicate Equations 7.168 and 7.169. Equations
7.168 and 7.171 give

Py = mR20 = constant (7.175)



é_BH Ps

= tﬁ = s (7.173)
z= tif= i (7.174)
op, m

Equations 7.173 and 1.174 just duplicate Equations 7.168 and 7.169. Equations
7.168 and 7.171 give

Py = mR20 = constant (7.175)



Use the Hamiltonian method to find the equations of motion for a spherical
pendulum of mass m and length & (see Figure 7-10).

Solution. 'The generalized coordinates are 8 and ¢. The kinetic energy 1s

1 : 1 :
T=— mb?0® + — mb? sin? 6¢?
2 2
The only force acting on the pendulum (other than at the point of support) is
gravity, and we define the potential zero to be at the pendulum’s point of
attachment.

U= —mgbcos 6



. U=0
The generalized momenta are then

po = L = 2 (7.180) :
=% . :
36 : lg
oL L E
Py = — = mb? sin? ¢ (7.181) !
e O
Example 7.12. A spherical pendulum
H=T+ U with generalized coordinates 6 and ¢.
1 P2 1 mb* sin® 6p3
— _mﬂ + - —
5 (mb)? " 2 (mb? sin? 6)? mgbh cos 0
ps e
Omb? = 2mb? sin2@ O O f



The equations of motion are

. oH P
6=—~-=~~=—ﬂ
opy mb
. _0H  Pe
d’ B 6P¢ B ?ﬂ-bﬂ Siﬂﬂﬂ
dH  p3 cos 6 ‘
T T mbisintg &SmO
aH
h#:—?a;:

Because ¢ is cyclic, the momentum p, about the symmetry axis is constant.
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