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Chapter 1

Regression

Suggested readings:
Chapter 1 and 3 of textbook [I]

Regression and classification are the most popular tasks in supervised machine learning. This
chapter will explore the fundamentals of regression, and more specifically linear regression; it
helps build the required background for the more general non-linear regression task, which is

the most common in deep learning.

1 Linear Regression

Let’s kick off the discussion in this chapter with a definition of what we mean by regression

Definition 1.1. Regression is a supervised machine learning task where a learning algorithm
attempts to approximate some unknown real-valued function for the purpose of observing
some variables and predicting their responses. Formally, let x € RV*! be the N-dimensional
(N-D) vector of observed variables, let y € RM*! be the M-dimensional (M-D) vector of
responses, and let f; : x — y be some unknown real-valued function. Then, the task in
regression is to learn a function fg : x,© — y parameterized with a set of parameters
© € R?*! such that ||y — y||l4 < € where € is some arbitrarily small non-negative scaler and

||.||4 is some error metric.

Let’s try and make sense of the definition above. Consider the example in Figure [I.1]
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The points on the figure are generated by some unknown function f; : x — y where x = x €
R,y =y € R (both are 1-D). The objective of the learning algorithm is to approximate that
unknown function f; using a dataset of (z,y) data points, i.e., D = {(z,y).}Y_,. The first
step we take is to pick a class of parameterized functions fg for our algorithm to learn. Here
we pick

§ = fo(r) = wiz + wy, (1.1)

where § =y € R and © = {w;};_;, w; € R. The function in Equation |I.1|is linear in the
parameters (i.e., ©), and hence, the class of functions is linear and the task becomes a linear
regression task. Since we do not know the nature of f;, we can safely assume that our pick
may not quite capture the relation between x and y. We encode this uncertainty in our pick

by modeling the relation between y (i.e., f;) and y (i.e, fo) as follows

y=1+5, (1.2)

where [ is a continuous random variable following some distribution p(f) that expresses
our uncertainty. Equation [1.2] is henceforth referred to as the regression model equation.
This model may not be of great importance in our discussion in this chapter, but it is very

important to understand the probabilistic view of the regression task, which will be left to
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Assignment 1.

2 Learning fg

The goal of the learning algorithm now is to find the values of the parameters wy and w; that
make fg as close to f; as possible. Formally, it should minimize some error metric, i.e., ||.||4.

One choice of error function is

€y = ‘yu - gu‘za (13>

which should be minimized over the whole training dataset (i.e., Yu € {1,...,U}). This

requirement could be expressed using the average error function

T 1 U 1 U
ﬁZEZGuZUZ|yu—?)u|2=UZ|yu—(w1$+wo)|2- (1.4)
u=1 u=1 u=1
Equation is called the Mean Squared Error (MSE) function. It measures the “loss” the
algorithm incurs for any choice of parameters wy and w,. Therefore, £ is commonly referred
to as the MSE loss in the machine learning literature. MSE loss represents the performance
measure for our learning algorithm (see Lecture 1).

One might ask at this stage, how could our learning algorithm find the best choice of
parameters that makes £ as small as possible? This is a very important question, and it is
the core to what is commonly known as optimization problems. We are not going to delve
into optimization as it is a subject of its own. We will just pose our learning task in the form
of an optimization problem and use some basic principles from undergraduate-level calculus
to deal with it.

2.1 Learning Task Formulation

Before we introduce the algorithm that learns the parameters, we will formulate the opti-

mization problem that describe out learning task. Given the training dataset D, we can form
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the following equation to describe the relation between all 2’s and g’s

y = Xw (1.5)
{1 1 x
Uy 1 =«
ol I [w] (1.6)
: : : w1
Yu 1 zy

The matrix X is known as the design matriz in the literature of machine learning, not
commonly used phrase for neural networks, though. An important thing to note about
Equation is that it emphasizes the role of wy and w; in the regression task; they are
common to all data points, for they characterize the “line” that fits the dataset D. Similarly

and from D, the error of all data points could be expressed as

e1 (1 — (w1 + wp))?
e | 2] _ (y2 — (w122 + wy)) (1.7)
eu (yo — (wizy + wo))2

Equations [1.6] and [I.7] allow us to re-express Equation [I.4] as follow

£= 53— (i ) (18)
1 (1 — (w21 + wy))

=7 [(y1 — (w121 +wp)), - - -, (Yyr — (wiTy + wo))] : (1.9)
(yu — (wizy + wp))

:%(y_xw)T (¥ — Xw) (1.10)

= 2lly — Xl (1.11)

where the following should be noted:

o V= [y1,%,...,yy|" is a vector of all the desired responses in D.
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e Going from Equation[I.8 to[I.9)and from Equation [I.9to [I.I0]makes use of the definition

. .. . U
of vector inner product in linear algebra, i.e., a’a = [a1,...,ay][a1, ..., ay]f =3, a2

e Going from Equation to makes use of the definition of the squared second

norm (Euclidian distance), i.e., ||a||3 = aTa =a? + a3 + -+ - + a?.
Using Equation [1.11] we pose our learning task in the following optimization problem

N S
min ||y — Xwl|3. (1.12)

The above equation should be read as follows: find the optimal vector w* from all choices of
w that minimizes the objective function ||y — Xwl/|3. Note that the objective function is a
non-negative function, i.e., it takes values between 0 and oo. This means its smallest possible
value is zero, and as we get close to that value, our solution w* becomes better. Equation
[1.12]is called the linear least-squares objective. We do not really need to understand the

reason behind the name, but it is good to know it for now.
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2.2 Training The Algorithm

Before we proceed with the discussion, let’s try and paint a picture of what problem [1.12]
aims to do. Consider Figure[I.2] These are the same points we saw in Figure [I.1], but now
we have drawn a straight red line going through the points. The red line represents Equation
that our learning algorithm is trying to “fit.” The loss function, which is the objective of
Equation [I.12] helps do that by minimizing the average error between the data points (z,y),
and the points on the line (x,7),. As the values of wy and w; varies, the line changes. Thus,
the learning algorithm’s goal is to find the values that maintain the least possible error, i.e.,
smallest L.

To find the best w, also called the optimal solution w*, we will recall an important
principle from basic calculus, finding critical points. Remember that the objective function
in problem is non-negative and its smallest possible value is zero. Since our objective is
to find w that minimizes £, we will differentiate the loss with respect to (w.r.t) w and set

the derivative to zero (do you know why?)

oL 0 T
Oy —Xw)"(y—Xw)
= 1U | o5 xwly—xw) (1.14)
owq
=1/U (—2X"y + 2X"Xw) = 0. (1.15)

Equation is called the gradient of £ w.r.t w, and Equation could be derived by
applying the following on Equation [I.13}

e Transpose could be distributed, i.e., (a + b)? = aT + b?.
e y'Xw is a scaler, and hence: y'Xw = w!/ X'y.
e XTX is a symmetric matrix, i.e., XTX = (XTX)T.

The derivative of the quadratic form w’Bw w.r.t w is (B + BT )w.

Derivative of y' Xw w.r.t wis y?X.
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Now, solving Equation for w yields

wh = (XTX)

X'y, (1.16)
which includes an implicit assumption that X?X is full-rank matrix. Equation is referred
to as the normal equation or the least squares solution in the classical machine learning and

statistical learning literatures.

2.3 REMARKS

The following should be noted:

e Linear regression problem is sometime referred to as the linear least squares approxi-
mation. This is because the algorithm (our learning algorithm) attempts to find the

straight line that gives the least average squared error.

e The learning algorithm should construct the design matrix, compute XX, compute
the inverse of XTX (if exists), and finally compute Equation m

e Once w is obtained, the algorithm is said to be trained. Plugging back w* into Equation

produces the machine learning model we could use to make predictions for = ¢ D.

e The discussion above focused on a 1-D observed variable, but the same solution could
be derived for observed variable with multi-dimensions, i.e., x € RY where N > 2. Try
deriving Equation for the following case: D = {(x,y).}’_, where x € R? and
y € R. What is the difference?

e There are other forms of linear regression that could be more powerful in learning a
regression task. They employ what is called a basis function on the observed variable,
i.e., ¢(x). We will explore such approach in Assignment 1. Meanwhile, consider reading
Chapter 3.1 in [I].
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Chapter 2

Classification

Suggested readings:
Chapter 4 of textbook [1]

In the previous chapter, we focused on the regression task, so we will turn our attention
now to the other major task, which is classification. Similar to our previous treatment of
regression, we will focus, here, on linear classifiers and build some foundation; however, linear
classifiers are not very common in deep learning, for many practical problems require a form

of non-linear classifiers.

1 Linear Classifiers

Let’s give a definition (a general one) for what we mean by classification.

Definition 1.1. Classification is a supervised machine learning task where a learning
algorithm attempts to differentiate a number of discrete patterns referred to as the classes.
The purpose of differentiating those patterns is to assign some observed variables to one of
those classes. Formally, let x € RY be an N-D vector of observed variables, b € {1,..., K}
is an integer representing a class label, and f; : x — b be some class-assignment function.
Then, the task in classification is to learn a class-assignment function, also called a classifier,
fo : x — b parameterized with a set © € R? such that £(b,b) < ¢, where £(.) defines some

error metric and € is some arbitrarily small non-negative scaler.
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Let’s take a closer look at the definition above through an example. Consider the 2-D
points in Figure (where x = [z; x5]"). A quick glance reveals that they represent two
different colors, red, and green. Let’s start by giving them some code, referred to as “label
coding scheme.” Red is labeled 1, and green is labeled 2, i.e., b € {1,2}. Now, the role of the
learning algorithm is to learn the assignment-function that takes each x to a class label ¢,
but how would it do that? One way is through drawing boundaries between the two classes,
and assigning a point x to a class using its position relative to the boundary. This could be
visualized in Figure by the straight line separating the two classes. Such line is called
the “decision boundary.” A classifier could learn that boundary and craft a decision rule to
assign points to classes based on that boundary.

When the decision boundary between any two classes in a classification task is made of a
straight line, we refer to the classifier as a linear classifier. Such classifiers are quite interesting;
they are rarely seen in real-world applications (too bad for us!), yet many complex problems
could be, in one way or another, transformed to linear classification problem through feature
learning or feature engineering, but again, we are getting ahead of ourselves! We will revisit
this topic once again when we discuss deep learning in Part 3 of this course.

Let’s go deeper and get our hands dirty with some math. The decision boundary in Figure

is merely a straight line, and from basic vector calculus, we know that a straight line
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could be expressed as

R (s (2.1)

y = [wi, wo) [ -

=wix+w (2.2)

where wy, is the parameter vector characterizing the line. Any point on the line results in
y(x) = 0, and hence, we can use Equation to figure out where a point lies, i.e., y(x) > 0
or y(x) < 0. To illustrate this, let’s look at Figure . Point x; could be assigned to class
C; using Equation [2.1] because

o (2.3)
X=X, +7 .
1wl

Tw

wix) +wy =W x| +7r——+wp (2.4)
[Iwl]2

wlx; +wy = 0+ 7||wl|s (2.5)

y=r|lwll2 >0 (2.6)

where Equation is a result of the facts that r is a positive integer and ||w||s is the second
norm, which is always positive.

Generally speaking, y provides a signed value that indicates the class to which x belongs.
This means in the case of a 2-class problem, all we need is the sign of y to determine the

assignment. That could be translate into the following decision rule

(1 y>o0
i={ Y= (2.7)
2, y<0

The value of y itself might not be of importance in that case.

1.1 The Multi-Class Dillemma

When the number of classes is larger than 2, the sign in Equation is not enough, and we
need to figure out something else. Consider Figure [2.2] There are three classes there, and

as we did before, we shall start with a coding scheme for the labels. Here, we will adopt
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a very popular scheme that will continue with us for the rest of the course, which is the
one-hot coding scheme or simply one-hot vectors. It means that t is represented with a
vector t € {0, 1} which only has one entry with a value of 1 where the rest is zeros. This 1
represents the class to which a point x belongs. Let’s illustrate this with an example. The
three colors in Figure could be thought of as entries of a 3-D vector t, where:

tl Red
t= |t | = | Green |. (2.8)
ts Blue

For a point x, in the red class, it is associated with a label vector t = [1,0,0]7. If that point
is in the green class, then, t = [0,1,0]%. It is important to note that t has to have only one
entry with the value of 1.

Different from the 2-class case, the boundary now is composed of multiple straight lines,
namely vy, y2, and y3. “What does that mean?” you might ask yourself at this point. This

is a valid question. It means that we need to learn three different straight lines instead of
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learning only one. Formally, this means
Yp = Wi X+ wyp, Yk € {1,2,3} (2.9)

where k indicates the class. We can gather all the three lines in one equation using vector

notation as follows

Y1 Wi X + Wi
Yo | = | wix+wag (2.10)
Y3 | Wix + wsp
[ wl Wi
y=| w; | X+ | wy (2.11)
| w3 ws,0
y = Wix +wq (2.12)

Learning three different lines, each is characterized by its own wy and wg , we can get the
decision boundary shown in Figure What is left to address now is the decision rule. As
stated earlier, sign is not enough, but lucky us, all y’s making up y produce signed values.

Then, we can craft the following rule for decisions

t=i, yi>y; Vi,je{l,...,K}andi#j (2.13)

2 Learning A Classifier with Least Squares

The one-million dollar question now is how the three straight lines could be learned. There are
different ways to answer that, but in this course, we will explore two. The first one is very
similar to the regression approach in Chapter [1| while the other is the perceptron algorithm.
This section focuses on the regression approach, and we will call it “learning a classifier with
least squares.” The discussion on the perceptron algorithm will be left for the next lecture,

for it paves the way for us to explore the world of neural networks and deep learning.

Page 14 of



Lecture notes

Neural Networks and Deep Learning

2.1 Task Formulation

Say that we have a training dataset D = {(x,t),}Y_; where x € R is a vector of observed

variables, and t € {1,0}¥ is the one-hot vector indicating the class membership of x. Our
goal is to learn Equation for K classes (K = 3 or some other number of classes) from D.

Then, we are going to follow similar steps to those we have followed in Chapter [1| Section [2.1

In particular, we will start by constructing a compact form for our classification problem as

follows
Y11 Y12
Y21 Y22
Yk1 YK,2
[Y17 yo,. ..

v w1,0
Ya2,u w2 0
YK,U | WK,0
wW1,0
W20

) yU]KxU =
| WK,0
Y = WTX

wWi,1 wi,N 1
Wa 1 Wa, N T1,1
WK 1 WK N ITN1
wi

T
Wi 1 1

: X|; Xg

T
w

K 1 gx(N+1)

1 .. 1
x x
b2 U (2.14)
ITN2 IN,U
1
] (2.15)
XU [ (ng1yxu
(2.16)

Note that the main differences between Equation [2.16] and Equation [I.6] are

1. The dimensionality of the desired response y; for regression y = y € R while here it is

y € RX. This change happens because we have chosen a one-hot vector encoding for

our labels.

2. The number of straight lines to learn. In regression it is a single line while in classification

we need multiple lines—at least as many as the number of classes.

3. The dimensionality of the observed variable.

Using Equation [2.16] we can now formulate our learning task in a similar way to that we
did in Chapter |1| Section . The loss function for our classification problem (i.e., posing the
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learning task as an optimization problem) is
1 U
. o . - o 2
min L= min - ugl [ty — yull3 (2.17)

The reason behind the choice of loss function in the task formulation (the objective of the
optimization problem above) is rooted in the nature of the desired response. Let’s try to
understand that by contrasting with the task formulation in Problem t € D is a one-hot
vector in the classification task whereas y, is a scalar. This makes the error definition in
Equation unsuitable now, for the error (t —y) is a vector and cannot be squared. What
we need is an error metric that is: (i) a function producing a scalar even when its inputs are
vectors, and (ii) a bounded quantity (e.g., non-negative). The second norm of a vector, i.e.,
llyll3 =v? + - + y%, satisfies both requirements, so we have pick it as our error metric, i.e.,
€y = |[tu — ¥u||3- As we did in the regression case, we seek a solution w* that minimizes the
average error e, over the training dataset D, which is the definition of the loss in Problem
above.

Before we proceed to derive the solution, the loss of Problem [2.17] could be expressed in a
more compact vector notation. This form includes all samples available in the dataset D,

and hence, it allows us to remove the summation in Problem

min £ = m“i,n%Tr {(T —Y)7(T - 3?)} (2.18)
- m“i]n%Tr {(T ~WIX)T(T — WTX)} , (2.19)

where Tr(.) is the matriz trace operator (brush up on traces from your linear algebra course!).
The objective in Problem has an interesting form, for its derivative could be easily

obtained from [2].

2.2 Training The Algorithm

To train the learning algorithm, we will follow the same approach we have followed in Chapter
[1] Section 2.2 Basically, we differentiate the objective of Problem [2.19 and set its derivative
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to zero. Before we do so, let’s expand the objective function
L=Tr {TTT ~ TTWTX - XTWT + XTVNVVNVTX} (2.20)
=T {T7T} - T { T"W'X} - Tr {X"WT } + Tr {X"WW'X}, (2.21)
and apply the following properties
Pl. Tr(A"B) = Tr(B*A) for any K x U matrices A and B,
P2. Tr(XTWWTX) = Tr(XXTWWT) = Tr(WTXX"W), and

to obtain
£=Tr{T'T} - 2Te {X"WT} + Tt {X"WW'X . (2.22)

The second term of Equation is a direct application of P1 to second and third terms of
Equation where AT = T7 and B = WTX, and the third term of Equation is an

application of P2. From [2], we use the following derivatives
1. XTr(AXB) = A"B”.
2. 2 Tr(X"BX) = BX + BTX

to differentiate £ w.r.t. W and set it to zero

9L 9XTT 4 9XXTW = 0. (2.23)
OW

Solving for W yields
wW* = (XX7)"'XT” (2.24)

This solution is quite similar to the that we have obtained in Chapter 1, which is why we will

keep calling it the the least squares solution and normal equation.

Page 17 of



Bibliography

[1] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[2] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” nov 2012, version 20121115.
[Online|. Available: http://www2.compute.dtu.dk /pubdb/pubs/3274-full.html

18


http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html

	Regression
	Linear Regression
	Learning f
	Learning Task Formulation
	Training The Algorithm
	REMARKS


	Classification
	Linear Classifiers
	The Multi-Class Dillemma

	Learning A Classifier with Least Squares
	Task Formulation
	Training The Algorithm



