Some Methods in
the Calculus of
Variations

Ch. 6



6.1 Introduction

The development of the calculus of variations was begun by Newton (1686)
and was extended by Johann and Jakob Bernoulli (1696) and by Euler (1744).
Adrien Legendre (1786), Joseph Lagrange (1788), Hamilton (1833), and Jacobi

(1837) all made important contributions. The names of Peter Dirichlet (1805-1859)

and Karl Weierstrass (1815-1879) are partcularly associated with the estab-

lishment of a rigorous mathematical foundation for the subject.



Many problems in Newtonian mechanics are more easily analyzed by means of
alternative statements of the laws, including Lagrange’s equation and Hamilton’s
principle.* As a prelude to these techniques, we consider in this chapter some
general principles of the techniques of the calculus of vanations.

Our primary interest here is in determining the path that gives extremum

solutions, for example, the shortest distance (or time) between two points.



6.2 Statement of the problem

-- The basic problem of the calculus of variations is to determine the function y(x)

such that the integral  J= J _f{y{x}, y' (x); x} dx IS dn  extremum

-- 1f a function y = y(x) gives the integral fa minimum value,

then any neighboring function, no matter how close to y(x), must make J increase.

-- The definition of a neighboring function may be made as follows.
We give all possible functions y a parametric representation y = y(«, x) such that,

for a = 0, y = y(0, x) = y(x) is the function that yields an extremum for J.



We can then write  y(a, x) = (0, x) + an(x)

where n(x) is some function of x and 71{(x;) = n{xe) = 0.

the integral /| becomes a functional of the parameter a:

oo - |
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fix(a, %), ¥ (a, x); x} dx
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The condition that the integral is an extremum

o/
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= (0 for all functions 1{x).

a=10
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Consider the function f= (dy/dx)?, where y(x) = x. Add to y(x) the function
n(x) = sinx, and find J(a) between the limits of x = 0 and x = 2. Show that
the stationary value of J(a) occurs for o = 0.

Solution. We may construct neighboring varied paths by adding to y(x),
yx) = x (6.5)
the sinusoidal variation a sin x,
ya, x) = x + asinx (6.6)

These paths are illustrated in Figure 6-2 for @ = 0 and for two different nonvan-
ishing values of «. Clearly, the function 1n(x) = sin x obeys the endpoint condi-
tions, thatis, n(0) = 0 = n(2m). To determine f(y, y’; x) we first determine,

dy(a, x)
dx

=1+ acos x (6.7)



y(e, x) =+ & sin x
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FIGURE 6-2 FExample 6.1. The various paths y(«, x) = x + « sin x. The extremum
path occurs for a = 0.
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then

dy(a, 2
f= ( T(: x)) =1+ 2a cos x + a? cos? x (6.8)
X

Equation 6.3 now becomes

2

Ja) = J’ (1 + 2 cos x + a2 cos? x)dx (6.9)
0

=97 + a’w (6.10)

Thus we see the value of () is always greater than J(0), no matter what value
(positive or negative) we choose for a. The condition of Equation 6.4 is also
satisfied.







6.3 Euler’s Equation
ya, x) = (0, x) + an(x)

0
ai ;Lf{y::v ¥} dx

v J*ﬂ(m ) ia_y')dx
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The second term in the integrand can be integrated by parts:

Judv= uv — J.vdu

Xg X9 d af
* X J‘-:"51 dx(ay')n(x)dx
because n(x;) = M(xy) = 0. Therefore,

o]  (=[of d [ of
— Y _ || Y - 4Y
o= [ = o o

1
Ea—
IRy

|

|

=k
> |
-
=
=

o2



Because (8]/da)|, -, must vanish for the extremum value and

because n{x) is an arbitrary function, the integrand

must itself vanish for a = 0

f 49 _
dy dxoy’

0 Euler’s equation




Example 6.2 :

Consider a particle moving in a constant force field starting
at rest from some point (x,, y;) to some lower point (xs, ¥s).
Find the path that allows the particle to accomplish the transit
in the least possible time,

Solution :

- According to the fig. We choose ( x1, y1) at origin

- Constant field force without friction ===) conservative force

m==) T+ U =0 if the particle starts from rest with ( U(0)=0 )

let the force field be directed along the positive x-axis

TZ%mvﬂ,and U#—Fx=—mgx, == U= V2gx



The time rEquirf:d for the particle to make the transit

from the origin to (xs, y9) 1s

[ (X32.y9) ds J(dxﬂ + dyﬂ)l,f?
Jyy Y (2g%) "%

f xg (1 + JJ’Q)]H'Q
= dx
Jx; =0 ng

-The unction f identified as :

Lo
I

f d af=

Euler’ i
oy  dxdy uler’s equation

(x15 31)

(X9, ¥9)

X

the path of a particle moving from (x;, yy)

to (X9, ¥9) that occurs in the least possible time.

The force field acting on the particle is F,

which is down and constant,



because df/dy = 0, the Euler equation becomes

o
dx oy’ 0y’

-1/2

= constant = (2q)

where a1s a new constant.

Differentiation eq ( 1 ) and squaring the result , we have :

xdx
(2ax — x?)1/2

y'* 1
p _— - J}u = J
x(1 +9'%)  2a

And by changing the variables: x = a(l — cos8) , dx= asin0df

——— ) = Ja(l — cos 0)d6



ey = a(f — sin 8) + constant

-If we take the constant =0 then, the equation for y and x becomes:

X
Y

a(l — cos 6)
a(@ — sin 0)

-Which are equations for cycloid passing through the orinign



Example 6.2 :

Consider the surface generated by revolving a line connecting two fixed points
(%1, 1) and (x5, yo) about an axis coplanar with the two points. Find the equa-
tion of the line connecting the points such that the surface area generated by

Soluti the revolution (i.e., the area of the surface of revolution) is a minimum.
olution :

- Let the curve connecting two points revolved about y-axis

- Fist we find the area of a strip dA and then integrate to find the A

¥

(12, yE]

The geometry of the problem and area dA

>\ s = d 2+d 2 5-3? . . * . .
dA ds= (dx™+ dy’) are indicated to minimize the surface of

(21, ¥1)

revolution around the y-a:xis.




-The area of the strip is:
dA = 2mx ds = 2wx(dx* + dy*)'/?

-And the total side area is :

Xo

A= z—n-J x(1 + y'2)124x

X1

-Let £ be:

f= x(1 + y'5)l/=

-Now applying Euler equation :

Euler’s equation

- so that:
S _ o _
ay ayr __ (1 + yrﬂ)]fﬂ
R ) B — 0
dx| (1 + y’Q)'*’Q
xy'
m———-— (1 n },fﬂ)lfﬂ = constant = g
. a
—y = (2% — a2)12

B adx
or Y= (xE — ﬂE)-U—E*
-The solution for this integral is

y = acos h‘](f) + b
a

This is an equation of the curve of a flexible cord hanging freely between two points .






6.4 The second form of the Euler
Equation

-If the function f do not explicitly depends on x ;

-Second form of Euler equation may be derived as follow :

d
d—f = if{:w 3

of dy odf dy’ 0
Yy ydy
dydx 0dy dx  Ox

f Lo Y

=+
ya'} }r&'p’ 0x

d 0 o
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3f , 3f ,d of
} — | =y'— (2)
d:t' dy’ dx dy’

-By using eq. (1) and (2) we get

i rﬂ_f df of Bf d of
dxy  dx  Ox ya} deay

d( of af 3f d of of
)
x\” dy d x Bx dx dy dy

. aof of\_,
-But from Euler first form (dxay’ )

0 d of
L d ()

-The second form can be written as follow
9 9
. f— y’;{ = constant (f(}r—fz O)
0y 0x



-Example 6.4 :

A geodesicis a line that represents the shortest path between any two points
when the path is restricted to a particular surface. Find the geodesic on a
sphere.

-Solution: ds = p(d6? + sin? B dp?)? (6.41)

The distance s between points 1 and 2 is therefore

B 2 fde\2 N e
5—pL|: d_eih + sin B‘:l d¢ (6.42)

and, if s is to be a minimum, f is identified as

f: {H-’Q + SiﬂE ﬂ)];"? {61-43}
where 8' = d8/d¢. Because df/d¢d = 0, we may use the second form of the
Euler equation (Equation 6.40), which yields

. o0
(' + sin2@)1/2 — @' @{S'E + sin? #)!/? = constant = 4 (6.44)

Differentiating and multiplying through by f, we have
sin? @ = a(8'? + sin? )72 (6.45)
This may be solved for d¢/d# = 6'~', with the result

dp acsc:f
df (1 — a’csc?h)1/?

(6.46)



Solving for ¢, we obtain

b = sin“'(c{; 9) + (6.47)

where a is the constant of integration and 82 = {1 — 4%)/a®. Rewriting
Equation 6.47 produces

cotl = Bsin(¢d — o) (6.48)

To interpret this result, we convert the equation to rectangular coordinates by
multiplying through by p sin # to obtain, on expanding sin(¢ — a),

(Becosa)psinf sing — (Bsina)psin @ cosd = pcos b (6.49)
Because a and B are constants, we may write them as
Becosa=A, Bsina=8B (6.50)
Then Equation 6.49 becomes
A(psin @ sin ) — B(psin 8 cos ¢p) = (p cos #) (6.51)

The quantities in the parentheses are just the expressions for y, x, and z, respec-
tively, in spherical coordinates (see Figure F-3, Appendix F); therefore Equation
6.51 may be written as

Ay — Bx =z (6.52)

which is the equation of a plane passing through the center of the sphere.
Hence the geodesic on a sphere is the path that the plane forms at the intersec-
tion with the surface of the sphere—a great circle. Note that the great circle is the
maximum as well as the minimum “straight-line” distance between two points
on the surface of a sphere.
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