140MIC: Microbiology

General microbiology

Lecture-12 Microbial growth (Part-2)

Content

- oBacterial Cell Division
 - o Cell Growth and Binary Fission
- oPopulation growth
 - o The Concept of Exponential Growth
 - o The Microbial Growth Cycle

OMeasuring Microbial Growth

OEnvironmental Factors Affecting Growth

- Temperature
- Acidity and Alkalinity
- $\,\circ\,$ Osmotic Effects on Microbial Growth
- Oxygen and Microorganisms
- $\circ\,$ Toxic Forms of Oxygen

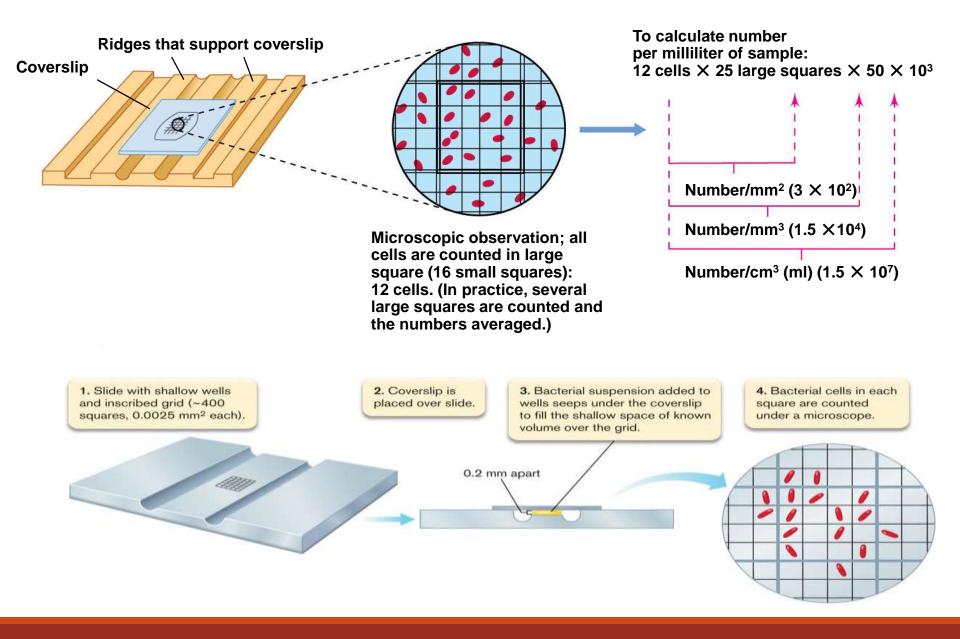
Microscopic Counts

Viable Counts

Turbidimetric Methods

Microscopic Counts

Viable Counts


Turbidimetric Methods

Microbial cells are enumerated by microscopic observations

• Results can be unreliable

Limitations of microscopic counts

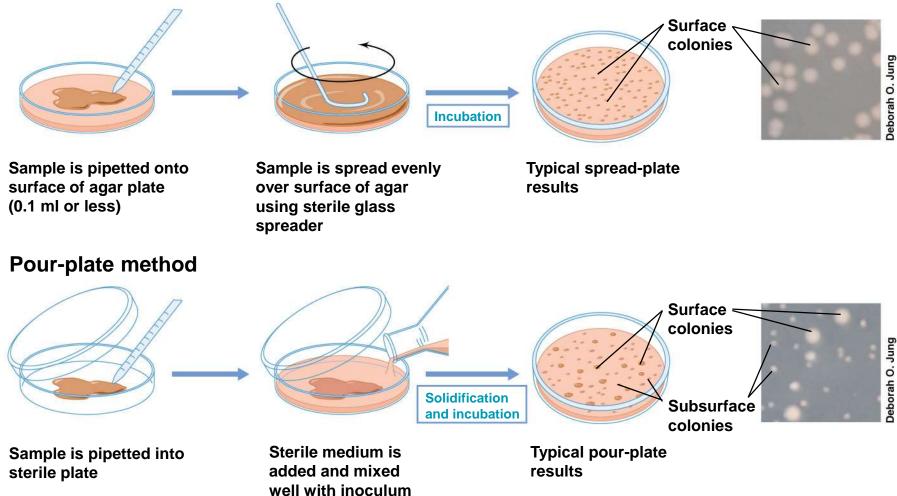
- Cannot distinguish between live and dead cells without special stains
- Small cells can be overlooked
- Precision is difficult to achieve
- Phase-contrast microscope required if a stain is not used
- Cell suspensions of low density (<10⁶ cells/ml) hard to count
- Motile cells need to immobilized
- Debris in sample can be mistaken for cells

© 2012 Pearson Education, Inc.

Microscopic Counts

Viable Counts

Turbidimetric Methods

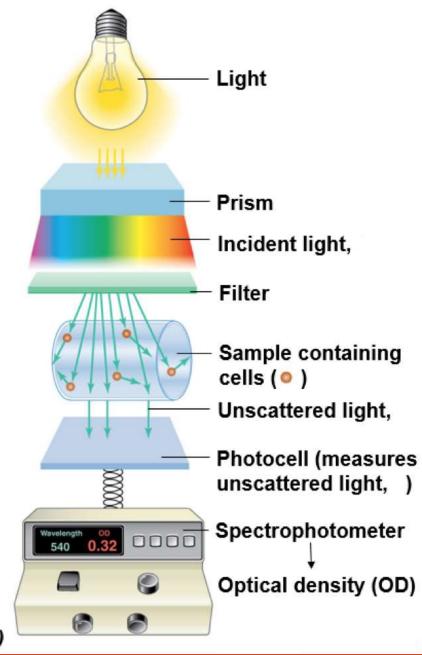

Viable cell counts (plate counts):

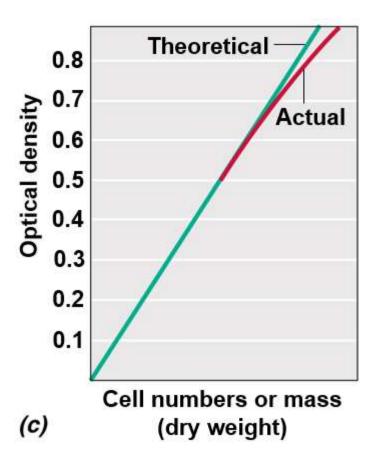
measurement of living, reproducing population


- Two main ways to perform plate counts:
 - Spread-plate method
 - Pour-plate method

To obtain the appropriate colony number, the sample to be counted should always be diluted.

Spread-plate method




Figure 5.16

© 2012 Pearson Education, Inc.

Microscopic Counts Viable Counts	 Turbidity measurements are an indirect, rapid, and useful method of measuring microbial growth 		
Turbidimetric Methods	 Most often measured with a spectrophotometer and measurement referred to as optical density (O.D.) 		
	 •To relate a direct cell count to a turbidity value, a standard curve must first be established 		
	Ouick and easy to perform		
	 Typically do not require destruction or significant disturbance of sample 		
	 Sometimes problematic (e.g., microbes that form clumps or biofilms in liquid medium) 		

Environmental Factors Affecting Growth

Temperature

OAcidity and Alkalinity

Osmotic Effects on Microbial Growth

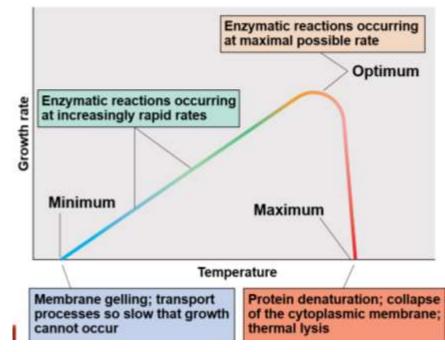
Oxygen and Microorganisms

•Toxic Forms of Oxygen

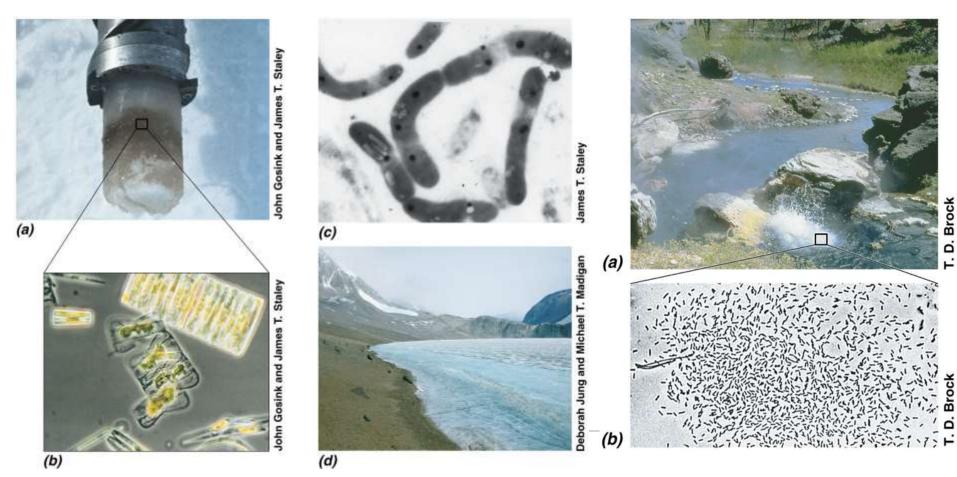
Effect of Temperature on Growth

Temperature is a major environmental factor controlling microbial growth

<u>Cardinal temperatures</u>: the minimum, optimum, and maximum temperatures at which an organism grows.


Microorganisms can be classified into groups by their growth temperature optima.

OPsychrophile: low temperature


OMesophile: midrange temperature

oThermophile: high temperature

OHyperthermophile: very high temperature

Figure 5.20

Acidity and Alkalinity

The pH of an environment greatly affects microbial growth .

Some organisms have evolved to grow best at low or high pH, but most organisms grow best between pH 6 and 8 (<u>neutrophiles</u>)

Acidophiles: organisms that grow best at low pH (<6)

- Some are obligate acidophiles; membranes destroyed at neutral pH
- Stability of cytoplasmic membrane critical

<u>Alkaliphiles</u>: organisms that grow best at high pH (>9)

• Some have sodium motive force rather than proton motive force

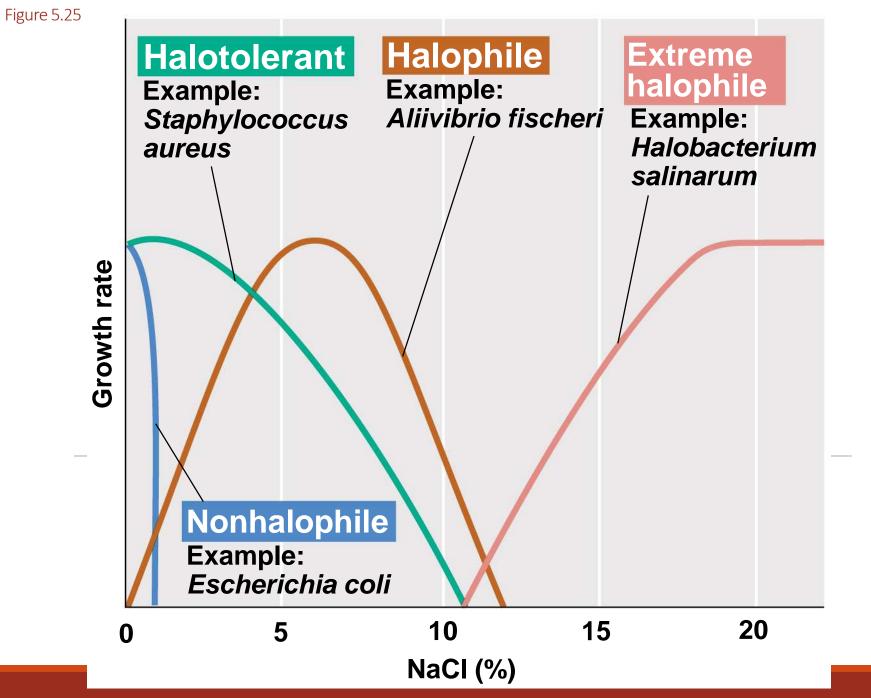
The internal pH of a cell must stay <u>relatively</u> close to neutral even though the external pH is highly acidic or basic

Microbial culture media typically contain buffers to maintain constant pH

pH Example Moles per liter of: H⁺ OH⁻						
((0		1	10 ⁻¹⁴	
Acidophiles		1	Volcanic soils, waters Gastric fluids	10 -1	10 ⁻¹³	
		2	Lemon juice Acid mine drainage Vinegar	10 -2	10 ⁻¹²	
	Increasing acidity	3	Rhubarb Peaches	10 ⁻³	10 ⁻¹¹	
		4	Acid soil Tomatoes	10-4	10 ⁻¹⁰	
		5	American cheese Cabbage	10 ⁻⁵	10 ⁻⁹	
,		6	Peas Corn, salmon, shrimp	10 ⁻⁶	10 ⁻⁸	
	Neutrality	7	Pure water	10-7	10-7	
(ſ	8	Seawater	10 ⁻⁸	10 ⁻⁶	
Alkaliphiles		9	Very alkaline natural soil	10 ⁻⁹	10 ⁻⁵	_
	Increasing alkalinity	10	Alkaline lakes Soap solutions	10 ⁻¹⁰	10 ⁻⁴	
		11	Household ammonia Extremely alkaline	10 ⁻¹¹	10 ⁻³	
AIK		12	soda lakes Lime (saturated solution)	10 ⁻¹²	10 ⁻²	
		13		10 ⁻¹³	10 -1	
	ι 🔹	14		10 ⁻¹⁴	1	

Osmotic Effects on Microbial Growth

Typically, the cytoplasm has a higher solute concentration than the surrounding environment, thus the tendency is for water to move into the cell (*positive water balance*)


When a cell is in an environment with a higher external solute concentration, water will flow out unless the cell has a mechanism to prevent this

 <u>Halophiles</u>: organisms that grow best at reduced water potential; have a specific requirement for NaCl.

 Extreme halophiles: organisms that require high levels (15–30%) of NaCl for growth

OHAIOTOLETANT: ORGANISMS THAT CAN TOLETATE SOME REDUCTION IN WATER ACTIVITY OF ENVIRONMENT BUT GENERALLY GROW DEST IN THE ABSENCE OF THE ADDED SOLUTE

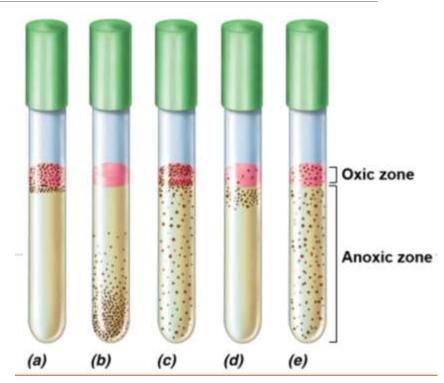
ONONHALOPHILE

Oxygen and Microorganisms

<u>Aerobes</u>: require oxygen to live

<u>Anaerobes</u>: do not require oxygen and may even be killed by exposure

Facultative organisms: can live with or without oxygen


<u>Aerotolerant anaerobes</u>: can tolerate oxygen and grow in its presence even though they cannot use it

<u>*Microaerophiles*</u>: can use oxygen only when it is present at levels reduced from that in air

Oxygen and Microorganisms

<u>Thioglycolate broth</u>: Complex medium that separates microbes based on oxygen requirements.

 Reacts with oxygen so oxygen can only penetrate the top of the tube.

Growth versus oxygen concentration.

(a) aerobic, (b)anaerobic, (c) facultative,(d)microaerophilic, (e) aerotolerant anaerobe

