MATH 151

Boolean Algebra

Lecture 10

By Khaled A Tanash

ktanash@ksu.edu.sa

- $x y=\bar{x}+\bar{y}$
- $x+y=\bar{x} \bar{y}$
- $x+\bar{x}=1$
- $x \bar{x}=0$
- $x+x=x$
- $x x=x$
- $\overline{\bar{x}}=x$
- $C P S(f)=\overline{C S P(\bar{f})}$

Exercise 1: Find the CSP form of $f(x, y, z)=\bar{x}(y+\bar{z})$

Exercise 2: Find the CSP form of $f(x, y, z)=x(y+\bar{z})$

Exercise 3: Find the CSP form of $f(x, y, z)=(x \bar{y}+z)(\bar{x}+\bar{y})$

Exercise 4: Find the CSP form of $f(x, y, z)=(x y+z)(x z+\bar{y})$

Exercise 5: Find the CSP form of $f(x, y, z)=(x+y)(\bar{y}+z)$

Exercise 6: Find the CSP form of $f(x, y, z)=(x+y)(\bar{y}+z)+\overline{y z}$

Exercise 7: Find the CPS form of $f(x, y, z)=\bar{x} y+\bar{z}$

Exercise 8: Find the CPS form of $f(x, y, z)=x \bar{y}+z$

Exercise 9: Find the CPS form of $f(x, y, z)=\overline{x z+\overline{y z}}$

Exercise 10: Find the CPS form of $f(x, y, z)=\bar{x}+\overline{y z}$

Exercise 11: Find the CPS form of $f(x, y, z)=\bar{x}(y+z)+x \bar{y}$

Exercise 12: Find the CPS form of $f(x, y, z)=\overline{x+\bar{x} \overline{y z}}$

Exercise 13: Let g be the Boolean function represented by k-map below. Write g in MSP form

	$z w$	$z \bar{w}$	$\bar{z} \bar{w}$	$z w$
$x y$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$x \bar{y}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\bar{x} \bar{y}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\overline{x y}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Exercise 14: Let g be the Boolean function represented by k-map below. Write g in MSP form

	$z w$	$z \bar{w}$	$\bar{z} \bar{w}$	$\overline{z w}$
$x y$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$x \bar{y}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\bar{x} \bar{y}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\overline{x y}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$

Exercise 15: Let g be the Boolean function represented by k-map below. Write g in MSP form

	$z w$	$z \bar{w}$	$\bar{z} \bar{w}$	$\overline{z w}$
$x y$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$x \bar{y}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\bar{x} \bar{y}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\overline{x y}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$

Exercise 16: Let g be the Boolean function represented by k-map below. Write g in MSP form

	$z w$	$z \bar{w}$	$\bar{z} \bar{w}$	$\overline{z w}$
$x y$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$x \bar{y}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\bar{x} \bar{y}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\overline{x y}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

