MATH 151

Boolean Algebra

Lecture 10

By Khaled A Tanash

ktanash@ksu.edu.sa

- $\bullet \quad \overline{xy} = \overline{x} + \overline{y}$
- $\bullet \quad \overline{x+y} = \overline{x} \ \overline{y}$
- $x + \overline{x} = 1$
- $x \overline{x} = 0$
- $\bullet \quad x + x = x$
- $\bullet \quad x \; x = x$
- $\overline{\overline{x}} = x$
- $CPS(f) = \overline{CSP(\overline{f})}$

Exercise 1: Find the **CSP** form of $f(x,y,z) = \overline{x}(y+\overline{z})$

Exercise 2: Find the **CSP** form of $f(x,y,z) = x(y+\overline{z})$

Exercise 3: Find the **CSP** form of $f(x, y, z) = (x\overline{y} + z)(\overline{x} + \overline{y})$

Exercise 4: Find the **CSP** form of $f(x,y,z) = (xy+z)(xz+\overline{y})$

Exercise 5: Find the **CSP** form of $f(x,y,z) = (x+y)(\overline{y}+z)$

Exercise 6: Find the **CSP** form of $f(x,y,z) = (x+y)(\overline{y}+z) + \overline{y}z$

Exercise 7: Find the **CPS** form of $f(x, y, z) = \overline{x}y + \overline{z}$

Exercise 8: Find the **CPS** form of $f(x,y,z) = x\overline{y} + z$

Exercise 9: Find the **CPS** form of $f(x, y, z) = \overline{xz + \overline{y}z}$

Exercise 10: Find the **CPS** form of $f(x, y, z) = \overline{x} + \overline{y}z$

Exercise 11: Find the **CPS** form of $f(x, y, z) = \overline{x}(y + z) + x\overline{y}$

Exercise 12: Find the **CPS** form of $f(x, y, z) = \overline{x + \overline{x} \overline{y}z}$

Exercise 13: Let g be the Boolean function represented by k-map below. Write g in **MSP** form

	ZW	zw	$\overline{z}\overline{w}$	$\overline{z}w$
xy	1	1	1	0
$x\overline{y}$	1	0	0	1
$\bar{x} \bar{y}$	0	1	1	0
\overline{xy}	0	1	1	0

Exercise 14: Let g be the Boolean function represented by k-map below. Write g in MSP form

	zw	zw	$\overline{z}\overline{w}$	$\overline{z}w$
xy	1	1	0	0
$x\overline{y}$	1	1	1	1
$\bar{x} \bar{y}$	0	1	0	0
\overline{xy}	0	1	0	0

Exercise 15: Let g be the Boolean function represented by k-map below. Write g in \mathbf{MSP} form

	ZW	$z\overline{w}$	$\overline{z}\overline{w}$	$\overline{z}w$
xy	1	0	1	1
$x\overline{y}$	1	0	0	1
$\bar{x} \bar{y}$	0	0	0	0
\overline{xy}	1	1	0	0

Exercise 16: Let g be the Boolean function represented by k-map below. Write g in \mathbf{MSP} form

	zw	zw	$\overline{z}\overline{w}$	$\overline{z}w$
xy	1	0	1	1
$x\overline{y}$	0	0	0	0
$\bar{x} \bar{y}$	0	0	0	0
\bar{xy}	1	1	1	1