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Preface

Bacterial pathogens have been purveyors of human disease and death throughout 
history, and their virulence factors play critical roles in the pathogen–host interac-
tions that lead to this morbidity and mortality. Virulence factors can influence the 
ability of bacterial pathogens to enter human hosts, to grow and divide within dif-
ferent host niches, to cause host cell damage, and to evade the innate and adaptive 
host defense systems. Many of these factors are conserved between different genera 
and species, but each bacterial pathogen has its own unique “toolkit” of virulence 
factors that is essential for its survival and pathogenicity. A detailed knowledge of a 
pathogen’s virulence toolkit is essential to understanding its disease-causing capa-
bilities, and it may open up new anti-virulence therapeutic paradigms in the future 
that are geared toward treating pathogen-specific bacterial infections. These anti-
virulence strategies would target the action of specific virulence factors and bypass 
the classical antibiotic routes that kill both pathogenic bacteria and beneficial human 
microbiota indiscriminately. Importantly, these antibody-based and small molecule-
based approaches may provide critical diagnostic and therapeutic advantages in the 
rapidly approaching “post-antibiotic” age of increased levels of bacterial antibiotic 
resistance.
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Chapter 1
Bacterial Virulence Factors

What is a pathogen? What is a virulence factor? At one time, these were relatively 
straightforward questions to address. During the late nineteenth century, when 
Pasteur and Koch were developing the germ theory of disease, a pathogen was sim-
ply defined as a microorganism that was capable of causing disease in a host (only 
human hosts will be considered in this book). Pioneers in the burgeoning field of 
clinical microbiology showed that life-threatening diseases such as anthrax, diph-
theria, tetanus, and tuberculosis were caused by single bacterial pathogens. These 
primary pathogens were capable of causing unique disease symptoms in a healthy 
host, as defined by the satisfactory fulfillment of Koch’s Postulates. In addition, 
macromolecular factors (e.g., exotoxins, endotoxin, capsules) were shown to be 
responsible for inducing these specific disease symptoms. These so-called virulence 
factors were thought to be inherently present in pathogenic bacteria but not present 
in nonpathogenic bacteria.

While these simple cause-and-effect relationships were adequate early on to 
explain the pathogenicity of a number of major bacterial pathogens, it has become 
clear over the last 40 years that many infectious diseases are not due to the actions 
of a single primary pathogen and its virulence factors. Disease symptoms associated 
with the majority of bacterial infections are actually due to host tissue damage that 
results from either an overreaction or under-reaction of the host immune system to 
the pathogen. The concept that bacteria are either pathogenic or nonpathogenic 
ignores this essential interplay between a pathogen and its infected host and the 
ability of pathogens to modulate the host innate and adaptive immune responses to 
its advantage. Thus, the qualitative nature of pathogenicity and the quantitative 
measurement of virulence for a specific bacterial pathogen are only meaningful in 
the context of host–pathogen interactions and are not inherent qualities of patho-
gens versus nonpathogens (Casadevall and Pirofski 1999, 2001, 2014; Falkow 1997; 
Finlay and Falkow 1997; Kubori and Nagai 2016). As Casadevall and Pirofski 
wrote: “virulence is predicated on the variable nature and outcome of host-microbe 
interaction, rather than on either microbe- or host-based characteristics” (Casadevall 
and Pirofski 2001). This concept is no more evident than in the virulence of 
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opportunistic pathogens, which are microorganisms that can cause disease in immu-
nocompromised individuals but not in immunocompetent individuals. Not surpris-
ingly, the appreciation of opportunistic pathogens and the central role of host–pathogen 
interactions in infectious disease coincided with the dramatic rise in the immuno-
compromised population, due in large part to chemotherapeutic immune suppres-
sion in organ transplantations and cancer treatments and in acquired immune 
suppression associated with HIV/AIDS. This appreciation has also led to a reevalu-
ation of the concepts of pathogenicity, virulence, and virulence factors.

The truism that bacteria are only pathogens if they have a susceptible host, and 
the understanding of the importance of interplay between pathogens and host 
defense systems has led to a shift in the qualitative definition of pathogenicity. 
Instead of the ability to cause disease in a host, pathogenicity is now considered the 
ability to cause damage to a host (Casadevall and Pirofski 1999). Many bacterial 
pathogens have the ability to induce damage to host cells and tissues (i.e., changes 
in cellular homeostasis), but it is usually the response of the immune system to 
either the pathogen and/or the host damage that leads to the signs and symptoms of 
disease. This damage is either through a direct response to the presence of certain 
bacterial components termed pathogen-associated molecular patterns (PAMPs) by 
host pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), or 
through direct stimulation and/or suppression of innate and adaptive immune 
responses by bacterial virulence factors. This new definition of pathogenicity also 
allows for better insight into the immune system-dependent damage associated with 
opportunistic pathogens and their virulence factors.

With this reevaluation of pathogenicity also comes the need to reexamine the 
quantitation of virulence. Historically, virulence has been measured in many ways, 
but the most common was the ability of the pathogen to cause death of the infected 
host (i.e., an irreparable change in homeostasis). The lethal dose (number of micro-
organisms) required to kill half of infected hosts (LD50) was a relatively simple 
endpoint measurement that could be used to compare the virulence of multiple 
pathogens against a common host. This absolute measurement was useful for pri-
mary pathogens that could induce host death, but it did not take into account alterna-
tive damage endpoints or the role of host defense systems in damage, especially 
those associated with opportunistic pathogens. In addition, LD50 measurements 
were subject to the genetic vagaries of the susceptible host utilized in the assay. 
Casadevall has recently proposed the more useful concept of pathogenic potential 
(PP) to quantify a pathogen’s virulence (Casadevall 2017). PP takes into account (i) 
variable damage to the host, (ii) bacterial inoculum needed for host damage, (iii) 
level of mortality associated with an infection, (iv) disease communicability, (v) 
incubation times prior to disease symptoms, and (vi) toxicity of primary pathogens. 
PP promises to be an important new means to quantify the myriad of pathogenic 
properties that go into the measurement of a pathogen’s virulence.

With revised concepts of pathogenicity and virulence, the categorization of bac-
terial factors that contribute to virulence has become muddied. Not only can a viru-
lence factor be an inherent component of a pathogen that causes damage to host 
cells and/or tissues (e.g., exotoxins), but it also can be a molecule or structure (e.g., 
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capsule, biofilm) that enables the pathogen to evade or modulate host defense sys-
tems to its replicative advantage. Included in this list of virulence factors are adher-
ence factors that enhance the ability of a pathogen to resist host fluid flow, attach to 
specific target cells, and potentially invade those target cells. Invasion and survival 
within host cells is a special property of certain so-called intracellular pathogens 
(both obligate and facultative) that requires additional virulence factors not usually 
found in extracellular pathogens. Bacterial capsules and biofilms, which can protect 
pathogens from host defenses, such as phagocytosis or complement-mediated lysis, 
are critical to the ability of certain pathogens to disseminate from initial infection 
sites, often leading to life-threatening systemic diseases. Likewise, molecules that 
specifically modulate the expression or function of the host immune system, leading 
to a hyper- or hypo-immune response, would also be considered important viru-
lence factors. Factors that enhance the metabolic capability of pathogens will not be 
addressed in this book except for factors that facilitate essential iron acquisition, an 
important virulence determinant for bacteria within the human host. Finally, tran-
scriptomic and proteomic studies have clearly shown that the differential expression 
of bacterial virulence factors plays a critical role in the ability of a pathogen to 
induce host damage in response to both environmental and host signals.

Each of the abovementioned categories of virulence factors is discussed in this 
chapter, focusing on their general characteristics and functions. Subsequent chap-
ters address specific bacterial pathogens and their associated virulence factors. 
Pathogens will initially be sorted by Gram-stain phenotype (Gram positive, Gram 
negative, no Gram stain), followed by an alphabetical sorting by genus. Within each 
chapter, a brief description of the pathogen’s genome, morphology, speciation, and 
disease manifestations is presented, followed by a detailed listing of the known or 
hypothesized factors found within each virulence category. Non-exhaustive bibliog-
raphies accompany each chapter, allowing the reader to delve deeper into the specif-
ics of each pathogen. The last chapter, which provided the initial impetus for writing 
this book, focuses on the emerging concept of devising antibacterial strategies based 
on counteracting specific virulence determinants, as opposed to the wholesale 
destruction of bacteria by antibiotics. This anti-virulence approach may help over-
come the drastic worldwide rise in antibiotic-resistant pathogens by not targeting 
the destruction of the pathogen, which leads to reproductive selective pressure to 
become resistant to the antibiotic, but by blocking virulence mechanisms that may 
not be under selective pressure. Only by understanding the structure and function of 
virulence factors produced by specific pathogens can these new pathogen-specific 
therapeutic paradigms be envisioned and developed.

�Adherence Factors (Adhesins)

Adhesins play essential roles in binding to host epithelial and endothelial cells, 
interactions with host mucosal layers and components of the extracellular matrix 
(ECM) that surround host cells, and in biofilm formation (Kline et  al. 2009; 
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Pizarro-Cerda and Cossart 2006; Ringot-Destrez et al. 2017; Stones and Krachler 
2015; Vengadesan and Narayana 2011). Intimate attachment to host cells and struc-
tures is crucial for protection from the shear forces associated with host fluid flow, 
especially in the gastrointestinal and urogenital tracts. These interactions are also 
critical for the initial colonization of host tissue and subsequent invasion of suscep-
tible host cells. Binding can be non-specific to “sticky” host components, such as 
mucins, or it can be host cell specific. This specific binding is mediated through host 
cell receptors and is the key initial step in tissue tropism, leading to disease mani-
festations in different host locales. Beyond adherence, binding of adhesins to host 
cell receptors can also trigger intracellular signaling pathways that can lead to mor-
phology changes, immune activation, and apoptosis. It is important to note, how-
ever, that adherence can be a double-edged sword: while binding to non-phagocytic 
cells can lead to advantageous colonization, binding to phagocytic cells, such as 
neutrophils, macrophage, and dendritic cells, can lead to phagocytosis and pathogen 
destruction.

Most pathogens express several different types of adhesins, but not all adhesins 
are expressed by all pathogenic species within a specific genus. The myriad of 
adhesins expressed on the bacterial cell surface makes it difficult to assign a specific 
virulence function to a specific adhesin in vivo. In addition, the structure and func-
tion of adhesins greatly depend on the structure of the pathogen’s cell surface itself 
(i.e., Gram-positive vs. Gram-negative cell walls; capsule vs. non-capsule). The 
outer surface of Gram-positive bacteria contains a thick mesh-like peptidoglycan 
layer comprised of polymers of the polysaccharides N-acetylglucosamine and 
N-acetylmuramic acid that are extensively cross-linked via interpeptide bridges. As 
such, Gram-positive adhesins are usually attached directly to the outermost peptido-
glycan layer (see sortases below), or if attached to the underlying cell membrane, 
they must be able to span the peptidoglycan layer. In contrast, the outer surface of 
Gram-negative bacteria is composed of a thin peptidoglycan layer that is separated 
by a periplasmic space from a surrounding outer membrane comprised of assorted 
lipids, lipoproteins, porins, and the tripartite lipopolysaccharide (LPS) layer. LPS is 
inserted into the outer membrane through a lipid A moiety, which is linked to poly-
mers of complex core polysaccharides and O-antigen polysaccharides. These 
extended LPS structures are quite immunogenic and can be highly variable between 
pathogens, even within the same species. To help evade the host immune response, 
the LPS polysaccharides and lipid A of many pathogens can undergo phase and/or 
antigen variation (see Immune Evasion below). Based on these structures, Gram-
negative adhesins can be LPS components themselves, or they can be attached to the 
outer membrane or to the underlying cell membrane and able to span the peptido-
glycan layer, periplasmic space, and outer membrane. Not surprisingly, Gram-
negative pathogens have evolved numerous protein secretion systems that facilitate 
the synthesis, transport, and assembly of adhesins across these different structural 
barriers (see Protein Secretion Systems below).

Certain major pathogens, such as Streptococcus pneumoniae, Neisseria menin-
gitidis, and Haemophilus influenzae, contain a large capsule structure (glycocalyx, 
slime layer) surrounding their outer surfaces (Fig.  1.1). These self-produced 

1  Bacterial Virulence Factors



5

structures are quite variable in their lipid, polysaccharide, and protein composition. 
In addition to their primary function in blocking phagocytosis and complement-
mediate lysis (see Immune Evasion below), capsules can act as adherence factors 
themselves, or they can sterically block the action of adherence factors such as LPS 
and adhesins.

�Fimbrial Adhesins

Adhesins can be categorized structurally as either fimbrial or afimbrial. Fimbrial 
adhesins (fimbriae, pili) are long filamentous structures extending outward from the 
cell surface (Fig. 1.2). Fimbriae can have different morphologies, including the long 
thin P pili (pyelonephritis-associated pilus) and type I fimbriae, the bundled rope-
like type IV fimbriae that are capable of retraction, and the thin aggregative curli 
fimbriae. The fimbrial rigid rods can contain a central channel (Fig. 1.2c–e, dark 
central thread), and end in a flexible, spring-like tip structure (Fig. 1.2d, e; arrow-
heads) that contains the tip adhesin protein(s) needed for adherence. Gram-negative 
fimbriae are usually attached directly to the outer membrane or the cell membrane, 
whereas Gram-positive fimbriae, of which there are considerably fewer examples, 
are usually attached directly to the peptidoglycan layer.

Fimbriae are either homopolymeric or heteropolymeric protein structures that 
have complex assembly mechanisms (Fig. 1.3) (Kline et al. 2009; Pizarro-Cerda 
and Cossart 2006; Sauer et  al. 2000). Multiple copies of the structural filament 

Fig. 1.1  Streptococcus pneumoniae capsule (Courtesy of the National Foundation for Infectious 
Diseases)
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protein (e.g., P pili PapA) are transported through the outer membrane and polymer-
ized from their base. The adherence specificities of these fimbriae are primarily 
mediated by tip adhesins, which bind to different host cell surface receptors, such as 
the sugar moieties of glycolipids (PapG of P pili) and glycoproteins (FimH of type 
I fimbriae), the peptide domains within other cell surface proteins (PilC of type IV 
fimbriae), and mucin glycoproteins within the mucosal layer. The presence of spe-
cific receptors on host cell surfaces determines the binding and subsequent disease 
tropism of these fimbriae-containing pathogens. For instance, PapG binds to the 
α−D-galactopyranosyl-(1-4)−β−D−galactopyranoside sugar moiety present in sur-
face glycolipids within upper urinary tract cells.

The chaperone–usher assembly pathway is used for the assembly of Gram-
negative fimbriae found associated with gastrointestinal and urogenital pathogens, 
such as the P pili associated with uropathogenic E. coli (UPEC), type I fimbriae 
associated with UPEC and diffusely adherent E. coli (DAEC), and Afa/Dr adhesins 
associated with UPEC and DAEC (Fig. 1.3) (Busch et al. 2015; Sauer et al. 2000). 

Fig. 1.2  E. coli P pili (From: Hahn et al. 2002)
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Since the ultimate site of fimbrial assembly is the outer membrane, chaperone pro-
teins are needed to transport the filament and tip adhesin proteins through an usher 
transmembrane protein embedded in the outer membrane. Each fimbria has its own 
set of transport and assembly proteins (e.g., P pili Pap proteins, type I fimbriae Fim 
proteins; Fig. 1.3), which are usually encoded within gene clusters that are under 
transcriptional control. Unlike chaperone–usher fimbriae, type IV fimbriae are 
assembled within the inner cell membrane and extruded through the outer mem-
brane. This assembly mechanism allows for fimbrial retraction/extension, which is 
important for the twitching motility exhibited by pathogens expressing type IV fim-
briae as well as their adherence function (Giltner et al. 2012).

Fimbriae have been found in an increasing number of Gram-positive pathogens 
(Vengadesan and Narayana 2011). The paradigm for Gram-positive fimbriae is the 
Spa family of C. diphtheriae. These fimbriae are composed of only three subunits: 
the homopolymeric filament protein, the tip adhesin, and an accessory protein that 
binds to the shaft of the filament. Attachment of the fimbriae to the peptidoglycan 
cell wall is mediated through a sortase-based mechanism (Mazmanian et al. 1999; 
Ton-That and Schneewind 2003, 2004). Sortases are cysteine transpeptidases that 
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Fig. 1.3  Chaperone–usher P pili assembly (From: Sauer et al. 2000)
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catalyze the covalent linkage of fimbriae, as well as other afimbrial adhesins, to the 
pentapeptide crossbridges found within the lipid II component of the peptidoglycan 
layer (Fig.  1.4) (Clancy et  al. 2010; Hendrickx et  al. 2011; Spirig et  al. 2011). 
Sortases recognize proteins that have a carboxyl-terminal cell wall sorting signal 
(CWSS) containing the amino acids LPXTG or its variants. There are four major 
sortase classes with varying substrates and CWSSs: class A (SrtA in S. aureus) 
function as housekeeping sortases for many outer surface afimbrial adhesin proteins 
(see below), class B (SrtB) play a role in iron acquisition, class C (SrtC) are used for 
fimbriae attachment, and class D are utilized within spore-forming bacteria.

�Afimbrial Adhesins

There are a plethora of afimbrial adhesins used by Gram-positive and Gram-negative 
pathogens. These proteins do not form filamentous structures and are attached either 
to the Gram-negative outer membrane or to the Gram-positive peptidoglycan layer. 
They usually do not extend a substantial distance away from the cell surface; hence, 
their binding can be sterically blocked by the presence of a capsule. Afimbrial 
adhesins have the differential capacity to bind to (i) specific host cell receptors, (ii) 
glycosylated mucins within the mucosal layer, (iii) ECM components, and/or (iv) 
soluble host proteins such as plasminogen, fibrinogen, and certain antibodies (IgA, 
IgG). Host cell receptors are usually glycosylated integral membrane proteins, 
including cadherins, integrins, selectins, and CD (cluster of differentiation) proteins 
such as CEACAMs (carcinoembryonic antigen-related cell adhesion molecules). 
While the mucosal layer is one of the first lines of defense against invading patho-
gens, some afimbrial adhesins as well as fimbriae and flagella can bind to the highly 
glycosylated mucin proteins within the host mucosal layer (Ringot-Destrez et al. 
2017). This binding aids in the protection of the pathogen from host fluid flow 
stresses, but it does render the pathogen sensitive to expulsion via mucociliary 
escalators.
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Fig. 1.4  Sortase mechanism (From: Hendrickx et al. 2011)
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Gram-positive pathogens, such as S. aureus and S. pyogenes, utilize MSCRAMM 
(microbial surface components recognizing adhesive matrix molecules) proteins to 
bind to ECM components, such as type I and type IV collagens, elastin, fibronectin, 
proteoglycans, and laminin. MSCRAMMs are anchored to the peptidoglycan cell 
wall using a sortase-based mechanism and interact with ECM components through 
specific protein domains. Several MSCRAMMS can bind to multiple ECM compo-
nents, such as fibronectin-binding proteins [FnBPs; (Henderson et  al. 2011)], 
laminin-binding proteins [LnBPs; (Singh et al. 2012)], and collagen-binding pro-
teins [CnBPs; (Singh et al. 2012)]. Fibronectin, laminin, and collagens can interact 
directly with host cell receptors, such as multiple integrin molecules, thereby link-
ing the bound pathogen to the host cell through the bridging ECM component. 
These interactions can also stimulate various host cell processes, including actin 
cytoskeletal rearrangements, gene transcription, and immune responses (Finlay and 
Falkow 1997; Stones and Krachler 2015). S. aureus and other Gram-positive patho-
gens also express MSCRAMMs that can bind to soluble host proteins, such as 
fibrinogen and plasminogen, thereby affecting host coagulation pathways.

�Protein Secretion Pathways

In addition to the sortase and chaperone–usher secretion mechanisms described 
above, Gram-positive and Gram-negative pathogens have developed additional 
mechanisms by which fimbrial and afimbrial adhesins can be transported and 
attached at the cell surface. These protein secretion pathways are also used to deliver 
bacterial proteins and toxins into the host environment or directly into host cells 
across one (inner cell membrane), two (Gram-negative outer membrane), and/or 
three (host membrane) hydrophobic phospholipid bilayers (Abby et al. 2016; Costa 
et al. 2015; Green and Mecsas 2016; Tseng et al. 2009). Both Gram-positive and 
Gram-negative pathogens can transport proteins into and across the inner cell mem-
brane using either the SecYEG translocase machinery, which is part of the general 
secretion (SecDEFGY) pathway for unfolded proteins, or the twin arginine translo-
cation (Tat) pathway for folded proteins. The Sec pathway is powered by ATP 
hydrolysis using the SecA ATPase. The translocated proteins can either remain in 
the inner membrane, which is mediated by a signal recognition particle (SRP)-
specific signal sequence, or they can be transported into the periplasmic space or 
outside the cell using a SecB-specific signal sequence. However, secreted proteins 
in Gram-negative pathogens must transit through the outer membrane in order to 
reach the external environment. This added hydrophobic barrier necessitates the use 
of additional secretion systems.

There are six major protein secretion systems utilized by Gram-negative patho-
gens to bypass the outer membrane and host cell membranes (Fig.  1.5): type 1 
secretion system (T1SS), type 2 secretion system (T2SS), type 3 secretion system 
(T3SS), type 4 secretion system (T4SS), type 5 secretion system (T5SS), and type 
6 secretion system (T6SS). An additional type 7 secretion system (T7SS; ESX) has 
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been identified in Mycobacterium spp. and other Gram-positive pathogens that con-
tain a heavily lipidated hydrophobic mycomembrane barrier beyond the peptidogly-
can layer. It should be noted that not all Gram-negative pathogens express all six 
secretion systems and that the proteins secreted through these systems vary dramati-
cally between genera (Abby et al. 2016).

T1SS uses ATP hydrolysis by ATP-binding cassette (ABC) transporters to pas-
sage proteins through a membrane fusion protein (MFP) linked to an outer mem-
brane protein (OMP). This one-step process can secrete polypeptides up to 1000 
amino acids and is Sec- and Tat-independent (Thomas et al. 2014). Examples of 
T1SS substrates include exotoxins (B. pertussis pertussis toxin PTx, adenylate 
cyclase toxin CyaA), RTX toxins [uropathogenic E. coli (UPEC) HlyA hemolysin, 
V. cholerae RtxA], adhesins (S. enterica SiiE), proteases (P. aeruginosa AprA), and 
heme-binding proteins (P. aeruginosa HasA).

T2SS uses a two-step process in which proteins transit the inner membrane in a 
Sec- or Tat-dependent process, and the secreted proteins fold in the periplasmic 
space prior to passage through an outer membrane secretin pore (Korotkov et al. 
2012). T2SSs are structurally related to the machinery used to assemble type IV 
fimbriae. T2SSs are used for the transport of many exoproteins, including proteases, 
lipases, and phosphatases. Examples of T2SS substrates include V. cholerae cholera 
toxin, enterotoxigenic E. coli (ETEC) LT toxin, and the P. aeruginosa virulence fac-
tors ExoA (exotoxin A), PlcH (hemolytic phospholipase C), LasA (staphylolysin), 
LasB (pseudolysin elastase), PrpL (protease IV), AprA (aeruginolysin), ChiA (chi-
tinase), and NanH (neuraminidase).

T3SS (Deng et al. 2017), T4SS (Kubori and Nagai 2016), and T6SS (Cianfanelli 
et al. 2016; Hachani et al. 2015) use one-step processes to directly inject bacterial 
proteins (effectors) into host cells. The assembly and function of these secretion 
systems involve a conserved set of proteins that create macromolecular structures 
spanning the bacterial inner and outer membranes and the host cell membrane. Each 
system secretes its own set of effectors, which vary dramatically between pathogens. 
Regardless, the primary function of all of these effectors is to manipulate host cell 
processes, including signal transduction pathways, actin cytoskeletal rearrange-
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Fig. 1.5  Protein secretion systems (From: Tseng et al. 2009)
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ments, intracellular vesicle transport and stability, and host immune responses. 
T3SS “injectisomes,” which are structurally related to the flagellar apparatus, are 
used by many Gram-negative pathogens to deliver effectors into a wide variety of 
host cells. Actin dynamics, mitogen-activated protein kinase (MAPK) signaling, 
and nuclear factor-κB (NF-κB)-based inflammasome activation are modulated by 
enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), P. aerugi-
nosa, and V. cholerae T3SS effectors. Y. pestis Yop effectors also affect these signal-
ing pathways as well as facilitating intracellular persistence within macrophage. 
The intracellular pathogens C. trachomatis, S. enterica, and S. flexneri require T3SS 
effectors to invade and persist within the vacuolar system of host cells.

T4SS, which are structurally related to DNA conjugation systems, have the abil-
ity to transport DNA, DNA-protein complexes, and protein effectors across mem-
branes. N. gonorrhoeae uses a T4SS to acquire virulence genes through horizontal 
gene transfer mechanisms. L. pneumophila uses the Icm/Dot T4SS to inject ~330 
effector proteins that affect multiple host processes, including vesicle trafficking, 
autophagy, host protein synthesis, host inflammatory response, macrophage apopto-
sis, and host cell egress. H. pylori uses the Cag T4SS to insert effectors that modu-
late the host immune response. The contact-dependent T6SS uses a 
phage-tail-spike-like injectisome structure to deliver effectors not only to host cells 
but also to competitor bacterial species, thereby giving pathogens competitive 
advantages within certain host growth niches. T6SS effectors have been shown to 
function in adherence (E. coli, C. jejuni, V. parahaemolyticus), host cell invasion (E. 
coli, C. jejuni, S. enterica, P. aeruginosa, Y. pseudotuberculosis), actin dynamics (E. 
coli, V. cholerae), and host immune responses (K. pneumoniae, V. 
parahaemolyticus).

T5SS use a unique two-step process in which the substrates promote their own 
secretion; i.e., they contain their own β-barrel domain that forms a pore in the outer 
membrane with the help of the BAM β-barrel assembly machinery (Leyton et al. 
2012). The first step for these so-called autotransporters utilizes the Sec-dependent 
machinery to translocate across the inner membrane. There are three subclasses of 
T5SS based on the second step of the secretion mechanisms. T5aSS substrates are 
single polypeptides that contain amino-terminal Sec-specific signal sequences and 
passenger domains and a carboxyl-terminal β-barrel domain, which forms the pore 
through which the passenger domain is translocated. Depending on the function of 
the passenger domain polypeptide, it can either be anchored in the outer membrane 
through the β-barrel domain (e.g., adhesins) or be secreted after cleavage from the 
β-barrel domain (e.g., toxins, exoenzymes). T5bSS (a.k.a., two-partner secretion; 
TPS) consists of two polypeptides: one polypeptide contains the β-barrel domain, 
and the other polypeptide is secreted. T5cSS [a.k.a., trimeric AT adhesin (TAA) 
system] consists of three polypeptides, which together form the β-barrel pore. 
Examples of T5SS effectors include adhesins (B. pertussis FHA, pertactin, and 
BapC, E. coli AIDA-I and Ag43, H. influenzae Hia, HWM1, and HWM2, S. flexneri 
IcsA, Y. enterocolitica YadA), proteases (N. gonorrhoeae and N. meningitidis IgA 
protease, S. flexneri SepA), and toxins (H. pylori VacA).

Protein Secretion Pathways
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�Host Cell Invasion and Growth

While entry of most pathogens into host cells results in their destruction, certain 
bacterial pathogens have the ability to actively invade and replicate within non-
phagocytic and/or phagocytic cells. Obligate intracellular pathogens, such as 
Chlamydia spp. and Rickettsia spp., can only replicate inside host cells, primarily 
because they are metabolically crippled. Facultative intracellular pathogens, includ-
ing enteroinvasive E. coli (EIEC)/Shigella spp., Francisella spp., Legionella spp., 
Listeria spp., Mycobacterium spp., Neisseria spp., Nocardia spp., Salmonella spp., 
and Yersinia spp., can replicate inside and outside host cells. The ability to invade 
non-phagocytic cells, such as mucosal epithelial cells or bloodstream endothelial 
cells, facilitates the bypass of host barriers and protects pathogens from host defense 
systems such as antibody-mediated opsonophagocytosis and complement-activated 
lysis. The ability to persist within phagocytic cells, which usually requires addi-
tional virulence determinants not found in extracellular pathogens, provides protec-
tion and also facilitates bloodstream and lymphatic dissemination of pathogens. 
These pathogens, which include M. tuberculosis and L. pneumophila, are passively 
phagocytized into macrophage using host cell machinery.

Invasion into non-phagocytic cells is usually accomplished through either a zip-
per mechanism or a trigger mechanism (Fig. 1.6) (Pizarro-Cerda and Cossart 2006; 

Fig. 1.6  Cell invasion mechanisms (From: Pizarro-Cerda and Cossart 2006)
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Ribet and Cossart 2015). Pathogens such as L. monocytogenes and certain Yersinia 
species utilize a zipper mechanism. This mechanism depends on interactions 
between bacterial surface adhesin or invasin proteins and specific host cell recep-
tors. Examples of these specific interactions include the Y. enterocolitica and Y. 
pseudotuberculosis Inv invasin protein interacting with host β1-integrins, the L. 
monocytogenes InlA internalin protein interacting with E-cadherin, and the L. 
monocytogenes InlB protein interacting with the Met receptor tyrosine kinase hepa-
tocyte growth factor receptor. These interactions activate Rho/Rac/Cdc42 GTPase-
dependent signaling pathways that induce actin rearrangements (see Regulation of 
the Actin Cytoskeleton below), which lead to the host cellular membrane envelop-
ing the pathogen. Pathogens such as C. trachomatis, EIEC/Shigella, R. rickettsii, 
and S. enterica utilize a trigger mechanism, whereas L. pneumophila uses a coiling 
phagocytosis mechanism. These mechanisms depend on bacterial effector proteins 
being inserted into host cells, usually via T3SSs, T4SSs, and/or T6SSs. Examples of 
effectors include the Sop proteins of S. enterica, the Ipa proteins of S. flexneri, and 
the Icm/Dot proteins of L. pneumophila. Some of these effectors can induce Rho/
Rac/Cdc42 GTPase-dependent actin rearrangements that lead to membrane ruffling 
and micropinocytosis of pathogen cells.

Entry into host cells initially results in the pathogen residing within host 
membrane-derived vacuoles (non-phagocytic cells) or phagosomes (phagocytic 
cells). Intracellular pathogens can survive and multiply either by creating a 
replication-permissive environment within these pathogen-containing vacuoles 
(PCVs) or by escaping the compartment and replicating within the nutrient-rich 
cytoplasm (Creasey and Isberg 2014; Fredlund and Enninga 2014; Herweg et al. 
2015; Poirier and Av-Gay 2015; Ribet and Cossart 2015). In either case, the patho-
gen must negate the inherent cellular defense mechanisms in order to replicate. L. 
pneumophila, M. tuberculosis, S. enterica, and C. trachomatis remain within PCVs 
and modify their environments to protect themselves. In order to survive in phago-
cytic cells, L. pneumophila and M. tuberculosis secrete effector proteins that inhibit 
membrane-trafficking Rab and Arf GTPases, thereby blocking the fusion of phago-
somes to early endosomes and to degradative lysosomes (Stein et  al. 2012). 
Additional effector proteins are used to modify the Legionella-containing vacuoles 
(LCV) and Mycobacterium-containing vacuoles (MCV) to promote nutrient acqui-
sition and replication competence. S. enterica actually promotes the fusion of 
phagosomes to early endosomes but blocks subsequent lysosome fusion, thereby 
creating a unique replication niche within Salmonella-containing vacuoles (SCV). 
L. pneumophila, M. tuberculosis, and Y. pestis, but not S. enterica, can also block 
the maturation of phagolysosomes by inhibiting their vacuolar H+-ATPase-
dependent acidification, which is necessary for the activation of host degradative 
hydrolases and the production of bacteriocidal reactive oxygen species.

L. monocytogenes, EIEC/Shigella spp., and R. rickettsii are able to escape from 
endomembrane compartments and replicate within the host cytosol. EIEC/Shigella 
spp. secrete numerous Ipa effectors through a T3SS that mediate membrane rupture 
and vacuolar escape. L. monocytogenes and R. rickettsii secrete hydrolytic enzymes 
to rupture the vacuolar membranes. L. monocytogenes produces listeriolysin O 
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(LLO) and phospholipases PI-PLC and PC-PLC, whereas R. rickettsii use the TlyC 
hemolysin and PLD phospholipase D. To survive within the host cytosol, intracel-
lular pathogens must block innate cellular defense mechanisms, including nuclear 
factor-κB (NF-κB)-based inflammasome activation, autophagy, apoptosis, and 
pyroptosis (Bhavsar et al. 2007; Jorgensen et al. 2017; Lopez de Armentia et al. 
2016). The host NF-κB transcription factor induces the expression of multiple 
defense gene products, including pro-inflammatory cytokines, such as TNF-α, IL-1, 
IL-6, and IL-8, and anti-apoptotic factors. The NF-κB pathway is induced following 
detection of pathogen-associated molecular patterns (PAMPs) by host pattern rec-
ognition receptors (PRRs), such as Toll-like receptors (TLRs) and NOD-like recep-
tors (NLRs). Intracellular pathogens use multiple mechanisms to block the NF-κB 
pathway. For instance, Y. pestis and EIEC/Shigella spp. effectors block the ubiquitin-
mediated proteolytic degradation of the NF-κB inhibitor IκB, thereby maintaining 
NF-κB in an inhibited state within the cytosol. In addition, certain effectors can 
block MAPK-dependent nuclear signaling pathways that inhibit histone phosphory-
lation and transcription of NF-κB-dependent transcripts (see Immune Evasion 
below).

Autophagy is a mechanism used to maintain host cell homeostasis and increase 
nutrient availability through the lysosome-dependent degradation of macromole-
cules. PAMP recognition by PRRs can trigger xenophagy, which is the autophagic 
destruction of intracellular pathogens (Gomes and Dikic 2014; Lopez de Armentia 
et al. 2016; Miller and Celli 2016; Pareja and Colombo 2013; Sherwood and Roy 
2016; Winchell et  al. 2016). Not surprisingly, numerous intracellular pathogens 
have developed mechanisms to avoid xenophagy. For example, F. tularensis 
O-antigen and capsular polysaccharides can block PRR detection of PAMPs, 
thereby blocking xenophagy activation and ubiquitin-mediated autophagosome 
capture. In addition, several host autophagy-related genes (ATGs) are downregu-
lated during F. tularensis infection. S. flexneri and L. monocytogenes escape 
xenophagic recognition by blocking the binding of certain ATGs (e.g., Atg5) to 
bacterial proteins involved in co-opting the host actin machinery. S. flexneri VirG 
and L. monocytogenes ActA function as inducers of WASP/Arp2/3-dependent actin 
polymerization, leading to the attachment of actin tails that mediate bacterial move-
ment within and between neighboring host cells. These proteins are also recognized 
by the xenophagic machinery, which can be blocked by masking the VirG and ActA 
recognition/binding sites by secreted bacterial effectors. The use of actin-based tails 
by S. flexneri, L. monocytogenes, and R. rickettsii for intracellular movement also 
plays a role in spreading and eluding host defense systems (Colonne et al. 2016; 
Ireton 2013; Lamason and Welch 2016). When actin-propelled pathogens encounter 
the host cell membrane, a pathogen-containing protrusion is generated, which is 
subsequently engulfed by neighboring cells. This process allows spreading of these 
pathogens from cell to cell without leaving the cytoplasmic environment, thereby 
providing protection from extracellular innate and adaptive defense systems.

Caspase-dependent programmed cell death (PCD) can have profound effects on 
intracellular pathogens (Friedrich et al. 2017; Jorgensen et al. 2017; Stewart and 
Cookson 2016). While certain pathogens induce PCD to evade host innate immune 
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defenses, especially those associated with phagocytic cells, apoptosis (non-lytic 
PCD) and pyroptosis (lytic PCD) are used by infected host cells to protect against 
the spread of intracellular pathogens. It is important to note that intracellular patho-
gens vary in their ability to induce and/or repress PCD pathways, depending on their 
lifestyle needs. Induction of apoptosis can either be through cell-extrinsic stimuli, 
such as tumor necrosis factor (TNF) proteins binding to death receptors, or through 
cell-intrinsic stimuli associated with DNA or mitochondrial damage that leads to the 
release of mitochondrial cytochrome c molecules. Both pathways mediate the acti-
vation of host caspase (cysteine protease) cascades that result in host cell protein 
degradation and subsequent apoptosis. Intracellular pathogens need to inhibit apop-
tosis to create replication-protected environments inside infected cells, but they also 
may need to induce apoptosis to promote cell egress and dissemination to deeper 
tissues. Bacterial effector proteins can affect apoptosis at multiple different steps. 
For instance, Y. pestis, S. enterica, and C. trachomatis secrete effectors that block 
the initial extrinsic signal recognition. M. tuberculosis, L. pneumophila, S. flexneri, 
and S. enterica can modulate the host NF−κB transcription pathway, which can 
have both pro-apoptotic and anti-apoptotic effects. The cytochrome c-dependent 
intrinsic pathway also can be modulated by effectors from these pathogens, primar-
ily through the regulation of host Bcl-2 family proteins. Interestingly, F. tularensis 
and N. gonorrhoeae secrete effectors that block caspase activation by increasing the 
expression of host inhibitor of apoptosis protein (IAP) family members. Caspase-
dependent inflammatory pyroptosis can be induced by bacterial molecules and 
structures, such as LPS, flagella, exotoxins, and components of secretion systems. 
Pyroptosis is associated with host cell lysis mediated by caspase cleavage of the 
gasdermin family of pore-forming proteins (e.g., gasdermin G). Antigenic modifica-
tion of LPS and/or downregulation of flagellin synthesis are effective means for 
intracellular pathogens to evade pyroptosis activation.

�Iron Acquisition Pathways

Arguably, the most important aspect of the intracellular (and extracellular) growth 
of bacterial pathogens is the ability to acquire needed nutrients. The general meta-
bolic needs of pathogens will not be discussed in this book, but the ability to acquire 
iron within the human host is absolutely essential. As a biochemical cofactor and 
component of the energy-generating electron transport system, iron is essential for 
almost all life (spirochetes Borrelia burgdorferi and Treponema pallidum do not 
require iron as enzyme cofactors). Therefore, there is a fierce competition for iron 
between bacterial pathogens and host cells. Pathogens must scavenge tightly bound 
ferric (Fe+3) iron from host transferrin, lactoferrin, and heme-containing proteins, 
such as hemoglobin–haptoglobin complexes and hemopexin, and then transport it 
across the bacterial cell wall and reduce it to ferrous (Fe+2) iron to be used inside 
their cells.

Iron Acquisition Pathways
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Not surprisingly, there are numerous mechanisms by which pathogens acquire 
iron in the environment and within human hosts (Sheldon et al. 2016). Many Gram-
negative pathogens have the ability to directly import ferric and ferrous ions through 
specific FeoAB permease systems. Pathogens also can directly bind to and uptake 
iron-containing proteins such as heme-containing proteins, transferrin, and lactofer-
rin. Gram-positive pathogens, such as S. aureus, use Isd (iron-regulated surface 
determinant) and related genes to import iron across the cell wall and dissociate it 
from heme-containing proteins. Certain Gram-negative pathogens express specific 
families of receptor proteins, such as N. gonorrhoeae (TbpA, TbpB, LbpA, LbpB, 
HmbR, HpuA, HpuB) and H. influenzae (HgpA, HgpB, HgpC, HhuA, Tbp1, Tbp2, 
HitA, HxuA, HemR, Hup), that either reside in the bacterial outer membrane and 
directly bind to host transferrin and lactoferrin or are secreted as small hemophore 
proteins that bind to heme-containing proteins. These pathogens have developed 
intricate pathways, such as TonB-dependent transporters and ABC transporters, by 
which they import the iron-containing proteins across the outer membrane, dissoci-
ate the ferric iron, and reduce it to ferrous iron for use. Alternatively, both Gram-
positive and Gram-negative pathogens can steal ferric iron using secreted small 
organic molecules called siderophores. Siderophores have varied molecular struc-
tures that can coordinate iron, but all bind to Fe+3 with greater affinity than host 
proteins. Examples of secreted siderophores include S. enterica (and other enteric 
bacteria) enterobactin and salmochelin, Y. pestis yersiniabactin, S. aureus staphylo-
ferrins, M. tuberculosis mycobactin, and P. aeruginosa pyochelin and pyoverdine. 
Some pathogens not only can utilize their own siderophores but also can usurp other 
species’ siderophores (xenosiderophores), increasing their iron fitness within hosts.

Control of iron acquisition and storage systems is tightly regulated by the con-
centration of iron within the bacterial cell (Porcheron and Dozois 2015). Iron con-
centrations can also affect the expression of other virulence factors such as 
exotoxins and invasins. The primary regulatory mechanism for Gram-negative and 
Gram-positive pathogens is through the ferric uptake regulator (Fur) protein 
(Fig. 1.7). High levels of intracellular Fe+2 can bind to Fur, which activates its bind-
ing to Fur-binding domains within target gene promoter regions, leading to the 

Fig. 1.7  Fe+2–Fur regulation (From: Porcheron and Dozois 2015)
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transcriptional repression of iron acquisition genes. The Fe+2-Fur complex also 
represses the synthesis of the small regulatory noncoding RNA RhyB, which can 
translationally regulate the expression of certain iron-responsive mRNAs. Low Fe+2 
concentrations leave Fur in an unbound state, which leads to transcriptional dere-
pression of RhyB, siderophore genes, and other iron-responsive genes. Certain 
Gram-positive pathogens such as C. diphtheriae (DtxR) and M. tuberculosis (IdeR) 
use structurally distinct but functionally conserved iron regulatory proteins 
(Merchant and Spatafora 2014).

�Dissemination Throughout the Host

Most bacterial pathogens are blocked by innate defense barriers, such as skin, 
mucosal layers, and extracellular matrix, leading to localized infections within host 
tissue. However, some pathogens have the capability of breaching these barriers, 
leading to systemic infections throughout the host. These pathogens secrete exoen-
zymes, so-called spreading factors, that can specifically degrade components of 
these barriers. These exoenzymes include collagenases, elastases, hyaluronidases, 
mucinases, and sialidases (neuraminidases). In addition, numerous pathogens can 
secrete effectors and exotoxins that affect transcellular permeability between epi-
thelial and endothelial cells.

Within the respiratory, gastrointestinal, and urogenital tracts, epithelial cells are 
covered by a mucous layer comprised predominantly of gel-forming mucin glyco-
proteins and glycolipids produced by goblet cells. Mucinases are a general class of 
hydrolytic enzymes that can disrupt components of the mucous layer. A major sugar 
component of the mucous layer and the ECM is hyaluronate (hyaluronic acid). 
Hyaluronidases, which include hyaluronate lyases, hyaluronoglucosaminidases, 
and hyaluronoglucuronidases, can be expressed in Gram-negative and Gram-
positive pathogens, but only Gram-positive hyaluronidases are secreted enzymes 
that play a role in virulence (Gram-negative enzymes are localized in the periplas-
mic space) (Hynes and Walton 2000). Examples of Gram-positive hyaluronidases 
include S. pyogenes HylA, S. aureus HysA, and C. perfringens mu (μ) toxin. Mucin 
glycoconjugates contain high amounts of terminal sialic acid sugars, which can be 
cleaved by bacterial sialidases (Kim et al. 2011; Lewis and Lewis 2012). This cleav-
age produces free sialic acid that can be used nutritionally by pathogens and also 
can uncover binding sites on the outside of host cells that can be exploited by patho-
gens and their toxins for adherence or biofilm formation. For instance, V. cholerae 
NanH sialidase can uncover binding sites for cholera toxin, and C. perfringens 
NanH, NanI, and NanJ sialidases uncover binding sites for alpha toxin, a major 
contributor to gas gangrene. Other sialidase-producing pathogens, which have the 
ability to disseminate from their initial infection sites, include the respiratory patho-
gens P. aeruginosa, S. pneumoniae, and H. influenzae, and the gastrointestinal 
pathogens B. fragilis and S. enterica.
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As mentioned above (see Afimbrial Adhesins), components of the ECM can be 
binding partners for many bacterial adhesins. The major host function of the ECM, 
however, is to provide structural support for host connective tissues and to serve as a 
defensive barrier. To breach this barrier, disseminating pathogens must be able to 
disrupt interstitial and basement membrane ECM components, including collagens, 
elastins, fibrillins, fibronectins, and laminins. Collagens are the major glycoprotein 
components of connective tissues and the ~28 human collagen isoforms can form dif-
ferent three-dimensional structures within interstitial and basement membrane ECM 
(Singh et al. 2012). Certain pathogens, including B. cereus, C. perfringens, P. aerugi-
nosa, V. vulnificus, and V. parahaemolyticus, secrete soluble metalloproteinases and/
or serine proteases that can degrade collagen (collagenases), elastin (elastases), fibro-
nectin, and laminin glycoproteins. In addition, numerous host matrix metalloprotein-
ases (MMPs) and other proteases can degrade ECM components, especially under 
inflammatory conditions, with the most notable protease being plasmin.

The major function of host plasmin is to degrade fibrin (fibrinolysis), which con-
trols blood coagulation and tissue repair (Fig. 1.8). Plasmin also can degrade several 
ECM components, including fibronectin and laminin, as well as proteolytically acti-
vate host MMPs and convert procollagenases into active collagenases. The circulat-
ing plasminogen (Plg) zymogen is converted into active plasmin protease by host 
tissue-type Plg activator (tPA) and urokinase Plg activator (uPA). To maintain 
appropriate levels of active plasmin, these PAs are regulated by the Plg activator 
inhibitors (PAI) PAI-1, PAI-2, α2-antiplasmin, and α2-macroglobulin. The inhibi-
tory activity of PAI-1 and PAI-2 is turned on by binding to host vitronectin (Vn). 
The PAI-1/Vn complex inactivates tPA and uPA, causing a decrease in plasmin pro-
tease levels. Numerous bacterial pathogens can affect plasmin levels either by pro-
ducing their own PAs, by producing Plg receptors (PlgR) that localize bound Plg to 
bacterial cell surfaces, or by modulating the synthesis and regulation of host PAs 
and PAIs (Bergmann and Hammerschmidt 2007; Bhattacharya et  al. 2012; 
Lähteenmäki et al. 2001). The S. aureus staphylokinase, S. pyogenes streptokinase, 

Fig. 1.8  Regulation of host plasmin (From: Bhattacharya et al. 2012)
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and Y. pestis Pla proteins can function as PAs on bound or free host Plg, leading to 
increased levels of host plasmin. S. pyogenes, B. burgdorferi, and H. pylori contain 
outer surface Plg receptors that can bind to Plg, thereby enhancing their ability to 
generate localized plasmin levels that can breach the ECM. P. aeruginosa, S. aureus, 
and B. subtilis can degrade host PAI-1, and the Gram-negative omptin proteins Y. 
pestis Pla, S. enterica PgtE, and K. pneumoniae Kop can degrade the PAI-1/Vn 
complex, leading to increased amounts of plasmin (Haiko et al. 2009; Korhonen 
2015). Pla also can inhibit the α2-antiplasmin PAI, again increasing plasmin levels.

Paracellular permeability between adjacent epithelial cells (and endothelial 
cells) and between cells and the ECM is mediated by tight junctions (TJs), adherens 
junctions (AJs), and focal adhesions (FAs). TJs act as permeability barriers by 
closely juxtaposing adjacent cell membranes at the apical and lateral sides of polar-
ized cells, such as intestinal epithelial cells. The interactions of host occludin and 
claudin transmembrane proteins with cytosolic zonulins (ZO-1, ZO-2) activate 
PLC/PKC (phospholipase C/protein kinase C) signaling, which regulates actin 
cytoskeleton reorganization. Numerous intestinal pathogens can disrupt TJs, lead-
ing to increased paracellular permeability and pathogen dissemination (Doran et al. 
2013; Eichner et al. 2017). V. cholerae HA/P protease can cleave occludins, and Zot 
(zonula occludens toxin) can mimic host ZO-1 regulation of actin cytoskeleton reor-
ganization. The EHEC and EPEC effectors EspF, EspG, and Map affect occludin 
and ZO-1 function, as do C. difficile toxin A and toxin B.  In addition, H. pylori 
CagA affects multiple host signaling pathways that impact TJ permeability.

AJs form basally to TJs and are needed for TJ stability. AJ transmembrane cad-
herin proteins connect adjacent cells and interface with cytosolic catenins and the 
host actin cytoskeletal network through a submembrane plaque complex. FAs trans-
membrane integrin proteins are connected to components of the ECM, most notably 
fibronectin, as well as the actin cytoskeleton. Within the AJ and TA submembrane 
plaque complexes, numerous cell-specific anchor proteins interface with signaling 
Rho/Rac/Cdc42 family GTPases and actin-associated proteins, thereby linking 
these structures to the host cell actin cytoskeleton. Therefore, disrupting Rho/Rac/
Cdc42 GTPase signaling or other plaque–actin complexes would result in changes 
in cell morphologies (rounding up) and increases in paracellular permeability. Not 
surprisingly, many pathogens secrete exotoxins that can modulate Rho/Rac/Cdc42 
GTPases and the host actin cytoskeleton (see Toxins below). In addition, L. mono-
cytogenes InlA protein interacts with host E-cadherin, facilitating L. monocytogenes 
host cell invasion and bypass of the intestinal barrier.

�Damage to Host Cells

Many bacterial pathogens secrete polypeptides that can have deleterious effects on 
host cell structures and processes. These so-called exotoxins, which are the most 
potent virulence factors studied to date, can affect host cells at the initial site of 
bacterial infection or can affect cells at distal sites within the host. The extracellular 
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nature of these toxins allows them to cause damage and disease independent of the 
producing pathogen actually growing within the host. Exotoxins either can act at 
host cell surfaces by disrupting cell membrane structures or can act on intracellular 
targets to block essential cell processes, such as translation, signal transduction, 
intracellular trafficking, and actin cytoskeletal rearrangements. Each intracellular 
exotoxin has its own unique method of entering host cells, usually through receptor-
mediated endocytosis or bacterial secretion systems (i.e., T3SS, T4SS, T6SS). Most 
exotoxins are single polypeptides with specific catalytic activities, although some 
exotoxins can form multi-polypeptide complexes, such as A-B exotoxins, that aid in 
cell entry and/or function.

�Cytolytic Exotoxins

These cytolytic polypeptides can disrupt host cell membranes, causing defects in ion 
homeostasis that eventually lead to influx of H2O, cell swelling, and lysis. Included in 
this broad category of exotoxins are pore-forming toxins (PFTs) and membranolytic 
toxins. PFTs are classified as either α-PFTs or β-PFTs, depending on whether their 
membrane-spanning pore-forming domains are composed of α-helices or β-barrels 
(Peraro and van der Goot 2016). Each has its own specific pore-forming mechanism 
and permeability limits, such that some only affect potassium or calcium ion homeo-
stasis, while others allow large molecules or polypeptides to egress. Most of these 
toxins have specific host cell receptors (e.g., cholesterol, glycolipids, GPI-anchored 
proteins) that play a role in dictating disease tropisms. Examples of α-PFTs include 
E. coli colicins, S. enterica cytolysin A (ClyA/HylE), and B. cereus Nhe toxin and 
hemolysin BL. Examples of β-PFTs include S. aureus leukocidins, α-hemolysin, and 
γ-hemolysin, C. perfringens α-, δ- and ε-hemolysins and CPE enterotoxin, and the 
cholesterol-dependent cytolysins (CDCs) C. perfringens perfringolysin, S. pneu-
moniae pneumolysin, S. pyogenes streptolysin O, and L. monocytogenes listeriolysin 
O (disrupts phagosome membranes). Membranolytic exotoxins include phospholi-
pases and sphingomyelinases, which hydrolyze glycerophospholipids and sphingo-
phospholipids (sphingomyelin), respectively (Flores-Díaz et al. 2016). This hydrolysis 
disrupts phospholipid bilayers in host cell membranes and intracellular organellar 
membranes. Examples of membranolytic exotoxins include C. perfringens α-toxin, 
the major effector of gas gangrene, S. aureus β-toxin, P. aeruginosa PlcH and ExoU, 
and L. monocytogenes PI-PLC (disrupts phagosome membranes).

�Intracellular Exotoxins

Unlike cytolytic toxins that have direct access to their host targets, intracellular 
exotoxins must enter host cells to exert their effects on targets or processes. Many 
of these exotoxins are composed of multiple polypeptide subunits (so-called A-B 
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exotoxins) that have catalytic activity (A subunits) and cell binding/entry activity (B 
subunits). B subunits, which can function with single polypeptide stoichiometry 
(i.e., A-B) or multiple polypeptide stoichiometry (i.e., A-B5), recognize specific 
host cell receptors that are usually either transmembrane proteins or glycolipids. 
The A subunit alone or the A-B subunits together then enter host cells through endo-
cytosis. Inside endocytic vacuoles, A-B subunits dissociate, and the released cata-
lytic A subunit traffics to its intracellular location. Many of these exotoxins are 
encoded on mobile genetic elements, such as plasmids (B. anthracis anthrax toxin, 
C. tetani tetanus toxin) and bacteriophage (C. botulinum botulinum toxin, V. chol-
erae cholera toxin, C. diphtheriae diphtheria toxin), raising the possibility of hori-
zontal gene transfer of these toxin genes.

The varied catalytic activities of A subunits, most of which affect the posttrans-
lational modification of host polypeptides, dictate the type of cellular damage and 
disease symptoms observed. The predominant catalytic activity observed is ADP-
ribosylation of host proteins. These so-called bacterial ADP-ribosyltransferase tox-
ins (bARTTs) attach an ADP-ribose moiety derived from NAD to specific Arg, Asn, 
Thr, Cys, or Gln amino acids within target proteins, thereby inactivating the target 
protein (Table 1.1) (Simon et al. 2014). bARTTs can be classified either by their 
subunit stoichiometry or by their intracellular target. They can either be single poly-
peptide A-B toxins (e.g., C. diphtheriae diphtheria toxin, P. aeruginosa exotoxin A) 
or multiple polypeptide A-B5 toxins (e.g., V. cholerae cholera toxin, B. pertussis 
pertussis toxin). Intracellular targets include translation elongation factor 2 (eEF2) 
(e.g., diphtheria toxin, exotoxin A), heterotrimeric Gα subunits (e.g., cholera toxin, 
pertussis toxin), G-actin monomers (e.g., C. botulinum C2 toxin, C. perfringens iota 
toxin, C. difficile CDT), and Rho/Rac/Cdc42 GTPases (e.g., C. botulinum C3bot, B. 
cereus C3cer). Other A subunit catalytic activities include Zn-dependent proteases 
that block intracellular vesicle trafficking of neurotransmitters (e.g., C. botulinum 
botulinum toxin, C. tetani tetanus toxin), RNA N-glycosidases that remove an ade-
nine residue from the 28S rRNA of the 60S ribosome (e.g., S. dysenteriae Shiga 
toxin, EHEC Shiga-like Stx-1, Stx-2 toxins), calmodulin-dependent adenylate 
cyclase (e.g., B. anthracis edema factor), and glucosylation of Rho/Rac/Cdc42 
GTPases (e.g., C. difficile TcdA and TcdB) and eEF1A (e.g., L. pneumophila Lgt1, 
2, 3) (Jank et al. 2015).

�Regulation of the Actin Cytoskeleton

As mentioned above, the actin cytoskeletal network plays a central role in regulat-
ing host cell morphology, signal transduction pathways, and cell–cell junctions. 
Therefore, it is not surprising that many bacterial exotoxins and secreted effector 
proteins can affect proteins involved in regulating actin polymerization, thereby 
enhancing cell invasion, dissemination, and immune evasion. Some exotoxins can 
directly modify the structural G-actin monomers (e.g., C. botulinum C2 toxin, C. 
perfringens iota toxin, C. difficile CDT, V. cholerae RTX toxin), thereby blocking or 
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Table 1.1  bARTT subfamilies (Adapted from: Simon et al. 2014)

Toxin Bacterium Eukaryotic substrate
Cellular receptor or 
delivery

DT-like toxins

DT Corynebacterium diphtheriae eEF2 HB-EGF
PE Pseudomonas aeruginosa eEF2 LRP1
ChxAa Vibrio cholerae eEF2 LRP1
CT-like toxins

CT V. cholerae Gαs Ganglioside: GM1
Heat-labile 
enterotoxin

Escherichia coli (ETEC) Gαs Ganglioside: various

PT Bordetella pertussis Gαi Ganglioside: various
C2-like binary toxins

C2 toxin Clostridium botulinum G-actin N-linked carbohydrates
Iota toxin Clostridium perfringens G-actin LSR
CDT Clostridium difficile G-actin LSR
CST Clostridium spiroforme G-actin LSR
VIP Bacillus cereus G-actin Unknown
SpvBa Salmonella spp. G-actin Type-III secreted
AexTa Aeromonas hydrophila G-actin Type-III secreted
Photoxa Photorhabdus luminescens G-actin Type-VI secreted 

(putative)
C3-like toxins

C3bot C. botulinum RHOA, RHOB and 
RHOC

NA

C3Stau/EDIN Staphylococcus aureus RHOA, RHOB, 
RHOC and RHOE

NA

C3cer B. cereus RHOA, RHOB and 
RHOC

NA

ExoS P. aeruginosa RAS, ERM proteins 
and vimentin

Type-III secreted

ExoT P. aeruginosa Crkl and Crkll Type-III secreted
HopU1a Pseudomonas syringae GRP7 Type-III secreted
SpyAa Streptococcus pyogenes Vimentin and actin NA
Novel toxins

TTa Salmonella enterica subsp. 
enterica serovar Typhi

Unknown Ganglioside: various, 
GD2 preferred

PTC3a P. luminescens G-actin Secreted
PTC5a P. luminescens RHOA, RHOB and 

RHOC
Secreted

AexT A. hydrophila exoenzyme T, bARTT bacterial ADP-ribosyltransferase toxin, CDT C. difficile 
transferase, ChxA cholix toxin, Crk CT10 regulator of kinase, CST C. spiroforme toxin, CT cholera 
toxin, DT diphtheria toxin, eEF2 eukaryotic elongation factor 2, ERM ezrin—radixin—moesi, 
ETEC enterotoxigenic, Exo exoenxyme, GRP7 glycine-rich RNA-binding protein 7, HB-EGF 
heparin-binding epidermal growth factor, LRP1 low-density lipoprotein receptor-related protein 1, 
LSR lipolysis-stimulated lipoprotein receptor, NA not applicable, PE Pseudomonas aeruginosa 
exotoxin A, photox Photorhabdus toxin, PT pertussis toxin, VIP vegetative insecticidal protein
aToxins that were initially identified using bioinformatic approaches
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enhancing actin polymerization (Aktories et al. 2011). Others can alter signaling 
pathways that control actin polymerization. The primary signaling proteins that 
regulate actin polymerization are the Rho/Rac/Cdc42 family of small GTPases. 
These GTPases and their cognate regulatory proteins, which include guanine nucle-
otide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine 
nucleotide dissociation inhibitors (GDIs), are targets of numerous exotoxins and 
secreted effectors (Fig. 1.9) (Aktories 2011; Popoff 2014). For instance, C. botuli-
num C3bot toxin and B. cereus C3cer toxin ADP-ribosylate Rho GTPases, leading 
to their inactivation and subsequent actin depolymerization. Multiple Clostridium 
spp. toxins can glucosylate Rho, Rac, and Cdc42, including C. difficile TcdA and 
TcdB and C. sordellii TcsL, again leading to actin depolymerization. B. pertussis 
dermonecrotic toxin (DNT) can deamidate key Gln residues involved in GTPase 
activity, leading to enhanced actin polymerization, which also has detrimental 
effects inside the host cell. Many enteric pathogens, including S. enterica, E. coli, 
and Y. pestis, can inject effector proteins through T3SSs into host cells that mimic 
the action of Rho/Rac/Cdc42 regulatory proteins. For instance, S. enterica SopE 
and SopE2, EIEC/Shigella IpgB1, and E. coli EspT mimic Rho/Rac/Cdc42 GEFs, 
activating the GTPase to a GTP-bound state, which triggers the actin polymeriza-
tion needed for membrane ruffling and cell invasion (see Host cell invasion above). 
Rho GAPs also can be targets of inhibitory effectors, including Y. pestis YopE and 
P. aeruginosa ExoS and ExoT, which block GTPase activity and lead to hyperactive 
GTPases and increased actin polymerization.

Fig. 1.9  Regulation of Rho/Rac/Cdc42 GTPases (From: Aktories 2011)
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�Endotoxin and Superantigen Hyperstimulation of Host 
Immune System

Although the abovementioned exotoxins and secreted effectors can elicit substantial 
deleterious effects on host cells, the most egregious cell damage is done by the host 
immune system itself. This damage is predominantly the consequence of inappro-
priate activation of inflammatory responses, either by Gram-negative endotoxins or 
by specific effectors that induce the synthesis of pro-inflammatory cytokines such as 
TNF−α, IL-1, IL-6, and IL-8. Endotoxin, which is only produced by Gram-negative 
pathogens, is composed of the outer membrane LPS that is released when Gram-
negative bacteria are lysed (antibiotic treatment of certain Gram-negative infections 
is contraindicated due to the increased release of endotoxin from lysed cells). Unlike 
exotoxins, the effects of endotoxin are indirect, causing inappropriate activation or 
overstimulation of inflammatory responses that damage host cells. The lipid A moi-
ety, which is the toxic component of the LPS, mediates the binding of LPS to host 
LPS-binding protein (LBP), and the LPS-LBP complex binds to CD14 and TLR4 
proteins on macrophage cell surfaces (Schumann 2011). This binding can lead to 
the increased synthesis and release of large amounts of pro-inflammatory cytokines, 
which can lead to inappropriate activation of the host complement cascade and 
coagulation pathways. This hyperstimulation dramatically increases the levels of 
inflammation, which can lead to the potentially fatal effects of septic shock, hypo-
tension, endothelial and epithelial cell damage, and organ failure.

Pyrogenic toxin superantigens (PTSAgs) are a family of potent immunostimula-
tory exotoxins that are predominantly produced by the Gram-positive pathogens S. 
aureus and S. pyogenes (Spaulding et al. 2013). There are ~19 S. aureus and ~11 S. 
pyogenes PTSAgs, including S. aureus toxic shock syndrome toxin (TSST), S. 
aureus emetic enterotoxins (SEs; major causes of food poisoning), and S. pyogenes 
toxic shock syndrome toxin. PTSAgs induce non-specific, massive T-cell prolifera-
tion (up to 20 % of all T cells) and “trick” T cells into releasing enormous amounts 
of pro-inflammatory cytokines, resulting in a “cytokine storm” (Tisoncik et  al. 
2012). This cytokine storm is responsible for severe life-threatening symptoms, 
including cell damage, capillary leakage, hypotension, shock, respiratory distress, 
and multi-organ failure.

�Evasion of the Host Immune System

Bacterial pathogens can use many mechanisms to evade host innate and adaptive 
immune defenses (Finlay and McFadden 2006). Key processes within the innate 
defenses include phagocytosis, inflammation, and complement-mediated lysis. As 
mentioned above, intracellular pathogens can evade these defenses by invading and 
growing within phagocytic and non-phagocytic cells, which also can enhance their 
ability to disseminate throughout the host, often within phagocytic cells. The 
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expression of a polysaccharide capsule is a major mechanism by which certain 
extracellular pathogens can block phagocytosis (Gasparini et al. 2015; Hyams et al. 
2010). Bacterial capsules are usually composed of proteins and sugars that are nor-
mally found in host cells, such as poly-D-glutamic acid (B. anthracis) or hyaluronic 
acid (S. pyogenes), so they are not recognized as foreign by macrophage and neutro-
phils. In addition, the thick capsular structures associated with N. meningitidis, H. 
influenzae, and S. pneumoniae can sterically block antibody binding to cognate cell 
surface antigens and/or binding of antibody Fc domains to Fc receptors on phago-
cytic cells, leading to reductions in opsonophagocytosis and complement-mediated 
lysis (see below). S. aureus can block phagocytosis by co-opting components of the 
host coagulation system to form blood clots surrounding the cell. S. aureus expresses 
both secreted and cell wall-bound coagulase enzymes that activate prothrombin to 
thrombin, which proteolytically converts fibrinogen into fibrin blood clots 
(Peetermans et al. 2015).

Another steric hindrance to phagocytosis is pathogen growth within biofilms. 
Biofilms are communities of microbial cells that are attached to abiotic and/or biotic 
surfaces through a self-produced matrix of extracellular polymeric substances 
(EPS) containing sugars, proteins, and DNA.  Bacterial fimbriae, especially curli 
fimbriae (see above), are key components in the attachment of bacterial cells to 
biofilm surfaces. Biofilms provide a protective environment for bacteria by shield-
ing them from antibodies and phagocytic cells and by inducing high levels of resis-
tant to antibiotics (Moser et al. 2017; Peters et al. 2012; Tande and Patel 2014). The 
presence of these biofilms not only provides a sheltered environment for the growth 
of bacterial pathogens such as S. aureus, E. coli, P. aeruginosa, and S. enterica but 
also enhances the seeding of these pathogens to disseminated sites within the host, 
leading to life-threatening systemic infections (Fig.  1.10) (Lebeaux et  al. 2013). 
Localized biofilm infections within the human host are most often associated with 
the presence of indwelling medical devices such as catheters, IV tubes, ventilator 
tubes, implants, and prosthetic devices. These infections, many of which are recal-
citrant to antibiotic treatment, affect ~2 million hospitalized patients each year in 
the USA, leading to ~100,000 deaths and ~$28–36 billion in extra costs.

Innate immune responses are triggered by the recognition of bacterial surface 
components, such as peptidoglycan, LPS, lipoproteins, fimbriae, and flagellin, by 
host immune cells. These components, termed pathogen-associated molecular pat-
terns (PAMPs), are recognized by pattern recognition receptors (PRRs), such as 
Toll-like receptors (TLRs), located on the surface of host immune cells. This recog-
nition leads to the activation of MAPK and NFκB signaling pathways that induce 
the expression of pro-inflammatory cytokines and chemokines. Host inflammatory 
responses are one of the most potent aspects of innate immunity, so it is not surpris-
ing that extracellular pathogens have developed multiple strategies to block these 
signaling pathways (Luo et  al. 2015; McGuire and Arthur 2015; Rahman and 
McFadden 2006). For instance, S. enterica TlpA, S. aureus TirS, and Y. pestis 
YpTIR interfere with TLR signaling to downstream pathways. B. anthracis Lethal 
Factor (LF) toxin can proteolytically inactivate MAPKs, while C. trachomatis 
CPAF toxin can cleave NFκB, thereby blocking those signaling pathways. 
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Acetyltransferases from V. parahaemolyticus (VopA), S. enterica (AvrA), Y. pestis 
(YopJ/P), and M. tuberculosis (Eis) can modify MAPKs, blocking their 
phosphorylation-dependent activation. S. flexneri OspG, EPEC/EHEC NleH1 and 
NleH2, S. enterica SseL, C. trachomatis ChlsDub1, and Y. pestis YopJ/P can inhibit 
ubiquitin-mediated degradation of the host IκBα regulatory protein, which blocks 
the release of functional NFκB for transit into the nucleus.

Complement-mediated lysis is a major defense mechanism against bacterial 
pathogens, especially Gram-negative pathogens. Complement is a proteolytic cas-
cade involving more than 30 different complement (C) proteins residing within the 
host circulatory system. Recognition of invading bacterial pathogens by one of the 
three complement pathways (classical, lectin, or alternative pathways) leads either 
to opsonization of the pathogen, enhancing their Fc-mediated phagocytosis by host 
phagocytes, or to direct lysis of the pathogen through the generation of membrane 
attack complex (MAC) pores in the bacterial membranes. Therefore, the ability of 
bacterial pathogens to block the activation of complement is considered a major 
virulence factor (Hallstrom and Riesbeck 2010; Pizza and Rappuoli 2015; 
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Fig. 1.10  Biofilms and human disease (From: Lebeaux et al. 2013)
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Rooijakkers and van Strijp 2007; Singh et al. 2010). Several pathogens have the 
ability to block Fc-mediated phagocytosis. For instance, S. aureus protein A and S. 
pyogenes SibA bind to the Fcγ portion of IgG, thereby blocking opsonophagocyto-
sis. S. pyogenes EndoS (endo-β-N-acetylglucosaminidase) removes carbohydrates 
from IgG, thereby blocking the binding to Fc receptors. S. pyogenes SpeB and IdeS 
are cysteine proteases that proteolytically inactivate IgG and other antibody mole-
cules. Other factors inhibit the function of the C proteins directly. S. aureus SCIN 
proteins inhibit complement factor C3 convertase, which prevents the production of 
C3a, C3b, and C5a polypeptides, thereby blocking complement activation. Also, the 
S. pyogenes C5a peptidase ScpA proteolytically inactivates C5a.

Many pathogens display serum resistance, which is correlated to the ability to 
block complement-mediated lysis by co-opting host regulatory factors such as fac-
tor H (FH), factor H-like-1 (FHL-1), C4b-binding protein (C4BP), and vitronectin 
(Hallstrom and Riesbeck 2010; Rooijakkers and van Strijp 2007; Singh et al. 2010). 
These host factors can block different complement steps, which protects host cells 
from lysis. Vitronectin, a component of the ECM, blocks the formation of MACs in 
host membranes, whereas FH, FHL-1, and C4BP block the C protein proteolytic 
cascade. Bacterial pathogens can recruit these host proteins to their cell surfaces, 
thereby enhancing complement inhibition. For instance, S. aureus SdrE and Sbi can 
bind to FH, whereas S. pyogenes M protein can interact with FH, FHL-1, and 
C4BP. C4BP can also interact with E. coli OmpA and B. pertussis filamentous hem-
agglutinin (FHA). N. meningitidis has multiple FH and C4BP-binding proteins 
(PorA, Fhbp, PorB2, NspA, and NHBA) as does B. burgdorferi (OspA, OspE, 
CspA, CRASPs) (Madar et al. 2015), whereas Y. pestis only contains one FH and 
C4BP-binding protein (Ail). H. influenzae Hsf and protein E interact with vitronec-
tin, which also plays a role in bacterial adherence (Hallstrom and Riesbeck 2010; 
Singh et al. 2010).

As mentioned above, certain intracellular pathogens block host programmed 
cell death (PCD) to facilitate their replicative lifestyles. However, many extracel-
lular pathogens can induce apoptosis (non-lytic PCD) and/or pyroptosis (inflam-
matory lytic PCD) to evade host innate immune defenses, especially those 
associated with phagocytic cells (DeLeo 2004; Gao and Kwaik 2000; Grassme 
et al. 2001; Monack and Falkow 2000; Navarre and Zychlinsky 2000). These pro-
cesses can be induced by a number of different virulence factors, including bacte-
rial hemolysins, which disrupt host cell membrane integrity, or secreted exotoxins/
effectors that disrupt host cell signaling pathways, predominantly MAPK and 
NF-κB pathways. For instance, Y. pestis YopJ/P blocks the translocation of NF-κB 
into the nucleus by blocking the degradation of IκBα, whereas S. flexneri IpaB and 
S. enterica SipB induce the caspase-dependent pyroptosis cascade. P. aeruginosa 
pyoverdin can induce apoptosis through the stimulation of reactive oxygen species 
(ROS) (Rada et al. 2011). B. pertussis FHA (filamentous hemagglutinin) and ACT 
(adenylate cyclase toxin) can induce apoptosis of macrophage and neutrophils 
(Melvin et al. 2014).

Beyond their phagocytic capabilities, neutrophils have the ability to excrete his-
tone proteins and DNA to create neutrophil extracellular traps (NETs) that immobi-
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lize invading pathogens (von Köckritz-Blickwede et al. 2016). Although initially 
observed in neutrophils, other phagocytic cells can produce similar structures. 
Several pathogens can counteract these NETs by secreting proteases and DNAases. 
S. pyogenes secretes multiple DNAases (SdaD2, Sda1, SdaB, SpdI1, and SpnA), 
whereas S. aureus only secretes the Nuc DNAase. In addition, S. pyogenes strepto-
lysin O and B. pertussis ACT can suppress the formation of NETs, which is coupled 
to the suppression of the neutrophil oxidative burst.

Recognition of bacterial cell surface proteins or polysaccharides by host antibod-
ies or complement proteins triggers multiple aspects of innate immunity. Therefore, 
it is not surprising that many pathogens have developed the ability to evade these 
defenses by altering the structural components of LPS, capsules, flagella, and/or 
fimbriae, through the process of phase or antigenic variation (Palmer et al. 2016; 
van der Woude and Baumler 2004). Whether the mechanism is through the on/off 
transcriptional regulation of the synthesis of cell surface moieties (phase variation) 
or the expression of antigenically distinct variations of the same molecule (antigenic 
variation), the end result is the presentation of new cell surface structures that are 
not immediately recognized by the host immune system. Examples of these changes 
include multiple capsule serotypes in N. meningitidis and S. pneumoniae, fimbriae/
type IV pili alterations in B. burgdorferi, E. coli, H. influenzae, N. meningitidis, and 
S. enterica, LPS changes in C. jejuni, H. pylori, N. meningitidis, and N. gonor-
rhoeae, and flagella variations in H. pylori, S. enterica, and C. jejuni.

�Regulation of Virulence Factor Expression

Beyond the antigenic and phase variation mentioned above, bacterial pathogens 
regulate the expression of their virulence factors in response to many different sig-
nals. These cues include environmental signals within the host milieu that affect the 
growth and persistence of pathogens, including iron availability, oxygen concentra-
tions, temperature, osmolarity, and pH. Pathogens must also be able to respond to 
variations in the concentrations of host-specific defense molecules, including reac-
tive oxygen and nitrogen species (ROS, RNS) and antimicrobial chemicals such as 
bile salts. In addition, pathogens growing within biofilms use small molecule auto-
inducers and quorum sensing (QS) pathways to alter their transcriptional patterns to 
adapt to conditions within the biofilm.

The predominant mode of virulence gene regulation is at the level of transcrip-
tion initiation, utilizing either classic DNA-binding repressor and activator proteins 
[(including two-component regulatory systems (TCSs); see below], or alternative 
sigma (σ) factors that modulate RNA polymerase activity. For instance, P. aerugi-
nosa expresses 4 TCSs, 434 transcription factors, 24 σ factors (8 % of genome), and 
3 QS systems (Chatterjee et al. 2016). In addition, numerous examples of posttran-
scriptional regulation at the level of translation initiation by small noncoding RNAs 
(ncRNAs) have been identified recently. A well-studied example of transcriptional 
regulatory proteins is the ferric uptake regulator (Fur) superfamily of repressor pro-
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teins (see Fig. 1.7; Iron acquisition pathways above) (Fillat 2014; Porcheron and 
Dozois 2015; Troxell and Hassan 2013). These regulatory proteins, which are ubiq-
uitous in the bacterial world, control the expression of many different genes in 
response to metal ion concentrations, including iron (Fur), zinc (Zur), nickel (Nur), 
and manganese (Mur). The Fur repressor uses ferrous (Fe+2) ion as a corepressor 
(Fur-Fe+2 complex) to bind to iron-regulated gene promoters and block transcription 
initiation in response to intracellular iron concentrations, an essential process for 
the virulence of many bacterial pathogens that compete with host cells for limited 
iron stores. Another important family of transcription regulators are the fumarate 
and nitrate reduction regulator (FNR) activators, which respond to O2 availability 
through the oxygen-dependent conformational switch of Fe-S clusters (Green et al. 
2014). These regulators are essential for the ability of facultative anaerobes such as 
E. coli, S. enterica, K. pneumoniae, and Y. pestis to persist in anaerobic and aerobic 
environments found in human hosts.

Sigma (σ) factors modulate the activity of RNA polymerase during transcription 
initiation (Feklistov et al. 2014). While the major housekeeping σ70 factor is found 
in almost all prokaryotes, alternative σ factors are used by E. coli and many other 
enteric pathogens to respond to general stress responses, including hyperosmolarity, 
acidic pH, oxidative stress, and lethal heat shock (Kazmierczak et al. 2005; Österberg 
et al. 2011). Proper and timely responses to these detrimental stresses play a key 
role in the persistence of many pathogens within the human host. The general stress 
response σ factor in Gram-negative enterics is σs (RpoS) (Hengge-Aronis 2002; 
Shen and Fang 2012), and it is σB (SigB) in B. anthracis, M. tuberculosis, and other 
Gram-positive pathogens (Paget 2015). Alternative σ factors also function in the 
specific transcription of virulence factors, such as sporulation genes (σF, σE, σG, 
σK) in Bacillus spp. (Fimlaid and Shen 2015), flagella biosynthesis (σ28, FliA) in 
most motile pathogens (Helmann 1991), pyoverdine synthesis (PvdS) and pili for-
mation (σN, RpoN) in P. aeruginosa (Miyazaki et al. 1995), and SPI-1- and SPI-2-
encoded virulence factors in S. enterica (Kazmierczak et al. 2005).

The important role of small ncRNAs in the transcriptional and translational regu-
lation of virulence gene expression has become more apparent in recent years (Bhatt 
et al. 2016; Cech and Steitz 2014; Fechter et al. 2014; Lebreton and Cossart 2017). 
These ncRNAs form complementary RNA–RNA complexes with the 5′-untrans-
lated regions (5′-UTRs) of virulence genes and can act as riboswitches to regulate 
the stability of mRNA transcripts or the initiation of translation of these transcripts. 
Riboswitches can respond either to the levels of small metabolites, such as iron-
responsive RhyB in E. coli (Porcheron and Dozois 2015), S-adenosylmethionine 
(SAM) riboswitches SreA and SreB in L. monocytogenes (Lebreton and Cossart 
2017) and the QS regulator RNAIII in S. aureus (Fechter et al. 2014), or to environ-
mental conditions, such as the PrfA thermosensor in L. monocytogenes (Lebreton 
and Cossart 2017). Small ncRNAs can also control the RNA-binding activity of 
other regulatory proteins, such as the CsrA/RsmA RNA-binding proteins of Y. pes-
tis and other enteric pathogens (Heroven et al. 2012; Vakulskas et al. 2015).

Many of the environmental and host signals that control these different regula-
tory mechanisms are initially sensed by two component regulatory systems (TCSs) 
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(Beier and Gross 2006; West and Stock 2001; Zschiedrich et al. 2016). TCSs are 
some of the most abundant proteins expressed in bacterial pathogens, and they are 
intimately involved in various virulence mechanisms. TCSs are comprised of a sen-
sor histidine kinase (HK) located at the bacterial cell surface and a response regula-
tor (RR), which usually acts as a positive or negative transcription factor. Recognition 
of an environmental or host signal by the HK leads to its autophosphorylation on a 
histidine residue, followed by phosphorelay from the histidine residue to an aspar-
tate residue in the RR, which in turn activates its transcriptional activity. Some well-
studied TCSs (Table  1.2) include OmpR-EnvZ, which regulates osmolarity and 
porin synthesis in S. enterica and other enterics; V. cholerae ToxR-ToxS, which 
regulates the ToxT transcription factor that controls the expression of cholera toxin 
and toxin co-regulated pili (Tcp) in response to changes in pH, osmolarity, tempera-
ture, and bile salts; B. pertussis BvgA-BvsS, which regulates pertussis toxin expres-
sion and biofilm formation in response to temperature changes; S. pyogenes 
CovR-CovS, which regulates the expression of many virulence genes including 
streptolysin S (SLS) and streptolysin O (SLO); M. tuberculosis DovR-DovS, which 
responds to oxygen concentrations to regulate latency and resistance to nitric oxide 
gas (NO); and S. aureus AgrA-AgrC and V. cholerae LuxP-LuxQ, which control 
quorum sensing.

Quorum sensing (QS) is widely used by Gram-positive and Gram-negative 
pathogens to regulate virulence gene expression and biofilm formation in response 
to host signals and population densities (Castillo-Juarez et  al. 2015; Dow 2017; 
Parker and Sperandio 2009; Papenfort and Bassler 2016; Hawver et  al. 2016). 
Pathogens produce and secrete extracellular signaling molecules, termed autoinduc-
ers, that accumulate in the extracellular milieu. Increased levels of the autoinducers 
lead to cell-to-cell communication and regulation of multiple cellular responses in 
the pathogens. Gram-negative pathogens, such as P. aeruginosa, V. cholerae, and L. 
pneumophila, usually synthesize N-acyl L-homoserine lactones (AHLs) by LuxI-
type synthases, which diffuse across cell membranes and interact with intracellular 
LuxR-type receptors to control virulence factor transcription. Gram-positive patho-
gens, such as S. aureus, E. faecalis, and B. anthracis, synthesize and secrete autoin-
ducer oligopeptides (AIPs) that interact with TCSs to control QS and transcription. 
Regardless of the mechanism, the end result is the induction or repression of genes 
encoding many different virulence factors.

�Identification and Characterization of New Virulence Factors

There is no question that the “omics” innovations of the last 30 years have trans-
formed our knowledge of bacterial pathogens and their virulence factors (Bentley 
and Parkhill 2015; Jean Beltran et al. 2017; Land et al. 2015). With the advent of 
second-generation (“next-gen”) and third-generation (single molecule) DNA 
sequencing protocols, the timescale to determine the whole genome sequence 
(WGS) of a bacterial pathogen has been reduced to hours and days. Beyond the 
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Table 1.2  TCS regulating bacterial virulence (Adapted from: Beier and Gross 2006)

Organism TCS
Presumptive 
stimulus

Regulation of, or effect of 
inactivation

S. enterica PhoP-PhoQ Mg2+/Ca2+ Mg2+ uptake, modification of LPS, 
resistance to antimicrobial peptides, 
pmrD, transcriptional regulator genes 
ssrB, hilA, slyA, other virulence-
related genes posttranscriptional 
regulation of SsrA

PmrA-PmrB Fe3+ Lipid A modification
RcsC-YojN-
RcsB

Desiccation, 
osmotic shock, 
growth on solid 
surfaces; 
specific in vivo 
stimulus 
unknown

Colonic acid capsule synthesis, ftsA, 
osmC, motility and chemotaxis 
genes, fhlDC, tviA, rprA

OmpR-EnvZ Osmolarity Porin genes, ssrB-ssrA, stationary 
phase acid response

SsrB-SsrA ND SPI-2 TTSS and effector genes
SirA-BarA ND csrB, hilD

Shigella flexneri OmpR-EnvZ Invasion genes
S. sonnei CpxR-CpxA pH? Virulence regulator gene virF

Vibrio cholerae ArcA-ArcB Virulence regulator gene toxT

Helicobacter 
pylori

FlgR-FlgS ND Flagellar genes
ArsR-ArsS Low pH Urease and other acid-resistance 

genes
Campylobacter 
jejuni

DccR-DccS ND Colonization defect

Legionella 
pneumophila

CpxR-CpxA ND icmR and other icm-dot genes, no 
effect on intracellular replication in 
amoeba and human macrophages

LetA-LetS ND Growth defect in amoeba but not in 
human macrophages

Yersinia 
pseudotuberculosis

PhoP ND Virulence attenuation, reduced 
survival in macrophages

Pseudomonas 
aeruginosa

AlgR-FimS ND Alginate biosynthesis, twitching 
motility

AlgB-KinB ND Alginate biosynthesis
RocA1-RocS1 
(SadR-SadS)

ND Fimbrial genes, biofilm maturation

PprB-PrpA ND Virulence genes and cell motility, QS 
signal production

RtsM (RetS) ND TTSS and effector genes
Brucella abortus BvrR-BvrS ND omp genes, virulence attenuation, 

reduced invasiveness in macrophages 
and HeLa cells

(continued)
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relatively straightforward DNA-based speciation of pathogenic isolates, which has 
the potential to revolutionize the rapid clinical identification of disease-causing bac-
teria, genomic analyses coupled with metagenomics studies also have increased our 
knowledge of vital pathogen–host and pathogen–microbiota interactions within the 
host milieu. WGS analyses can rapidly identify putative virulence factors based on 
sequence homologies (as seen in the individual pathogen chapters herein), and viru-
lence factor activity relationships (VFARs) can be used to compare the structures 
and activities of these newly identified virulence factors to known factors (Waseem 

Table 1.2  (continued)

Organism TCS
Presumptive 
stimulus

Regulation of, or effect of 
inactivation

Neisseria 
meningitidis

MisR-MisS ND Composition of LOS inner core

B. pertussis BvgA-BvgS Temperature, 
redox state of 
quinones, SO4

2−

, nicotinic acid

Toxin and adhesin expression, 
biofilm formation

Listeria 
monocytogenes

DegU ND Virulence attenuation
VirR-VirS ND Virulence attenuation
AgrA-AgrC ND Virulence attenuation
LisR-LisK ND Virulence attenuation

Mycobacterium 
tuberculosis

DevR-DevS ND Virulence attenuation
MprA-MprB ND Virulence attenuation
RegX3-SenX3 ND Virulence attenuation
PrrA-PrrB ND Intracellular growth defect during the 

early stages of macrophage infection
Streptococcus 
pneumoniae

CiaR-CiaH ND Virulence relevant gene htrA

RR04-HK04 ND Virulence genes psaB, psaC, psaA

RR06-HK06 ND Virulence gene cbpA

RitR ND Iron homeostasis
MicA-MicB Oxygen? Virulence attenuation

Streptococcus 
pyogenes

CsrR-CsrS 
(CovR-CovS)

Mg2+ Capsule synthesis, virulence genes 
ska, sagA

Streptococcus 
agalactiae

CsrR-CsrS 
(CovR-CovS)

ND Virulence attenuation

S. mutans SMRR11-
SMHK11

ND Biofilm formation and acid resistance

Staphylococcus 
aureus

AgrA-AgrC AIP Regulatory RNA III
SrrA-SsrB Oxygen? Exoprotein genes, RNA III
SaeR-SaeS ND Exoprotein genes
ArlR-ArlS ND Exoprotein genes
LytR-LytS ND Holin-like genes lrgA, lrgB

Clostridium 
perfringens

VirR-VirS ND Toxin (pfoA, cpb2) and adhesion 
genes (cna)

ND not determined
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et  al. 2017). However, transcriptomic and proteomic approaches are needed to 
determine the expression of these virulence factors in response to environmental 
and host signals. While the expression patterns of virulence factors within the host 
milieu is critical to understanding a pathogen’s virulence potential, equally impor-
tant is deciphering spatial and temporal protein–protein interactions (PPIs) between 
pathogen and host proteins using a myriad of proteomic approaches, including clas-
sical immunoprecipitation and cross-linking techniques, two-hybrid approaches, 
and immunoaffinity purification coupled to mass spectrometry (IP-MS) methodolo-
gies. MS technologies are also used to study the various different types of posttrans-
lational modifications (PTMs), such as phosphorylation, adenylation, deamination, 
glycosylation, ADP-ribosylation, ubiquitination, and SUMOylation, that occur to 
both bacterial and host proteins during the infection process (Ribet and Cossart 
2010). Data from these multi-omics approaches will not only provide valuable 
information about the virulence capabilities of bacterial pathogens but also will 
identify potential targets for novel anti-virulence strategies, which will be discussed 
in the final chapter. The ability to decipher the complete genomic, metabolomics, 
transcriptomic, and proteomic potential of bacterial pathogens in the context of 
pathogen–host interactions has never been greater, and all these approaches will 
need to be utilized to understand and exploit bacterial virulence factors in generat-
ing the new anti-virulence strategies so desperately needed in this age of antibiotic 
resistance.
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Chapter 2
Bacillus spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Bacillus anthracis – chromosome, 5,227,293 bp; 5508 predicted ORFs (Read 
et al. 2003):

•	 pOX1 plasmid: 181,677 bp; 217 predicted ORFs
•	 pOX2 plasmid: 94,829 bp; 113 predicted ORFs

–– Bacillus cereus – chromosome: 5,426,909 bp; 5366 predicted ORFs (Ivanova 
et al. 2003)

•	 Cell morphology:

–– Large, boxy rod-shaped cells; usually in single short chains or long chains 
(Fig. 2.1)

–– Endospore former; subterminal or central endospores that do not swell the 
cell

•	 Gram stain:

–– Gram positive; older cells tend to stain Gram negative

•	 Growth:

–– Obligate aerobes or facultative anaerobes; catalase positive
–– Ubiquitous environmental pathogens found primarily in soil; also in water, 

dust, agricultural products, and invertebrates; primarily exist in endospore 
form

–– Common laboratory contaminant
–– Most species are highly motile (except Bacillus anthracis) with peritrichous 

flagella – involved in biofilm formation (B. cereus)
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–– >300 species; most are rarely associated with human disease:

•	 Two major human pathogens: B. anthracis and B. cereus

�Disease States Associated with Bacillus spp.

•	 B. anthracis:

–– Anthrax – cutaneous (most common), inhalation (most lethal), and gastroin-
testinal (rare):

•	 Cutaneous: endospores enter cuts or abrasions through direct contact with 
infected animal, wool, or animal hides; results in eschar lesion (Fig. 2.2)

•	 Inhalation: endospores enter the lungs and germinate in lung phagocytes; 
bacteria enter bloodstream and lead to septic shock symptoms

•	 Gastrointestinal: endospores are ingested usually in undercooked meat; 
leads to gastrointestinal pain and bleeding

•	 B. cereus:

–– Two forms of food-borne intoxications:

•	 Short incubation time emetic intoxication:

–– Nausea and emesis (vomiting)
–– Associated with heat-stable emetic toxin (ETE) cereulide

•	 Long incubation time diarrheal intoxication:

–– Abdominal cramps and diarrhea; non-emetic
–– Associated with heat-labile enterotoxin Nhe and/or hemolytic entero-

toxin HBL

–– Ocular infections; endocarditis; musculoskeletal infections

Fig. 2.1  B. anthracis cells 
(From: Public Health 
Image Library (PHIL) 
#9826)

2  Bacillus spp.
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�Virulence Factors

•	 B. anthracis (Mikesell et al. 1983):

–– Virulence plasmids pXO1 and pXO2 are essential for virulence
–– Adherence to host cells:

•	 BslA (Bacillus anthracis S-layer protein A) (Kern and Schneewind 2008, 
2010):

–– Major S-layer hydrophobic protein
–– Binds to host cells by interacting with host integrin α2β1 and comple-

ment component C1q
–– Negatively regulated by InhA protease (Tonry et al. 2012)
–– bslA gene encoded on the pXO1 virulence plasmid

•	 Capsule:

–– Poly-γ-D-glutamic acid capsule
–– Antiphagocytic factor; used to evade host immune system
–– Encoded by capBCADE operon on the pXO2 virulence plasmid

•	 S-layer:

–– ~24 proteins that self-assemble into a crystalline sheet surrounding the 
cell; may contain other adhesins besides BslA

–– Binds extracellular matrix (ECM) components

–– Growth in host cells:

•	 Iron acquisition – required for growth in host:

Fig. 2.2  Eschar lesion 
(From: PHIL #1934)

Virulence Factors
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–– Siderophores (Cendrowski et al. 2004; Hotta et al. 2010; Wilson et al. 
2010):

•	 Petrobactin:

–– Catecholate iron siderophore; predominate siderophore secreted 
early in infection

–– Encoded by asbAB genes

•	 Bacillibactin:

–– Catecholate iron siderophore; secreted late in infection
–– Encoded by bacACEBF operon

–– Fe-heme scavengers (Segond et al. 2014):

•	 IlsA (iron-regulated leucine rich surface protein type A):

–– Binds host heme, hemoglobin, and ferritin
–– Analogous to Isd (iron-regulated surface determinant) system in 

Staphylococcus aureus

•	 Biofilms: capable of forming biofilms, but unclear if biofilms of vegetative 
B. anthracis exist in the environment or in human hosts

–– Damage to host cells:

•	 Anthrax toxins (Fig. 2.3) (Friebe et al. 2016; Liu et al. 2014; Prince 2003):

–– A-B exotoxins – one common B subunit with two different A subunits:

Fig. 2.3  Anthrax toxin effects (From: Prince 2003)

2  Bacillus spp.
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•	 B subunit:

–– PA (protective antigen): forms homo-heptameric complex
–– Binds to host anthrax toxin receptor (ATR) and host capillary 

morphogenesis protein CMG2
–– Encoded by pagA gene on pOX1 virulence plasmid

•	 A subunits:

–– EF (edema factor):

•	 Calcium-/calmodulin-dependent adenylate cyclase; converts 
ATP to cAMP

•	 Increases host intracellular cAMP levels; induces water and 
ion loss from cells and edema in surrounding tissues

•	 Usually targets liver hepatocytes

–– LF (lethal factor):

•	 Zn metalloprotease
•	 Cleaves host mitogen-activated protein kinases (MAPKs); loss 

of these signaling proteins leads to cell death
•	 Usually targets cardiomyocytes and vascular smooth muscle 

cells

–– Encoded by lef (LF) and cya (EF) genes on pOX1 virulence 
plasmid

•	 Anthrolysin O (ALO) (Shannon et al. 2003):

–– Cholesterol-dependent cytolysin
–– Belongs to the β-pore-forming toxin (β-PFT) family of pore-forming 

toxins (Peraro and van der Goot 2016)
–– Lytic activity against host phagocytic cells
–– Encoded by bas3109 gene

•	 B. cereus – most strains lack the pXO1 and pXO2 virulence plasmids:

–– Adherence to host cells: same as B. anthracis; capsule synthetic genes are 
encoded on the chromosome

–– Growth in host cells:

•	 Iron acquisition: same as B. anthracis
•	 Biofilms (Majed et al. 2016):

–– Excellent biofilm former in host and in environment
–– Plays key roles in persistence and ubiquitous distribution in the 

environment
–– Provides resistance to various stresses
–– Excellent adhesive capacity on biotic and abiotic substrates

Virulence Factors
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–– Host cell damage:

•	 A-B exotoxins: none; lack of pOX1 virulence plasmid
•	 Cereulide (Ehling-Schulz et al. 2015):

–– Heat-stable emetic toxin (ETE); associated with short incubation time 
emetic intoxication

–– Pore-forming cytolytic toxin
–– Hydrophobic cyclic dodecadepsipeptide (Fig. 2.4)
–– Encoded on a pOX-1-like plasmid
–– Synthesized by the nonribosomal cereulide synthetase (ces) complex 

(Ehling-Schulz et al. 2005)

•	 Hemolysin BL (HBL) (Ramarao and Sanchis 2013; Senesi and Ghelardi 
2010):

–– Associated with long incubation time diarrheal intoxication
–– Tripartite toxin: B, L1, and L2 subunits; encoded by hblA, hblC, and 

hblD genes
–– Pore-forming cytolytic exotoxin; all three subunits are needed for 

toxicity

Fig. 2.4  Cereulide structure (From: Thieme E-journals)

2  Bacillus spp.
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•	 Nonhemolytic enterotoxin (Nhe) (Senesi and Ghelardi 2010):

–– Associated with long incubation time diarrheal intoxication
–– Tripartite toxin: NheA, NheB, and NheC subunits; encoded by nheA, 

nheB, and nheC genes
–– Pore-forming cytolytic exotoxin; all three subunits are needed for 

toxicity

•	 Hemolysin HlyI (cereolysin O) (Ramarao and Sanchis 2013):

–– Homologous to B. anthracis anthrolysin O (ALO)
–– Heat-labile, cholesterol-dependent cytolysin; belongs to the β-PFT 

family of pore-forming toxins
–– Encoded by hlyI gene

•	 Hemolysin HlyII (Ramarao and Sanchis 2013):

–– Heat-labile, cholesterol-independent cytolysin; belongs to the β-PFT 
family of pore-forming toxins

–– Encoded by hlyII gene

•	 Hemolysin HlyIII (Ramarao and Sanchis 2013):

–– Heat-labile cholesterol-independent cytolysin
–– Encoded by hlyIII gene; least characterized B. cereus hemolysin

•	 Hemolysin IV (cytotoxin K, CytK) (Ramarao and Sanchis 2013; Senesi 
and Ghelardi 2010):

–– Cytolysin; belongs to the β-PFT family of pore-forming toxins
–– Encoded by cytK gene

•	 Phosphatidylcholine-specific phospholipase C (PC-PLC) (Pomerantsev 
et al. 2003):

–– Responsible for the hemolytic properties of B. cereus
–– Encoded by plc gene

•	 Sphingomyelinase (SPH) (Pomerantsev et al. 2003):

–– Responsible for hemolytic properties of B. cereus
–– Encoded by sph gene

Virulence Factors
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�Regulation of Virulence Factor Expression

•	 Quorum sensing:

–– PlcR–PapR regulon (Agaisse et al. 1999; Grenha et al. 2013):

•	 PlcR  – 34  kDa global transcriptional activator; helix-turn-helix (HTH) 
type regulator:

–– Inactive in B. anthracis due to nonsense mutation; hence, virulence fac-
tors activated in B. cereus are not expressed in B. anthracis

•	 PapR – 48 aa peptide:

–– Secreted, reimported, and then truncated to a heptapeptide (PapR7)
–– Binding to PlcR activates its function

•	 PlcR–PapR binds to PlcR-box palindromic DNA sequences upstream of 
target genes

•	 At least 45 genes are under PlcR–PapR regulation: environmental sensors, 
enterotoxins, cytolytic exotoxins, and hemolysins – these virulence factors 
are not expressed in B. anthracis

•	 Iron regulon:

–– Fur (Fe utilization repressor) – Fe+2-binding repressor protein:

•	 Regulates all aspects of iron regulation
•	 Fe+2-binding activates Fur repressor activity
•	 Fe+2-Fur binds to Fur-box DNA sequences upstream of its negatively regu-

lated target genes
•	 Low Fe+2 concentrations lead to derepression of siderophore genes; also 

regulated by temperature, oxidative stress, and CO2 atmosphere

•	 Anthrax toxin synthesis – pagA, lef, and cya regulon (B. anthracis):

–– AtxA: transcriptional activator (Dai et al. 1995; Fouet and Mock 2006; Uchida 
et al. 1993; Kolsto et al. 2009)

–– PagR: transcriptional repressor
–– Encoded on pXO1 pathogenicity island (PAI)

•	 Capsule synthesis – capBCADE operon (B. anthracis):

–– AcpA and AcpB (Fouet and Mock 2006):

•	 Transcriptional activators; regulated by AtxA activator
•	 Encoded on pXO2 pathogenicity island (PAI)

2  Bacillus spp.
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Chapter 3
Clostridium spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Clostridium botulinum A strain Hall chromosome: 3,886,916 bp; 3650 pre-
dicted ORFs (Sebaihia et al. 2007)

–– Clostridium difficile chromosome: 4,290,252  bp; 3776 predicted ORFs 
(Sebaihia et al. 2006)

–– Clostridium perfringens chromosome: 3,031,430 bp; 2660 predicted ORFs 
(Shimizu et al. 2002)

–– Clostridium septicum chromosome: 3,266,706  bp; 3125 predicted ORFs 
(Benamar et al. 2016)

–– Clostridium sordellii chromosome: 3,571,992  bp; 3586 predicted ORFs 
(Scaria et al. 2015)

–– Clostridium tetani chromosome  – 2,799,250  bp; 2372 predicted ORFs 
(Bruggemann et al. 2003):

•	 Plasmid: 74,082 bp; 61 predicted ORFs; encodes the tetanus toxin

•	 Cell morphology:

–– Rod-shaped cells (Fig. 3.1)
–– Endospore formers: terminal or subterminal endospores; swollen sporangium 

gives cells a “drumstick” appearance
–– Flagella  – most species have peritrichous flagella including C. botulinum, 

C. difficile, C. septicum, C. sordellii, and C. tetani:

•	 C. perfringens does not have flagella
•	 The role of Clostridia flagella in virulence is unclear; may play a role in 

binding to host mucus
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•	 Gram stain:

–– Gram positive; older cells tend to stain Gram negative

•	 Growth:

–– Obligate anaerobes (vs. aerobic Bacillus spp.)
–– Ubiquitous environmental pathogens; found primarily in soil in endospore 

form
–– Biofilm formation (Pantaleon et al. 2014):

•	 71 Clostridium species can form either mono-species or multi-species 
biofilms

•	 Nine species have the ability to form mono-species biofilms, including the 
pathogens C. difficile and C. perfringens (see below)

–– At least 100 species; most are not associated with human disease:

•	 Notable human pathogens: C. botulinum, C. difficile, C. perfringens, C. 
septicum, C. sordellii, and C. tetani

�Disease States Associated with Clostridium spp.

•	 Most of the disease symptomology associated with Clostridium infections is due 
to the action of secreted exotoxins

•	 C. botulinum (Shukla and Sharma 2005):

Fig. 3.1  C. tetani cells 
with terminal endospores 
(From PHIL # 14348)

3  Clostridium spp.
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–– Botulism; flaccid paralysis
–– Four clinical categories of botulism:

•	 Food-borne intoxication: ingestion of foods contaminated with the botuli-
num toxin (BoNT)

•	 Inhalation: endospores are inhaled
•	 Infant: endospores are ingested (Fig. 3.2)
•	 Wound: endospores are in wound
•	 Endospores germinate within the host and begin to grow vegetatively, pro-

ducing BoNT and other virulence factors

–– BoNT acts locally by blocking the release of stimulatory acetylcholine (ACh) 
neurotransmitters at cholinergic synapses in the peripheral nervous system 
(see mechanism of action below):

•	 Leads to an inability of muscles to contract – flaccid paralysis (Fig. 3.2)

–– Initial symptoms are autonomic nervous system dysfunctions  – weakness, 
dizziness, reduced salivation, nausea, vomiting, and abdominal pain

–– Subsequent neurologic symptoms  – blurred vision, paralysis of facial and 
throat muscles, leading to inability to swallow and speech difficulties

–– Progressive paralysis ultimately results in weakening of respiratory and vis-
ceral muscles – respiratory paralysis usually is the cause of death

–– Four groups of C. botulinum strains (Brunt et al. 2016):

•	 Groups I–IV; based on disease association, germination signals, and the 
BoNTs produced (see below)

Fig. 3.2  Infant botulism; 
“floppy baby” syndrome 
(From: PHIL #1935)

Disease States Associated with Clostridium spp.
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•	 C. difficile (Rupnik et al. 2009):

–– Antibiotic-associated diarrhea; pseudomembranous colitis:

•	 Antibiotic treatment depletes the normal microbiota of GI tract, removing 
the barrier effect – allows ingested C. difficile spores to germinate and the 
resulting vegetative cells to gain a growth advantage (Theriot and Young 
2015)

–– C. difficile endospores in healthcare environments are ingested; able to pass 
through the acidic stomach environment

–– Endospores germinate in the small intestine; vegetative cells colonize the 
small intestine and produce toxin A (TcdA) and toxin B (TcdB):

•	 Toxins inhibit cell signaling pathways, resulting in the induction of pro-
inflammatory cytokines and chemokines – leads to neutrophil infiltration 
and pseudomembranous colitis

•	 C. perfringens (Rood 1998):

–– Soft tissue infections: cellulitis, fasciitis; usually does not involve infection of 
the host musculature

–– Myonecrosis (gas gangrene) – also caused by C. septicum and C. sordellii:

•	 Entry of C. perfringens type A vegetative cells or endospores into trau-
matic or surgical wounds

•	 Endospore germination results in growth of vegetative cells and produc-
tion of exotoxins

•	 Leads to muscle necrosis with gas: intense pain, high fever, pus, subcuta-
neous gas bubbles, skin discoloration, and foul odor (Fig. 3.3)

•	 Life-threatening rapid progression  – leads to shock, renal failure, and 
death

–– Food poisoning:

•	 Very common; third highest incidence behind Salmonella enterica and 
Staphylococcus aureus

•	 Associated with ingestion of vegetative cells or endospores; often found in 
contaminated or undercooked meat products

•	 Seven to 15 h after ingestion, vegetative cells sporulate, resulting in the 
production of the sporulation-associated CPE enterotoxin (see below)

•	 CPE induces water loss into the intestinal lumen, resulting in crampy diar-
rhea and foamy, foul-smelling stools

–– Enteritis necroticans:

•	 Associated with high-protein meat meals, predominantly undercooked 
pork, which allow C. perfringens type C vegetative cells in the contami-
nated meat to rapidly grow

3  Clostridium spp.



55

•	 Vegetative cells produce the lethal, necrotizing beta (β) toxin (see below) – 
induces hemorrhagic necrosis and intestinal villi destruction

•	 Leads to vomiting, diarrhea, severe abdominal pain, and bloody stools
•	 Disease is also associated with ingestion of sweet potatoes – contain a heat 

resistant trypsin inhibitor that protects β toxin from trypsin-dependent 
inactivation in the intestinal tract

•	 C. septicum:

–– Myonecrosis (gas gangrene) – similar symptoms as C. perfringens:

•	 Can be associated with tissue damage done by colorectal malignancies 
(Gnerlich et al. 2011; Hermsen et al. 2008)

–– Rare cause of meningoencephalitis/cerebritis or brain abscesses; associated 
with high morbidity and mortality (Macha et al. 2016):

•	 May be the result of C. septicum leaving the GI tract, possibly through 
damage done by malignancies, and disseminating to the CNS

•	 C. sordellii (Aldape et al. 2006; Aronoff 2013):

–– Infections can occur following trauma, childbirth, routine gynecological pro-
cedures, and medically induced abortions; rare but almost 100% fatal

–– Fatal toxic shock syndrome: afebrile, nausea, vomiting, diarrhea, severe 
abdominal pain, and hypotension

–– Also can cause soft tissue infections and myonecrosis (gas gangrene)

Fig. 3.3  Gas gangrene (From: Schropfer et al. 2008)

Disease States Associated with Clostridium spp.
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•	 C. tetani (Aronoff 2013):

–– Tetanus; spastic paralysis (Fig. 3.4)
–– Most cases result from contamination of wounds with endospores, which ger-

minate into vegetative cells and release tetanus toxin (TeNT) through cell 
lysis

–– Unlike BoNT, TeNT enters peripheral nerves but is transported to the central 
nervous system, where it enters inhibitory motor neurons and blocks the 
release of inhibitory neurotransmitters glycine and gamma-aminobutyric acid 
(GABA)

–– Early symptoms include pharyngitis, difficulty swallowing and breathing, 
chest pain, and disorientation

–– Eventually leads to intense, painful spasms and muscle rigidity, including 
neck rigidity, jaw spasms (lockjaw), facial muscle paralysis (risus sardoni-
cus), trunk and limb rigidity (opisthotonos), and respiratory failure (cause of 
death)

�Virulence Factors

•	 C. botulinum:

–– Adherence to host cells: no known functional adhesins
–– Growth in host milieu:

•	 Endospore germination (Brunt et al. 2016):

Fig. 3.4  Tetanus spastic paralysis (From: Painting by Sir Charles Bell – 1809)
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–– Essential for vegetative growth, and hence, disease in the host
–– Germinant signals bind to germinant (ger) receptors within the endo-

spore inner membrane
–– Binding triggers release of Ca2+-dipicolinic acid (DPA) and its exchange 

for water, which serves to rehydrate the core and induce vegetative cell 
outgrowth

•	 Germinants – amino acids L-alanine, L-cysteine, L-methionine, L-serine, 
L-phenylalanine, L-threonine, and glycine; L-lactate can help 
germination:

–– Varies between strains and groups I–IV

•	 Germinant receptors: GerA, GerB, and GerC; various alleles are present in 
groups I–IV

–– Damage to host cells:

•	 Exotoxins:

–– Botulinolysin (Popoff 2014):

•	 Member of the clostridial family of cholesterol-dependent pore-
forming cytolysins (CDCs) – perfringolysin O, septicolysin, sordel-
lilysin, and tetanolysin

•	 Pore formation disrupts host cell membranes and ion homeostasis

–– C2 toxin (Aktories and Barth 2004):

•	 A-B exotoxin:

–– A subunit (C2I): ADP-ribosyltransferase activity
–– B subunit (C2II): binding and translocation domains

•	 ADP-ribosylates monomeric G-actin on Arg177; blocks the polym-
erization of host actin cytoskeleton

–– C3bot1 and C3bot2 toxins (Wilde and Aktories 2001):

•	 Members of bARTT family of C3 ADP-ribosyltransferases; similar 
to P. aeruginosa ExoS and T

•	 ADP-ribosylates the RhoA, RhoB, and RhoC GTPases
•	 Blocks the GEF-dependent activation of the GTPases; locks the 

GTPases in an inactive GDP-bound state (complexed with GDI)
•	 Blocks Rho signaling and the actin cytoskeleton; disrupts tight junc-

tions between epithelial cells and between endothelial cells

–– Botulinum NeuroToxins (BoNT, Botox®) (Montecucco and Molgo 
2005; Swaminathan 2011):

•	 Extremely potent neuroparalytic toxins:
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–– Inhibit the ability of muscles to contract, resulting in flaccid 
paralysis

–– Death is usually due to respiratory arrest

•	 Eight distinct protein sequences  – BoNT/A–H; 40 different 
subtypes:

–– Can use MALDI-TOF/MS diagnostically to analyze BoNT vari-
ants (Kalb et al. 2015)

–– Encoded on the chromosome, plasmids, and bacteriophage (Hill 
et al. 2015)

•	 BoNT production varies between the four groups of C. botulinum 
strains:

–– Group I produces A, B, F, and H
–– Group II produces B, E, and F
–– Group III produces C and D
–– Group IV produces G
–– BoNT/A, B, E, and F cause most of the human intoxications:

•	 Order of toxicity: F > C > A > D > B

•	 A-B exotoxins:

–– Synthesized as a single polypeptide; posttranslationally cleaved 
to form two subunits held together by disulfide bonds:

•	 A subunit (light chain): heat-labile Zn metalloprotease
•	 B subunit (heavy chain): binding and translocation domains

•	 Mechanism of action  – acts locally at neuromuscular cholinergic 
synapses in the peripheral nervous system:

–– B subunit binds host cell receptors:

•	 Polysialoganglioside (PSG) receptor on presynaptic 
membranes

•	 Synaptotagmin and/or SV2 protein receptors; binding facili-
tates entry into the lumen of synaptic vesicles

–– A subunit translocates into cytosol, where it cleaves SNARE 
complex proteins of the synaptic fusion complex using its Zn pro-
tease activity:

•	 Different specificities for SNARE proteins:

–– BoNT/B, D, F, and G: cleave synaptobrevin-2 (VAMP-2)
–– BoNT/C: cleave syntaxin 1A
–– BoNT/A, C, and E: cleave SNAP-25
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–– Cleavage of SNARE proteins inhibits synaptic vesicle fusion to 
the cell membrane – blocks release of activating neurotransmitter 
acetylcholine (ACh)

•	 C. difficile [(Janoir 2016) and reference therein]:

–– Adherence to host cells:

•	 Fimbrial adhesins: type IV pili machinery is expressed in vivo, but evi-
dence for a role in adherence is lacking

•	 Afimbrial adhesins:

–– CWP (clostridial wall proteins)  – family of 29 surface-associate 
proteins:

•	 SlpA: binds to intestinal mucosa and the ECM proteins collagen 
type I, thrombospondin, and vitronectin

•	 Cwp84: cysteine protease; involved in the proteolytic activation of 
SlpA; may also degrade ECM proteins fibronectin, vitronectin, and 
laminin

•	 Cwp66: adhesin; binding to host cells is induced by heat shock
•	 CwpV: adhesin; undergoes auto-proteolytic maturation; its auto-

aggregative properties may play a role in biofilm formation

–– MSCRAMMs (microbial surface components recognizing adhesive 
matrix molecules) – bind to ECM proteins including fibronectin, lam-
inin, and collagen:

•	 Fbp68 (FbpA): binds to fibronectin
•	 CbpA: binds to collagen

–– CD0873: lipoprotein; binds to Caco-2 human epithelial colorectal ade-
nocarcinoma cells

–– GroEL: heat shock protein; anti-GroEL antibodies block adherence

–– Dissemination within the host:

•	 Zmp1: protease; cleaves host heat shock protein HSP90b, IgA2 antibod-
ies, fibrinogen, and fibronectin – disrupts fibronectin network

•	 C. difficile is capable of producing the hydrolytic enzymes chondroitin-4-
sulphatase, hyaluronidase, heparinase, and collagenase; unclear if they 
function as spreading factors or in nutrient acquisition (Seddon et al. 1990)

–– Growth in host milieu:

•	 Endospore germination – essential for vegetative growth, and hence, dis-
ease in the host (see C. botulinum above):

–– Co-germinants: taurocholic acid (bile acid) and glycine
–– Germinant receptor: CspC (Francis et al. 2013)
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–– CspBA: serine protease that cleaves the cortex hydrolase SleC, leading 
to core rehydration

•	 Iron acquisition (Ho and Ellermeier 2015):

–– Siderophores: no biosynthetic enzymes are found in genome 
annotation

–– Feo1,2,3: Fe+2 ion transport; expression of Feo1, three is regulated by 
the Fe+2-Fur regulatory system

•	 Biofilm formation – capable of forming mono-species and multi-species 
biofilms on abiotic and biotic surfaces (Ðapa et al. 2013):

–– Unclear if biofilms play a role in virulence or persistence in vivo
–– Regulated by the Luxs/AI-2 quorum-sensing system

–– Damage to host cells:

•	 Exotoxins:

–– C. difficile binary toxin (CDT) (Sundriyal et al. 2009):

•	 ADP-ribosylates G-actin; same structure and activity as C. botuli-
num C2 toxin and C. perfringens iota (ι) toxin

–– Toxin A (TcdA) and toxin B (TcdB) (Chen et  al. 2015; Jank et  al. 
2015):

•	 Glucosyltransferase activity
•	 Member of large clostridial cytotoxin (LCC) family; toxin B is 

~1,000 more potent than toxin A
•	 tcdA and tcdB genes are encoded on pathogenicity island PaLoc 

along with regulatory proteins (Hundsberger et  al. 1997; Janoir 
2016):

–– TcdR: alternative sigma factor  – activates tcdA and tcdB 
expression

–– TcdE: putative holin – excellular release of toxin
–– TcdC: putative negative regulator of TcdA and TcdB synthesis

•	 Each encodes a multi-domain polypeptide (Fig. 3.5):

–– A domain: glucosyltransferase domain (GTD)
–– B domain: receptor-binding domain
–– C domain: cysteine protease; auto-proteolytic activity
–– D domain: translocation domain

•	 Mechanism of action (Fig. 3.6):

–– Internalized by endocytosis; endosome acidification results in 
translocation across membrane

–– C domain-dependent auto-cleavage releases the GTD
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–– GTD transfers glucose molecule from UDP-glucose to host Rho/
Rac/Cdc42 GTPases:

•	 Glucose molecule is attached to conserved Thr amino acid 
with the switch 1 region of the GTPase

•	 Modification blocks the interactions of the GTPase with down-
stream effectors

•	 Leads to disruption of the actin cytoskeleton; loss of cell-cell 
contacts

•	 Induces release of pro-inflammatory cytokines and chemo-
kines, leading to inflammatory responses

–– Evasion of host immune system:

•	 Naturally resistant to host lysozyme – probably due to N-deacetylation of 
the GlcNAc in the peptidoglycan structure (Peltier et al. 2011)

•	 C. perfringens – most commonly isolated species (Rood 1998):

–– Adherence to host cells:

•	 NanI, NanJ, and NanH (Li et al. 2011):

–– Sialidases (neuraminidases)
–– Cleave sialic acid-containing glycoproteins and gangliosides that are in 

mucin and on the surface of host cells
–– Increases adherence to host cells and extracellular matrix components

•	 Cna (Jost et al. 2006):

–– Collagen I-binding protein; plasmid encoded

Fig. 3.5  C. difficile toxin B structure (From: Chen et al. 2015)

Virulence Factors



62

–– Growth in host milieu:

•	 Endospore germination: essential for vegetative growth, and hence, C. per-
fringens food poisoning (see C. botulinum above)

–– Germinants: L-alanine, L-valine, L-asparagine, and KCl (either alone 
or mixed), Ca2+-DPA, Na+, and inorganic phosphate (Pi)

–– Germinant receptors: GerKA, GerKB, GerKC, and GerAA transmem-
brane proteins; respond with different efficacies to different germinants 
(Paredes-Sabja et al. 2008)

–– Unlike C. botulinum and C. difficile, Ca2+-DPA does not directly induce 
cortex hydration and hydrolysis in C. perfringens

Fig. 3.6  Toxin internalization (From: Davies et al. 2011)
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•	 Iron acquisition – essential for growth; able to grow in vitro on hemoglo-
bin, FeCl3:

–– Genome annotation indicates the presence of one Fe+2 acquisition sys-
tem, two heme acquisition systems, three siderophore-mediated iron 
acquisition systems, and one ferric citrate iron acquisition system

–– FeoAB: Fe+2 acquisition system (Awad et al. 2016)
–– Cht: heme acquisition; cell surface proteins ChtD and ChtE are involved 

in heme binding (Choo et al. 2016)

•	 Biofilms: capable of forming mono-species and multi-species biofilms on 
abiotic and biotic surfaces

–– Damage to host cells:

•	 Exotoxins [see (Popoff 2014) and references therein]
•	 Many C. perfringens exotoxins are encoded on plasmids – CPE, CPB2, 

BEC, beta (β) toxin, epsilon (ε) toxin, and iota (ι) toxin (Freedman et al. 
2015):

–– Perfringolysin O [PFO; theta (θ) toxin] (Tweten 1988a, b):

•	 Member of the clostridial family of cholesterol-dependent pore-
forming cytolysins (CDCs) – botulinolysin, septicolysin, sordellily-
sin, and tetanolysin

•	 Forms large pore complexes (up to 50 PFO molecules) in cholesterol-
containing membranes  – disrupts host cell membranes and ion 
permeability

–– Clostridium perfringens enterotoxin (CPE) (Mitchell and Koval 
2010):

•	 Heat-labile cytolysin; encode on both the chromosome (70% of food 
poisoning cases) and plasmid (30%)

•	 Causes both food-borne illness and non-food-borne GI symptoms
•	 Produced when C. perfringens sporulates
•	 Member of the aerolysin family of heptameric β-PFT pore-forming 

toxins; same activity as epsilon toxin (see below); disrupts mem-
brane permeability

•	 Binds to claudins – family of host membrane proteins; major compo-
nents of intercellular tight junctions

–– Four major lethal exotoxins – alpha (α), beta (β), epsilon (ε), and iota (ι):

•	 Basis for classification of C. perfringens strain types A–E:

–– Type A: only produces α toxin; most clinically relevant
–– Type B: produces α, β, and ε toxins
–– Type C: produces α and β toxins
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–– Type D: produces α and ε toxins
–– Type E: produces α and ι toxins

•	 Alpha (α) toxin (Oda et al. 2015; Sakurai et al. 2004):

–– Lecithinase (phospholipase C) and sphingomyelinase activities; 
Zn metalloenzyme

–– Most important exotoxin associated with myonecrosis (gas 
gangrene)

–– Cytolytic toxin: removes charged head groups of membrane 
phospholipids; lyses host cells causing tissue necrosis and mas-
sive hemolysis

–– Also induces cell signaling processes leading to edema and cell 
death

•	 Beta (β) toxin (Shatursky et al. 2000):

–– Forms ion channels/pores in intestinal epithelial cell membranes
–– Belongs to Staphylococcus aureus alpha-toxin family; also delta 

(δ) toxin below
–– Produces necrotic lesions on intestinal mucosa; progresses to 

enteritis necroticans (see above)

•	 Epsilon (ε) toxin (ETX) (Alves et al. 2014; Popoff 2011):

–– Heptameric pore-forming β-PFT; disrupts membrane permeabil-
ity and ion flow, same aerolysin family as C. difficile CPE

–– Produced as inactive pro-toxin; activated by trypsin cleavage
–– Binds to the host membrane protein HAVCR1 (hepatitis A virus 

cellular receptor 1) in vitro; unknown binding in vivo
–– Increases vascular permeability  – edema in the lungs and 

kidneys
–– Can cross the blood–brain barrier and accumulate in the brain; 

can cause deadly neuronal damage
–– Extremely potent, can produce rapidly fatal enterotoxemia
–– May be associated with multiple sclerosis (MS) patients

•	 Iota (ι) toxin (Sakurai et al. 2003):

–– Dermonecrotic A-B exotoxin
–– B subunit (Ib): required for internalization
–– A subunit (Ia): ADP-ribosylation activity; modifies host G-actin; 

similar function as C. botulinum C2 toxin (see above)

–– Minor toxins:

•	 Beta2 toxin: CPB2; same activity as beta toxin (see above) but not 
structurally homologous; role in human disease is unclear (van Asten 
et al. 2010)
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•	 BEC (binary enterotoxin of C. perfringens): similar activity to iota 
toxin; found in strains that don’t produce CPE (Yonogi et al. 2014)

•	 Delta (δ) toxin (Seike et al. 2016):

–– Hemolysin; same family as beta toxin (see above)
–– Can induce caspase-independent rapid cell death

•	 Kappa (κ) toxin (Matsushita et al. 1994):

–– Extracellular Zn-dependent collagenase
–– Destroys host collagen; enhances dissemination of cells and 

toxins
–– Has necrotizing activity

•	 Lambda (λ) toxin: Zn metalloprotease (Jin et al. 1996)
•	 mu (μ) toxin – ColA protein (Matsushita and Okabe 2001):

–– Extracellular hyaluronidase; has necrotizing activity

•	 nu (ν) toxin: deoxyribonuclease (DNAase); hemolytic activity

•	 C. septicum:

–– Adherence to host cells: no known functional adhesins
–– Dissemination in host – swarming motility may play a role:

•	 Beta (β) toxin: DNAase; spreading factor
•	 Gamma (γ) toxin: hyaluronidase; spreading factor
•	 Sialidase (neuraminidase): breaks down host mucin

–– Damage to host cells:

•	 Exotoxins:

–– Septicolysin: member of the clostridial family of cholesterol-dependent 
pore-forming cytolysins (CDCs) – botulinolysin, perfringolysin O, sor-
dellilysin, and tetanolysin (Popoff 2014)

•	 Disrupts host cell membranes

–– Alpha (α) toxin (Knapp et al. 2010):

•	 Heptameric pore-forming β-PFT; same aerolysin family as C. per-
fringens CPE and epsilon toxin

•	 Binds to host GPI-anchored proteins
•	 Pores allow Ca2+ influx, leading to programmed necrosis

–– Delta (δ) toxin: oxygen-labile hemolysin

•	 C. sordellii (Aldape et al. 2006):

–– Adherence to host cells: no known functional adhesins
–– Dissemination in host:
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•	 NanS (Aldape et al. 2007):

–– Sialidase (neuraminidase)
–– Involved in the life-threatening leukemoid reaction (LR) by inducing 

the growth of HL60 promyelocytic leukemia cells

•	 Spreading factors: genome annotation suggests the existence of collage-
nase, hyaluronidase, and urease genes (Scaria et al. 2015)

–– Growth in host cells:

•	 Endospore germination – essential for vegetative growth, and hence, dis-
ease in the host (see C. botulinum above):

–– Co-germinants: small amino acid (L-alanine or glycine), basic amino 
acid, aromatic amino acid, and bicarbonate; enhanced germination at 
acidic pH (Ramirez and Abel-Santos 2010)

–– Germinant receptor: unknown

•	 Iron acquisition – required:

–– FeoAB: Fe+2 – acquisition system (Awad et al. 2016)

–– Damage to host cells:

•	 Exotoxins:

–– Sordellilysin: member of the clostridial family of cholesterol-dependent 
pore-forming cytolysins (CDCs) – botulinolysin, perfringolysin O, sep-
ticolysin, and tetanolysin (Popoff 2014)

•	 Disrupts host cell membranes

–– Lethal toxin (LT, TcsL): member of the LCC family of glucosyltrans-
ferases; analogous to C. difficile toxin A and toxin B (Chen et al. 2015; 
Jank et al. 2015)

–– Hemorrhagic toxin (HT, TcsH): member of the LCC family of gluco-
syltransferases; analogous to C. difficile toxin A and toxin B (Chen 
et al. 2015; Jank et al. 2015)

–– Phospholipase C: same activity as C. perfringens alpha (α) toxin

•	 C. tetani:

–– Adherence to host cells: no known functional adhesins
–– Damage to host cells:

•	 Exotoxins:

–– Tetanolysin: member of the clostridial family of cholesterol-dependent 
pore-forming cytolysins (CDCs) – botulinolysin, perfringolysin O, sep-
ticolysin, and sordellilysin (Popoff 2014)

•	 Disrupts host cell membranes
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–– Tetanus toxin (TeNT; tetanospasmin) (Grumelli et al. 2005):

•	 Heat-labile and oxygen-labile Zn metalloprotease; plasmid encoded
•	 A-B exotoxin: single polypeptide; only one isoform (unlike eight 

BoNT isoforms)
•	 Cleaved into light chain (A subunit) and heavy chain (B subunit); A 

subunit has Zn protease activity similar to BoNT A subunits
•	 Mechanism of action – final target; inhibitory interneurons in central 

nervous system:

–– TeNT initially binds to peripheral nerve terminals
–– Unlike BoNT, which acts locally, TeNT is transported to the spi-

nal cord inside motoneuron axons; accumulation within the spi-
nal cord eventually leads to trans-synaptic movement into 
inhibitory interneurons

–– B subunit binds polysialoganglioside (PSG) and synaptic vesicle 
glycoprotein 2 (SV2A, SV2B) receptors on the surface of inhibi-
tory interneurons

–– Acidification within interneuron endosomes causes release of the 
A subunit into the cytosol

–– A subunit cleaves the v-SNARE synaptobrevin II, part of the syn-
aptic vesicle fusion machinery

–– Results in blockage of release of the inhibitory neurotransmitters 
glycine and gamma-aminobutyric acid (GABA)

–– Subsequent loss of inhibitory control of motor neuron activity 
results in rigid spastic paralysis, eventually followed by respira-
tory or heart failure (cause of death):

•	 Spasms are due to opposing muscles inappropriately contract-
ing simultaneously

–– Mortality rate is very high without treatment or vaccine

�Regulation of Virulence Factor Expression

•	 C. botulinum sporulation and neurotoxin production (Cooksley et al. 2010):

–– Regulated by AgrB-D quorum-sensing systems (two in C. botulinum); similar 
to Agr system from Staphylococcus aureus:

•	 AgrD: encodes autoinducer peptide (AIP)
•	 AgrB: encodes transmembrane protein that modifies and secretes AgrD 

product
•	 Likely to interact with a two-component phosphorelay system (TCS), as 

yet uncharacterized

Regulation of Virulence Factor Expression
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•	 C. perfringens sporulation and toxin production (Chen et al. 2014):

–– Expression of the PFO, CPE, α toxin, β toxin, and κ toxins is induced in 
response to host cell interactions and metabolic cues

–– The different toxins that are present in the four C. perfringens type A–E 
strains (see above) are regulated by two-component phosphorelay systems 
(TCSs) and quorum-sensing systems

–– VirS/VirR-VR-RNA  – two-component phosphorelay system (TCSs); ~18 
TCSs in C. perfringens:

•	 VirS: sensor kinase; senses the AgrD autoinducer peptide made by Agr 
system; leads to VirS autophosphorylation and subsequent transfer of 
phosphate to VirR

•	 VirR – response regulator:

–– Activated VirR directly regulates five genes, including pfoA (PFO) and 
the VR-RNA regulatory RNA molecule, by binding to VirR boxes 
upstream of transcription start sites

•	 VR-RNA (vrr): regulatory RNA molecule; may be analogous to RNA III 
of Staphylococcus aureus; may act as a riboswitch to regulate translation 
of mRNAs

•	 Agr system: quorum-sensing system (see C. botulinum above)
•	 Sporulation-associated CPE expression is also regulated by quorum sens-

ing and TCSs

–– LuxS/AI-2: quorum-sensing system; regulates α toxin, β toxin, and θ toxin 
production (Ohtani et al. 2002)
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Chapter 4
Corynebacterium spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Corynebacterium diphtheriae: chromosome 2,488,635  bp; 2320 predicted 
ORFs (Cerdeno-Tarraga et al. 2003)

•	 Cell morphology:

–– Rod-shaped cells; irregular, club-shaped (Coryne), or V-shaped arrangements 
(Fig. 4.1)

⚬⚬ Can undergo snapping movements after cell division – cause cells to look 
like Chinese letters or palisades

–– Club shape due to metachromatic polyphosphate granules at ends of cells

•	 Gram stain:

–– Gram positive

•	 Growth:

–– Aerobes; catalase positive
–– Found in soil, water, and plants; nonpathogenic species are normal microbiota 

of the skin and most mucous membranes
–– >120 species; C. diphtheriae is only a primary pathogen (due to toxin; see 

below):

⚬⚬ C. amicolatum, C. striatum, C. urealyticum, C. ulcerans, C. xerosis, C. 
tuberculosis, and C. jeikeium are opportunistic pathogens of immunosup-
pressed patients
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•	 C. jeikeium: “group JK”; lipophilic multidrug-resistant nosocomial 
pathogen; frequently associated with bone marrow transplant patients 
and intravascular devices

�Disease States Associated with Corynebacterium diphtheriae

•	 Diphtheria – pharyngeal and cutaneous infections:

–– Infection of tissues of the upper respiratory tract
–– Symptoms: mild fever, chills, sore throat, cough (“diphtheritic croup”), and 

difficulty swallowing and breathing; laryngeal diphtheria can lead to a swol-
len neck and throat (“bull neck”)

–– Hallmark symptom is the presence of a dense, gray pseudomembrane struc-
ture composed of dead cells and fibrin matrix (Fig. 4.2)

–– Systemic infections can include toxic myocarditis (most likely the cause of 
death), cardiac arrhythmias, urinary tract infections, and cranial and periph-
eral nerve palsies and can also form biofilms on indwelling medical devices

–– Person-to-person airborne transmission, usually through coughs or sneezes, 
and direct contact with infected persons or fomites

�Virulence Factors

•	 Adherence to host cells (Rogers et al. 2011):

–– SpaA-, SpaD-, and SpaH-type pili (Ton-That and Schneewind 2003, 2004):

⚬⚬ Three antigenically distinct pilus structures

Fig. 4.1  C. diphtheriae 
cells (From: PHIL #12163)

4  Corynebacterium spp.
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⚬⚬ Directly attached to the cell wall using sortases; common theme with 
Gram-positive cells (Mazmanian et al. 1999):

•	 Transpeptidase enzymes that directly link pilin proteins to amino acids 
within the peptidoglycan cell wall

•	 C. diphtheriae has five class C pilin-specific sortases: SrtA, SrtB, SrtC, 
SrtD, and SrtE

⚬⚬ SpaA-type pili topology (Fig. 4.3):

•	 SpaA: major pilin; forms the shaft of the pilus; SpaD and SpaH are the 
major pilins for the other two pili

•	 SpaB is located along the shaft and at the base of the pilus; SpaE and 
SpaG for the other two pili

•	 SpaC is located at the tip of the pilus; SpaF and SpaI for the other two 
pili

•	 SpaB and SpaC play the major role in adhering to host tissue (Mandlik 
et al. 2007)

⚬⚬ Essential for host cell binding specificity:

•	 SpaA type: binds to pharyngeal epithelial cells
•	 SpaD type: binds to the lung and laryngeal epithelial cells
•	 SpaH type: binds to the lung and laryngeal epithelial cells

–– Cell wall:

⚬⚬ CdiLAM: lipoarabinomannan (LAM) component of cell wall; binds to 
cultured HEp-2 epidermoid larynx carcinoma cells (Moreira et al. 2008)

⚬⚬ DIP1281: cell surface protein; binds to human pharyngeal cells (Ott et al. 
2010)

Fig. 4.2  C. diphtheriae 
pseudomembrane (From: 
http://medical-dictionary.
thefreedictionary.com)

Virulence Factors

http://medical-dictionary.thefreedictionary.com
http://medical-dictionary.thefreedictionary.com
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•	 Growth in human host:

–– Iron acquisition:

⚬⚬ Siderophore:

•	 Corynebactin (Russell et al. 1984):

–– Synthesized (ciuE) and uptaken (ciuA-D) by the ciuA-G gene cluster 
(Kunkle and Schmitt 2005)

–– Regulated by the Fe-dependent DtxR repressor (see Regulation, 
below)

⚬⚬ Hemin acquisition (Burgos and Schmitt 2016):

•	 HmuTUV and HtaA and HtaB:

–– Acquire and transport hemin, hemoglobin (Hb), and hemoglobin–
haptoglobin (Hb–Hp) complexes

–– In the cytosol, the HmuO heme oxygenase releases the heme-
associated iron

–– Expression of humO is repressed in high-iron environments by Fe+2-
bound DtxR

–– Heme activates transcription through the ChrSA (predominant) and 
HrrSA two-component phosphorelay systems

Fig. 4.3  Spa-type pili 
(From: Rogers et al. 2011)

4  Corynebacterium spp.



77

•	 ChtA and ChtC (Allen and Schmitt 2015):

–– Bind hemin, hemoglobin (Hb), and hemoglobin–haptoglobin (Hb–
Hp) complexes

–– Biofilms: capable of forming biofilms on indwelling medical devices (Gomes 
et al. 2009)

•	 Damage to host cells:

–– Diphtheria toxin (DT; DTx) (Simon et al. 2014):

⚬⚬ A–B exotoxin; one of the most widely studied bacterial protein toxins
⚬⚬ Encoded by single tox gene; found on a lysogenic β-phage bacteriophage
⚬⚬ Belongs to the family of bacterial ADP-ribosyltransferase toxins (bARTTs):

•	 Catalyzes the transfer of ADP-ribose from nicotinamide adenine dinu-
cleotide (NAD) to an amino acid in the target protein, thereby inactivat-
ing the protein

⚬⚬ DT targets a modified histidine amino acid called diphthamide (Van Ness 
et al. 1980) in eukaryotic translation elongation factor-2 (eEF-2), thereby 
inhibiting protein translation and leading to cell death

⚬⚬ Multi-step process for toxin processing, entry into host cells, and activa-
tion in host cytosol (Murphy 2011):

•	 DT protein is proteolytically cleaved into two polypeptides:

–– A subunit: 21 kDa catalytic domain
–– B subunit – 41 kDa transmembrane and receptor binding domain:
–– B subunit binds to heparin-binding epidermal growth factor 

(hb-EGF) precursor in host cell membranes

•	 After internalization in clathrin-coated endosomal vesicles, acidifica-
tion of the vesicles results in refolding of the B subunit transmembrane 
domain, leading to the formation of pores in the vesicles

•	 The A subunit dissociates from the B subunit and translocates through 
the pores into the host cytosol, where it uses NAD to ADP-ribosylate 
eEF-2

�Regulation of Virulence Factor Expression

•	 Regulation of DT production:

–– DtxR (Schmitt and Holmes 1991):
⚬⚬ Repressor protein; homologue of Mycobacterium tuberculosis IdeR 

repressor
⚬⚬ Encoded by chromosomal dtxR gene; not on tox β-phage

Regulation of Virulence Factor Expression
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⚬⚬ Regulation by Fe+2 concentrations:

•	 Under high Fe+2 levels (outside host): DtxR is activated by Fe+2 bind-
ing – represses toxin production

•	 Under low Fe+2 levels (in host): DtxR is inactive  – induces toxin 
production

•	 Resultant host cell death releasing Fe+2, where it can be scavenged by 
siderophores (see above), which are also regulated by DtxR
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Chapter 5
Enterococcus spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics (Palmer et al. 2014):

–– Enterococcus faecalis V583 (vancomycin-resistant clinical isolate) chromo-
some: 3,218,031 bp; 3182 predicted ORFs (Paulsen et al. 2003)

–– Enterococcus faecium TX16 chromosome: 2,698,137  bp; 2703 predicted 
ORFs (Qin et al. 2012)

•	 Cell morphology:

–– Cocci: diplococci or short chains (Fig.  5.1); difficult to distinguish from 
Streptococcus

•	 Gram stain:

–– Gram positive

•	 Growth (Ramsey et al. 2014):

–– Facultative anaerobes; catalase negative
–– Can be alpha hemolytic (predominate) or gamma hemolytic on BAP; for-

merly classified as Group D Streptococcus
–– Can grow in harsh environments – high temperatures (up to 45 °C), low and 

high pH, and high salt (6.5%) concentrations:

⚬⚬ Resistant to detergents, ethanol, bile salts (bile esculin), heavy metals, and 
azide

⚬⚬ Can be resistant to a wide variety of antibiotics, including penicillins, 
cephalosporins, aminoglycosides, linezolid, daptomycin, licosamides, and 
the glycopeptide vancomycin (vancomycin-resistant enterococci, VRE) 
(Arias and Murray 2012; Hollenbeck and Rice 2012):

•	 E. faecium displays more antibiotic resistance than E. faecalis
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⚬⚬ Diverse metabolism: can use glucose, fructose, arabinose, glycerol, lac-
tate, malate, citrate, arginine, and keto acids as energy sources; can be used 
to classify different species

–– Normal microbiota of mammals, reptiles, birds, and insects:

⚬⚬ Human gastrointestinal tract, oral cavity, and vagina

–– Found in soil, water, and food as fecal contaminant
–– Biofilm former (see below)
–– >40 species: E. faecalis (90–95%) and E. faecium (5–10%) are the predomi-

nant gastrointestinal tract commensals

�Disease States Associated with Enterococcus spp.  
(Higuita and Huycke 2014)

•	 Opportunistic pathogens  – member of the ESKAPE (Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 
Pseudomonas aeruginosa, Enterobacter spp.) family of antibiotic-resistant nos-
ocomial pathogens:

–– Transmission: person to person, person to medical device, or through con-
taminated water or food

–– Community-acquired (CA) and hospital-acquired (HA; nosocomial) 
infections

–– Immunocompromised individuals are increasingly susceptible

Fig. 5.1  E. faecalis cells (From: PHIL #258)

5  Enterococcus spp.
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•	 Many of these disease states are associated with biofilm formation on host tis-
sues and indwelling medical devices (Dunny et al. 2014)

•	 Ascending urinary tract infections (UTIs) and catheter-associated urinary tract 
infections (CAUTIs):

–– Lower urinary tract infections – frequently seen in older men
–– Upper urinary tract infections – can lead to bacteremia; endocarditis
–– Most likely acquired in healthcare environments; ~15% of ICU-acquired 

UTIs
–– CAUTIs: commonly associated with biofilm formation

•	 Bacteremia: second leading cause of hospital-acquired bacteremia; high risk of 
death with immunocompromised patients

•	 Peritonitis: infection of the abdominal lining; found with liver cirrhosis or in 
patients receiving chronic peritoneal dialysis

•	 Infective endocarditis – natural and prosthetic heart valve infections; third most 
common cause:

–– E. faecalis is more common that E. faecium
–– Cause 5–15% of total cases with 9–15% mortality rate
–– Enterococci bacteremia leads to biofilm plaque formation on heart valves; 

initial source of the enterococci is the GI or GU tract
–– Difficult to treat due to multidrug resistance

•	 Postsurgery intra-abdominal or pelvic infections: enterococci are isolated from 
these areas, but it is unclear if they play a causative role in the infection

�Virulence Factors

•	 Adherence to host cells (Hancock et al. 2014; Hendrickx et al. 2009b):

–– Fimbrial adhesins (Fig. 5.2):

⚬⚬ Gram-positive pili: polymers of LPxTG-containing surface proteins that 
are covalently attached to cell wall of peptidoglycan by the sortase trans-
peptidase enzymes (Clancy et al. 2010); structurally different from Gram-
negative pili

⚬⚬ EbpABC pili (Nallapareddy et al. 2006):

•	 E. faecalis endocarditis and biofilm-associated pili
•	 EbpC: major pilin subunit; EbpA is located at the tip of the EbpC poly-

mer and EbpB is located at the pilus base
•	 Involved in biofilm-dependent UTIs and endocarditis (Singh et  al. 

2007)
•	 Binds ECM components fibrinogen and collagen (Montealegre et  al. 

2015)

Virulence Factors
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⚬⚬ PilA and PilB pili (Hendrickx et al. 2008):

•	 E. faecium pili
•	 PilA and PilB – major pilin subunits:

–– PilF: minor pilin subunit associated with PilA pili (Hendrickx et al. 
2010)

•	 Expressed at 37 °C but not 21 °C; enriched in HA-E. faecium isolates; 
suggests an, as yet unknown, function in virulence

–– Afimbrial adhesins (Garsin et al. 2014; Hendrickx et al. 2009b):

⚬⚬ LPxTG-containing surface proteins: covalently attached to cell wall of 
peptidoglycan by sortase transpeptidase enzymes (see above)

⚬⚬ Esp (Heikens et al. 2011; Toledo-Arana et al. 2001):

•	 E. faecium and E. faecalis
•	 Plays a role in biofilm-associated endocarditis and UTIs

⚬⚬ Asc1 and Asc10 (Waters et al. 2004):

•	 E. faecium; belong to class of E. faecium aggregation substance (AS) 
proteins

•	 Binds to lipoteichoic acid – enables conjugative DNA transfer between 
enterococci

Biofilm formation,
urinary tract infection

and endocarditis

Adherence to ECM,
endocarditis

Biofilm formation and
urinary tract infection

Adherence to collagen

Biofilm formation

Endocarditis

Ebp-pili

Sec translocon

E. faecalis E. faecium

AS

Esp

Ace Acm

Esp

PilA-pili

PilB-pili

Scm

Fig. 5.2  E. faecalis and E. faecium adhesins (From Hendrickx et al. 2009b)
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•	 Functions in aggregation and binding to renal tubule cells, epithelial 
cells, enterocytes, and macrophage – induced by pheromone peptides

•	 May also bind ECM components fibrin, fibronectin, thrombospondin, 
vitronectin, and collagen type I (Hendrickx et al. 2009b)

⚬⚬ SgrA (Hendrickx et al. 2009a):

•	 E. faecium
•	 Binds to ECM components fibrinogen and nidogen (entactin)
•	 Functions in biofilm formation on indwelling medical devices

⚬⚬ LPxTG MSCRAMMs (microbial surface component recognizing adhe-
sive matrix molecules):

•	 Recognize components of the host ECM; 15–17 predicted MSCRAMMs 
in E. faecalis and E. faecium

•	 Ace (Rich et al. 1999):

–– E. faecalis
–– Binds to collagen IV, collagen I, laminin, and dentin (Nallapareddy 

et al. 2000):

⚬⚬ Collagen binding is enhanced by GelE-dependent proteolysis

–– Functionally analogous to Staphylococcus aureus Cna protein

•	 Acm (Nallapareddy et al. 2003):

–– E. faecium
–– Binds to collagen I and collagen IV
–– Functionally analogous to Staphylococcus aureus Cna protein

•	 Scm (Sillanpaa et al. 2008):

–– E. faecium
–– Binds to collagen IV and fibrinogen

•	 EcbA (Hendrickx et al. 2009a):

–– E. faecium
–– Binds to collagen V and fibronectin

•	 Growth in human host:

–– Iron acquisition:

⚬⚬ Iron uptake mechanisms found in E. faecalis V583 annotated genome 
(Paulsen et al. 2003); no experimental evidence for a role in iron acquisition:

•	 FeuA and FatB: Fe-chelator ABC transporters
•	 FeoA and FeoB: ferrous iron uptake
•	 Regulated by the Fe+2-Fur repressor (ferric uptake regulator)

Virulence Factors
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–– Biofilm formation (Dunny et al. 2014):

⚬⚬ Essential for virulence
⚬⚬ Biofilms can form on host tissues and indwelling medical devices
⚬⚬ Many of the abovementioned adhesins are important for biofilm 

formation
⚬⚬ Regulated by the Fsr quorum-sensing system (DebRoy et al. 2014; Dunny 

et al. 2014)

•	 FsrABCD  – two-component phosphorelay system (Fig.  5.3), analo-
gous to Staphylococcus aureus agrABCD quorum-sensing system:

–– Autoregulates its own expression and regulates expression of Ace 
adhesin, GelE gelatinase, and SprE protease (see below) (Pinkston 
et al. 2011; Qin et al. 2000; Shankar et al. 2012)

–– FsrA: response regulator transcription factor; phosphorylated by 
FsrC

–– FsrC: sensor histidine kinase; senses extracellular levels of FsrD 
peptide

–– FsrD: encodes gelatinase biosynthesis-activating pheromone 
(GBAP) quorum-sensing peptide (Nakayama et al. 2006)

–– FsrB: cysteine protease; processes FsrD peptide

–– GelE (Mäkinen et al. 1989):

⚬⚬ E. faecalis gelatinase exoenzyme
⚬⚬ Important for virulence, biofilm formation, and dissemination
⚬⚬ Zinc matrix metalloproteinase (MMP) family

FsrD

FsrC

FsrA

activation

GelE SprE

GBAP

FsrB

fsrBD fsrCfsrA gelE sprE

Fig. 5.3  Fsr quorum sensing (From: DebRoy et al. 2014)
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⚬⚬ Can degrade host proteins and ECM components, such as collagen, fibrin, 
and hemoglobin

⚬⚬ Can degrade complement proteins C3a and C3b – blocks opsonization and 
complement-mediated lysis mediated by membrane attack complex 
(MAC) formation (Park et al. 2007)

⚬⚬ Expression is regulated by Fsr quorum-sensing system (see above)

–– SprE (Qin et al. 2000):

⚬⚬ E. faecalis serine protease exoenzyme; important for virulence; unknown 
substrates

⚬⚬ Expression is regulated by Fsr quorum-sensing system (see above)

–– Hyaluronidase (Kayaoglu and Orstavik 2004):

⚬⚬ E. faecalis spreading factor
⚬⚬ Cleaves ECM component hyaluronan (hyaluronic acid); facilitates 

dissemination

•	 Damage to host cells:

–– Cytolysin (hemolysin) (Fig. 5.4) (Booth et al. 1996; Garsin et al. 2014):

⚬⚬ Lyses RBCs, neutrophils, and macrophage; effective against Gram-positive 
bacteria (bacteriocin)

⚬⚬ Two peptide subunits – CylLL and CylLS; both are required for lytic activity:

•	 Proteolytically cleaved and secreted by CylB
•	 Extracellularly cleaved and activated by CylA (Segarra et al. 1991)

Lysis of human or
bacterial target cell

Activation by proteclysis

Inactive
subunits

Immunity

Secretion and
signal removal

?

Modified subunits
M

B

I

A

Post-translational
modification

M B A I

Cytolysin precursor
subunits

Regulation
of cytolysin
expression

Active
toxin
subunits

R1
?

LS’

LS’ LL’

LL
N

LL*

LS*

LS

LSLL

PL

PR

R1
R2

R2

cylR2 cylR1 cylM cylB cylA cyllcylLL
cylLs

LL

LS
M

Extracellular

Intracellular

Fig. 5.4  Cytolysin processing (From: Garsin et al. 2014)
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⚬⚬ Regulated by the CylR1/CylR2 two-component phosphorelay system 
(Coburn et al. 2004; Haas et al. 2002)

•	 Evasion of host immune system:

–– Capsule (Thurlow et al. 2009b):

⚬⚬ E. faecalis
⚬⚬ Four serotypes (A, B, C, or D) based on immunological detection:

•	 Only serotypes C and D actually express capsule polysaccharides 
(Thurlow et al. 2009a)

•	 Serotypes A and B are against lipoteichoic acid, not capsule

⚬⚬ Antiphagocytic: prevents detection of complement protein C3 on the sur-
face of E. faecalis

⚬⚬ Prevents detection of lipoteichoic acid by the host immune system

–– GelE gelatinase: blocks complement-mediated lysis (see above)
–– Mn-superoxide dismutase, catalase, and peroxidases: protect against host 

ROS (Ramsey et al. 2014)

�Regulation of Virulence Factor Expression (DebRoy et al. 
2014)

•	 TCSs – two-component phosphorelay systems:

–– E. faecalis: at least 15 TCSs
–– Respond to multiple host extracellular signals, including quorum sensing (Fsr 

system, see above), antimicrobials, bile salts, serum, and ethanolamine 
utilization

•	 SlyA (Michaux et al. 2011):

–– Member of MarR family of transcription factors
–– SlyA deletion mutants are more virulent, unlike the deletion mutants of other 

MarR family transcription factors, suggesting that SlyA may repress the syn-
thesis of as yet unknown virulence factors

–– May play a role in resistance to bile salts

•	 EbpR (Bourgogne et al. 2007):

–– Member of the AtxA/Mga family of transcriptional factors
–– Positive activator: regulates the levels of the Ebp pili genes ebpABC, which 

functions in biofilm formation and adherence

5  Enterococcus spp.
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Chapter 6
Listeria spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Listeria monocytogenes chromosome (serovar 1/2a): 2,944,528  bp; 2853 
predicted ORFs (Glaser et al. 2001)

•	 Cell morphology:

–– Rod-shaped cells; sometimes in short chains (Fig. 6.1)
–– Non-endospore former
–– Peritrichous flagella at 23 °C (outside host) but not at 37 °C (inside host)

•	 Gram stain:

–– Gram positive

•	 Growth:

–– Facultative anaerobes; catalase positive
–– Ubiquitous in nature: soil, vegetation, and animal feces
–– Cold enrichment: ability to grow at 4 °C

⚬⚬ Major problem in food safety with contaminated food products (Donnelly 
2001)

–– At least 17 species: Listeria monocytogenes is primary human pathogen:

⚬⚬ Serotypes 1/2a, 1/2b, and 4b – ~90% of human isolates
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�Disease States Associated with Listeria monocytogenes

•	 Listeriosis – symptoms can vary from mild to serious sepsis and meningitis in 
newborns, elderly, and immunocompromised individuals:

–– Uncommon but can be serious; 23–70% mortality rate with immunocompro-
mised individuals

–– Immunocompetent individuals: usually asymptomatic or mild flu-like 
symptoms

–– Immunocompromised individuals, pregnant women, neonates, and elderly:

⚬⚬ Gastrointestinal symptoms can progress to meningitis and/or meningoen-
cephalitis, usually accompanied by septicemia

⚬⚬ Infection of fetus is common; can lead to spontaneous abortion, stillbirth, 
or delivery of acutely ill neonate

–– Multiple disease states are due to the ability of L. monocytogenes to cross 
multiple tissue barriers – intestinal barrier, blood–brain barrier, and mater-
nofetal barrier (Cossart 2011)

–– Transmission – usually enters the human host through contaminated food or 
water:

⚬⚬ For example, hot dogs, deli meats, unpasteurized milk, soft-ripened 
cheeses, raw poultry, raw meats, ice cream, raw vegetables, raw and 
smoked fish, and cantaloupe

�Virulence Factors

•	 Facultative intracellular pathogen
•	 Adherence to host cells:

Fig. 6.1  L. monocytogenes 
cells (From: http://
listeria-monocytogenes.
com)

6  Listeria spp.
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–– L. monocytogenes adheres to intestinal epithelial cells located at the tip of 
intestinal villi.

–– Ami (Asanoa et al. 2012):

⚬⚬ Autolysin amidase
⚬⚬ Interacts with host glycosaminoglycans

–– FbpA (Osanai et al. 2013):

⚬⚬ Fibronectin-binding protein

–– InlJ (Lindén et al. 2008):

⚬⚬ Internalin
⚬⚬ Binds to host MUC2; major component of intestinal mucus
⚬⚬ InlB and InlC also bind to MUC2

–– Lap (Burkholder and Bhunia 2010):

⚬⚬ Listeria adhesion protein
⚬⚬ Interacts with host cell stress response protein Hsp60; functions in adher-

ence and entry into intestinal epithelial cells

–– LapB (Reis et al. 2010):

⚬⚬ Sortase-anchored surface adhesion
⚬⚬ Upregulated during infection

–– Vip (Cabanes et al. 2005):

⚬⚬ Surface adhesion
⚬⚬ Binds to endoplasmic reticulum (ER) resident chaperone Gp96

•	 Translocation across intestinal epithelium – leads to systemic dissemination:

–– InlA (Pizarro-Cerda et al. 2012; Ribet and Cossart 2015):

⚬⚬ Internalin surface protein; one of 27 internalins found within the L. mono-
cytogenes genome; plays a role in crossing the intestinal and placental bar-
riers; also in invading host cells (see below)

⚬⚬ Binds to host cell receptor E-cadherin – key component of host adherens 
junctions (Mengaud et al. 1996):

•	 Expressed primarily in epithelial cells, delimiting L. monocytogenes tis-
sue tropism

•	 Mediates invasion and translocation across epithelial cells at the tips of 
intestinal villi by triggering host signaling pathways inducing endocy-
tosis and actin cytoskeletal rearrangements

•	 Mediates paracellular movement between mucus-producing goblet 
cells and neighboring enterocytes

–– InlB:

⚬⚬ Internalin – mediates crossing the placental barrier along with InlA; also 
functions in invading host cells (see below)

Virulence Factors
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⚬⚬ Binds to hepatocyte growth factor (HGF) receptor Met, the product of the 
c-met proto-oncogene (Shen et al. 2000)

⚬⚬ Met is expressed in almost all host cells; enhances L. monocytogenes tissue 
tropism

⚬⚬ Met: receptor tyrosine kinase; InlB binding mimics the binding of HGF to 
Met, thereby triggering receptor tyrosine kinase signaling pathways that 
recruit the host actin cytoskeletal network to the site of invasion (Niemann 
et al. 2007)

•	 Host cell invasion and growth – non-phagocytic cells; multi-step process:

–– Uses “zipper” mechanism – L. monocytogenes proteins interact with host cell 
surface proteins to trigger host cell signaling pathways that lead to actin cyto-
skeletal rearrangements at the cell periphery and clathrin-mediated endocyto-
sis (Fig. 6.2):

⚬⚬ Internalin proteins InlA and InlB: interact with E-cadherin and Met, 
respectively (see above) (Pizarro-Cerda et al. 2012)

⚬⚬ Auto (Cabanes et al. 2004):

•	 Cell wall-anchored autolysin
•	 Needed for invasion and virulence

Fig. 6.2  Invasion mechanism (From (Cossart and Toledo-Arana 2008))

6  Listeria spp.
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⚬⚬ GtcA (Faith et al. 2009):

•	 Glycosylates cell wall teichoic acids
•	 Needed for invasion

⚬⚬ LpeA (Reglier-Poupet et al. 2003):

•	 Membrane lipoprotein
•	 Involved in invasion but not adherence

–– Once inside a host phagocytic vacuole, L. monocytogenes is capable of sur-
viving reactive oxygen species (ROS) by producing catalase and superoxide 
dismutase

–– Phagocytic vacuole is disrupted by several membranolytic proteins:

⚬⚬ Listeriolysin O (LLO) (Hernandez-Flores and Vivanco-Cid 2015; Seveau 
2014):

•	 Major virulence factor
•	 Cholesterol-dependent, pore-forming cytolytic (CDC) and membrano-

lytic toxin; induced by low pH environment in vacuole
•	 Essential for the disruption of phagocytic vacuoles in phagocytic and 

non-phagocytic cells; also functions in internalization of L. 
monocytogenes

•	 Cytolytic for red blood cells, macrophage, and other host cells
•	 Encoded by hly gene within the Listeria pathogenicity island-1 (LPI-1)
•	 Rod-like structure with four functional domains (D1–D4)
•	 Major target of host innate and adaptive immune responses
•	 Enters cells through TLR-4-dependent and TLR-4-independent pathways
•	 Affects multiple cell signaling pathways (Fig. 6.3):

–– Induce pro-apoptotic signals
–– Induce pro-inflammatory cytokines
–– Induce stress response to unfolded proteins
–– Induce an increase in cytosolic Ca2+ levels

⚬⚬ Phosphatidylinositol-specific phospholipase C (PI-PLC):

•	 Plays a role in disrupting the phagosome membrane
•	 Encoded by plcA within LPI-1

⚬⚬ Phosphatidylcholine-specific phospholipase C (PC-PLC):

•	 Activated by metalloprotease Mpl
•	 Plays a role in disrupting the phagosome membrane
•	 Encoded by plcB within LPI-1

–– Rapid cellular multiplication within the cytosol:

⚬⚬ Hpt (Chico-Calero et al. 2002):

•	 Permease
•	 Mimics host glucose-6-phosphate transporter (G6PT), to steal G6P 

from host cell cytosol

Virulence Factors
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⚬⚬ LplA1 (O’Riordan et al. 2003):

•	 Lipoate-protein ligase
•	 Affects essential lipoyl modification of host pyruvate dehydrogenase

–– Cells are capable of co-opting the host actin cytoskeletal network to move 
within the cytosol and move from host cell to host cell directly without leav-
ing the cellular environs – thereby evading the host immune system:

⚬⚬ ActA (de Souza Santos and Orth 2015; Kocks et al. 1992):

•	 Cell surface protein that mediates host actin polymerization, forming 
actin comets (actin tails) attached to the cell periphery

•	 Similar activity to RickA of Rickettsia spp.
•	 Expressed at one end of the L. monocytogenes cell
•	 Mimics the action of host Wiskott–Aldrich syndrome protein (WASP)
•	 Phosphorylated by CK2 (casein kinase 2), which induces ActA binding 

to the Arp2/3 complex
•	 Activated Arp2/3 complex then nucleates host cell actin polymeriza-

tion, creating the actin comets

–– At the host cell periphery, L. monocytogenes can protrude within pseudopod-
like structures (listeriopods) to invade neighboring cells:

⚬⚬ InlC internalin is involved in this step (Rajabian et al. 2009).

Fig. 6.3  Listeriolysin O functional domains (From Hernandez-Flores and Vivanco-Cid 2015)

6  Listeria spp.



99

–– Phagocytosis by adjacent cells leads to the formation of a double-membrane 
secondary vacuole from which Listeria escapes, using LLO, PI-PLC, and PC-
PLC as in the originally infected cell

–– This leads to new rounds of proliferation, actin-based motility, and intercel-
lular spread

•	 Growth in human host:

–– Iron acquisition (Lechowicz and Krawczyk-Balska 2015):

⚬⚬ Multiple mechanisms of Fe+3 scavenging; all are regulated by the classic 
Fur repressor

⚬⚬ Do not synthesize siderophores; can import Fe+3-hydroxamate xenosidero-
phores from other bacteria

⚬⚬ SvpA (Hbp1) and Hbp2: heme uptake (Boreze et al. 2001)
⚬⚬ HupD, HupC, and HupG: heme and hemoglobin uptake
⚬⚬ Direct uptake of ferritin – unknown transporter

–– Biofilms: capable of forming biofilms on abiotic and biotic substrates

•	 Evasion of host immune system:

–– BSH (Dussurget et al. 2002):

⚬⚬ Bile salt hydrolase
⚬⚬ Cleaves bile salts; protects cells from antimicrobial activity of bile in the 

intestinal tract

–– InlK (Dortet et al. 2012):

⚬⚬ Internalin-like protein
⚬⚬ Blocks host cell autophagy, along with ActA

–– OatA and PgdA (Aubry et al. 2011):

⚬⚬ Peptidoglycan deacetylases
⚬⚬ Alter peptidoglycan layer – evades innate immunity response

�Regulation of Virulence Factor Expression

•	 Many of the above virulence factors are encoded in Listeria pathogenicity 
island-1 (LPI-1) and transcriptionally activated by the master regulator PrfA:

–– PrfA (Heras et al. 2011):

⚬⚬ Transcriptional activator
⚬⚬ Belongs to the CAP (catabolite activator protein)/FNR family of transcrip-

tional activators
⚬⚬ Binds to promoter sequences (PrfA boxes) upstream of target genes

Regulation of Virulence Factor Expression
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⚬⚬ Transcription and translation of PrfA are regulated:

•	 Transcription of prfA is autoregulated and induced by stress signals and 
repressed by certain sugars

•	 Translation of prfA mRNA is thermoregulated via a riboswitch 
(Fig. 6.4):

–– Induction at 37 °C within human host
–– At room temperature (~23 °C), the prfA mRNA assumes a confor-

mation that prevents ribosomes from binding to the Shine-Dalgarno 
ribosome binding site (RBS) sequence  – PrfA regulon is not 
activated

–– At 37 °C, the prfA mRNA conformational structure opens up, allow-
ing binding of ribosomes and translation of PrfA – PrfA regulon is 
activated
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Chapter 7
Mycobacterium spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Mycobacterium tuberculosis strain H37Rv chromosome: 4,411,529 bp; 4,006 
predicted ORFs (Cole et al. 1998; Camus et al. 2002)

–– Mycobacterium leprae chromosome: 3,268,203  bp; 1,604 predicted ORFs 
(Cole et al. 2001)

–– Mycobacterium ulcerans chromosome  – 5,631,606-bp; 4,160 predicted 
ORFs:

⚬⚬ Plasmid pMUM001: 174,155 bp; 81 predicted ORFs; contains the gene 
products needed to synthesize mycolactone (see below) (Stinear et  al. 
2007)

•	 Cell morphology:

–– Slender rod-shaped cells (Fig. 7.1):

⚬⚬ Held together in parallel (serpentine) cords (Fig. 7.2) by cord factor (treha-
lose 6,6′-dimycolate; TDM); essential for virulence (see below)

–– Non-endospore former
–– No flagellar motility

•	 Gram stain:

–– Gram positive; acid-fast staining due to hydrophobic cell wall constituents 
(see below)

•	 Growth:

–– Obligate aerobes
–– Very slow growers: generation times from 12 to 24 h
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–– Over 120 species – most are nonpathogenic environmental microbes; three 
are major human pathogens:

⚬⚬ Mycobacterium tuberculosis: facultative intracellular pathogen of macro-
phage (not free-living)

⚬⚬ Mycobacterium leprae: obligate intracellular pathogen of Schwann cells 
and macrophage (not free-living)

⚬⚬ Mycobacterium ulcerans: extracellular pathogen

Fig. 7.1  M. tuberculosis cells (From: PHIL #8437)

Fig. 7.2  M. tuberculosis 
serpentine cords (From: 
PHIL #14766)

7  Mycobacterium spp.
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�Disease States Associated with Mycobacterium spp.

•	 Mycobacterium tuberculosis:

–– Tuberculosis (TB; consumption):

⚬⚬ ~1/3 of the world population is infected with M. tuberculosis
⚬⚬ ~90% have latent infections with no symptoms

–– Coevolved with humans; developed many mechanisms to evade and co-opt 
the host immune system (Cambier et al. 2014a)

–– Transmission  – person-to-person via small aerosol droplets; highly 
contagious:

⚬⚬ Small droplet size (two to three cells) and surface glycolipids (see below) 
facilitate the bypass of the antagonistic microbiota and microbicidal mac-
rophage in the upper airway

⚬⚬ This allows the cells to reach the axenic environment of the lower airway 
alveoli and to be phagocytosed into growth-permissive alveolar 
macrophage

–– Types of TB:

⚬⚬ Primary active TB:

•	 Initial symptoms – persistent cough, fever, fatigue; leads to difficulty in 
breathing, chest pain, wheezing, and coughing blood or sputum:

–– Symptoms are due to host immune responses and host cell damage
–– Death is usually due to massive lung damage leading to anoxia

•	 Cells invade and survive inside Mycobacterium-containing vacuoles 
(MCV) within un-activated alveolar macrophages; occurs in 80–90% of 
cases; 90–95% of these infections are cleared by infected macrophage

•	 Five to ten percent progress to primary TB with granuloma formation 
(tubercles):

–– Aggregates of infected macrophage containing live bacteria sur-
rounded by host macrophage and neutrophils

–– Ghon complex: calcified tubercles observed in lung X-rays

•	 Progressive tubercle expansion (spread of actively growing cells from 
dead macrophage to newly arriving macrophage) erodes lung air pas-
sages, causing TB symptoms

⚬⚬ Latent TB:

•	 Usual occurrence; most people remain infected without symptoms for 
life, unless their immune system is compromised

•	 Persist in a dormant state within lung macrophage

Disease States Associated with Mycobacterium spp.
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⚬⚬ Recurrent TB:

•	 Breakdown of tubercles releases actively growing cells – secondary TB
•	 These cells can spread throughout the body – disseminated TB

–– Can spread to the bones, kidney, and brain

⚬⚬ Therefore, intracellular growth in alveolar macrophage and tubercle for-
mation are essential for persistent infections in the lungs and host 
dissemination

•	 Mycobacterium leprae and M. lepromatosis:

–– Leprosy (Hansen’s disease) (Britton and Lockwood 2004; Franco-Paredes 
and Rodriguez-Morales 2016):

⚬⚬ Transmission: close contact, person-to-person (nasal aerosols), or through 
breaks in the skin; can be transmitted from infected nine-banded armadil-
los (zoonotic reservoir); not a highly contagious disease

⚬⚬ Symptoms – skin and nervous system symptoms:

•	 Usually asymptomatic for years
•	 Infection can lead to skin granulomas, resulting in persistent, hypo-

pigmented, disfiguring skin sores or bumps, scarring, and skin 
thickening

–– Affected skin is less sensitive to heat, pain, or touch than unaffected 
skin

•	 Can infect and grow in Schwann cells of peripheral nerve endings:

–– Leads to nerve damage
–– Numbness or lack of sensation in extremities and progressive weak-

ening of the muscles

⚬⚬ M. leprae can epigenetically reprogram infected adult Schwann cells to 
facilitate host dissemination (Masaki et al. 2013)

⚬⚬ M. leprae can also invade macrophage, dendritic cells, and endothelial 
cells (Barker 2006)

⚬⚬ Symptoms are reflective of the state of the host immune system (Saini 
et al. 2017):

•	 Tuberculoid leprosy: nonprogressive disease; patients have a strong 
TH1-cell-mediated immune response and low levels of antibodies

•	 Lepromatous leprosy: progressive tissue destruction; patients have a 
weak T-cell-mediated immune response and high antibody levels

–– Its status as an obligate intracellular pathogen is most likely due to coevolu-
tion with humans leading to a significant metabolic genome reduction, as 
compared to M. tuberculosis

7  Mycobacterium spp.
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•	 Mycobacterium ulcerans (Roltgen et al. 2012; Sarfo et al. 2016):

–– Buruli ulcer (Bairnsdale ulcer, Searls ulcer, Daintree ulcer):

⚬⚬ Chronic debilitating disease: permanent disfigurement and disability; pri-
marily seen in Africa, South America, and Western Pacific regions

⚬⚬ Infection of the skin and subcutaneous tissues; primarily the arms and legs
⚬⚬ Transmission: unknown but likely from aquatic insects, aquatic vegetation, 

or contaminated water through a break in the skin
⚬⚬ Symptoms: start as painless, non-ulcerated nodules or plaques on the skin; 

progress to necrotic, ulcerated lesions; also can infect the bones

�Virulence Factors

•	 Mycobacterium tuberculosis:

–– Facultative intracellular pathogen
–– M. tuberculosis does not produce exotoxins; these virulence determinants are 

not needed to facilitate intracellular growth
–– Unique cell envelope [(Abrahams and Besra 2016; Guenin-Mace et al. 2009; 

Kieser and Rubin 2014) and references therein]:

⚬⚬ Found in all Mycobacterium spp. (Fig. 7.3)
⚬⚬ Essential for environmental persistence, macrophage invasion, and intra-

cellular growth
⚬⚬ More than 200 proteins are needed to synthesize these structures; targets of 

multiple known antibiotics as well as potentially new antibiotics (Smith 
2003)

⚬⚬ Four basic layers: cross-linked peptidoglycan layer, highly branched arabi-
nogalactan polysaccharide layer, long-chain mycolic acid layer, and cap-
sule; interspersed glycolipids constitute the remainder of the structure

•	 Peptidoglycan layer:

–– Basic cross-linked structure as in Gram-positive cells
–– Modified to contain additional glycine or serine residues, altered car-

boxylic acids, and N-glycolylmuramic acid residues

•	 Arabinogalactan layer:

–– Contains arabinose and galactose sugars
–– Attached to the peptidoglycan through a N-acetylglucosamime 

(GlcNAc)-rhamnose linker unit
–– Galactose sugars are added to the linker unit, followed by arabinose 

sugars, which are the linkage to the mycolic acid layer

Virulence Factors
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•	 Mycolic acid layer:

–– Mycolate fatty acids linked to the arabinogalactan layer
–– Three forms: α-mycolates (70%), methoxy-mycolates (10–15%), 

and keto-mycolates (10–15%)
–– High lipid content results in increased hydrophobicity and resistance 

to harsh environmental conditions; cells are viable in aerosol drops 
for months

–– Also responsible for the difficulty in Gram staining, necessitating the 
acid-fast stain

Fig. 7.3  Mycobacteria cell envelope (From Kieser and Rubin (2014))

7  Mycobacterium spp.
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•	 Capsule (Bornemann 2016; Schwebach et al. 2002):

–– Comprised primarily of α-glucan polymers similar to glycogen; also 
arabinose and mannose sugars, lipids, and proteins

–– Mediates immune evasion by blocking opsonophagocytosis

•	 Glycolipids (Briken et al. 2004):

–– Phosphatidyl-myo-inositol mannosides (PIMs), lipomannan (LM), 
and lipoarabinomannans (LAMs) interspersed between the three 
layers

–– Non-covalently anchored into the inner and outer membrane
–– Induce chemoattractant chemokines and pro-inflammatory cyto-

kines in macrophages; inhibit phagosome maturation, apoptosis, and 
cytokine secretion

•	 Surface glycolipids (Cambier et al. 2014a; Cambier et al. 2014b):

–– Essential for invasion and intracellular growth; only made by patho-
genic Mycobacterium spp.

–– PDIM (phthiocerol dimycocerosate), PGL (phenolic glycolipid), 
and others

–– PDIM masks the pathogen-associated molecular pattern (PAMP) 
molecules on the cell surface from being recognized by macrophage 
TLRs; used to evade microbicidal macrophage and microbiota in the 
upper airways

–– PGL induce macrophage chemokine/chemokine receptor CCL2/
CCR2, which attracts growth-permissive macrophage in the lower 
airway and induces phagocytosis

⚬⚬ Also prevents phagosomal acidification within macrophage

–– Adherence to host cells (Govender et al. 2014):

⚬⚬ Fimbrial adhesins:

•	 Type 4 pili: produced but a role in adherence has not be shown
•	 Curli-like pili (MTP) (Alteri et al. 2007):

–– Binds laminin; functions in aggregation and adhesion to 
macrophage

–– Expressed during adherence and infection

⚬⚬ Afimbrial adhesins: most bind to ECM components fibronectin and 
laminin

•	 Heparin-binding hemagglutinin adhesin (HBHA) (Pethe et  al. 
2002):

–– 28 kD protein; major immunogen
–– Involved in bacterial aggregation and binding to heparan sulfate-

containing proteoglycans on host cell surfaces

Virulence Factors
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–– Essential for colonization and host cell invasion
–– Also inhibits autophagy and induces caspase-dependent apoptosis 

(Zheng et al. 2017)

•	 LBP (Shimoji et al. 1999):

–– Binds to host laminin (Bornemann 2016)

•	 Apa (alanine-proline-rich antigen; Rv1860) (Ragas et al. 2007):

–– Cell surface glycoprotein adhesin
–– Binds human C-type lectin PSP-A and ECM fibronectin

•	 Malate synthase (GlcB; Rv1837c) (Kinhikar et al. 2006):

–– Binds to host laminin and fibronectin

•	 GroEL (Cpn60.2) (Hickey et al. 2010):

–– Heat shock chaperone
–– Plays a major role in adhesion to alveolar macrophage through an 

interaction with the CD43 glycoprotein

–– Host cell invasion and growth:

⚬⚬ M. tuberculosis produces virulence factors that induce apoptosis and 
necrosis once inside the infected macrophage; facilitates the spread of an 
infection beyond the original infected cell (Moraco and Kornfeld 2014)

⚬⚬ Cord factor (Hunter et al. 2009):

•	 Surface glycolipid trehalose 6,6′-dimycolate (TDM); most abundant 
and most toxic lipid produced by M. tuberculosis

•	 Toxic to mammalian cells; induces necrotic caseating granulomas; 
associated with detached cord factor/lipid complexes

•	 Inhibits phagosome–lysosome fusion and acidification of phagosomes; 
blocks macrophage killing; associated with cord factor remaining 
attached to the Mycobacterium cell surface

•	 Antigen 85A,B,C (Puech et al. 2002):

–– Three homologous proteins
–– Mycolyltransferases: catalyze the production of trehalose dimyco-

late (cord factor) from trehalose monomycolate
–– Also binds to fibronectin; enhances macrophage phagocytosis

⚬⚬ PknG (Walburger et al. 2004):

•	 Cytosolic serine/threonine kinase; essential for growth in macrophage
•	 Blocks phagosome–lysosome fusion; unknown substrate

7  Mycobacterium spp.
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⚬⚬ ESAT-6 (early secreted antigenic target of 6 kDa)/CFP-10 (culture filtrate 
protein of 10 kDa) (Renshaw et al. 2002):

•	 Potent T-cell antigens; highly immunogenic; vaccine candidates
•	 Co-expressed secreted proteins that form a 1:1 ESAT-6/CFP-10 pore 

complex
•	 Recruits growth-permissive macrophages using host matrix metallopro-

teinase-9 (MMP9); enhances granuloma formation (Volkman et  al. 
2009)

•	 Induces caspase-dependent apoptosis of infected macrophage, which is 
essential for granuloma expansion (Derrick and Morris 2007)

•	 Inhibits autophagosome–lysosome fusion during macrophage autoph-
agy (Zhang et al. 2012)

•	 Co-expression is regulated by the PhoPR TCS (see below) (Broset et al. 
2015)

•	 Secreted through the ESX-1 Mycobacterium-specific T7SS

⚬⚬ T7SSs (Abdallah et al. 2007):

•	 Five specialized secretion systems (ESX-1–ESX-5):

–– Found in Mycobacterium spp. (except M. ulcerans) and other Gram-
positive bacteria

–– Needed to secrete proteins across the complex cell envelope

•	 ESX-1 – secretes ESAT-6, CFP-10, EspA, and Rv3615c:

–– These genes are deleted in the region of difference 1 (RD1) in the 
attenuated bacillus Calmette–Guérin strain used in BCG vaccine; 
suggests that they are essential for virulence

•	 ESX-2–ESX-5: contain homologues of ESAT-6/CFP-10; ESX-3 is nec-
essary for iron and zinc homeostasis

⚬⚬ PanC/PanD (Sambandamurthy et al. 2002):

•	 Function in the synthesis of pantothenic acid (vitamin B5), which is 
essential for lipid biosynthesis and metabolism inside macrophage

⚬⚬ Iron acquisition – inside macrophage (Hameed et al. 2015):

•	 Siderophores:

–– Mycobactins: produce both membrane-bound (extracellular vesi-
cles, EVs) and soluble forms

•	 Direct import of heme iron, lactoferrin, and transferrin
•	 Regulated by IdeR (Gold et al. 2001):

–– Fe+2-binding repressor
–– Homologous to DtxR from Corynebacterium diphtheriae

Virulence Factors
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–– Fe+2 binding activates IdeR repressor activity
–– Low Fe+2 concentrations lead to transcriptional activation of myco-

bactin (mbt) genes and inactivation of iron storage genes

⚬⚬ Phospholipases C (Raynaud et al. 2002):

•	 Four genes – plcA, B, C, and D
•	 Deletion mutant phenotypes suggest that all four have phospholipase 

activity that is important for virulence
•	 Expression is upregulated in macrophage
•	 Virulence mechanism is unknown; possibly used to generate fatty acid 

nutrients for the cells

⚬⚬ Protection against intracellular stress conditions:

•	 HspX (Desjardin et al. 2001):

–– ATP-independent chaperone; induced under hypoxic and reactive 
nitrogen stress in macrophage

–– Necessary for survival in low-oxygen environment of macrophage

•	 AhpC (Pethe et al. 2002):

–– Alkyl hydroperoxide reductase activity
–– Protects against reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) inside macrophage

•	 KatG (Ng et al. 2004):

–– Catalase/peroxidase activity: degrades H2O2 produced from NADPH 
oxidase

–– Protects against reactive oxygen species (ROS) inside macrophage

•	 SodA; SodC (Edwards et al. 2001):

–– Superoxide dismutases: metalloenzymes – SodA (Fe); SodC (Cu)
–– Converts superoxide anion to H2O2, protects against reactive oxygen 

species (ROS) inside macrophage

–– Activation of host immune system:

⚬⚬ LpqH, LprA, LprG, LppX, and PstS1 (Drage et al. 2009; Prados-Rosales 
et al. 2011):

•	 Lipoproteins
•	 Agonists of host Toll-like receptor-2 (TLR-2); induce release of cyto-

kines and chemokines from macrophage; LpqH can also induce macro-
phage autophagy

•	 Interaction of lipoprotein-containing membrane vesicles (MVs) with 
alveolar macrophage elicits an intense inflammatory response; can lead 
to enhanced granuloma production and localized necrosis

7  Mycobacterium spp.
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•	 Mycobacterium leprae:

–– Obligate intracellular pathogen
–– Cell envelope, including cord factor, and ESX-1/ESAT-6 secretory system are 

similar to M. tuberculosis
–– Adherence to host cells:

⚬⚬ Phenolic glycolipid-1 (PGL-1) (Ng et al. 2000):

•	 Binds to α2-laminin in the basal lamina of Schwann cells; dictates M. 
leprae tropism for Schwann cells:

–– PGL-1/α2-laminin complex binds to extracellular α-dystroglycan 
(α-DG) protein; α-DG binds to transmembrane protein β-dystroglycan 
(β-DG), which in turn binds to dystrophin, a cytoskeletal protein that 
binds to host actin filaments

–– These interactions induce actin-dependent uptake into Schwann 
cells (Rambukkana et al. 1998)

•	 PGL-1 also induces demyelination of nerve cells, which may aid in 
invasion of Schwann cells

⚬⚬ LBP21/Hlp (Shimoji et al. 1999):

•	 Binds to α2-laminin

–– Mechanisms for phagocytosis into macrophage and inhibition of phagosome–
lysosome fusion are similar to M. tuberculosis

•	 Mycobacterium ulcerans – extracellular pathogen; toxigenic:

–– Damage to host cells

⚬⚬ Mycolactone (Roltgen et al. 2012; Sarfo et al. 2016):

•	 Major virulence factor of M. ulcerans
•	 Polyketide: contains an invariant 12-membered lactone ring and two 

acyl side chains (Fig. 7.4)
•	 Mycolactone biosynthetic genes (mlsA1, mlsA2, mlsB, mup038, 

mup045, mup053) are encoded on unique M. ulcerans plasmid 
pMUM001

•	 Can be found postinfection within Buruli ulcer lesions and at other dis-
seminated host sites

•	 More toxic when it is found in association with extracellular vesicles 
(EVs) (Brown et al. 2015)

•	 Two physiological targets:

–– Binds to Wiskott–Aldrich syndrome protein (WASP) and neural 
WASP (N-WASP) (Guenin-Mace et al. 2013)

⚬⚬ Scaffold proteins that mediate ARP2/3-dependent actin 
polymerization

Virulence Factors
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⚬⚬ Mycolactone binding relieves WASP auto-inhibition, resulting in 
unregulated actin polymerization  – loss of cell adhesion and 
induction of cell apoptosis

⚬⚬ Mechanism responsible for the tissue necrosis associated with 
Buruli ulcers

–– Inhibits function of Sec61 translocon (Hall et al. 2014)

⚬⚬ Involved in the translocation of host proteins, including pro-
inflammatory cytokines and N-linked glycosylated proteins, into 
the endoplasmic reticulum (ER)

⚬⚬ Sec61 inhibition leads to suppression of cytokine and  
chemokine production and their associated signaling  
pathways – immunosuppression

⚬⚬ Sec61 inhibition also blocks the production of membrane recep-
tors and cell adhesion molecules

–– ESX-1 secretion system that is essential for M. tuberculosis granuloma pro-
duction (see above) is deleted in M. ulcerans; likely plays a role in the extra-
cellular lifestyle of M. ulcerans (Stinear et al. 2007).

�Regulation of Virulence Factor Expression

•	 M. tuberculosis latent infections:

–– ~1/3 of the world population have persistent infections in which M. tubercu-
losis is dormant within lung macrophage

–– To induce dormancy, the metabolism and replication of M. tuberculosis must 
be repressed; primarily controlled through transcriptional induction and 
repression
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Fig. 7.4  Mycolactone structure (From: Sarfo et al. (2016))
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⚬⚬ Alternative sigma (σ) factor genes, sigA, sigE, sigF, and sigH, along with 
the WhiB family of transcription factors are expressed during infection, 
suggesting that they play a role in virulence and dormancy (Manganelli 
et al. 2004)

–– Dormancy can be induced by O2 depletion (hypoxia), the presence of nitric 
oxide gas (NO), nutrient starvation, and acid conditions

⚬⚬ Hypoxia and NO induce the same set of 47 gene transcripts (Sherman et al. 
2001)

⚬⚬ Hypoxia and NO responses are induced early in infection through the 
DosR–DosS (DevR–DevS) and DosT two-component phosphorelay sys-
tems (TCSs) (Kendall et al. 2004; Roberts et al. 2004)

•	 DosR:

–– Response regulator
–– Activates transcription of hypoxic-regulated genes
–– Phosphorylated by both DosS and DosT sensor kinases

•	 DosS; DosT:

–– Sensor kinases; transfer phosphate to DosR, thereby activating its 
transcriptional activator function

–– Heme-containing kinases; regulated by the binding of Fe+2 and O2

–– The kinases are active when in a deoxy-Fe+2 state  – hypoxic 
conditions

⚬⚬ DosT responds early to hypoxic conditions, and DosS responds 
later

–– The kinases are inactive when in a O2-bound state
–– NO and CO can displace O2 at the heme site; this activates the 

kinases and induces NO-responsive genes; explains why hypoxia 
and NO induce the same genes

⚬⚬ NO-mediated killing of M. tuberculosis (Samanovic and Darwin 2016):

•	 Occurs in macrophage; resistance to NO and other reactive nitrogen 
species (RNS) allows M. tuberculosis to maintain latency in 
macrophage

•	 Mutant analysis indicates that the 26S proteasome is needed for NO 
resistance (Darwin et al. 2003)

•	 Pup-proteasome system (PPS) (Samanovic and Darwin 2016):

–– Similar to eukaryotic proteasome that degrades ubiquitin-modified 
proteins

–– Pup:

⚬⚬ Prokaryotic ubiquitin-like protein
⚬⚬ Tags target proteins for proteolysis

Regulation of Virulence Factor Expression
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–– Mutational loss of PPS causes increased synthesis of cytokinins, 
leading to sensitivity to RNS/NO and loss of cell viability in host 
cells

–– MprAB TCS (Zahrt et al. 2003):

⚬⚬ Needed for the establishment and persistence of infection

•	 MprA – response regulator:

–– Transcription activator
–– Binds to MprA box upstream of regulated genes, such as EspR tran-

scription factor

•	 MprB – sensor kinase:

–– Regulates the expression of ESX-1 along with the ESAT-6 and 
EspA-secreted proteins (Cao et al. 2015)

–– Regulation is mediated through activation of the EspR transcription 
factor

⚬⚬ PhoPR TCS also regulates ESAT-6 and EspA expression through EspR

–– PhoPR TCS (Perez et al. 2001):

⚬⚬ PhoR – sensor kinase:

•	 Responds to Mg+2, Cl−, and pH within the macrophage

⚬⚬ PhoP – response regulator:

•	 Transcription activator
•	 PhoP mutants have replication defects and loss of virulence; due to loss 

of ESAT-6 and EspA secretion
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Chapter 8
Propionibacterium spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Propionibacterium acnes chromosome: 2,560,265 bp; 2333 predicted ORFs 
(Brüggemann et al. 2004)

•	 Cell morphology:

–– Rod-shaped cells; “diphtheroids” (Fig. 8.1)
–– Similar to Corynebacterium diphtheriae in morphology and arrangement

•	 Gram stain:

–– Gram positive

•	 Growth:

–– Slow-growing aerotolerant anaerobes; prefers anaerobic environment at 37°C
–– Catalase positive; indole positive; produces propionic acid through 

fermentation
–– Skin commensal; also in the mouth, lung, urinary tract, gastrointestinal tract, 

and prostate:

⚬⚬ Primarily colonizes sebaceous glands and hair follicles
⚬⚬ Forms biofilms on indwelling medical devices through bacterial seeding

–– ~15 species; most are rarely associated with human disease

⚬⚬ Other cutaneous skin commensals: P. avidum, P. granulosum, P. lym-
phophilum, and P. propionicum – role in disease states is unclear
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�Disease States Associated with Propionibacterium acnes

•	 Opportunistic pathogen: associated with numerous inflammatory disease states 
(Achermann et al. 2014; Dessinioti and Katsambas 2010):

–– Induces innate immunity response mediated by Toll-like receptors TLR-2 and 
TLR-4 in macrophage and keratinocytes; triggered by peptidoglycan, lipotei-
choic acids, and CAMP 1 binding (Lheure et al. 2016)

–– Pro-inflammatory cytokines (IL-1β, IL-8, and IL-12) and tumor necrosis fac-
tor alpha (TNF-α) are released:

⚬⚬ Secretion of lipases, proteases, and fatty acids can also induce an inflam-
matory response

–– Induced keratinocyte growth results in the formation of whiteheads and 
blackheads

–– P. acnes activates classical and alternative complement pathways that produce 
neutrophil chemotactic factors, attracting neutrophils into sebaceous glands, 
leading to a purulent response

•	 Acne vulgaris: red inflamed lesions on the skin; most common symptom 
(Fig. 8.2):

–– Inflammation of sebaceous glands, where P. acnes resides
–– Excessive sebum production (triggered by hormones) provides nutrients for P. 

acnes

•	 Infections of indwelling medical devices, including breast implants, prosthetic 
joints, orthopedic devices, cardiovascular devices, and catheters (Achermann 
et al. 2014)

Fig. 8.1  P. acnes cells 
(From: Holmberg et al. 
(2009))

8  Propionibacterium spp.
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•	 Associated with SAPHO (synovitis, acne, pustulosis, hyperostosis, osteitis) syn-
drome (Zimmermann and Curtis 2016):

–– Synovitis: inflammation of synovial joints
–– Synovitis: inflammation of synovial joints
–– Acne vulgaris: see above
–– Pustulosis: inflammation of the skin resulting in blisters and pustules
–– Hyperostosis: abnormal thickening of bone tissue
–– Osteitis: inflammation of the bone

�Virulence Factors

•	 Many of these virulence factors are predicted by genomic sequencing 
(Brüggemann et al. 2004; Brzuszkiewicz et al. 2011):

•	 Adherence to host cells/tissues:

–– Nine putative adhesins

•	 Growth within the host milieu:

–– Iron acquisition:

⚬⚬ HtaA (Allen and Schmitt 2009):

•	 Heme acquisition cell surface protein
•	 Major immunoreactive protein; similar to Corynebacterium diphthe-

riae HtaA

–– Biofilms form on biotic surfaces and abiotic indwelling medical devices 
through bacterial seeding – major medical and economic problem (Achermann 
et al. 2014; Bayston et al. 2007)

Fig. 8.2  Acne vulgaris 
(From: vgrd.blogspot.com)

Virulence Factors

http://vgrd.blogspot.com/


124

•	 Secreted degradative enzymes (Holland et al. 2010):

–– Two triacylglycerol lipases:

⚬⚬ GehA – digests sebum (Miskin et al. 1997)

–– Hyaluronate lyase: degrades component of the extracellular matrix
–– At least 14 predicted lipases/esterases
–– Two endoglycoceramidases
–– Four sialidases
–– Extracellular proteases

•	 Damage to host cells:

–– CAMP (Christie, Atkins, Munch-Petersen) factors (Nakatsuji et al. 2011; 
Valanne et al. 2005):

⚬⚬ Five pore-forming hemolysins
⚬⚬ Similar to Group B Streptococci (Streptococcus agalactiae) CAMP factor
⚬⚬ Binds to IgG and IgM molecules
⚬⚬ Needs host sphingomyelinase for full activity
⚬⚬ Leads to destruction of macrophage and keratinocytes
⚬⚬ CAMP factor 2 is released in highest abundance (putative lysozyme)

�Regulation of Virulence Factor Expression

•	 Regulation of protein secretion (Sec-signal recognition particle (Sec-SRP) and 
the twin-arginine translocation (Tat) systems are upregulated in growth phase-
specific manner (Brzuszkiewicz et al. 2011):

–– Exponential growth increases secretion of certain virulence factors such as 
CAMP factors, endoglycoceramidases, lysophospholipase

–– Stationary phase increased secretion of hyaluronidase and adhesins
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Chapter 9
Staphylococcus spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics: multiple S. aureus strains have been sequenced, including methicillin-
resistant and methicillin-sensitive clinical isolates and community isolates 
(Holden et al. 2004):

–– Staphylococcus aureus strain MRSA252 (methicillin-resistant) chromosome: 
2,902,619 bp; 2671 predicted ORFs

–– Staphylococcus aureus strain MSSA476 (methicillin-sensitive) chromosome: 
2,799,802 bp; 2565 predicted ORFs

–– Staphylococcus epidermidis strain ATCC 12228 chromosome: 2,499,279 bp; 
2419 predicted ORFs (Zhang et al. 2003)

–– Staphylococcus saprophyticus strain ATCC 15305 chromosome: 2,516,575 bp; 
2446 predicted ORFs (Kuroda et al. 2005)

•	 Cell morphology:

–– Cocci: irregular “grape-like” clusters (Fig. 9.1)

•	 Gram stain:

–– Gram positive

•	 Growth (Ramsey et al. 2014):

–– Facultative anaerobes; catalase positive
–– Coagulase positive (S. aureus); most other Staphylococcus spp. are coagulase 

negative
–– Salt and desiccation tolerant; associated with colonization of the skin
–– Reservoirs: ~one-third of population are carriers; predominantly found on the 

skin, mucous membranes in the anterior nares (nose) and the respiratory tract, 
the gastrointestinal tract, and on vaginal mucous membranes; occasionally 
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found in contaminated soil and contaminated food products; antibiotic-
resistant strains are often found in hospital environments

–– Expert biofilm formers (see below)
–– At least 40 species fall into 11 taxonomic groups, many of which are associ-

ated with specific mammalian species

�Disease States Associated with Staphylococcus spp.

•	 Primary and opportunistic pathogens
•	 S. aureus: (Tong et al. 2015):

–– Member of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, 
Enterobacter spp.) family of antibiotic-resistant nosocomial pathogens

–– Major cause of hospital-acquired (HA) and community-acquired (CA) infec-
tions; often associated with chronic, persistent antibiotic-resistant isolates, 
including small colony variants (SCVs) (Proctor et al. 2014)

–– Most common pathogen associated with bloodstream infections due to bio-
film formation on indwelling medical devices

–– Localized purulent skin and soft tissue infections:

⚬⚬ Abscesses
⚬⚬ Folliculitis
⚬⚬ Boils; furuncles; carbuncles
⚬⚬ Impetigo

Fig. 9.1  S. aureus cells 
(From: CDC PHIL #5144)

9  Staphylococcus spp.
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–– Systemic and/or invasive infections:

⚬⚬ Staphylococcal scalded skin syndrome (SSSS; seen with neonates)
⚬⚬ Staphylococcal toxic shock syndrome (STSS)
⚬⚬ Bacteremia and septicemia (associated with biofilms on indwelling medi-

cal devices)
⚬⚬ Infective endocarditis
⚬⚬ Pneumonia (CA and HA; can become necrotizing)
⚬⚬ Food poisoning (associated with enterotoxins)
⚬⚬ Descending urinary tract infections (UTIs)
⚬⚬ Septic arthritis
⚬⚬ Osteomyelitis
⚬⚬ Joint replacement surgical infections

–– Transmission: contact with purulent discharge from an infected surgical site 
or wound, contact with skin of an infected person, contact with fomites used 
by an infected person, ingestion of enterotoxin-containing food or water

•	 S. epidermidis (Becker et al. 2014):

–– Coagulase-negative Streptococci (CoNS); 50–80% of CoNS isolates
–– Normal microbiota of skin and mucous membranes
–– Opportunistic pathogen of immunocompromised population
–– Leading cause of nosocomial infections associated with biofilm formation on 

foreign indwelling medical devices; also S. haemolyticus:

⚬⚬ Exit site and systemic infections; resultant bacteremia can lead to localized 
purulent inflammation, septicemia, infective endocarditis [including pros-
thetic valve infective endocarditis (PVIE)], prosthetic joint infection, and 
abscesses

–– Transmission: enters through wound or surgical breaks in the skin

•	 S. saprophyticus (Becker et al. 2014; Kline and Lewis 2016):

–– Coagulase-negative Streptococci (CoNS)
–– Predominantly colonize the human gastrointestinal tract, genitourinary tract, 

and rectum
–– Also can be found in the gastrointestinal tract of animals, leading to contami-

nation of raw beef and pork, and in contaminated vegetables and cheeses 
(Hedman et al. 1990)

–– Ascending UTIs – second most frequent cause of uncomplicated UTIs:

⚬⚬ Transmitted from the GI tract through the urethra and ascends to the upper 
GU tract

⚬⚬ Symptoms: acute urethritis – burning sensation during urination, urge to 
frequently urinate, bloated feeling with sharp abdominal pain

⚬⚬ Novobiocin susceptibility testing: only for coagulase-negative UTI source 
identification:

Disease States Associated with Staphylococcus spp.
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•	 S. saprophyticus: resistant
•	 S. epidermidis: sensitive

–– Second most common cause of CA-UTIs; infection rate increases with sexual 
activity in women

�Virulence Factors

•	 S. aureus virulence factors include a myriad of adherence proteins and exotoxins 
as well as multiple mechanisms used to evade the host immune system

•	 Adherence to host cells:

–– Afimbrial adhesins:

⚬⚬ MSCRAMMs (microbial surface components recognizing adhesive 
matrix molecules):

•	 Cell wall-anchored (CWA) proteins: attached to the cell wall by sortase 
transpeptidases (Foster et al. 2014):

–– Sortases (Bradshaw et al. 2015):

⚬⚬ Found in most Gram-positive and some Gram-negative bacteria
⚬⚬ Cysteine transpeptidase activity; six classes (class A–class F)
⚬⚬ Catalyze the attachment of adhesins and other CWA proteins to 

the pentapeptide cross-bridges within the peptidoglycan structure
⚬⚬ Recognize proteins that contain a C-terminal LPXTG-like cell 

wall sorting signal (CWSS)

•	 Cna (Patti et al. 1992):

–– Collagen adhesin; binds collagen-rich tissues using “collagen hug” 
mechanism (Zong et al. 2005)

–– Not expressed in all S. aureus strains
–– Also binds to complement protein C1q; inhibits complement by 

blocking the binding of C1q to C1r90; used to evade host immune 
system (Kang et al. 2013)

•	 FnbpA, FnbpB (Menzies 2003):

–– Binds ECM fibronectin, elastin, and fibrinogen.
–– Fibrinogen binding enhances blood clot formation (see below)
–– Also acts as an invasin through its interactions with fibronectin .and 
α5β1 integrin complex within host cell membranes (Foster et  al. 
2014)

–– Promotes biofilm formation
–– Most S. aureus strains express both FnbpA and FnbpB
–– Inactivated by V8 protease (SspA); involved in transitioning 

between colonization and dissemination (McGavin et al. 1997)

9  Staphylococcus spp.
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•	 ClfA, ClfB (McDevitt et al. 1994; Ní Eidhin et al. 1998):

–– Cell wall-attached coagulases (clumping factors)
–– Two distinct genes, not allelic variants
–– ClfA bind to ECM fibrinogen at different sites; mediates platelet 

activation involved in blood clot formation (see below)
–– ClfB binds to keratin 10 and loricrin; plays a role in binding to des-

quamated nasal epithelial cells (Corrigan et al. 2009)

•	 SdrC, SdrD, SdrE, Bbp (bone sialoprotein-binding protein) (Foster 
and Höök 1998):

–– SdrC and SdrD play a role in binding to desquamated nasal epithelial 
cells (Corrigan et al. 2009)

–– SdrC binds to β-neurexin, a neuronal cell adhesion molecule; signifi-
cance of this binding to virulence is unclear (Barbu et al. 2010)

–– Bbp binds fibronectin; interferes with coagulation (Vazquez et  al. 
2011)

⚬⚬ IsdA (Clarke et al. 2004):

•	 Binds ECM fibrinogen and fibronectin
•	 Also plays a role in iron acquisition (see below)

⚬⚬ Eap/Map (extracellular adherence protein/MHC analogous protein) 
(Harraghy et al. 2003):

•	 Not a MSCRAMM
•	 Binds ECM components fibronectin, fibrinogen, vitronectin, bone sia-

loprotein, and thrombospondin
•	 Interacts with ICAM-1 (intercellular adhesion molecule-1); induces 

inflammatory response (see below)

⚬⚬ EbpS (Downer et al. 2002):

•	 Integral membrane protein; not a MSCRAMM
•	 Binds to ECM elastin

⚬⚬ SasG (Roche et al. 2003):

•	 G5-E repeat cell wall-anchored adhesin
•	 Functions in attachment to human desquamated nasal epithelial cells

•	 Dissemination in human host:

–– Bloodstream dissemination is essential for S. aureus systemic diseases, such 
as sepsis, infective endocarditis, osteomyelitis, pneumonia, deep tissue 
abscesses, and seeding of indwelling medical devices

–– Dissemination requires protection from the bloodstream innate immune 
system

Virulence Factors
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–– For this protection, S. aureus co-opts the host hemostatic system by inducing 
the creation and dispersion of fibrin blood clots (Fig. 9.2)

–– Coagulase-dependent blot clot formation: (McAdow et al. 2012; Peetermans 
et al. 2015; Thammavongsa et al. 2015) (Fig. 9.3):

⚬⚬ Coa (staphylocoagulase):

•	 Secreted coagulase; binds host prothrombin
•	 Coa binding, along with vWbp binding (see below), converts prothrom-

bin into activated staphylothrombin protease complex
•	 Staphylothrombin proteolytically converts host fibrinogen into a fibrin 

network (blood clot), which blocks opsonophagocytosis and bacterial 
killing

•	 Staphylothrombin also induces the formation of microthrombi within 
the bloodstream and plays a role in abscess formation

⚬⚬ vWbp (von Willebrand factor-binding protein):

•	 Secreted coagulase; binds host prothrombin
•	 vWbp binding activates prothrombin to staphylothrombin

immune evasion

fibrin

thrombin

coagulases

platelet activation

microthrombi

vascular wall adhesion
-metastatic infection

flow-resistance

vWF binding

staphylokinase

plasmin

fibrinolysis

S. aureus

Fig. 9.2  S. aureus manipulation of host hemostatic system (From: Peetermans et al. (2015))

9  Staphylococcus spp.
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•	 Also mediates the binding of S. aureus to damaged or activated vascular 
endothelium, which is needed to induce infectious endocarditis

⚬⚬ ClfA, ClfB:

•	 Cell wall-attached coagulases (see above)
•	 Plays a synergistic role with Coa and vWbp
•	 Important in fibrin microthrombi formation; agglutinates S. aureus cells 

in blood clots
•	 CflA also binds complement regulator factor I (fI), blocking comple-

ment activation

Fig. 9.3  S. aureus coagulation pathway (From. Thammavongsa et al. (2015))

Virulence Factors
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⚬⚬ FnbpA, FnbpB:

•	 Binds to ECM fibrinogen at different sites (see above)
•	 Mediates platelet activation involved in blood clot formation

–– Blood clot disruption:

⚬⚬ Staphylokinase (fibrinolysin) (Collen 1998):

•	 Plasminogen activator (Pla)
•	 Binds to host plasminogen, leading to its conversion into the fibrinolytic 

enzyme plasmin
•	 Plasmin degrades fibrin blood clots, releasing S. aureus from the blood 

clot

⚬⚬ Hyaluronate lyase (hyaluronidase) (Makris et al. 2004):

•	 Destroys ECM hyaluronic acid; spreading factor

–– EsxA, EsxB (Burts et al. 2005):

⚬⚬ Secreted proteins required for virulence
⚬⚬ Part of T7SS analogous to M. tuberculosis ESAT-6 secretion system

•	 Growth in human host:

–– Iron acquisition (Haley and Skaar 2012):

⚬⚬ Siderophores:

•	 Staphyloferrin A, staphyloferrin B: also found in S. epidermidis
•	 HtsABC, SirABC: transport siderophores into the cytoplasm

⚬⚬ Binding to host iron-containing proteins:

•	 Isd (iron-regulated surface determinant) proteins: IsdA-IsdH
•	 IsdB: binds host hemoglobin; removes heme from hemoglobin
•	 IsdH: binds host hemoglobin/haptoglobin
•	 IsdA, IsdC: heme-binding cell wall proteins; receive heme from IsdB, 

IsdH

–– Biofilm formation essential for virulence (Götz 2002; Paharik and Horswill 
2016):

⚬⚬ Staphylothrombin activation of fibrinogen (see above) that is accumulated 
on indwelling medical devices leads to fibrin deposition and biofilm 
formation

⚬⚬ Many of the CWA adhesins described above play an important role in bio-
film formation

⚬⚬ PIAs (polysaccharide intercellular adhesins) (Cramton et al. 1996):

•	 Component of slime layer

9  Staphylococcus spp.
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•	 Sulfated polymers of β-1,6-linked N-acetylglucosamine [poly-N-
acetylglucosamine (PNAG)]

•	 Essential for biofilm formation
•	 Encoded by the icaABCD operon

–– Lipases (Rosenstein and Götz 2000):

⚬⚬ Two secreted proteins in S. aureus
⚬⚬ Dissolves host lipids; enhances colonization on the skin

•	 Damage to host cells:

–– Hemolysins/leukocidins (Dinges et al. 2000; Otto 2014):

⚬⚬ Cytolytic to red blood cells (RBCs), epithelial cells, and phagocytic cells
⚬⚬ β-barrel pore-forming toxins (β-PFTs); most contain two subunits (except 
α-toxin); receptor-mediated cytolysis:

•	 α-hemolysin (α-toxin; Hla) (Tomita and Kamio 1997):

–– Dermonecrotic and neurotoxic
–– Forms heptameric pores in epithelial cells and phagocytic cells
–– Essential virulence factor for diseases associated with epithelial cell 

interfaces, such as pneumonia
–– Binds to host ADAM-10, inducing its metalloprotease activity, 

which cleaves E-cadherin within intercellular junctions (Inoshima 
et al. 2011)

•	 γ-hemolysin (HlgA,B,C) (Prevost et al. 1995):

–– High level of amino acid homology to PVL (see below)

⚬⚬ HlgA, HlgC = LukS
⚬⚬ HlgB = LukF

–– Destroys neutrophils, macrophage, RBCs

•	 LukA,B, HlgC,B, LukE,D (Otto 2014):

–– Two component leukocidins
–– Destroy neutrophils, T cells, macrophage

•	 Panton-Valentine leukocidin (PVL; LukS,F) (Prevost et al. 1995):

–– Destroys neutrophils, macrophage
–– Encoded on PVL bacteriophage; associated with CA-MRSA strains

–– β-hemolysin (β-toxin; Hlb) (Doery et al. 1963):

•	 Sphingomyelinase C activity
•	 Cleaves host cell membrane sphingomyelin into phosphocholine and 

N-acylsphingosine (ceramide); results in cell lysis
•	 Used in laboratory CAMP test to identify Group B Streptococci
•	 hlb gene is disrupted in many virulent S. aureus cells

Virulence Factors
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–– PSM (phenol-soluble modulins) (Peschel and Otto 2013; Wang et al. 2007b):

⚬⚬ Seven surfactant-like, 20–25 amino acid amphipathic peptides
⚬⚬ PSMα1 – α4; PSMβ1 – β2; PSM-mec
⚬⚬ Associated with increased expression in CA-MRSA infections
⚬⚬ Cytotoxic to neutrophils, monocytes
⚬⚬ δ-hemolysin (δ-toxin; Hld) (Mellor et al. 1988):

•	 Homologous to PSMα peptides
•	 Cytolytic effects on many host cells

–– PTSAgs (pyrogenic toxin superantigens) (Spaulding et al. 2013):

⚬⚬ Family of potent immunostimulatory exotoxins
⚬⚬ Induce nonspecific, massive T-cell proliferation (up to 20% of all T cells):

•	 Bind to TCR (T-cell receptor) Vβ variable chains on T cells and class II 
MHC (major histocompatibility complex) α- and β-chains on antigen-
presenting cells (APCs); different than the normal antigen-specific TCR 
binding

•	 Binding “tricks” T cells into releasing enormous amounts of host cyto-
kines, resulting in a “cytokine storm”

•	 Cytokine storm is responsible for severe symptoms – capillary leakage, 
hypotension, shock, respiratory distress, multi-organ failure, and death

⚬⚬ 19 S. aureus PTSAgs:

•	 TSST-1 (toxic shock syndrome toxin-1)
•	 SE (staphylococci enterotoxin) serotypes: SEA, SEB, SECn, SED, 

SEE, SEG, SEH, SEI, SEJ, SEK, SEL, SEM, SEN, SEO, SEP, SEQ, 
SER, SEU

⚬⚬ Food poisoning:

•	 SE-induced gastroenteritis
•	 Associated with the ingestion of one or more preformed SE present 

within S. aureus-contaminated food
•	 Induces emesis (vomiting) but usually not fever; self-limiting

⚬⚬ Toxic shock syndrome (TSS) (Schlievert et al. 1981):

•	 Symptoms: fever (pyrogenic), diffuse macular rash, swollen lymph 
nodes, sore throat, vomiting, diarrhea, severe localized pain; leads to 
hypotension and shock

•	 Associated with the use of high absorbency tampons
•	 TSS occurs when large amounts of PTSAgs are secreted into the circu-

latory system:

–– Menstrual TSS: associated solely with the secretion of TSST-1, due 
to its unique ability to cross mucosal barriers

9  Staphylococcus spp.
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–– Non-menstrual TSS: associated with the expression of TSST-1 plus 
another SE (primarily SEB and SEC)

–– Exfoliative toxins (ET) – “epidermolytic toxins” (Bukowski et al. 2010):

⚬⚬ Staphylococcal scalded skin syndrome (SSSS):

•	 Usually associated with neonates and infants
•	 Initial symptoms: fever, lethargy, poor feeding
•	 Later symptoms: erythematous rash, fluid-filled blisters, skin exfolia-

tion leading to secondary infections

⚬⚬ ETA (predominant serotype), ETB, ETD:

•	 Serine proteases; cleave host desmoglein 1 (Dsg-1)
•	 Dsg-1: desmosomal cadherin found in superficial skin layers
•	 Cleavage results in a loss of keratinocyte cell-cell adherence, leading to 

the separation of superficial skin layers and SSSS

•	 Evasion of host immune system (Spaan et al. 2013; Thammavongsa et al. 2015):

–– Evasion of the host immune system is essential for bloodstream dissemination 
and systemic disease (see dissemination in human host, above)

–– Capsule (O’Riordan and Lee 2004):

⚬⚬ Produced by over 90% of S. aureus strains
⚬⚬ 11 capsular polysaccharide (CP) types; CP5 and CP8 predominate
⚬⚬ Blocks opsonophagocytosis

–– Nuc (nuclease) (Berends et al. 2010; Thammavongsa et al. 2013):

⚬⚬ DNAase activity; disrupts neutrophil NETs (neutrophil extracellular traps)
⚬⚬ Converts NETs into deoxyadenosine (dAdo), which triggers caspase-

mediated apoptosis (see below)

–– Blockage of neutrophil extravasation and chemotaxis:

⚬⚬ SSLs (staphylococcal superantigen-like proteins) (Spaan et al. 2013):

•	 Multiple alleles (SSL1–14) with different ligand specificities
•	 Bind to many different neutrophil receptors, including TLRs:

–– For example, SSL5 blocks neutrophil rolling and extravasation on 
endothelial cells (Bestebroer et al. 2007)

•	 Also block chemokine signaling

⚬⚬ CHIPS (Chemotaxis Inhibitory Protein of Staphylococci): (de Haas et al. 
2004):

•	 Secreted protein
•	 Binds to the complement protein C5a receptor
•	 Blocks C5a-mediated neutrophil activation and chemotaxis

Virulence Factors
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•	 Also binds formyl peptide receptor 1 (FPR1), blocking chemotaxis 
toward N-formyl-peptide (fMLP) chemoattractants

⚬⚬ FLIPr; FLIPr-L (FPR-like 1 inhibitory proteins) (Prat et al. 2009):

•	 Bind and inhibit formyl peptide receptors (FPR1, FPR2)
•	 FLIPr inhibits FPR1 and FPR2
•	 FLIPr-L inhibits FPR2
•	 Blocks chemotaxis toward N-formyl-peptide (fMLP) chemoattractants

⚬⚬ Eap/Map (extracellular adherence protein) (Chavakis et al. 2002):

•	 Binds host ICAM-1 protein and ECM proteins
•	 Inhibits neutrophil recruitment, diapedesis (extravasation), adhesion
•	 Induces inflammation through binding to ICAM-1

⚬⚬ Staphopain A, staphopain B (Laarman et al. 2012; Smagur et al. 2009;1):

•	 Secreted cysteine proteases
•	 Staphopain A cleaves CXCR2 chemokine receptor; blocks neutrophil 

activation and migration toward CXCR2 chemokines
•	 Staphopain B cleaves neutrophil CD11b and CD31 receptors; induces 

cell death

–– Survival inside neutrophils:

⚬⚬ Hmp (Richardson et al. 2008):

•	 Flavohemoglobin; detoxifies nitric oxide (NO)

⚬⚬ Detoxifying reactive oxygen species (ROS):

•	 SodA, SodM (Karavolos et al. 2003):

–– Superoxide dismutase; inactivates superoxide radicals

⚬⚬ KatA (catalase) and AhpC (alkyl hydroperoxide reductase) (Cosgrove 
et al. 2007):

–– Scavenges and inactivates H2O2

•	 Staphyloxanthin (Liu et al. 2005):

–– Golden carotenoid; gives S. aureus colonies their golden color 
(aureus)

–– Antioxidant activity; protects against H2O2 and hydroxyl radicals

⚬⚬ AdsA (adenosine synthase A) (Thammavongsa et al. 2011; Thammavongsa 
et al. 2013):

•	 Cell wall protein
•	 Dephosphorylates dATP, dADP, dAMP from disrupted NETs (see Nuc 

above), creating deoxyadenosine (dAdo) molecules
•	 DAdo triggers anti-inflammatory signaling, blocks neutrophil respira-

tory burst, and induces neutrophil apoptosis

9  Staphylococcus spp.
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–– Inhibition of complement-mediated lysis:

⚬⚬ Multiple proteins block complement activation/function by binding anti-
bodies (predominantly Ig, IgM) or by blocking complement protein C3 
processing and/or function:

⚬⚬ SdrE (Sharp et al. 2012):

•	 Binds complement factor H (fH); blocks complement activation

⚬⚬ SpA (staphylococcal protein A) (Falugi et al. 2013):

•	 MSCRAMM cell wall-anchored protein, proteolytically released from 
the cell wall during cell growth

•	 Binds Fcγ portion of IgG; blocks opsonophagocytosis
•	 Binds and cross-links the Fab portion of VH3 clan IgM and IgG; inhibits 

antibody development by inducing B-cell apoptosis
•	 Also binds von Willebrand factor; functions as an adhesin

⚬⚬ Sbi (staphylococcal binder of immunoglobulins) (Smith et al. 2011):

•	 Can be secreted or bound to the cell wall:

–– Secreted form binds complement factor C3d and fH; blocks opsono-
phagocytosis through consumption of C3

–– Bound form binds to Fc portion of IgG (same as SpA); blocks 
opsonophagocytosis

⚬⚬ SCIN, SCIN-B, SCIN-C (staphylococcal complement inhibitors) 
(Rooijakkers et al. 2005):

•	 Inhibit complement factor C3 convertase; prevents production of C3a, 
C3b, and C5a

•	 Blocks complement activation and complement-mediated 
phagocytosis

⚬⚬ Aureolysin (Aur) (Laarman et al. 2011):

•	 Secreted zinc-dependent metalloproteinase
•	 Cleaves human antimicrobial peptide LL-37
•	 Cleaves complement factor C3 to generate functionally active C3a and 

C3b; C3b is then degraded by complement factor I (fI) and fH, which 
blocks complement accumulation on the cell surface

•	 S. epidermidis (Becker et al. 2014; Otto 2009):

–– Opportunistic pathogen
–– The major virulence factor associated with S. epidermidis infections is the 

ability to form biofilms on abiotic and biotic surfaces
–– S. epidermidis biofilm formation involves many of the adherence factors asso-

ciated with S. aureus infections (see above); however, most of the other S. 
aureus virulence factors are absent from S. epidermidis

Virulence Factors
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–– Biofilm formation (Fig. 9.4):

⚬⚬ S. epidermidis attachment to foreign devices occurs during insertion of the 
device, most likely through endogenous bacteria from the skin or mucus 
membranes

⚬⚬ These abiotic surfaces are quickly coated with platelets and host ECM 
components, such as fibronectin, fibrinogen, thrombospondin, collagen, 
von Willebrand factor, and vitronectin, which bind to S. epidermidis adher-
ence factors:

⚬⚬ AtlE (Heilmann et al. 1997):

•	 Autolysin/adhesin; homologous to S. aureus Atl autolysin
•	 Promotes the initial adherence, possibly through its catalytic hydrolysis 

of the peptidoglycan layer and release of eDNA, an important compo-
nent of biofilms

•	 Binds to host ECM vitronectin
•	 Plays a role in internalization into endothelial cells

⚬⚬ Aae (Heilmann et al. 2003):

•	 Autolysin/adhesion: binds to fibrinogen, vitronectin, and fibronectin

⚬⚬ WTA (wall teichoic acid) (Holland et al. 2011):

•	 Charged components of the Gram-positive cell wall
•	 Interact with abiotic surfaces through electrostatic interactions
•	 Also binds to fibronectin

⚬⚬ ClpP (Wang et al. 2007a):

•	 Protease; degrades misfolded proteins
•	 clpP mutant had reduced biofilm formation

Cell-cell adhesion
and proliferation

Attachment to the
polymer surface

Polymer surface:
hydrophobicity, AtlE,
Aae and teichoic acids

Host matrix proteins:
SdrF, SdrG, SdrH,
Ebp, AtlE and Aae

PNAG,
teichoic acids,
Bap and
Aap

PSMs?
Proteases?

Maturation Detachment

Attachment to host
matrix proteins

agr expression
in exposed layers

Fig. 9.4  S. epidermidis biofilm formation (From: Otto (2009))
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⚬⚬ Bhp (Tormo et al. 2005):

•	 Homologous to S. aureus Bap (biofilm associated protein) associated 
with bovine mastitis

•	 Mediates biofilm formation in the absence of PIAs

⚬⚬ GehD, GehC, GehSE1 (Bowden et al. 2002):

•	 Extracellular lipases
•	 Bind type I, II, and IV collagen
•	 Function in skin colonization

⚬⚬ Embp (Christner et al. 2010):

•	 Fibronectin-binding protein; distinct from S. aureus FnbpA,B
•	 Also involved in intercellular adhesion and biofilm formation

⚬⚬ MSCRAMMS:

•	 SdrG/Fbe (Hartford et al. 2001):

–– Fibrinogen-binding protein; similar to S. aureus ClfA

•	 SdrF, SdrH (McCrea et al. 2000):

–– Binds to type I collagen

•	 SesC (Shahrooei et al. 2009):

–– Fibrinogen-binding protein

⚬⚬ PIA (PNAG) (Heilmann et al. 1996):

•	 Homologous to S. aureus PIA (PNAG)
•	 Biosynthetic genes are encoded in icaADBC operon

⚬⚬ PGA (poly-γ-glutamic acid) (Kocianova et al. 2005):

•	 Similar to PIA exopolymers
•	 Protect against neutrophil phagocytosis and antimicrobial peptides 

(AMPs)

⚬⚬ Aap (Hussain et al. 1997):

•	 G5-E repeat, cell wall-anchored adhesin
•	 Homologous to S. aureus SasG
•	 Induce PIA-independent biofilm formation

⚬⚬ PSMs (phenol-soluble modulins) (Mehlin et al. 1999):

•	 Homologous to S. aureus PSMs
•	 PSMα, PSMγ (δ toxin), PSMδ, PSMε, PSM-mec, PSMβ1, PSMβ2
•	 PSMγ (δ toxin), PSMδ, PSMε: cytolytic activity
•	 Induce pro-inflammatory response
•	 May function in biofilm dispersal

Virulence Factors
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•	 S. saprophyticus (Kline and Lewis 2016):

–– The most important virulence factors are involved in adherence and coloniza-
tion within the genitourinary tract:

–– Aas (Hell et al. 1998):

⚬⚬ Hemagglutinin, autolysin, and adhesin properties
⚬⚬ Binds to fibronectin

–– Ssp (Gatermann et al. 1992):

⚬⚬ Surface-associated lipase
⚬⚬ Forms fimbriae-like surface appendages; its role in virulence is unclear

–– UafA (uro-adherence factor A) (Kuroda et al. 2005):

⚬⚬ Cell wall-associated hemagglutinin
⚬⚬ Binds to bladder epithelial cells

–– UafB (uro-adherence factor B) (King et al. 2011):

⚬⚬ Serine-rich glycoprotein
⚬⚬ Binds fibronectin, fibrinogen, and human bladder epithelial cells

–– SdrI (serine-aspartate-rich protein I) (Sakinc et al. 2006):

⚬⚬ Binds collagen
⚬⚬ Involved in acute UTI and persistent kidney infections
⚬⚬ Homologous to S. aureus Sdr proteins

–– Urease (Gatermann et al. 1989):

⚬⚬ Colonization and inflammation of the bladder and kidneys
⚬⚬ Play a role in the formation of urinary stones; similar to those found in 

Proteus mirabilis UTIs

–– Capsule (Park et al. 2010):

⚬⚬ Blocks complement-mediated opsonophagocytosis

–– PSM (phenol-soluble modulins):

⚬⚬ Pro-inflammatory cytolytic toxins; similar to those found in S. aureus and 
S. epidermidis

�Regulation of Virulence Factor Expression

•	 Virulence factor expression is regulated by several quorum-sensing systems, 
transcriptional activators and repressors, and alternative sigma (σ) factors

•	 Agr quorum-sensing (QS) system (Le and Otto 2015; Wang and Muir 2016):
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–– Most important regulatory system for virulence gene expression in S. aureus
–– Utilizes autoinducer peptides (AIPs) that interact with a two-component QS 

system
–– Regulates the expression of the agr regulatory operon, virulence factors, and 

surface proteins needed for biofilm formation (Fig. 9.5)
–– agr locus:

⚬⚬ Two divergent transcriptional units – RNAII and RNAIII:

•	 RNAII: mRNA expressing agrB, agrD, agrC, and agrA genes:

Fig. 9.5  S. aureus Agr QS system (From: Le and Otto (2015))
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–– AgrD: encodes precursor pro-AIPs autoinducers
–– AgrB: processes and secretes AIPs outside cell
–– Four autoinducers: AIP-I, AIP-II, AIP-III, and AIP-IV:

⚬⚬ Differences are due to hypervariable regions in agrD and agrC.
⚬⚬ Associated with different disease states:

•	 I and II: most invasive diseases
•	 IV: exfoliative toxins ETA, ETB (rare)
•	 III: TSS (TSST-1 production)

–– AgrC: sensor histidine kinase; phosphorylates AgrA:

Activated by binding to AIP autoinducers

–– AgrA: response regulator; transcription factor:

⚬⚬ Upregulates the transcription of RNAII and RNAIII
⚬⚬ Also directly upregulates the transcription of the PSM psmα and 

psmβ operons

•	 RNAIII:

–– Regulatory RNA molecule; responsible for translational regulation 
of Agr target genes (Bronesky et al. 2016)

–– Also contains the hld gene for δ-toxin
–– Mechanism: affects the translation of Agr target mRNA by forming 

RNA duplexes with the 5′ untranslated regions of the target mRNA:

⚬⚬ Activates the translation of α-toxin and the MgrA transcription 
repressor

⚬⚬ Blocks the translation of protein A, LytM, Sbi, FnbpA, FnbpB, 
Coa coagulase, and other surface adhesins

⚬⚬ Also blocks the translation of the Rot (repressor of toxins) tran-
scription repressor:

•	 Rot repression leads to upregulation of TSST-1, α-toxin, leu-
kocidins, proteases, and lipases and downregulation of stapho-
pains and surface proteins, blocking biofilm formation

•	 LuxS QS system:

–– Analogous to Vibrio spp. QS system
–– Uses the AI-2 autoinducer
–– Regulates capsule synthesis, biofilm formation, virulence factors, and antibi-

otic susceptibility
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Chapter 10
Streptococcus spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics (Maruyama et al. 2016):

–– Streptococcus pyogenes M1 strain chromosome: 1,852,442  bp; 1752 pre-
dicted ORFs (Ferretti et al. 2001)

–– Streptococcus pneumoniae TIGR4 chromosome: 2,160,837  bp; 2236 pre-
dicted ORFs (Tettelin et al. 2001)

–– Streptococcus agalactiae 2603 V/R isolate chromosome: 2,160,267 bp; 2175 
predicted ORFs (Tettelin et al. 2002)

•	 Cell morphology:

–– Cocci: chains of cells (S. pyogenes) (Fig. 10.1) or diplococci (S. pneumoniae)

•	 Gram stain:

–– Gram positive

•	 Growth:

–– Facultative anaerobes; catalase negative, oxidase negative
–– Reservoirs: normal animal microbiota
–– Excellent biofilm formers (see below)
–– Over 40 species: can be classified by hemolytic patterns, Lancefield antigens, 

M protein serotypes, and 16rRNA gene sequences

⚬⚬ Hemolytic patterns:

•	 Hemolysis of red blood cells (RBCs) on blood agar plate (BAP)
•	 Alpha (α) hemolysis: partial “green” hemolysis; due to bacterial hydro-

gen peroxide oxidizing the hemoglobin (Fe+2) to green methemoglobin 
(Fe+3)
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•	 Beta (β) hemolysis: complete hemolysis; due to streptolysin S, O (see 
below)

•	 Gamma (γ) hemolysis: no hemolysis

⚬⚬ Lancefield antigens:

•	 Based on group-specific antigens or C substances
•	 Group A through H, K through V (no I, J)
•	 Groups A, B, C, E, F, G: polysaccharides antigens:

–– Group A carbohydrate (GAC): cell wall polysaccharide containing a 
polyrhamnose backbone with the immunodominant N-
acetylglucosamine (GlcNAc) side chain; makes up 50% of cell wall 
by weight

–– Group B carbohydrate (GBC): cell wall multi-antennary structure 
containing four different oligosaccharides (rhamnose, galactose, 
N-acetylglucosamine, and glucitol)

•	 Groups D and N: teichoic acid antigens
•	 Group H: lipoteichoic acid antigens

⚬⚬ M protein serotypes:

•	 M protein: pili-like adhesin (see below); encoded by emm gene
•	 Greater than 240 M protein serotypes; M1 is the most common S. pyo-

genes serotype

Fig. 10.1  S. pyogenes 
cells (From: PHIL #2109)

10  Streptococcus spp.
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⚬⚬ 16rRNA gene sequences:

•	 Six groupings: pyogenic (S. pyogenes, S. agalactiae), bovis, salivarius, 
mutans, mitis (S. pneumoniae), anginosus

�Disease States Associated with Streptococcus spp.

•	 S. pyogenes – Group A, β-hemolytic Streptococcus (GAS) (Ferretti et al. 2016):

–– Human-adapted primary pathogen
–– Reservoirs: normal microbiota of the respiratory tract and skin
–– Transmission: airborne aerosol transmission; close contact person to person, 

usually with children who are carriers; contact with fomites contaminated by 
infected person; contamination of wounds, burns (skin breach)

–– ~700 million cases of mild, noninvasive infections/year worldwide
–– ~2 million cases progress to severe invasive infections; ~25% mortality

⚬⚬ Predominantly due to M1 T1 serotype

–– Noninvasive purulent diseases – respiratory and skin diseases:

⚬⚬ Pharyngitis (strep throat) (Fig. 10.2)
⚬⚬ Scarlet fever (pharyngitis with a rash)
⚬⚬ Impetigo (infection of the superficial keratin layer)
⚬⚬ Erysipelas (infection of the superficial epidermis; lymphatic involvement)

Fig. 10.2  GAS pharyngitis (From: Block (2014))

Disease States Associated with Streptococcus spp.
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–– Invasive non-purulent diseases:

⚬⚬ Cellulitis (infection of subcutaneous tissue)
⚬⚬ Necrotizing fasciitis (infection of deep subcutaneous tissues and muscle 

fascia)
⚬⚬ Myonecrosis (infection of muscle)
⚬⚬ Streptococcal toxic shock syndrome (STSS)
⚬⚬ Bacteremia
⚬⚬ Infectious endocarditis
⚬⚬ Pediatric autoimmune neuropsychiatric disorders associated with strepto-

coccal infections (PANDAS); children with obsessive-compulsive disorder 
(OCD) and/or tic disorders following a streptococcal infection

–– Sequelae diseases:

⚬⚬ Acute rheumatic fever (ARF), rheumatic heart disease (RHD), acute post-
streptococcal glomerulonephritis (APSGN)

⚬⚬ Due to host immunological reactions to GAS antigens
⚬⚬ Usually the result of repeated untreated or undertreated infections
⚬⚬ ARF (Cunningham 2016):

•	 Molecular mimicry; antibodies directed against GAS GlcNAc and M 
proteins cross-react with myosin protein in heart valves; leads to inflam-
mation and damage to heart valves

⚬⚬ APSGN (Rodriguez-Iturbe and Haas 2016):

•	 Due to inappropriate deposition of antigen-antibodies complexes in 
glomeruli of the kidney; leads to inflammation and kidney failure

•	 Associated with antibodies against M proteins 1, 2, 4, 12, 47, 49, and 
55; also associated with antibodies against nephritis-associated plasmin 
receptor (NAPlr; GAPDH) and SPE-B

•	 Streptococcus agalactiae – Group B, β-hemolytic Streptococcus (GBS):

–– Neonatal sepsis; meningitis; pneumoniae
–– Transmission: mother is colonized; infant is infected during birth

⚬⚬ Risk factors: premature delivery, early membrane rupture

–– Low incidence but extremely serious
–– Reservoir: gastrointestinal tract, genitourinary tract

•	 Streptococcus pneumoniae (pneumococci) – α-hemolytic; no C substances iden-
tified (Feldman and Anderson 2016):

–– Reservoir: normal microbiota of upper respiratory tract; colonize the 
nasopharynx

–– Transmission: airborne transmission of aerosols (Fig. 10.3)
–– Inflammatory diseases
–– Can disseminate to ears (otitis media), sinuses (sinusitis), and bronchi 

(bronchitis)

10  Streptococcus spp.
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–– Invasive disease involves spread to lungs (pneumococcal pneumonia) and 
bloodstream (bacteremia/septicemia), which can lead to the meninges 
(meningitis)

–– Pneumococcal pneumonia:

⚬⚬ Most common community-acquired (CA) pneumonia
⚬⚬ Abrupt, severe shaking chills; sustained high fever; productive cough; rust-

colored sputum

–– Bacteremia/septicemia: 25–30% of patients with pneumonia
–– Meningitis: one of the leading causes of adult meningitis

�Virulence Factors

•	 GAS (Wilkening and Federle 2017):

–– Adherence to host cells (Brouwer et al. 2016; Nobbs et al. 2009):

⚬⚬ Streptococcus spp. can colonize multiple sites in the human host; due to 
the strain-specific expression of 100 s of fimbrial and afimbrial adhesins 
(for a comprehensive listing, see Brouwer et  al. (2016), Nobbs et  al. 
(2009))

Fig. 10.3  Pneumococcal disease dissemination (From: Henriques-Normark and Tuomanen 
(2013))

Virulence Factors
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⚬⚬ Biofilm formation plays a key role in adherence
⚬⚬ Lipoteichoic acid (LTA):

•	 Fatty acid domains of cell wall LTA interact weakly with fatty acid 
binding domains in host cell membranes

⚬⚬ Fimbrial adhesins:

•	 Pili (Mora et al. 2005; Ros 2016):

–– Cell wall-anchored (CWA) long, flexible rods
–– BP/FctA: backbone pilin subunit
–– AP1/Cpa; AP2/FctB: accessory protein subunits; mediate the spe-

cific binding to host receptors
–– Mature pilus assembled via pilus-associated sortases SrtB/SrtC2
–– Assembled pilus is anchored to cell wall via SrtA sortase
–– FCTs – genomic regions that encode pili biosynthetic and regulatory 

genes:

⚬⚬ Also encode adhesins that bind to fibronectin, collagen, and T 
antigens (FCT); FCT-1 to FCT-9

•	 M protein (Fischetti 2016; Smeesters et al. 2010):

–– Major adherence factor to host cells; inhibits phagocytosis in the 
absence of opsonizing antibodies

–– Pili-like structure; alpha-helical coiled-coil dimer
–– Attached to the cell wall peptidoglycan by SrtA sortase; can extend 

up to 600 nm from the cell wall
–– >240 antigenic variants; used for classification (see above)
–– Variant-specific binding:

⚬⚬ ECM components (Fn, collagen)
⚬⚬ Complement regulatory proteins [factor H (fH), factor H-like-1 

(FHL-1), C4 binding protein (C4BP)]
⚬⚬ Immune components (T cell CD46, IgG, β 2-microglobulin); acts as 

a superantigen to induce T-cell proliferation (Påhlman et al. 2006)
⚬⚬ Host serum proteins (fibrinogen, plasminogen, albumin)
⚬⚬ Host proteins and polysaccharides [kininogen, glycosaminogly-

cans, sialic acid (mucin)]

⚬⚬ Afimbrial adhesins:

•	 MSCRAMMs (microbial surface components recognizing adhesive 
matrix molecules):

–– Cell wall-anchored (CWA) adhesins: attached to the cell wall by sor-
tase transpeptidases (Foster et al. 2014)

–– Bind to host ECM components fibronectin (Fn), fibrinogen, plas-
minogen, laminin, collagen, as well as Ig antibodies (Brouwer et al. 
2016); attaches GAS to host cells via the ECM

10  Streptococcus spp.
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⚬⚬ Fibronectin-binding proteins (Fnbp):

•	 Protein F1 (Sfb1/PrtF1); Protein F2 (PrtF2/FbaB/PFBP); 
FbaA; SfbX; SOF (serum opacity factor)/Sfb2

⚬⚬ Fibrinogen-binding proteins:

•	 Protein F1; Protein F2; SOF/Sfb2, Mrp

⚬⚬ Plasminogen-binding proteins:

•	 PAM, Prp, Epf

⚬⚬ Laminin-binding proteins:

•	 Lsp, LBP

⚬⚬ Collagen-binding proteins:

•	 Cpa/AP1, Slr, SpyAD

⚬⚬ Immunoglobulin (Ig)-binding proteins:

•	 Protein H, Mrp, Arp, Sir

•	 Scl1, Scl2 (Lukomski et al. 2017):

–– Collagen-like proteins: mimic triple-helical elongated protein struc-
ture of collagen

–– Bind to same host proteins as host collagen: cellular fibronectin, 
laminin, α2β1integrin, α11β1 integrin, lipoproteins, complement fH, 
complement factor H-related protein 1 (CFHR1)

•	 Secreted adhesins:

–– SPE-B (streptococcal pyrogenic exotoxin B) (Chiang-Ni and Wu 
2008; Nelson et al. 2011):

⚬⚬ mSpeB1, mSpeB2, mSpeB3 variants
⚬⚬ May control adherence and cell invasion by binding to host lam-

inin, α5β3 integrin, a2bβ3 integrin, thyroglobulin
⚬⚬ Secreted cysteine protease – degrades host proteins:

•	 ECM and serum components (fibronectin, vitronectin, plas-
minogen, kininogen), immunoglobulins (IgA, IgM, IgD, IgE, 
IgG), and complement component C3b

⚬⚬ Degrades GAS surface adhesins:

•	 M protein, protein F1, EndoS, SmeZ, Fba, streptokinase, pro-
tein H, Sda1

Virulence Factors
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–– Growth and dissemination in human host:

⚬⚬ HylA (Hynes et al. 2000):

•	 Hyaluronate lyase (hyaluronidase); breaks down hyaluronic acid in the 
ECM; allows spread of pathogen; may also provide nutrients

•	 Bacteriophage-encoded hyaluronate lyases: may play a role in allowing 
bacteriophage containing virulence factors to penetrate the hyaluronic 
acid capsule and bind to cell receptors

•	 Encapsulated GAS strains do not express the HylA hyaluronidase, 
while nonencapsulated strains do express it (Wessels 2016a)

⚬⚬ Streptokinase (Ska) (Nolan et al. 2013):

•	 Plasminogen activator; induces the host fibrinolytic pathways, releasing 
bacterial cells from fibrin blood clots and disrupting the ECM through 
the activation of matrix metalloproteinases

•	 Allows bacterial spread and invasion of tissues
•	 Also associated with postinfection acute glomerulonephritis sequelae 

(Nordstrand et al. 1998)

⚬⚬ GRAB (protein G-related α2M-binding protein) (Rasmussen et al. 1999):

•	 Binds the human protease inhibitor α2-macroglobulin (α2M); protects 
against host proteolysis

⚬⚬ Iron acquisition:

•	 Binding to host iron-containing proteins:

–– Sia (streptococcal iron acquisition) system:

⚬⚬ Obtain heme from host hemoproteins; similar to S. aureus Isd system

⚬⚬ Biofilm formation (Fiedler et al. 2015; Young et al. 2016):

•	 Essential for virulence; EPS composed of DNA, protein, sugars
•	 Able to form on abiotic and biotic surfaces
•	 M proteins, capsule, and pili, along with the AspA and Scl1 proteins, 

play major roles in biofilm formation

–– Damage to host cells:

⚬⚬ Streptolysin S (SLS) (Molloy et al. 2011):

•	 Oxygen-stable, membrane-disrupting cytolysin

–– SLS accumulation in membranes leads to the generation of trans-
membrane pores; results in osmotic lysis

–– Broad spectrum; cytolytic to many host cells, including leukocytes 
and red blood cells

–– Resultant destruction of cells and tissue is the major virulence mech-
anism for GAS

10  Streptococcus spp.
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•	 Multifunctional 30-aa highly modified polypeptide

–– Member of family of thiazole/oxazole-modified microcins 
(TOMMs); related to family of class 1 bacteriocins

–– sagABCDEFGHI operon (Nizet et al. 2000):

⚬⚬ sagA: structural gene for SLS
⚬⚬ sagB,C,D: modifying enzymes
⚬⚬ sagG,H,I: ABC transporter

–– Contains multiple modified Cys, Ser, and Thr amino acids

⚬⚬ SLS modification: heterocyclic formation

•	 Catalyzed by cyclodehydratase (SagC) and dehydrogenase 
(SagB)

•	 Ser residues converted to oxazole
•	 Cys residues converted to thiazole
•	 Thr residues converted to methyloxazole
•	 Modifications result in more rigid structure that is essential for 

bioactivity of membrane insertion/disruption

⚬⚬ Streptolysin O (SLO) (Peraro and van der Goot 2016; Tweten 2005):

•	 Oxygen labile, pore-forming cytolysin; mechanistically different from 
SLS:

–– Member of the cholesterol-dependent cytolysin (CDC) family; 
homologous to S. pneumoniae pneumolysin (Peraro and van der 
Goot 2016)

–– Lytic to cells containing cholesterol in their cell membranes
–– X-ray crystal structure is similar to C. perfringens perfringolysin O 

(Feil et al. 2014)

•	 Induces apoptosis in phagocytes
•	 Toxic to heart and other tissues
•	 Plays a role in the entry of streptococcal NAD-glycohydrolase into host 

cells; depletes the host stores of NAD (O’Seaghdha and Wessels 2013)

⚬⚬ SlaA (Nagiec et al. 2004):

•	 Secreted phospholipase A; disrupts host cell membranes
•	 slaA mutants have a decreased ability to adhere to host cells

⚬⚬ SPE-B (exotoxin B) (see above):

•	 Protease; degrades host proteins including ECM components, IgG, 
cytokines, etc.

Virulence Factors



160

⚬⚬ SAgs (superantigen exotoxins) (Proft and Fraser 2016; Spaulding et al. 
2013):

•	 Bind to TCR (T-cell receptor) Vβ variable chains on T cells and class II 
MHC (major histocompatibility complex) α- and β-chains on antigen-
presenting cells (APCs); different than the normal antigen-specific TCR 
binding

•	 Induce nonspecific, massive T-cell proliferation (up to 20% of all T 
cells)

•	 Binding “tricks” T cells into releasing enormous amounts of host cyto-
kines, resulting in a “cytokine storm”; same mechanism as S. aureus 
PTSAgs

•	 SPE-A (exotoxin A), SPE-C, SPE-G, SPE-H, SPE-I, SPE-J, SPE-K, 
SPE-L, SPE-M, SsA, SmeZ1,2:

–– Streptococcal toxic shock syndrome (STSS) (McCormick et  al. 
2001):

⚬⚬ Most often associated with SPE-A and SPE-C
⚬⚬ Symptoms: fever (pyrogenic), diffuse macular rash, swollen 

lymph nodes, sore throat, vomiting, diarrhea, severe localized 
pain; leads to hypotension and shock

–– Scarlet fever (Wessels 2016b):

⚬⚬ Rash along with a GAS infection, usually pharyngitis
⚬⚬ Most often associated with SPE-A, SPE-C, and SSA

–– Evasion of host immune system (Fig. 10.4) (Cole et al. 2011):

⚬⚬ Capsule (Wessels 2016a):

•	 Polymer of hyaluronic acid; does not stimulate antibody production due 
to similarity to host hyaluronic acid

NET breakdown
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Phagocyte
apoptosis

Surface plasmin
aquisition

Fibrinogen-
binding protein

Fibrinogen
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Fig. 10.4  Evasion of host neutrophils (From: Cole et al. (2011))
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•	 Blocks opsonophagocytosis by interfering with leukocyte receptor 
binding to complement factors

•	 Acts as an adhesin by binding to host CD44 protein on cells

⚬⚬ M protein (see above):

•	 Binds to complement regulatory proteins factor H (fH), factor H-like-1 
(FHL-1), and C4 binding protein (C4BP) and to the Fc domain of IgA; 
blocks opsonophagocytosis

⚬⚬ SibA (Fagan et al. 2001):

•	 Binds to the Fc and Fab region of IgA, IgG, and IgM; blocks 
opsonophagocytosis

⚬⚬ DNAases (streptodornases) (Walker et al. 2007):

•	 Multiple different DNAases; destroy DNA-based neutrophil extracel-
lular traps (NETs); allows escape from antimicrobial factors

•	 Sda1, SdaD2, SdaB, SpdI1, SpnA

⚬⚬ SodA (McMillan et al. 2004):

•	 Superoxide dismutase; detoxifies exogenous superoxide radicals pro-
duced by neutrophils

⚬⚬ SIC (streptococcal inhibitor of complement) (Fernie-King et  al. 2001; 
Hynes and Sloan 2016):

•	 Inhibits membrane attack complex (MAC) formation
•	 Inhibits host antimicrobial proteins such as lysozyme, LL-37, defen-

sins, and the chemokine MIG/CXCL9

⚬⚬ IdeS (Pawel-Rammingen et al. 2002):

•	 Cysteine protease; similar to SpeB
•	 Cleaves IgG; blocks opsonophagocytosis

⚬⚬ Sib35 (Kawabata et al. 2002):

•	 Binds IgG, IgA, and IgM
•	 Shows similarity to IdeS; induces B-cell proliferation

⚬⚬ C5a peptidase (ScpA) (Cleary 1992):

•	 Cleaves chemotactic complement factor C5a; blocks migration of neu-
trophils to the site of infection

⚬⚬ IL-8 protease (SpyCEP) (Zingaretti et al. 2010):

•	 Serine protease; cleaves chemokine CXCL-8/IL-8 and all human CXC 
chemokines

•	 Homologous to C5a peptidase from GAS

Virulence Factors
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⚬⚬ EndoS (endo-β-N-acetylglucosaminidase) (Trastoy et al. 2014):

•	 Removes carbohydrates from IgG; blocks binding to Fc receptors; 
blocks opsonophagocytosis

⚬⚬ SsE (Zhu et al. 2009):

•	 Secreted esterase; similar to esterases that hydrolyze platelet-activating 
factor (PAF), which mediates chemotaxis

•	 Diminishes the recruitment of neutrophils

•	 S. agalactiae (GBS) (Maisey et al. 2008):

–– Adherence to host cells:

⚬⚬ Fimbrial adhesins:

•	 Pili (Rosini et al. 2006):

–– Cell wall-anchored (CWA) long, flexible rods
–– Encoded in pili islands PI-1, PI-2a, and PI-2b; each island encodes 

three proteins

⚬⚬ Bkb: backbone pilin subunit
⚬⚬ An1 (tip), An2 (base): accessory protein subunits; mediate the 

specific binding to host receptors

–– Mature pilus assembled via pilus-associated sortases SrtB/SrtC2
–– Assembled pilus is anchored to cell wall via SrtA sortase

⚬⚬ Afimbrial adhesins:

•	 MSCRAMMs:

–– FbsA (Ragunathan and Ponnuraj 2011):

⚬⚬ Fibrinogen-binding protein

–– FbsC (BsaB) (Jiang and Wessels 2014):

⚬⚬ Adhesin involved in biofilm formation
⚬⚬ Binds fibronectin, laminin

•	 FbsB (Devi and Ponnuraj 2010):

–– Anchorless fibrinogen-binding protein
–– Plays a role in epithelial and endothelial cell invasion

•	 Lmb (Spellerberg et al. 1999):

–– Lipoprotein; binds host laminin; plays a role in epithelial and endo-
thelial cell invasion

–– Homologous to GAS LBP

10  Streptococcus spp.
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•	 α-C protein (ACP) (Baron et al. 2004):

–– Invasin: promotes host cell internalization by binding to surface gly-
cosaminoglycan (GAG); mediated by Rho GTPase-dependent actin 
rearrangements

–– Growth and dissemination in human host:

⚬⚬ HylB (Mello et al. 2002):

•	 Hyaluronate lyase (hyaluronidase); breaks down hyaluronic acid in the 
ECM; allows spread of pathogen; may also provide nutrients

⚬⚬ Biofilm formation (Rosini and Margarit 2015):

•	 Essential for virulence
•	 Able to form on abiotic and biotic surfaces

–– Damage to host cells:

⚬⚬ β-hemolysin/cytolysin (Nizet 2002):

•	 Oxygen-stable, pore-forming cytolysin; encoded by cylE gene
•	 Cytolytic to lung epithelial cells, lung endothelial cells, brain endothe-

lial cells, and macrophages
•	 Induces caspase-dependent apoptosis
•	 Induces a pro-inflammatory response; stimulates NO release

⚬⚬ CAMP (Christie, Atkins, Munch-Petersen) factor (Lang and Palmer 
2003):

•	 Pore-forming hemolysin
•	 Shows synergistic hemolytic effect with S. aureus β-toxin in CAMP test

–– Evasion of host immune system:

⚬⚬ Capsule (Ragunathan and Ponnuraj 2011):

•	 Polymers of glucose, galactose, N-acetylglucosamine, and sialic acid
•	 Ten serotypes: types 1a, 1b, 2, 3 (majority of neonate infections), 4, 5, 

6, 7, 8, and 9
•	 Blocks complement-mediated opsonophagocytosis by inhibiting bind-

ing of the activated complement factor C3b

⚬⚬ β protein (β-C protein) (Areschoug et al. 2002):

•	 Binds Fc domain of serum IgA and the complement regulator factor H 
(fH); prevents opsonophagocytosis

⚬⚬ C5a peptidase (ScpB) (Cheng et al. 2002):

•	 Cleaves chemotactic complement factor C5a; blocks migration of neu-
trophils to the site of infection

•	 May function as an adhesin and fibronectin-binding protein

Virulence Factors
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⚬⚬ CspA (Harris et al. 2003):

•	 Serine protease; cleaves fibrinogen; resulting fibrils block 
opsonophagocytosis

⚬⚬ BibA (Santi et al. 2007):

•	 Binds complement regulator C4 binding protein (C4BP); blocks 
phagocytosis

•	 Also an MSCRAMM adhesin

⚬⚬ SodA (Poyart et al. 2001):

•	 Superoxide dismutase; detoxifies exogenous superoxide radicals pro-
duced by neutrophils

•	 S. pneumoniae (pneumococci) (Fig. 10.5) (Henriques-Normark and Tuomanen 
2013; Poll and Opal 2009):

–– Adherence to host cells:

⚬⚬ S. pneumoniae must bypass at least three host barriers to adhere to epithe-
lial cells in the nasopharynx and to escape the mucus layer in the lower 
respiratory tract (Mook-Kanamori et al. 2011):

•	 Host mucus layer:

–– Pneumococcal capsule blocks binding to mucus sialic acid residues
–– Secretes exoglycosidases (NanA, NanB, BgaA, StrH) that de-

glycosylate mucus glycoconjugates; decreases mucus viscosity

⚬⚬ NanA, NanB (Berry et al. 1996):

•	 Neuraminidases; cleave terminal sialic acid from cell surface 
glycans such as mucin, glycolypids, and glycoproteins

⚬⚬ BgaA: β-galactosidase (Dalia et al. 2010)
⚬⚬ StrH: N-acetylglucosaminidase (Dalia et al. 2010)

–– Pneumolysin (Ply):

⚬⚬ Decreases mucociliary beating
⚬⚬ Allows adherence and avoids clearance in lower respiratory tract
⚬⚬ Major S. pneumoniae virulence factor (see below)

•	 Host lysozyme:

–– N-acetylglucosamine-deacetylase A (PdgA) and O-
acetyltransferase (Adr): alter the peptidoglycan to make it resistant 
to lysozyme (Davis et al. 2008)

•	 Host secretory IgA (s-IgA): (Fig. 10.4)

–– Secretes s-IgA1 protease: destroys s-IgA, which prevents removal 
by mucociliary escalator
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⚬⚬ Fimbrial adhesins:

•	 Pili (Bagnoli et al. 2008):

–– Cell wall anchored (CWA)
–– Binds fibronectin, laminin, collagen
–– Encoded in pili islands PI-1 and PI-2:

⚬⚬ PI-1:

•	 RgaB: backbone pilin subunit
•	 RgaA (tip); RgaC (base): accessory protein subunits

Fig. 10.5  S. pneumoniae virulence factors (From: Poll and Opal (2009))
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⚬⚬ PI-2:

•	 PitB: single polypeptide

–– Assembled pilus is anchored to cell wall via SrtA sortase

⚬⚬ Afimbrial adhesins:

•	 SpxB, Smi, MsrA, PlpA:

–– Directly or indirectly facilitate the binding to polysaccharides, such 
as N-acetyl-D-galactosamine (GalNac), on the host cell surface

•	 Phosphorylcholine (PCho):

–– Present on the S. pneumoniae cell wall; S. pneumoniae has a nutri-
tional requirement for choline

–– Binds platelet-activating factor receptor (PAFr) on epithelial cells; 
important for epithelial transmigration leading to dissemination

•	 CbpA/PspC (Rosenow et al. 1997):

–– Choline-binding surface protein (CBP); 12 CBPs in S. pneumoniae
–– Attaches to PCho on the S. pneumoniae cell wall
–– Binds to polymeric immunoglobulin receptor (pIgR); promotes 

adherence and colonization of nasopharyngeal cells, as well as epi-
thelial transmigration

–– Also binds S-IgA, complement fH, and complement component C3; 
involved in immune evasion

•	 CbpD, CbpE, CbpG, LytB, LytC (Gosink et al. 2000):

–– Choline-binding proteins: attach to the phosphorylcholine present 
on the S. pneumoniae cell wall

–– Play a role in adhesion and colonization of the nasopharynx

•	 LytA (Berry et al. 1989):

–– Autolysin; degrades peptidoglycan layer
–– Choline-binding surface protein
–– lytA mutants have reduced virulence

•	 PavA (Holmes et al. 2001):

–– Fibronectin-binding protein; not a MSCRAMM

•	 PavB (Jensch et al. 2010):

–– Fibronectin-binding protein; MSCRAMM

•	 PfbA (Yamaguchi et al. 2008):

–– Binds to plasminogen and fibronectin; MSCRAMM
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–– Growth and dissemination in human host:

⚬⚬ HysA (Li et al. 2000):

•	 Hyaluronate lyase (hyaluronidase)
•	 Breaks down hyaluronic acid in the ECM; allows spread of pathogen; 

may also provide nutrients

⚬⚬ Enolase (Eno) (Bergmann et al. 2001):

•	 Plasminogen-binding protein
•	 Activated plasminogen-enolase-Gly3Ph-CbpE protein complex 

degrades E-cadherin in inter-epithelial adherens junctions, facilitating 
dissemination through pericellular migration

⚬⚬ Iron acquisition:

•	 Host hemoprotein binding proteins:

–– Spbhp-37: hemoglobin-binding protein (Romero-Espejel et  al. 
2016)

–– Spbhp-22: heme-binding protein (Romero-Espejel et al. 2013)
–– PiaABC, PiuABC, and PitABC  – ABC transporters (Brown et  al. 

2001):

⚬⚬ PiaA: lipoprotein; transports ferrichrome (Fch)
⚬⚬ PiuA: lipoprotein; transport heme
⚬⚬ PitA: lipoprotein; transports Fe3+ ions

⚬⚬ Biofilm formation (Oggioni et al. 2006):

•	 Essential for virulence
•	 Able to form on abiotic and biotic surfaces

–– Damage to host cells:

⚬⚬ Pneumolysin (Ply) (Cockeran et al. 2002):

•	 Pore-forming cytolysin; cytoplasmic, not secreted
•	 Member of the cholesterol-dependent cytolysin (CDC) family; homolo-

gous to S. pyogenes streptolysin O (Peraro and van der Goot 2016):
–– Lytic to cells containing cholesterol in their cell membranes

•	 Induces massive inflammatory response through activation of pro-
inflammatory cytokine expression and pro-apoptotic pathways

•	 Induces neuronal cell death in meningitis infections (Henriques-
Normark and Tuomanen 2013)

•	 Inhibits phagocytosis and the complement pathway

–– Evasion of host immune system:

⚬⚬ Capsule (Kadioglu et al. 2008):

•	 Essential for bloodstream dissemination needed for bacteremia and 
meningitis; anti-phagocytic
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•	 Very thick polysaccharide capsule; 200–400 nm thick
•	 Over 90 capsular types based on capsule polysaccharides:

–– Twenty-three types cause 88% of diseases
–– Capsule polysaccharides are the major components of pneumococ-

cal vaccines; available for immunocompromised, elderly, infants

•	 Reduces complement deposition on bacterial surface
•	 Blocks ensnarement in neutrophil extracellular traps

⚬⚬ S-IgA protease (ZmpC) (Oggioni et al. 2003):

•	 Cleaves S-IgA1 and matrix metalloproteinase 9 (MMP-9)

⚬⚬ PspA (Ren et al. 2004):

•	 Choline-binding surface protein
•	 Blocks the accumulation of complement protein C3 on the cell surface; 

interferes with phagocytosis

⚬⚬ PspC (CbpA; SpsA) (Dave et al. 2004):

•	 Choline-binding protein
•	 Binds complement proteins C3b, fH, C4BP; blocks opsonophagocytosis
•	 Binds laminin receptor (LR) on brain microvascular endothelial cells; 

this is the key binding interaction mediating S. pneumoniae meningitis; 
same receptor is targeted by adhesins of Haemophilus influenzae and 
Neisseria meningitidis (Orihuela et al. 2009)

⚬⚬ PhpA (Zhang et al. 2001):

•	 Surface protein; degrades complement protein C3

⚬⚬ NanA, NanB, BgaA, StrH:

•	 Exoglycosidases; decrease mucin viscosity (see above)
•	 Blocks the accumulation of complement C3 on the cell surface; inter-

feres with phagocytosis

�Regulation of Virulence Factor Expression

•	 GAS transcriptional regulation (Vega et al. 2016):

–– Thirty transcriptional regulators
–– Thirteen TCSs, including control of virulence regulators (CovR–CovS), quo-

rum sensing (Rgg2–Rgg3), responses to host saliva (SalK–SalR), and 
response to host neutrophils (Ihk–Irr)

–– Transcriptional regulation of virulence factors is under complex, multifactor 
control, primarily involving the master regulator CovR–CovS:
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⚬⚬ CovR–CovS (CsrR–CsrS) (Churchward 2007):

•	 CovS: sensor histidine kinase; phosphorylates CovR
•	 CovR: response regulator

–– Represses virulence gene expression
–– Regulates the expression of 15% (271 genes) of all chromosomal 

genes (Graham et al. 2002)
–– Directly represses the synthesis of the hyaluronic acid capsule, strep-

tolysin S (SLS), streptolysin O (SLO), SPE-A superantigen, SPE-B 
cysteine protease, SpyCEP IL-8 protease, Ska streptokinase, Sda1 
streptodornase DNAase, EndoS IgG modifying protein, and Fba 
fibronectin-binding protein

–– Indirectly represses G-related α2-macroglobulin-binding protein 
(GRAB) by repressing the RivR (Ralp4) regulator:

⚬⚬ RivR also induces the expression of EndoS, M protein, and Fba

–– Represses the Rov4 transcriptional regulator:

⚬⚬ Rov4 induces the expression of protein F (Sfb1) and collagen-
binding protein Cpa

⚬⚬ Rov4 represses the expression of streptolysin S, SPE-B protease, 
and SPE-A superantigen

•	 GAS M1 T1 strain – most abundant globally disseminated GAS strain; 
associated with invasive diseases, such as necrotizing fasciitis (Cole 
et al. 2011):

–– Contains a 7-bp frameshift mutation in covS, resulting in a truncated, 
inactive CovS protein (Sumby et al. 2006)

–– Inactivation of CovS blocks CovR transcriptional repression
–– Leads to upregulation of the abovementioned CovR-repressed viru-

lence factors and upregulation of the abovementioned Riv4-
dependent and Rov4-dependent transcripts

–– Hence, loss of CovR–CovS regulation results in a massive change in 
transcriptional regulation, leading to an enhancement of M1T1 strain 
virulence and increased incidence of invasive GAS diseases

•	 GBS contains a similar CsrR–CsrS (CovR–CovS) regulon controlling virulence 
factor expression (Jiang et al. 2005; Park et al. 2012)
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Chapter 11
Bacteroides spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Bacteroides fragilis chromosome: 5,277,274  bp; 4578 predicted ORFs 
(Kuwahara et al. 2004)

•	 Cell morphology:

–– Rod shaped (Fig. 11.1)

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Anaerobes; catalase positive; relatively aerotolerant at nanomolar O2 
concentrations

–– Predominant mutualistic microbiota of human GI tract; helps break down 
food; produces nutrients and energy

–– >90 species: Bacteroides fragilis only significant human pathogenic species
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�Disease States Associated with Bacteroides fragilis

•	 Nonenterotoxigenic B. fragilis (NTBF):

–– Significant opportunistic pathogen
–– Perforations in colon can lead to formation of intra-abdominal abscess 

(Gibson et al. 1998):

⚬⚬ Disruption of the intestinal wall through surgery, cancer, trauma, or disease 
can allow normal microbiota to infiltrate the abdominal cavity

⚬⚬ Released aerobes cause tissue destruction, which reduces the redox poten-
tial of oxygenated tissue – favors anaerobic growth

⚬⚬ Bacteroides and other anaerobes begin to replicate, leading to inflamma-
tion, diarrhea, and intra-abdominal abscesses  – capsule polysaccharide 
PSA plays a role in binding to the abdominal wall and inducing pro-
inflammatory cytokines (Gibson et al. 1998) (see below)

⚬⚬ Dissemination outside the GI tract can lead to bacteremia and abscess for-
mation occurring in the CNS (meningitis), head, neck, chest, abdomen, 
pelvis, skin, soft tissues

•	 Enterotoxigenic B. fragilis (ETBF) (Sears 2009):

–– Toxigenic primary pathogen – Bacteroides fragilis toxin (BFT); see below
–– Toxin-mediated acute diarrheal disease, especially in young children
–– Leads to acute and long-term inflammation, which is correlated with 

inflammation-induced colon neoplasia (Sears et al. 2014)

Fig. 11.1  B. fragilis cells (From: PHIL #2996)

11  Bacteroides spp.
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�Virulence Factors

•	 Adherence to host cells:

–– Capsule:

⚬⚬ Most complex bacterial polysaccharide capsule system
⚬⚬ Eight different polysaccharides (PSA–PSH)
⚬⚬ Function in adherence to peritoneal surfaces
⚬⚬ PSA is sufficient to induce abscess formation outside colon:

•	 Triggers TLR-2-dependent immune reactions; increases in anti-
inflammatory cytokine IL-10 (Mazmanian et al. 2008)

–– Lipooligosaccharide (LOS):

⚬⚬ Lacks O antigen
⚬⚬ Very low endotoxin activity (1000x less than E. coli)

–– Fimbriae (Oyston and Handley 1991):

⚬⚬ May bind to host ECM components; role in virulence is unclear

•	 Growth within the host milieu:

–– Iron acquisition:

⚬⚬ FeoA, FeoB (Veeranagouda et al. 2014):

•	 Fe+2 ion transport; two-component system

⚬⚬ HupA (Otto et al. 1996):

•	 Heme binding

•	 Damage to host cells:

–– ETBF toxin [Bacteroides fragilis toxin (BFT); fragilysin]:

⚬⚬ Not found in NTBF strains
⚬⚬ Three isotypes: BFT-1, BFT-2 (most active), BFT-3; encoded by bft gene 

found on conjugative transposon in pathogenicity island (BfPAI) (Franco 
et al. 1999; Moncrief et al. 1998)

⚬⚬ Heat-labile Zn-dependent metalloprotease; similar to botulinum toxin and 
tetanus toxin

⚬⚬ Synthesized as pre-protein that is cleaved by the fragipain (Fpn) cysteine 
protease to form the mature 20 kDa secreted toxin (Fig. 11.2) (Choi et al. 
2016)

⚬⚬ BFT mechanism of action (Sears et al. 2014):

•	 Not cytolytic (Fig. 11.3)
•	 Binds to unknown colonic epithelial cell (CEC) receptor
•	 Induces the cleavage of E-cadherin, though not through direct proteoly-

sis (Kharlampieva et al. 2015)

Virulence Factors
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Fig. 11.3  BFT mechanism of action (From: Sears et al. 2014)
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Fig. 11.2  BFT structure and processing (From: Sears 2001)

•	 Cleavage of E-cadherin results in increased adherens junction barrier 
permeability, resulting in Cl− ion secretion and subsequent fluid loss 
leading to acute diarrhea

•	 Cleavage also releases β-catenin, which travels to the nucleus to induce 
Wnt nuclear signaling, induction of the oncogene c-Myc, and induction 
of spermine oxidase (SMO), which triggers ROS production and DNA 
damage (Sears et al. 2014)

11  Bacteroides spp.
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•	 In the cytosol, it activates MAPK and NF-kB signaling, resulting in the 
induction of pro-inflammatory cytokines, including IL-8

–– Hemolysins:

⚬⚬ Ten hemolysins identified in annotated genome sequence; encode by hlyA–
hlyI and hlyIII genes (Robertson et al. 2006)

⚬⚬ Expression is repressed in O2-rich environment and increased during infec-
tion via the iron-dependent Fur regulon, suggesting that they may play a 
role in virulence (Lobo et al. 2013)

•	 Evasion of host immune system:

–– Bfp1, Bfp2, Bfp3, Bfp4 (Thornton et al. 2010):

⚬⚬ C10 cysteine proteases
⚬⚬ Structurally similar to S. pyogenes SpeB, which cleaves host proteins such 

as immunoglobulins, ECM components fibronectin and vitronectin, and 
cytokines (von Pawel-Rammingen and Bjorck 2003); it is unknown if Bfp 
proteases have the same activities
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Chapter 12
Bordetella spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics (Parkhill et al. 2003):

–– Bordetella pertussis Tohama I chromosome: 4,086,186  bp; 3816 predicted 
ORFs

–– Bordetella bronchiseptica RB50 chromosome: 5,338,400 bp; 5007 predicted 
ORFs

–– Bordetella parapertussis 12,822 chromosome: 4,773,551 bp; 4004 predicted 
ORFs

•	 Cell morphology:

–– Very small coccobacilli; usually single cells or pairs (Fig. 12.1)
–– B. bronchiseptica is motile using flagella; B. pertussis is not – flagella genes 

are deleted

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Obligate aerobes; oxidase positive
–– Fastidious slow growth; requires nicotinamide
–– Humans are only verified reservoir for Bordetella pertussis; no environmental 

reservoirs
–– Nine species: three primary mammalian pathogenic species

⚬⚬ Bordetella pertussis – human pathogen
⚬⚬ Bordetella bronchiseptica – occasional human pathogen; other mammals
⚬⚬ Bordetella parapertussis – other mammals; dogs (“kennel cough”)

–– Biofilm former – generally noninvasive
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�Disease States Associated with Bordetella pertussis

•	 Pertussis; whooping cough:

–– Highly contagious respiratory disease
–– Transmitted person to person via respiratory aerosols
–– Three stages:

⚬⚬ Catarrhal: initial infection in nasopharynx and trachea; symptoms like 
common cold

⚬⚬ Paroxysmal (dry cough develops):

•	 Increasing number of spasmodic coughing fits
•	 Sharp intake of breath causes “whoop” sound

⚬⚬ Convalescent: cessation of symptoms
⚬⚬ Serious life-threatening infections can result from dissemination into 

lungs; usually in infants

Fig. 12.1  B. pertussis 
cells (From: PHIL #2121)

12  Bordetella spp.
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�Virulence Factors (Carbonetti 2016)

•	 Adherence to host cells: ciliated respiratory epithelial cells:

–– Fimbrial adhesins (Melvin et al. 2014):

⚬⚬ Filamentous hemagglutinin (FHA) (Brown and Parker 1987; Tuomanen 
and Weiss 1985):

•	 Adheres to ciliated respiratory cells and neutrophils
•	 Binds to galactose residues on sulfated glycolipid (sulfatide)
•	 Plays a role in immunomodulation and induces neutrophil and macro-

phage apoptosis (Inatsuka et al. 2005)
•	 Encoded by FhaB structural protein; outer membrane secretion via 

FhaC

⚬⚬ Fimbriae (type I pili (Livey et al. 1987; Mooi et al. 1990)):

•	 Fim2, Fim3:

–– Structural proteins; produce serologically distinct fimbriae

•	 FimD:

–– Cap protein; binds to heparin (sulfated sugar)

–– Afimbrial adhesins:

⚬⚬ Pertactin (PRN) (Leininger et al. 1991):

•	 Surface adhesin
•	 Autotransporter family of outer membrane proteins

⚬⚬ BapC (Riaz et al. 2015):

•	 Surface adhesin
•	 Autotransporter family of outer membrane proteins

–– Lipooligosaccharide (LOS):

⚬⚬ Lacks O antigen
⚬⚬ Weak pro-inflammatory response

–– Pertussis toxin:

⚬⚬ Functions with FHA in attachment to ciliated tracheal epithelial cells
⚬⚬ Blocks ciliary movement

Virulence Factors
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•	 Growth within the host milieu:

–– Iron acquisition:

⚬⚬ Siderophores:

•	 Alcaligin (Brickman and Armstrong 2007):

–– Biosynthesis and export functions are encoded by alcABCDERS 
genes and fauA, a TonB-dependent iron uptake receptor protein

–– Induced under iron starvation conditions

•	 Enterobactin xenosiderophore (Beall and Sanden 1995):

–– Produced by other members of Enterobacteriaceae, not B. pertussis
–– BfeA: outer membrane receptor required for transport and utilization 

of ferric enterobactin

•	 Heme uptake (Vanderpool and Armstrong 2001):

–– From host hemin and hemoglobin
–– Encoded by the hurIR and bhuRSTUV genes

–– Biofilms: can form on abiotic and biotic (respiratory mucosa) surfaces:

⚬⚬ Occurs only in a Bvg+ phase (see below)
⚬⚬ c-di-GMP signaling may play a role (de Gouw et al. 2011)

•	 Damage to host cells:

–– Toxins: [for review article on toxins, see (do Vale et al. 2016)]

⚬⚬ Pertussis toxin (PTx or PT) (Fig. 12.2) (Katada et al. 1983):

•	 A-B exotoxin
•	 Hexameric A-B5 subunit structure; encoded by PtxA–E (subunits S1–

S5, respectively)
•	 PtxB-E (S2–S5): B subunit oligomer  – binds to sialoglycoprotein 

receptors
•	 PtxA (S1) (A subunit – catalytic domain):

–– ADP-ribosylates host Gai protein; inactivates signaling activity
–– Gai protein inhibits host adenylate cyclase (AC) activity; inactivation 

leads to rise in cAMP levels in host cells
–– Increased cAMP levels in alveolar neutrophils, among other effects, 

inhibits neutrophil chemotaxis, chemokine production, and neutro-
phil extracellular trap (NET) formation early in infection

⚬⚬ Adenylate cyclase toxin (ACT) (Fig. 12.2) (Melvin et al. 2014):

•	 Multifunctional protein; encoded by cyaA gene
•	 N-terminal domain: secreted adenylate cyclase (AC); same calmodulin-

dependent activity as B. anthracis edema factor (EF)

12  Bordetella spp.
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•	 C-terminal domain: cell binding domain and pore-forming RTX (repeats 
in toxin) toxin with cytolytic activity

•	 Acts locally as major antagonist of neutrophils; inhibits neutrophil che-
motaxis, phagocytosis, and reactive oxygen species (ROS) burst and 
induces apoptosis

⚬⚬ Tracheal cytotoxin (TCT): (Cookson et al. 1989)

•	 Disaccharide – tetrapeptide; not a protein toxin
•	 Released from B. pertussis cell wall
•	 Induces ROS; toxic to ciliated respiratory cells
•	 Induces pro-inflammatory cytokine release

Fig. 12.2  Pertussis and adenylate cyclase toxin structures and mechanisms (From: Melvin et al. 
2014)

Virulence Factors
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⚬⚬ Dermonecrotic toxin (Dnt; lethal toxin) (Schmidt et al. 1999):

•	 Four polypeptide subunits; heat labile toxin
•	 Transglutaminase: constitutively activates Rho/Rac/Cdc42 GTPases
•	 Cytotoxic effects; continuously transduces signals to downstream 

effectors
•	 Causes inflammation and local necrosis

⚬⚬ BteA (Panina et al. 2005):

•	 Cytotoxic factor; unknown mechanism of action
•	 Secreted by type 3 secretion system (T3SS)

•	 Evasion of host immune system (Higgs et al. 2012):

–– Recruits host C4BP, C1INH proteins; blocks complement-mediated cell lysis
–– PT induces alveolar macrophage cell death (see above)
–– ACT and FHA induce macrophage apoptosis (see above)

�Regulation of Virulence Factor Expression

•	 BvgS-BvgA:

–– Two-component phosphorelay system
–– Regulates biofilm formation and expression of virulence factors
–– Induced in vivo at 37 °C; Bvg+ phase
–– BvgS: sensor histidine kinase; phosphorylates BvgA
–– BvgA: response regulator:

⚬⚬ Transcriptional activator
⚬⚬ Induces virulence-activated genes (vags):

•	 Early vags: FHA, fimbriae
•	 Late vags: PT, ACT toxins, pertactin, T3SS

⚬⚬ Induces BvgR repressor – blocks virulence-repressed genes (vrgs)

•	 RisA/RisK-RisS (Coutte et al. 2016; de Gouw et al. 2011):

–– Two-component phosphorelay system
–– Regulates expression of virulence factors, chemotaxis and flagellar operons, 

and iron-regulated genes
–– RisS: sensor kinase

⚬⚬ Inactive in B. pertussis (frameshift truncation), active in B. 
bronchiseptica

⚬⚬ RisK may be sensor kinase in B. pertussis (Coutte et al. 2016)

12  Bordetella spp.
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–– RisA: response regulator:

⚬⚬ Transcriptional activator
⚬⚬ Induces expression of virulence-repressed genes (vrgs); may antagonize 

BvgR repressor by unknown mechanism (Stenson et al. 2005)
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Chapter 13
Borrelia spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Borrelia burgdorferi chromosome: 910,725 bp; 853 predicted ORFs (Fraser 
et al. 1997)

–– Borrelia burgdorferi plasmids (Stewart et al. 2005):

⚬⚬ Strain-specific numbers of linear and circular plasmids, several of which 
are required for virulence and the complex life cycle in ticks and 
mammals

⚬⚬ ~9 linear plasmids: lp5, lp17, lp21, lp25, lp28 (1–4), lp36, lp38, lp54, and 
lp56

⚬⚬ ~11 circular plasmids: cp9, cp26, and cp32 (1–9)
⚬⚬ Encode most of the differentially expressed outer surface lipoproteins

•	 Cell morphology:

–– Spirochete – tightly coiled corkscrew shape (Fig. 13.1) (Charon et al. 2012):

⚬⚬ Fourteen to sixty endoflagella (axial filaments):

•	 Anchored at both ends of the cell and run lengthwise between the inner 
and outer membranes in the periplasmic space; enclosed in outer sheath

•	 Causes twisting motion used for motility

–– Outer membrane:

⚬⚬ No LPS (endotoxin); does not activate TLR4 (Radolf et al. 2012)
⚬⚬ Contains diverse and unique assortment (>100) of lipoproteins and glyco-

lipids, including cholesterol; major lipoprotein is OspA
⚬⚬ Antigenic variation of lipoproteins is a major virulence factor
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•	 Gram stain:

–– Gram-negative-like: no LPS but outer membranes contain many diverse 
hydrophobic lipoproteins

•	 Growth:

–– Anaerobic or microaerophilic growth; slow grower; requires 
N-acetylglucosamine (NAG) for growth; auxotrophic for all amino acids, 
nucleic acids, and fatty acids

–– Reservoirs: wild and domestic animals such as white-footed field mice, 
rodents, deer, and birds

–– Fifty-two Borrelia species (Cutlera et al. 2017):

⚬⚬ Twenty-one – Lyme disease group (B. burgdorferi sensu lato group)
⚬⚬ Twenty-nine – relapsing fever group (B. recurrentis)
⚬⚬ Two – nonconformist group

�Disease States Associated with Borrelia spp.

•	 Lyme disease (borreliosis):

–– Borrelia burgdorferi and 20 other spp. (see above)
–– Zoonotic, vector-borne disease
–– Three-stage inflammatory disease:

⚬⚬ Stage 1:

•	 Early, localized symptoms
•	 Erythema migrans – expanding red rash resembling a bull’s-eye target 

(Fig. 13.2):

–– Seen in ~80 % of infected individuals, 7–10 days after bite
–– Can periodically reoccur

Fig. 13.1  B. burgdorferi 
cells (From: PHIL #13169)

13  Borrelia spp.



193

•	 General malaise, flu-like symptoms, headache, chills, and fatigue

⚬⚬ Stage 2:

•	 Early, disseminated symptoms
•	 Disseminates to the CNS, heart, skin, lymphatic system, and musculo-

skeletal system
•	 CNS infections; can lead to neurological disease, facial tics, cardiac 

damage, meningitis, and Bell’s palsy

⚬⚬ Stage 3:

•	 Late and chronic
•	 Due to host immunological reactions
•	 Can progress to inflammation, chronic arthritis, and neurological symp-

toms (similar to Alzheimer’s disease or multiple sclerosis)

–– Transmission – vector-borne disease:

⚬⚬ Vector – deer tick Ixodes scapularis
⚬⚬ Ticks feed on blood of reservoir animals containing B. burgdorferi
⚬⚬ B. burgdorferi cells are then transmitted to humans (accidental host) dur-

ing a blood meal; usually takes 1–2 days of tick attachment to transmit
⚬⚬ B. burgdorferi cells are capable of invading many host tissues and dissemi-

nating through the bloodstream

Fig. 13.2  Erythema 
migrans rash (From: PHIL 
#9875)

Disease States Associated with Borrelia spp.
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•	 Relapsing fever:

–– Epidemic relapsing fever: louse-borne Borrelia recurrentis
–– Endemic relapsing fever: tick-borne Borrelia spp.
–– Acute infection: high fever, headache, and myalgia
–– Recurring febrile episodes

�Virulence Factors

•	 Borrelia burgdorferi:

–– Adherence to host cells and extracellular matrix (ECM) (Brissette and 
Gaultney 2014):

–– B. burgdorferi is predominantly an extracellular pathogen, so adherence to 
host cells and tissues is essential for virulence:

⚬⚬ BBK332, RevA, RevB, BB0347, CspA, and CspZ: fibronectin-binding 
proteins

⚬⚬ DbpA/B, Bgp, and BbhtrA: glycosaminoglycan (GAGS)-binding 
proteins

⚬⚬ BmpA, ErpX, CspA, and CspZ: laminin-binding proteins
⚬⚬ CspA and CspZ: collagen-binding proteins
⚬⚬ P66 and BB0172: integrin-binding proteins
⚬⚬ CspA, CspZ, and ErpA/C/P: complement regulator (fH, FHL-1)-binding 

proteins; block complement-mediated lysis
⚬⚬ CspA and CspZ: capable of binding to multiple ECM components – fibro-

nectin, laminin, collagen, plasminogen, and complement regulator 
proteins

•	 Dissemination and growth within the host (Radolf et al. 2012):

–– B. burgdorferi cells induce host matrix metalloproteinases (MMPs) that 
degrade ECM components

–– BB0337, OspC, CspA, BBA70, and ErpA/C/P:

⚬⚬ Plasminogen-binding proteins
⚬⚬ Enhances ECM destruction allowing dissemination

–– Iron acquisition: does not require iron for enzyme function; uses Mn-based 
enzymes (Posey and Gherardini 2000)

–– Biofilms: can form on abiotic surfaces in vitro (Sapi et al. 2012); unknown 
role in virulence but may play a role in environmental persistence

•	 Damage to host cells:

–– No known exotoxins
–– Induces host inflammatory responses; major mechanism for host cell and tis-

sue damage; at least two mechanisms:

13  Borrelia spp.
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⚬⚬ Outer surface lipoproteins: interact with host TLR-2/TLR-1 heterodi-
mers on target cells; activate signal transduction pathway that leads to the 
production of pro-inflammatory cytokines (Radolf et al. 2012)

⚬⚬ Phagocytosis by neutrophils and macrophage leads to internalization and 
destruction of B. burgdorferi cells:

•	 Release of lipoproteins, peptidoglycan, and other cellular components 
leads to activation of intracellular pattern recognition receptors (PRRs) 
and induction of host inflammatory processes

•	 Termed “phagosomal signaling” (Cervantes et  al. 2014; Petnicki-
Ocwieja and Kern 2014)

•	 Evasion of host immune system:

–– Antigen variation:

⚬⚬ Major virulence determinant
⚬⚬ Outer surface lipoproteins, such as VslE (Zhang and Norris 1998), undergo 

antigen variation to elude the host immune system
⚬⚬ One of the reasons why vaccine development is problematic

–– Complement inhibition (Kelesidis 2014):

⚬⚬ OspA, OspE, CspA, and CRASPs:

•	 Outer surface proteins
•	 Inhibit complement by binding host factors H, FHL-1, and C4b-binding 

protein (C4BP)

–– Block neutrophil function (Hartiala et al. 2008):

⚬⚬ OspB:

•	 Outer surface protein
•	 Inhibits neutrophil phagocytosis and oxidative burst

�Regulation of Virulence Factor Expression: Growth-Phase 
Regulation

•	 Multiple genes are transcriptionally repressed or derepressed during the tick 
phase and mammalian phase of the B. burgdorferi life cycle (Radolf et al. 2012):

–– Mammalian growth conditions – 35 °C; pH 7
–– Tick growth conditions – 23 °C, pH 8

•	 Involves two two-component phosphorelay systems (Fig. 13.3):

–– Hk1-Rrp1 and Hk2-Rrp2-RpoN-RpoS.
–– Response regulator proteins Rrp1 and Rrp2 control the expression of alterna-

tive sigma factors in ticks vs. mammals

Regulation of Virulence Factor Expression: Growth-Phase Regulation
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Chapter 14
Campylobacter spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Campylobacter jejuni chromosome: 1,641,481  bp; 1,643 predicted ORFs 
(Gundogdu et al. 2007; Parkhill et al. 2000)

–– Plasmid pVir: 37,468 bp; 54 predicted ORFs (Bacon et al. 2002)

•	 Cell morphology:

–– Curved or spiral bacilli; “twisted bacteria” (Fig. 14.1)
–– Lipooligosaccharide (LOS, rough LPS) outer membrane:

⚬⚬ Highly variable sialylated structures; plays a role in immune avoidance 
(Guerry et al. 2000)

⚬⚬ Some structures resemble human neuronal gangliosides – molecular mim-
icry can lead to autoimmune reactions (Bowes et al. 2002; Yuki 2001)

•	 For example, Guillain–Barré Syndrome occurs in ~1 out of 1,000 cases 
of campylobacteriosis (Godschalk et al. 2004)

–– Capsule (Karlyshev et al. 2005):

⚬⚬ Highly variable polysaccharides
⚬⚬ Plays a role in adherence to host cells and anti-phagocytosis immune 

evasion

–– Flagella:

⚬⚬ Either monopolar or bipolar
⚬⚬ Composed of FlaA (major) and FlaB (minor) flagellin subunits; undergo 

phase variation and antigen variation – evasion of host immune system
⚬⚬ Contain significant levels of O-linked glycosylation; important for assem-

bly and adherence to host intestinal epithelial cells
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⚬⚬ Flagellar movement through the mucus layer plays an essential role in 
colonization and virulence

⚬⚬ Flagellar type 3 secretion system (T3SS):

•	 Functions in the secretion of bacterial effectors, such as FlaC (Song 
et al. 2004) and Campylobacter invasive antigen (Cia) proteins (Grant 
et al. 1993; Konkel et al. 2004) (see below)

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Microaerophilic; catalase positive, oxidase positive
–– Capnophilic; prefers high CO2 concentrations
–– Complex nutritional requirements (Hofreuter 2014):

⚬⚬ Non-saccharolytic – lacks phosphofructokinase
⚬⚬ Imports amino acids and keto acids for use in intermediary metabolism

–– Prefers growth at 42 °C over 37 °C – due to growth in poultry reservoir
–– Environmental reservoirs (Epps et al. 2013):

⚬⚬ Zoonotic – wild and domestic animals
⚬⚬ Predominantly chicken and other poultry

–– Biofilm formation (Gunther and Chen 2009):

⚬⚬ Multiple abiotic surfaces; unclear if it plays a role in virulence or persistent 
infections

–– Sixteen species; 12 are associated with human disease:

⚬⚬ 95% of human disease – C. jejuni and C. coli

Fig. 14.1  C. jejuni cells 
with flagella (From: PHIL 
#6654)

14  Campylobacter spp.
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�Disease States Associated with Campylobacter spp.

•	 Campylobacteriosis:

–– Gastroenteritis; leading cause of bacterial gastroenteritis (5–11%) in the USA
–– Food-borne pathogen: ingestion via fecal–oral route; contaminated water, 

undercooked poultry, raw milk
–– Early symptoms: fever, severe abdominal cramping, diarrhea (loose, particu-

larly foul smelling)
–– Later symptoms: bloody stools; bacillary dysentery

�Virulence Factors (Bolton 2015; van Putten et al. 2009;  
Young et al. 2007)

•	 Adherence to host cells: jejunum and ileum epithelial cells

–– Fimbrial adhesins: none
–– Non-fimbrial adhesins:

⚬⚬ CadF (Konkel et al. 1997)

•	 Thirty-seven kDa outer membrane protein
•	 Binds to ECM fibronectin
•	 Binding to fibronectin activates integrin-β1-dependent host signaling 

pathways that lead to activation of the Cdc42 GTPase via the Vav-2 
guanine nucleotide exchange factor (Fig. 14.2) (Krause-Gruszczynska 
et al. 2011)

•	 Activated Cdc42 (and Rac1) stimulate actin polymerization and/or 
microtubule reorganization leading to the membrane ruffling needed for 
endocytosis via a trigger mechanism (Monteville et al. 2003)

⚬⚬ FlpA (Larson et al. 2013):

•	 Outer membrane lipoprotein; binds fibronectin

⚬⚬ JlpA (Jin et al. 2003):

•	 Surface lipoprotein; binds to host Hsp90
•	 Induces host signaling pathways that lead to an inflammatory response

⚬⚬ PEB1 (CBF1), PEB2, PEB3, PEB4 (CBF2) (Leon-Kempis Mdel et al. 
2006; Pei and Blaser 1993):

•	 Outer membrane protein adhesins

⚬⚬ Outer membrane proteins (OMPs):

•	 MOMP (PorA): major outer membrane protein; putative porin and 
adhesion (Moser et al. 1997)

Virulence Factors
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•	 Many OMPs are modified by N-linked glycosylation; first bacteria 
shown to have N-linked glycosylation system (Szymanski and Gaynor 
2012; Wacker et al. 2002)

–– Pgl system (Nothaft and Szymanski 2010):

⚬⚬ Modifies ~65 OMPs; essential for adherence

⚬⚬ Flagella: tip protein FliD binds to host glycosaminoglycans (Freitag et al. 
2016)

⚬⚬ Capsule (see above)
⚬⚬ LOS (see above)

•	 Invasion of host cells and dissemination (O. Croinin and Backert 2012):

–– Colonizes the small intestine epithelial cells (microaerophilic environment)

⚬⚬ KatA (catalase), SodB (superoxide dismutase): expression is induced dur-
ing colonization in  vivo; regulated by the PerR regulon (Palyada et  al. 
2009)

Fig. 14.2  CadF-induced cytoskeletal rearrangements (From Krause-Gruszczynska et al. 2011)

14  Campylobacter spp.
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–– Can transiently invade host cells; uses CadF-dependent activation of the actin 
cytoskeletal network (see above):

⚬⚬ Can survive (but not grow) in Campylobacter-containing vacuoles (CCVs); 
leads to massive immune response and inflammation

–– Disseminates either between (paracellular) or through (transcellular) epithe-
lial cells (Backert et al. 2013):

⚬⚬ HtrA (Boehm et al. 2015):

•	 Serine protease; cleaves host E-cadherin
•	 Enhances paracellular dissemination
•	 Also involved as a potential chaperone affecting cell adherence and 

invasion

–– Type 4 secretion system (T4SS) (Bacon et al. 2002):

⚬⚬ Important for microtubule-based invasion
⚬⚬ Encoded on the pVir plasmid

–– CiaA–CiaI (Neal-McKinney and Konkel 2012):

⚬⚬ Campylobacter invasive antigens; needed for maximal invasion
⚬⚬ Secreted through flagellar T3SS into host cells
⚬⚬ Involved in actin and microtubule rearrangements; precise mechanisms are 

unknown (Samuelson and Konkel 2013)

•	 Iron acquisition (Miller et al. 2009):

–– Under transcriptional regulation by the Fur repressor system (van Vliet et al. 
1998)

–– FeoA, FeoB: Fe+2 iron transport (Naikare et al. 2006)
–– Ferri-enterochelin/ferri-enterobactin (exogenous siderophore)

⚬⚬ CfrA: outer membrane porin (Carswell et al. 2008)
⚬⚬ CeuBCDE: ATP transporter system

–– Hemin, hemoglobin, hemin–hemopexin, and hemoglobin–haptoglobin 
uptake:

⚬⚬ ChuA: outer membrane receptor (Pickett et al. 1992)
⚬⚬ ChuBCD: ABC transporter system

–– Ferri-transferrin, ferri-lactoferrin, and ferri-ovotransferrin uptake (Miller 
et al. 2008):

⚬⚬ CfbpA: binding protein
⚬⚬ CfbpBC: transport system

Virulence Factors
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•	 Host cell damage:

–– Cytolethal distending toxin (CDT) (Lara-Tejero and Galan 2001, 2002):

⚬⚬ A–B exotoxin: similar to CDT from Haemophilus ducreyi and Salmonella 
spp.

⚬⚬ Causes DNA damage to chromosomal DNA (Fais et al. 2016)

•	 Leads to host cell cycle arrest at DNA damage checkpoint; triggers 
p53-dependent apoptosis

⚬⚬ Also leads to induction of pro-inflammatory cytokines
⚬⚬ Three polypeptides (CdtA, CdtB, and CdtC (Fig. 14.3)):

•	 CdtA and CdtC (B subunits):

–– Bind to clathrin-coated pits

•	 CdtB (A subunit):

–– Translocates into the host nucleus and acts as a DNAase to induce 
double-strand breaks in the chromosomal DNA

–– FspA (Poly et al. 2007):

⚬⚬ Induces apoptosis in cultured cells by unknown mechanism
⚬⚬ Secreted through flagellar T3SS

Fig. 14.3  CDT mechanism (From: Lai et al. 2016)

14  Campylobacter spp.
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�Regulation of Virulence Factor Expression

•	 CsrA (Dugar et al. 2016):

–– Translational inhibitor
–– Blocks translation of FlaA flagellin mRNA

•	 CprR–CprS (Svensson et al. 2015):

–– Two component phosphorelay system
–– Regulates cell envelope components, HtrA and PEB4
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Chapter 15
Escherichia spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Detailed phylogeny is based on the sequence analysis of more than 180 
Escherichia coli genomes (Kaas et al. 2012):

⚬⚬ Core genome: 3,051 homology gene clusters (HGCs) present in 95% of all 
genomes; 1,702 HGCs in 100% of all genomes

⚬⚬ Pan genome: 16,373 HGCs
⚬⚬ Pathogen genomes can contain up to 1 Mb more DNA than commensal 

isolates; extra DNA is associated with the gain of virulence factors through 
horizontal gene transfer (HGT) mechanisms and the loss of virulence fac-
tors through mutational pathoadaptivity (Croxen et al. 2013)

–– Escherichia coli K-12 strain MG1655 chromosome: 4,639,221 bp; 4,288 pre-
dicted ORFs (Blattner et al. 1997)

–– Escherichia coli O157:H7 strain EDL933 chromosome: 5,547,323 bp; 5,498 
predicted ORFs (Perna et al. 2001)

–– Escherichia coli O104:H4 stx2-positive strain 2011C-3493 chromosome: 
5,273,097 bp; 4,963 predicted ORFs (Ahmed et al. 2012)

•	 Cell morphology:

–– Rod-shaped cells (Fig. 15.1)
–– Can be motile or nonmotile:

⚬⚬ Peritrichous flagella (H antigens); more than 50 H variants (Zhou et  al. 
2015)

⚬⚬ Flagellar motility plays an important role in certain pathotypes (UPEC); 
also important for biofilm formation
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•	 Gram stain:

–– Gram negative

•	 Growth:

–– Facultative anaerobes; oxidase negative
–– Reservoirs:

⚬⚬ Part of the normal microbiota of the gastrointestinal tracts of humans and 
other warm-blooded animals

⚬⚬ Fecal-contaminated food and water

–– Excellent biofilm formers (see below)
–– Eight species; E. coli is the major human pathogen
–– E. coli pathotype classification: based on disease states and virulence genes:

⚬⚬ Diarrheagenic pathotypes:

•	 AIEC: adherent invasive E. coli
•	 DAEC: diffusely adherent E. coli
•	 EAEC: enteroaggregative E. coli
•	 EHEC: enterohemorrhagic E. coli; subset of Shiga toxin-producing E. 

coli (STEC)
•	 EIEC: enteroinvasive E. coli; phylogenetically almost identical to 

Shigella spp.; uses same virulence mechanisms although EIEC shows 
reduced virulence and expression of virulence factors; discussed in 
more detail in Chap. 28 Shigella spp.

•	 EPEC: enteropathogenic E. coli
•	 ETEC: enterotoxigenic E. coli

Fig. 15.1  E. coli O157:H7 
cells (From: PHIL #2112)

15  Escherichia spp.
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⚬⚬ Extraintestinal pathotypes; extraintestinal pathogenic E. coli (ExPEC):

•	 UPEC: uropathogenic E. coli
•	 NMEC: neonatal meningitis E. coli

�Disease States Associated with E. coli

•	 Pathotypes are associated with disease states in different areas of the host 
(Fig. 15.2).

•	 Diarrheal diseases:

–– Either noninvasive, toxigenic (non-bloody diarrhea) infections or invasive, 
hemorrhagic (bloody diarrhea) infections

–– These are the major pathogens associated with the ~2–4 billion diarrheal epi-
sodes/year worldwide; diarrheal diseases are deadliest to infants and toddlers 
under the age of 5

–– Transmission: fecal–oral transmission from contaminated food and water; 
person to person (rare)

•	 Extraintestinal diseases:

–– Urinary tract infections (UTIs):

⚬⚬ Ascending UTIs:

•	 Endogenous source of UPEC; travels from host GI tract to urinary tract
•	 Can lead to cystitis in the bladder and acute pyelonephritis in the 

kidneys

Fig. 15.2  E. coli infection 
sites (From: Croxen and 
Finlay 2010)

Disease States Associated with E. coli
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⚬⚬ Majority of hospital acquired (HA) UTIs
⚬⚬ Eighty to 90% of community-acquired (CA) UTIs
⚬⚬ Symptoms:

•	 Uncomplicated: altered urination frequency, painful urination 
(dysuria)

•	 Complicated: chills, fever, flank pain

–– Neonatal meningitis:

⚬⚬ Endogenous source of NMEC; travels from GI tract to the meninges; 
crosses the blood–brain barrier (BBB)

⚬⚬ Most frequent cause of Gram-negative-associated meningitis in newborns; 
~40% fatality

–– Septicemia:

⚬⚬ Endogenous dissemination of UPEC and NMEC from the GI tract or UTIs
⚬⚬ Most common Gram-negative rod isolated from the blood
⚬⚬ Complication: endotoxic shock; mortality rate is high
⚬⚬ Neonatal sepsis:

•	 E. coli (and Streptococcus agalactiae) are the most common causes
•	 Associated with the K1 capsular polysaccharide antigen

�Virulence Factors (Croxen and Finlay 2010; Croxen et al. 
2013; Kaper et al. 2004)

•	 Virulence factors associated with most, if not all, pathogenic E. coli will be dis-
cussed first

•	 Each of the abovementioned pathotypes will be discussed separately, focusing 
on the unique virulence factors associated with each pathotype

•	 The primary discriminators for each pathotype are their repertoire of adherence 
factors and exotoxins

•	 It is important to note that with the 1,000s of different E. coli strains, serotypes, 
and pathotypes, not all of the virulence factors discussed below will be encoded 
or expressed in each strain

•	 Many of these virulence factors are encoded on plasmids and pathogenicity 
islands (PAIs)

•	 Archetypical E. coli virulence factors:

–– LPS:

⚬⚬ Endotoxin activity: lipid A-dependent endotoxic shock

15  Escherichia spp.
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⚬⚬ O antigens:

•	 More than 80 O serotypes
•	 Immunostimulatory; trigger TLR4-dependent inflammatory reactions 

that lead to a cytokine storm and septic shock

⚬⚬ Also plays a role in serum resistance

–– Capsule (Miajlovic and Smith 2014):

⚬⚬ Contains K polysaccharide antigens; more than 60 K serotypes have been 
identified; K1 is the predominant serotype associated with NMEC

⚬⚬ Found in NMEC, UPEC, EHEC, and EPEC
⚬⚬ Provides protection from phagocytosis, complement-mediated lysis, and 

microbicidal molecules – serum resistance
⚬⚬ Also important for biofilm formation

–– Iron acquisition (Ma et al. 2009; Porcheron et al. 2013):

⚬⚬ Not all transporters and siderophores are expressed in each E. coli 
pathotype

⚬⚬ Fe+2 transporters:

•	 FeoABC system: GTP-dependent transport across the inner membrane
•	 ABC (ATP-binding cassette) transporters: transports Fe+2 and other 

solutes

⚬⚬ Fe+3 siderophores:

•	 Can remove Fe+3 from host transferrin, lactoferrin, and ferritin
•	 Enterochelin (enterobactin):

–– Major siderophore in E. coli; almost all E. coli strains produce this 
siderophore

–– Cyclic polyester containing three DHBS (N-(2,3-dihydroxybenzoyl)-
L-serine) residues

–– Internalized with the FepB chaperone via the FepA receptor and 
FepCDG ABC transporter

•	 Salmochelin:

–– Enterochelin derivative; contains DHBS linked by a glucose residue; 
increases the hydrophilicity of enterochelin

–– Synthesis, excretion, and uptake are mediated by the IroBCDEN 
gene products and the FepCDG gene products

•	 Aerobactin:

–– Uptake is via the IutA receptor and FhuBC ABC transporter

Virulence Factors
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•	 Yersiniabactin:

–– Uptake is via the Psn/FyuA receptor and the YbtPQ ABC 
transporter

⚬⚬ Exogenous siderophores:

•	 Ferrichrome (fungal siderophore): internalized via the FhuABCD 
system

⚬⚬ Ferric citrate transport:

•	 Involves the FecABCDE transport system

⚬⚬ Heme uptake:

•	 Secreted hemolysins and SPATE proteases (see below) can break down 
hemoglobin, hemopexin, and haptoglobin, releasing free heme

•	 Heme uptake involves the Shu (EIEC/Shigella), ChuA (EHEC, UPEC), 
and Hma (UPEC) import systems

⚬⚬ Expression is regulated by Fe+2-bound Fur repressor and RhyB sRNA mol-
ecules (Ma et al. 2009)

–– Biofilm formation (Sharma et al. 2016):

⚬⚬ Capable of forming biofilms on biotic and abiotic surfaces, included cath-
eters (UPEC and NMEC CA-UTIs) and other medical devices

⚬⚬ Type I fimbriae and curli fimbriae are the major initial adherence factors 
involved in biofilm formation

⚬⚬ Maturation of biofilms utilizes autotransporter proteins such as Ag43 (anti-
gen 43), AidA, and TibA

⚬⚬ Major E. coli exopolysaccharides found within the biofilm include β-1,6-
N-acetyl-D-glucosamine polymer (PGA), cellulose, and capsular colanic 
acid (negatively charged polymer of glucose, galactose, fucose, and gluc-
uronic acid)

⚬⚬ LPS and capsules (UPEC, NMEC) play an important role in biofilm struc-
ture and cell-to-cell adherence

⚬⚬ Quorum sensing utilizes N-acyl-homoserine lactones (AHL) as signaling 
molecules along with the LuxIR-sensing system

•	 Diarrheagenic pathotypes (Clements et al. 2012; Gomes et al. 2016):

–– AIEC (adherent invasive E. coli):

⚬⚬ Associated with patients with Crohn’s disease (CD) and inflammatory 
bowel disease (IBD) (Mann and Saeed 2012)

⚬⚬ Adherence to host cells (Korea et al. 2011):

•	 Adhere to and invade brush border cells in ileal epithelial cells; also 
invade macrophage

•	 Flagella-mediated swimming motility is essential for approach and 
adherence

15  Escherichia spp.
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•	 Fimbrial adhesins:

–– Type I fimbriae (Barnich et al. 2003, 2007):

⚬⚬ Chaperone–usher pathway (CUP) assembly mechanism
⚬⚬ FimA: major structural subunit
⚬⚬ FimH: tip adhesin
⚬⚬ Binding is sensitive to D-mannose or methyl-α-D-mannopyranoside
⚬⚬ Adhere to glycosylated CEACAM6 (carcinoembryonic antigen-

related cell adhesion molecule 6), which is overexpressed in CD 
patients

–– Lpf (long polar fimbriae) (Chassaing et al. 2011):

⚬⚬ CUP assembly mechanism
⚬⚬ Interacts with M cells in Peyer’s patches; can undergo transcyto-

sis across the M cells; gains access to the submucosal lamina pro-
pria, and invades macrophage

⚬⚬ Host cell invasion:

•	 YfgL (Rolhion et al. 2005):

–– Outer membrane lipoprotein
–– Important for the release of OMVs (outer membrane vesicles), which 

deliver bacterial effectors, such as OmpA, to host cells

•	 OmpA (Rolhion et al. 2010):

–– Outer membrane invasion
–– Binds to host ER stress response chaperone Gp96

⚬⚬ Evasion of host immune system:

•	 In CD patients, AIEC can survive within macrophage phagolysosomes 
without inducing cell death (Lapaquette et al. 2012):

–– Associated with defects in the host cell autophagy machinery in CD 
patients

–– Generates high levels of TNF-α, which is associated with chronic 
inflammation and granuloma formation

–– DAEC (diffusely adherent E. coli) (Fig. 15.3) (Le Bouguenec and Servin 
2006; Servin 2005):

⚬⚬ Associated with watery, non-bloody diarrhea; UTIs
⚬⚬ Characteristic diffuse adherence pattern over epithelial cells
⚬⚬ Some cells contain the adherence pathogenicity island “locus for entero-

cyte effacement” (LEE; see EHEC, EPEC below)  – diffusely adhering 
enteropathogenic E. coli (DA-EPEC)

⚬⚬ Adherence to host cells (Korea et al. 2011):

Virulence Factors
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•	 Fimbrial adhesins:

–– Dr:

⚬⚬ Mannose-resistant adhesin
⚬⚬ Bind to DAF (decay-accelerating factor; CD55); GPI-anchored 

protein present on apical side of polarized epithelial cells
⚬⚬ Bind to type IV collagen
⚬⚬ Bind to carcinoembryonic antigen-related cellular adhesion mol-

ecules (CEACAMs); GPI-anchored proteins
⚬⚬ Binding leads to loss of brush border microvilli, internalization 

into epithelial cells (zipper mechanism), increased paracellular 
permeability, and activation of cell signaling pathways that lead 
to pro-inflammatory cytokine production

⚬⚬ Encoded by dra operon

Fig. 15.3  DAEC virulence 
factors (From: Croxen and 
Finlay 2010)

15  Escherichia spp.
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–– F1845:

⚬⚬ Bind to DAF, CEACAMs
⚬⚬ Encoded by daa operon

–– AAF-I, AAF-II, AAF-III: unknown receptor(s)

•	 Afimbrial adhesins:

–– AfaE-I, AfaE-II, AfaE-III, AfaE-V:

⚬⚬ Mannose-resistant adhesins
⚬⚬ Bind to DAF; AfaE-III also binds to CEACAMs

–– Dr-II: binds to DAF
–– NfaI: binds to DAF

⚬⚬ Damage to host cells:

•	 Sat (Guignot et al. 2007):

–– Serine protease; member of SPATE (serine protease autotransporters 
of Enterobacteriaceae) family of proteases (Pic of EAEC and 
EIEC/Shigella; EspC of EPEC; Sat of DAEC and UPEC; SigA and 
SepA of EIEC/Shigella; EspP of EHEC)

–– Disassembles tight junction proteins; increases permeability

Fig. 15.4  EAEC virulence factors (From: Estrada-Garcia and Navarro-Garcia 2012)

Virulence Factors



218

–– EAEC (EAggEC) enteroaggregative E. coli (Fig. 15.4) (Estrada-Garcia and 
Navarro-Garcia 2012):

⚬⚬ Emerging pathogen; second most common traveler’s diarrhea after ETEC
⚬⚬ Symptoms: persistent, watery non-bloody diarrhea
⚬⚬ Recent emergence of hemorrhagic Shiga toxin 2a (Stx-2a)-producing 

O104:H4 EAEC strains in Europe (Boisen et  al. 2015; Navarro-Garcia 
2014)

⚬⚬ Adherence to host cells (Korea et al. 2011):

•	 Aggregative “stacked brick” autoagglutination on epithelial cells; facil-
itates biofilm formation

•	 Fimbrial adhesins:

–– AAF-I–IV (aggregative adherence fimbriae) (Nataro et al. 1992):

⚬⚬ Dr family of adhesins; plasmid encoded
⚬⚬ Bind to ECM fibronectin
⚬⚬ Aggregation phenotype is counteracted by the dispersin protein 

(see below)
⚬⚬ Important for biofilm formation

–– Type IV pili (Dudley et al. 2006):

⚬⚬ Encoded on IncI1 plasmid; not found in all EAEC strains

–– Hda (Boisen et al. 2008):

⚬⚬ Necessary for adherence in AAF-negative strains

•	 Dispersin (Sheikh et al. 2002):

–– Anti-aggregation activity; counteracts AAF fimbriae; disperses 
EAEC cells

–– Non-covalently attached to bacterial cell membrane; forms a surface 
coat

–– Encoded by aap gene

•	 Pic (Henderson et al. 1999):

–– Member of SPATE family of serine proteases (see DAEC Sat above)
–– Plasmid encoded
–– Mucinase; cleaves host mucin
–– Involved in biofilm formation and colonization of intestinal cells

⚬⚬ Damage to host cells:

•	 EAST1 (Ménard and Dubreuil 2002):
–– Plasmid-encoded, heat-stable enterotoxin

–– Thirty-eight aa polypeptide; homologous to EPEC EAST1 and 
ETEC ST

15  Escherichia spp.
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–– Stimulates host guanylyl cyclase; increases cGMP levels; induces 
protein kinase G (PKG)-dependent fluid loss and diarrhea (see ETEC 
ST below for more details)

•	 HlyE (Chaudhuri et al. 2010):

–– Hemolysin E
–– Putative pore-forming cytolytic toxin; role in EAEC virulence is 

unclear

•	 Pet (plasmid-encoded toxin) (Navarro-Garcia et al. 1999):

–– Serine protease; member of SPATE family; plasmid encoded
–– Destroys α-fodrin (spectrin)
–– Disrupts actin cytoskeleton; results in cell rounding; exfoliation
–– Pet homologs: Sat, SigA

•	 ShET1 (Fasano et al. 1995):

–– Chromosome (pathogenicity island) encoded
–– A-B5 enterotoxin; same as EIEC/Shigella ShET enterotoxin
–– Increases cAMP and cGMP levels; leads to water loss and diarrhea

–– EHEC (enterohemorrhagic E. coli):

⚬⚬ Subset of Shiga toxin-producing E. coli (STEC); most common serotype is 
O157:H7

⚬⚬ Symptoms: range from mild diarrhea to hemorrhagic colitis (bloody 
diarrhea)

⚬⚬ Complication: hemolytic uremic syndrome (HUS):

•	 Shiga-like toxins (Stx1, Stx2) enter bloodstream and destroy red blood 
cells

•	 Leads to kidney damage, vomiting, bloody diarrhea, and anemia

⚬⚬ Adherence to host cells (Croxen et  al. 2013; Farfan and Torres 2012; 
McWilliams and Torres 2014):

•	 Fimbrial adhesins:

–– EHEC encodes 14 potential fimbriae; 4 are unique to EHEC
–– Important roles in initial adherence, persistence, and tissue tropism
–– LpfA (long polar fimbriae):

⚬⚬ Primary adhesin
⚬⚬ LpfA1 (predominant), LpfA2; similar to Salmonella Lpf
⚬⚬ Binds to ECM components laminin, fibronectin, type IV 

collagen

–– HCP (hemorrhagic coli pili):

⚬⚬ Type IV pili
⚬⚬ Binds to ECM laminin and fibronectin
⚬⚬ Important role in biofilm formation

Virulence Factors
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–– Curli:

⚬⚬ Major adhesin in Lpf-negative cells
⚬⚬ Major adhesin for biofilm formation and binding to vegetable 

leaves
⚬⚬ Binds to ECM proteins laminin and fibronectin; also plasminogen 

and MHC class 1 proteins

–– ECP (E. coli common pilus; Mat):

⚬⚬ Unknown receptor
⚬⚬ Important role in biofilm formation

–– F9: binds to ECM fibronectin
–– ELF (E. coli laminin-binding fimbriae): binds to ECM laminin
–– SfpA (sorbitol fermenting fimbriae protein A): unknown receptor
–– Type I fimbriae: important for biofilm formation; see AIEC above

•	 Afimbrial adhesins:

–– EhaA, EhaB, EhaJ:

⚬⚬ Autotransporters (T5SS)
⚬⚬ Bind to ECM components laminin, fibronectin, type IV collagen
⚬⚬ Major role in biofilm formation

–– EspP:

⚬⚬ Serine protease; member of SPATE family
⚬⚬ Forms “rope-like” fiber structures; important for adherence and 

biofilm formation
⚬⚬ Also cleaves coagulation factor V, pepsin, and complement fac-

tors C3/C3b, C5
⚬⚬ Encoded on pO157 plasmid

–– EibG (E. coli immunoglobulin-binding protein G):

⚬⚬ Binds to IgG and IgA
⚬⚬ Contributes to chain-like adhesion (CLA) pattern

–– Efa-1/LifA (lymphostatin):

⚬⚬ Large surface protein; unknown target(s)

•	 A/E (attaching/effacing) lesions (Schmidt 2010):

–– Efface (destroy) intestinal microvilli, generating attachment sites 
and actin “pedestals” (Fig. 15.5)

–– The major adherence mechanism for AHEC and APEC (see below); 
greater than 80% homology between protein components

15  Escherichia spp.
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–– LEE (locus of enterocyte effacement):

⚬⚬ Chromosomal pathogenicity island; five operons containing ~41 
genes; not found in nonpathogenic E. coli

⚬⚬ Encodes the intimin–Tir adherence system (see below)
⚬⚬ Encodes a type 3 secretion system (T3SS); translocates ~39 bac-

terial effectors into the host cytosol; many of these effectors have 
multiple effects within the host cell (Dean and Kenny 2009; Wong 
et al. 2011):

•	 EspA: major subunit of filamentous needle structure
•	 EspB/D: forms the translocon pore
•	 Paa: required for A/E function

⚬⚬ Effectors induce actin rearrangements, apoptosis, and suppress 
inflammation

–– Intimin–Tir adherence system (Campellone and Leong 2003):

⚬⚬ Promotes intimate attachment and colonization of intestinal epi-
thelial cells following initial fimbrial adherence

⚬⚬ Intimin:

•	 95 kDa protein
•	 Anchored in outer membrane and peptidoglycan
•	 Binds to bacteria-encoded translocated intimin receptor (Tir); 

strengthens bacteria–host attachment
•	 Variations in the Tir-binding domains of intimin proteins from 

EHEC and EPEC mediate tissue tropism in the host intestine

Fig. 15.5  Actin pedestals (From: Schmidt 2010)

Virulence Factors
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⚬⚬ Tir:

•	 57 kDa protein
•	 Delivered to host cell cytoplasm through the T3SS
•	 Displayed on the host cell surface; forms hairpin loop struc-

ture spanning the host cell membrane
•	 Extracellular domain interacts with intimin
•	 Intracellular domain interacts with host signaling proteins trig-

gering N-WASP, Arp2/3-dependent actin rearrangements; 
leads to the formation of actin “pedestals” (Figs.  15.5 and 
15.6)

•	 EHEC and EPEC Tir differ in their initial host signaling inter-
actions due to the presence of host cell tyrosine phosphoryla-
tion of EPEC Tir vs. the absence of EHEC Tir phosphorylation 
(EHEC Tir is lacking the essential tyrosine 474 residue) 
(Fig. 15.6):

–– EPEC Tir interacts with the SH2 phosphotyrosine-binding 
domain of the host Nck adaptor protein, which interfaces 
with WIP (WASP-interacting protein) and N-WASP

–– EHEC Tir interacts with host IRSp53 and IRTKS proteins, 
which link Tir to the bacterial effector protein EspFU (Xs in 
Fig. 15.6); EspFu binds to N-WASP (de Groot et al. 2011)

Fig. 15.6  EHEC vs. EPEC Tir signaling (From: Campellone and Leong 2003)
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⚬⚬ Damage to host cells:

•	 Shiga-like toxins (Stx1; Stx2) (Bergan et  al. 2012; Lee et  al. 2016; 
Melton-Celsa 2014):

–– Induces ribotoxic stress response and ER stress response; induces 
inflammation, apoptosis, and autophagy (Fig. 15.7)

–– Lysogenic phage-encoded A-B5 exotoxins:

⚬⚬ Stx1 (identical to EIEC/Shigella Shiga toxin Stx):

•	 Three subtypes (Stx1a, Stx1c, Stx1d)

⚬⚬ Stx2 (~60% identical to Stx1):

•	 Seven subtypes (Stx2a, Stx2b, Stx2c, Stx2d, Stx2e, Stx2f, 
Stx2g)

•	 Stx2 variants are more prevalent in colitis and HUS patients

–– A subunit:

⚬⚬ Cleaved by furin or furin-like proteases into A1 and A2 subunits; 
held together by disulfide bond, which is disrupted within the 
host ER; A2 binds to B subunits; A1 enters the host cytosol

Fig. 15.7  Stx cellular effects (From: Lee et al. 2016)
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⚬⚬ A1 catalytic activity:

•	 N-glycosidase activity; removes an adenine residue from the 
28S rRNA of the 60S ribosome

•	 Blocks binding to translation elongation factor 1 (EF1); inhib-
its host protein translation

–– B subunits:

⚬⚬ Forms homopentameric ring structure
⚬⚬ Binds to glycosphingolipid globotriaosylceramide (Gb3; CD77) 

in cholesterol-containing lipid rafts on intestinal Paneth cells:

•	 Gb3: ceramide lipid connected to [α-gal(1  →  4)-β-
gal(1 → 4)-β-glc] trisaccharide (Lindberg et al. 1987)

–– Released by phage-mediated lysis of EHEC cells (not secreted):

⚬⚬ Antibiotic treatment can lead to EHEC cell death and release of 
toxin

•	 EHEC-Hly or Ehx (Bielaszewska et al. 2014):

–– Calcium-dependent, pore-forming, RTX (repeats in toxin) family 
hemolysin

–– Extracellular-free Hly targets and lyses host red blood cells, intesti-
nal epithelial cells, and microvascular endothelial cells

–– Outer membrane vesicle (OMV)-associated Hly binds to host β2 
integrin proteins; leads to release of pro-inflammatory cytokines and 
caspase 9-dependent apoptosis

–– Encoded by hlyA gene; similar to UPEC α-hemolysin HlyA but with 
different host cell specificities

•	 StcE (Lathem et al. 2002):

–– Metalloprotease; cleaves host C1 esterase inhibitor (C1-INH):

⚬⚬ C1-INH regulates the host complement cascade and coagulation
⚬⚬ StcE cleavage disrupts complement activation; leads to tissue 

damage and decreases in platelet concentrations 
(thrombocytopenia)

–– Encoded on pO157 plasmid

–– EIEC: enteroinvasive E. coli (see Chap. 28: Shigella spp.)
–– EPEC (enteropathogenic E. coli) (Fig. 15.8) (Law et al. 2013; Singh and 

Aijaz 2016; Zhuang et al. 2017):

⚬⚬ Subclassified into typical EPEC (tEPEC) and atypical EPEC (aEPEC):

•	 tEPEC strains contain pEAF plasmid (encodes BFP; see below); aEPEC 
strains do not contain pEAF
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⚬⚬ Symptoms: watery non-bloody diarrhea; usually fatal to infants; caused by 
destruction of intestinal epithelial microvilli

⚬⚬ Adherence to host cells (Korea et al. 2011):

•	 Fimbrial adhesins:

–– BFP (bundle-forming pili):

⚬⚬ Type IV fimbriae; encoded on large EAF plasmids
⚬⚬ Leads to localized adherence (LA) pattern of attachment; three-

dimensional microcolony formation is characteristic of tEPEC

–– ECP (E. coli common pilus): see AHEC above

•	 Afimbrial adhesin:

–– LifA (lymphostatin) unknown target(s):

⚬⚬ Large surface protein
⚬⚬ Required for intestinal colonization

–– EspC: homolog of EHEC EspP (see above)

•	 Prototypical A/E (attaching/effacing) lesions: see EHEC above

⚬⚬ Damage to host cells:

•	 T3SS effectors (Dean and Kenny 2009; Wong et al. 2011):

–– Many of these effectors have multiple effects within the host cell 
(see EHEC above)

Fig. 15.8  EPEC virulence factors (From: Dean and Kenny 2009)
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–– EspF:

⚬⚬ Homologous to EHEC EspFU (see above)
⚬⚬ Induces the internalization of aquaporins (AqP); affects water 

adsorption; leads to diarrhea
⚬⚬ Inactivates (with Map, EspH, Tir) the Na+-D-glucose co-

transporter SGLT-1; also inhibits the Na+/H+-exchanger NHE3
⚬⚬ N-terminal domain (with Map) induces mitochondria apoptosis 

pathway
⚬⚬ C-terminal domain (with Tir, EspH, EspB, Map) disrupts host cell 

tight junction intestinal barriers through N-WASP-dependent 
actin rearrangements

–– EspG1/G2:

⚬⚬ Induces the internalization of aquaporins; affect water absorp-
tion; leads to diarrhea

⚬⚬ Disrupts microtubules; leads to inhibition of Cl− absorption due 
to loss of microtubule-dependent membrane localization of the 
DRA Cl−/HCO3− exchanger

–– EspH:

⚬⚬ Functions in actin-based filopodia and pedestal formation
⚬⚬ Blocks macrophage apoptosis

–– EspJ:

⚬⚬ Functions in colonization
⚬⚬ Inhibits phagocytosis

–– Map:

⚬⚬ Affects Na+/H+ exchanger regulatory factor 2 (NHERF2) 
activity

⚬⚬ Disrupts mitochondrial membrane potential; induces apoptosis
⚬⚬ Acts as a guanine nucleotide exchange factor (GEF) for the Cdc42 

GTPase; induces Cdc42-dependent filopodial formation

–– Paa: see EHEC above
–– NleA (EspI):

⚬⚬ Inhibits tight junction proteins ZO-1 and occludin; increases 
paracellular permeability

⚬⚬ Inhibits protein secretion

–– NleE, NleH:

⚬⚬ Activate innate immune responses
⚬⚬ Function in colonization
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•	 Exotoxins:

–– EPEC does not produce Shiga toxins or other EHEC exotoxins
–– CDT (cytolethal distending toxin) (Lara-Tejero and Galan 2001, 

2002):

⚬⚬ Member of the tripartite family of CDTs; also found in 
Haemophilus ducreyi, Campylobacter jejuni, and Salmonella 
enterica serotype Typhi (only CdtB)

⚬⚬ A-B exotoxin: three polypeptides CdtA, CdtB, and CdtC

•	 CdtA and CdtC (B subunits):

–– Bind to clathrin-coated pits

•	 CdtB (A subunit):

–– DNAase I: dsDNA break activity
–– Translocates into the host nucleus and induces double-

strand breaks in the chromosomal DNA
–– DNA damage activates a cell cycle checkpoint; leads to G2 

phase arrest (epithelial cells) or p53-dependent apoptosis 
(lymphocytes and monocytes) and induction of pro-
inflammatory cytokines

–– EAST1: enterotoxin homologous to EAEC EAST1 and ETEC ST

–– ETEC: enterotoxigenic E. coli (Fleckenstein et al. 2010; Gonzales-Siles and 
Sjöling 2016; Turner et al. 2006):

⚬⚬ Major cause of traveler’s diarrhea
⚬⚬ Symptoms: mild to severe, watery non-bloody diarrhea; clinically indistin-

guishable from cholera
⚬⚬ Adherence to host cells:

•	 Fimbrial adhesins (Korea et al. 2011; Turner et al. 2006):

–– Colonization factors (CFs); reclassified as CS (coli surface 
antigens)

–– Not found in all strains; most are plasmid encoded
–– ~22 antigenically distinct proteins; different structural morphologies 

(fimbrial, fibrillary, helical, non-fimbrial):

⚬⚬ Fimbrial (rigid rodlike structures): CFA/I, CS1, CS2, CS4, CS8, 
CS12, CS14, CS17, CS18, CS19, CS20, CS21

⚬⚬ Fibrillary (thin, flexible structures): CS3, CS11, CS13
⚬⚬ Helical: CS5, CS7
⚬⚬ Non-fimbrial: CS6, CS10, CS15, CS22
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–– “Longus”:

⚬⚬ Type IV pilus; extends 40 μm from cell surface
⚬⚬ Encoded by lngA gene

•	 Afimbrial adhesins:

–– Tia (Elsinghorst and Kopecko 1992):

⚬⚬ 25 kDa outer membrane protein
⚬⚬ Binds to host heparan sulfate proteoglycans

–– TibA (Cote et al. 2013; Elsinghorst and Weitz 1994):

⚬⚬ 104 kDa autotransporter; outer membrane protein
⚬⚬ Glycosylated by TibC; necessary for adherence and stability

•	 EtpA (Roy et al. 2009):

–– Flagellar-secreted tip adhesin
–– Binds to flagellin subunits
–– Degraded by EatA (Patel et al. 2004):

⚬⚬ SPATE family of serine proteases, similar to EIEC/Shigella SepA
⚬⚬ Modulates adherence; also LT secretion

⚬⚬ Damage to host cells:

•	 LT (Liang and Hajishengallis 2010; Spangler 1992):

–– Heat-labile enterotoxin; ~80% identical to cholera toxin
–– LT-I; LT-II (LT-IIa, LT-IIb, LT-IIc): antigenically distinct variants
–– A-B5 toxin:

⚬⚬ A subunit:

•	 ADP-ribosyltransferase activity
•	 Proteolytically cleaved to form A1 and A2 subunits
•	 A1 subunit ADP-ribosylates the Gαs subunit of the Gs heterotri-

meric G protein
•	 The inactivated Gαs subunit cannot hydrolyze its bound GTP – 

remains constitutively active
•	 Results in constitutive activation of the downstream effector 

adenylate cyclase (AC), which converts ATP into cAMP:

–– Increases cAMP concentration more than 100-fold

•	 cAMP binds to, and activates, protein kinase A (PKA), which 
phosphorylates and activates the cystic fibrosis transmem-
brane conductance regulator (CFTR):

–– CFTR: membrane ion channel protein; conducts Cl− ions 
across epithelial cell membranes
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•	 Cl− release, as well as Na+ entry into cells, causes a massive 
water efflux from intestinal epithelial cells – diarrhea

⚬⚬ B subunits:

•	 Forms pentameric ringlike structure; binds to GM1 ganglio-
sides within lipid raft domains in the cell membrane of intesti-
nal epithelial cells

•	 ST (Fig. 15.9) (Hughes et al. 1978; Weiglmeier et al. 2010):

–– Heat-stable enterotoxin
–– STa (ST-I):

⚬⚬ Small peptides
⚬⚬ ST-Ia (STp), 18 aa; ST-Ib (STh), 19 aa

Fig. 15.9  ST mechanism of action (From: Weiglmeier et al. 2010)
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–– Mimics the peptide hormones guanylin and uroguanylin; binds to the 
extracellular domain of guanylyl cyclase C (GC-C) receptors on the 
intestinal epithelium

–– Activation of guanylyl cyclase C leads to increases in cGMP levels:

⚬⚬ cGMP activates cGMP-dependent protein kinase II (PKG-II); 
directly phosphorylates and activates CFTR

⚬⚬ cGMP inhibits phosphodiesterase 3 (PDE3); leads to increases in 
cAMP levels, activation of PKA and CFTR, and inhibition of 
NHE3-dependent Na+ re-absorption

–– End result is increases in H2O efflux and diarrhea

•	 Extraintestinal pathotypes; extraintestinal pathogenic E. coli (ExPEC) (Dale and 
Woodford 2015; Vila et al. 2016):

–– UPEC (uropathogenic E. coli):

⚬⚬ Most common cause of UTIs; initial cystitis can lead to pyelonephritis and 
septicemia

⚬⚬ Adherence to host cells (Korea et al. 2011; Mulvey 2002):

•	 Fimbrial adhesins:

–– UPEC strains encode many more fimbrial gene clusters than diar-
rheagenic strains; not all are expressed in every UPEC strain

–– Dr adhesins: see DAEC Dr adhesins above
–– Type I fimbriae; see AIEC type I fimbriae above:

⚬⚬ CUP assembly mechanism
⚬⚬ Functions in bladder colonization; also important for biofilm 

formation
⚬⚬ FimH fimbrial tip adhesin:

•	 Binds to uroplakin 1a (α-D-mannose-containing glycoprotein) 
and other uroplakin plaques on bladder epithelial cells; leads 
to invasion of uroepithelial cells

•	 Also binds to ECM laminin, fibronectin, and type I and type 
IV collagen

–– P fimbriae:

⚬⚬ CUP assembly mechanism
⚬⚬ ~70% of UPEC have P pili; ~20% of GI tract E. coli have P pili
⚬⚬ Encoded by pap genes
⚬⚬ PapA: major structural subunit
⚬⚬ PapG (fimbrial tip adhesin):

•	 Binds to globotriaosylceramides GbO3, GbO4, and GbO5:

–– Digalactoside (Galα1–4Gal) core linked by a β-glucose: 
(Glc) residue to a ceramide group (P blood group antigen)
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•	 More associated with pyelonephritis and binding to renal epi-
thelial cells

–– S fimbriae:

⚬⚬ CUP assembly mechanism
⚬⚬ SfaA: major structural subunit
⚬⚬ SfaS (fimbrial tip adhesion):

•	 Binds to sialic acids sugars on uroplakin proteins

–– Curli: see EHEC Curli fimbriae above
–– F1C (type IC fimbriae):

⚬⚬ Similar to S fimbriae; CUP assembly mechanism
⚬⚬ FocA: major structural subunit
⚬⚬ Binds to β-GalNac-1, 4β-Gal residues on glycosphingolipids; 

asialo-GM1; asialo-GM2

–– F9: see EHEC F9 fimbriae above
–– Pix: related to the P fimbriae (Lugering et al. 2003).
–– Yad; Ygi, and Yfc (Spurbeck et al. 2011):

⚬⚬ CUP assembly mechanism
⚬⚬ More prevalent in UPEC than in commensal E. coli

⚬⚬ Invasion of superficial facet cells in bladder:

•	 FimH binds to uroplakin Ia and IIIa receptors on facet cells
•	 UPEC cells replicate and aggregate into intracellular bacterial commu-

nities (biofilm-like)
•	 Can migrate into bladder lumen and ascend to kidneys; requires flagella 

genes to be turned on and pili genes to be turned off

⚬⚬ Damage to host cells (Fig. 15.10):

•	 CNF-1; CNF-2 (cytotoxic necrotizing factor) (Flatau et  al. 1997; 
Schmidt et al. 1997):

Fig. 15.10  UPEC virulence factors (From: Wiles et al. 2008)
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–– 113 kDa transmembrane protein; homologous to Yersinia CNFY

–– Constitutively activates the Rho/Rac/Cdc42 GTPases through deam-
idation of the Glu61/63 residue

–– Induces actin rearrangements; cell apoptosis

•	 HlyA: see EHEC-Hly above (Ristow and Welch 2016)
•	 Pic: see EAEC Pic above
•	 Sat/Vac: see EAEC Pic above

⚬⚬ Evasion of innate immune system:

•	 TcpC (Snyder et al. 2013):

–– Blocks MyD88/TLR4-dependent cytokine production
–– Increases bacterial burden in the urinary tract

–– NMEC (neonatal meningitis E. coli) (Fig. 15.11) (Croxen and Finlay 2010):

⚬⚬ Infection progression:

•	 Acquired perinatally from mother
•	 Intestinal colonization
•	 Bacteremic dissemination within macrophage in the bloodstream to the 

blood–brain barrier
•	 Invasion of brain microvascular endothelial cells (BMECs)
•	 Transmigrates through BMECs without multiplication into brain

⚬⚬ Adherence to host cells:

•	 Fimbrial adhesins:

Fig. 15.11  NMEC virulence factors (From: Croxen and Finlay 2010)
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–– Type I pili; see above:

⚬⚬ Binds to CD48; α3β1 integrins (Khan et al. 2007)

–– S fimbriae: see UPEC above

•	 Afimbrial adhesins:

–– FdeC (Nesta et al. 2012):

⚬⚬ Similar to EPEC intimin
⚬⚬ Binds to epithelial cells and collagen I, II, V, and VI
⚬⚬ Functions in the kidney and bladder colonization; bacterial 

aggregation

–– OmpA (outer membrane protein A) (Prasadarao 2002):

⚬⚬ Binds to ECGP96 receptor
⚬⚬ Functions in internalization into BMECs
⚬⚬ Binds complement C4-binding protein (C4BP); blocks mem-

brane attack complex formation

–– IbeA, B, C (Huang et al. 2001):

⚬⚬ Functions in internalization into BMECs

⚬⚬ Damage to host cells:

•	 CNF-1 (cytotoxic necrotizing factor-1); see UPEC CNF-1 above:

–– Functions in internalization into BMECs

⚬⚬ Evasion of host immune system:

•	 Capsule (Kim et al. 1992):

–– Predominantly the K1 polysaccharide antigen
–– Homopolymer of polysialic acid
–– Protects NMEC from complement and phagocytosis in the 

bloodstream
–– Also blocks lysosome fusion during BMEC internalization

�Regulation of Virulence Factor Expression (Fig. 15.12) (Kaper 
et al. 2004; Mellies and Lorenzen 2014)

•	 Pathogenic E. coli respond to a myriad of environmental and host signals to 
induce or repress the expression of virulence factors:

–– pH; acid tolerance: essential for transit through the stomach
–– Quorum sensing

Regulation of Virulence Factor Expression
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Fig. 15.12  Regulation of virulence factors (From: Kaper et al. 2004)
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–– Carbohydrate availability, metabolism, and iron availability
–– Flagellar biosynthesis and motility: inactivated in biofilms and during attach-

ment; activated during dissemination
–– Synthesis and T3SS secretion of adherence factors and toxins; LEE vs. non-

LEE strains

•	 Use regulatory factors that are associated with virulence PAIs and plasmids [e.g., 
Ler (LEE encoded regulator), Per (plasmid-encoded regulator)] as well as those 
that are present in commensal strains
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Chapter 16
Francisella spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Francisella tularensis chromosome: 1,892,819  bp; 1804 predicted ORFs 
(Larsson et al. 2005)

•	 Cell morphology:

–– Small pleomorphic coccobacilli (Fig. 16.1)

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Strict aerobes; oxidase negative
–– Fastidious growth: requires cysteine and iron
–– Found in many mammalian species, including rabbits, voles, mice, squirrels, 

muskrats, and beavers; macrophage are the usual host cell reservoir
–– Ten species with multiple subspecies: two major human pathogenic subspe-

cies and several minor pathogenic species:

⚬⚬ F. tularensis subsp. tularensis – Type A Francisella:

•	 Highly virulent; associated with dry terrestrial reservoirs primarily in 
North America

⚬⚬ F. tularensis subsp. holarctica – Type B Francisella:

•	 Milder disease state; associated with aquatic reservoirs primarily in 
Europe and Asia
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�Disease States Associated with Francisella tularensis

•	 Tularemia (“rabbit fever”; “deer fly fever”):

–– Zoonotic disease
–– Facultative intracellular pathogen: can infect phagocytic and non-phagocytic 

cells
–– Transmission (not spread from person to person):

⚬⚬ Vector transmission (bite of tick or deer fly):

•	 Symptoms: ulceration at bite site (Fig. 16.2), sudden fever, chills, head-
aches, diarrhea, muscle aches, joint pain, dry cough, swollen lymph 
nodes

Fig. 16.1  F. tularensis 
cells (From: PHIL #2985)

Fig. 16.2  Ulceration at 
bite site (From: CDC)

16  Francisella spp.
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⚬⚬ Inhalation tularemia:

•	 Usually from handling contaminated tissues or aerosolized urine or 
feces; risk for landscapers who kill carriers with lawnmowers

•	 Causes a pneumonic form of tularemia
•	 Can disseminate to the liver and spleen
•	 Can lead to life-threatening “cytokine storm,” particularly when inhaled

⚬⚬ Typhoidal tularemia: ingestion of contaminated food

–– Potential bioweapon (McLendon et al. 2006):

⚬⚬ Tier 1 select agent
⚬⚬ Extremely virulent with low infectious dose; ~10 colony-forming units 

(CFU) can cause disease; 90–100% of infected patients get the disease; 
30–60% of untreated infections can be fatal

⚬⚬ Easily disseminated via aerosolization; most deadly form

�Virulence Factors (Jones et al. 2014):

•	 Facultative intracellular pathogen: essential for virulence
•	 Adherence to host cells:

–– Bacterial adhesin–host receptor interactions vary depending on the opsoniza-
tion state; opsonization increases internalization approximately tenfold 
(Fig. 16.3) (Moreau and Mann 2013)

–– Unopsonized F. tularensis adherence:

⚬⚬ Type IV pili (Tfp) system (Salomonsson et al. 2011):

•	 Essential for virulence and biofilm formation; not required for intracel-
lular survival or replication

•	 Encoded and assembled by pil gene products
•	 Six structural pilin proteins: major pilin – PilA (PilE1)
•	 Unknown human receptor

⚬⚬ Host mannose receptors (MR): primary target for unopsonized cells; 
unknown Francisella target protein

⚬⚬ EF-Tu (Barel et al. 2008)

•	 Surface expressed Francisella elongation factor
•	 Interacts with host surface-exposed nucleolin (SE-N)

⚬⚬ FsaP (Melillo et al. 2006)

•	 Outer membrane protein; unknown human receptor
•	 Increased expression in Type A cells

Virulence Factors
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–– Opsonized F. tularensis adherence: type of opsonization affects binding:

⚬⚬ Complement-based opsonization:

•	 Targets LPS and capsule
•	 Complement receptors (CR3, CR1, CR4) (Geier and Celli 2011)

–– Different host cell tropism; F. tularensis can cleave/inactivate com-
plement protein C3b to C3bi, which mediates the receptor 
interactions

•	 Scavenger receptor A (SRA): (Geier and Celli 2011)

–– Macrophage receptor; interacts with LPS

⚬⚬ IgG antibody-based opsonization (Geier and Celli 2011):

•	 Almost exclusively through interaction with Fcγ receptors (FcγR)

•	 Host cell invasion (Steiner et al. 2014):

–– Facultative intracellular pathogen; can infect phagocytic and non-phagocytic 
cells

–– Looping phagocytosis: generation of large asymmetrical pseudopod loops 
usually in areas of lipid rafts; depends on host actin cytoskeleton (Moreau and 
Mann 2013)

Fig. 16.3  F. tularensis 
adherence mechanisms 
(From: Moreau and Mann 
2013)

16  Francisella spp.
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–– Once internalized, maturation of Francisella-containing phagosome (FCP) is 
blocked through acidification:

⚬⚬ Prevents ROS respiratory burst by inhibiting NADPH oxidase maturation
⚬⚬ Inhibits lysosome fusion, leading to rapid phagosomal escape and active 

cytosolic multiplication

–– Replication leads to host cell apoptosis and egress from the cell
–– Leads to induction of pro-inflammatory cytokines and chemokines, such as 

IFN-β and TNF-α, and a potentially lethal “cytokine storm”

•	 Growth within the host milieu:

–– Iron acquisition (Fortier et al. 1995):

⚬⚬ Iron is essential for the virulence and intracellular growth of F. tularensis
⚬⚬ Receptors for host transferrin, lactoferrin, heme, hemoglobin, or hemo-

pexin are not found in the annotated genome
⚬⚬ Fe–siderophore (Sullivan et al. 2006):

•	 Polycarboxylate siderophore; rhizoferrin-like; synthesized by fsl genes
•	 Regulated by Fe+2-dependent Fur repressor (Ramakrishnan et al. 2008)

⚬⚬ Fe+2 iron uptake (Perez and Ramakrishnan 2014):

•	 Mediated by membrane-bound FupA and FeoB Fe+2 iron transporters
•	 May play a role in heme uptake (Lindgren et al. 2015)

–– Francisella pathogenicity island (FPI):

⚬⚬ Two copies in F. tularensis
⚬⚬ Encodes many virulence factor genes; eight of which (IglE, IglC, IglI, IglJ, 

IglF, VgrF, PdpE, PdpA) are secreted upon macrophage infection
⚬⚬ Some are components of a type 6 secretion system (T6SS), which is 

required for virulence

•	 Evasion of host immune system

–– Intracellular growth: see above
–– LPS (Hajjar et al. 2006)

⚬⚬ Essential for full virulence
⚬⚬ Different lipid A structure vs. other Gram-negative bacteria
⚬⚬ Makes it unable to bind host lipid A binding protein (LBP) or toll-like 

receptor-4 (TLR-4); no endotoxin activity and no inflammatory response

–– Capsule (Apicella et al. 2010):

⚬⚬ Type 4 capsule
⚬⚬ Incorporates identical O-antigen polysaccharides as found in the LPS, but 

neither lipid A nor 2-keto-3-deoxyoctulsonic acid (KDO) is attached
⚬⚬ Indicates that the capsule and the LPS are distinct structures

Virulence Factors



246

–– Complement evasion (Jones et al. 2012)

⚬⚬ Binds host plasmin; blocks antibody binding and complement activation
⚬⚬ Binds host factor H; inhibits complement protein C3 activation, which 

blocks membrane attack complex (MAC) formation

�Regulation of Virulence Factor Expression (Dai et al. 2010)

•	 Levels of virulence factors are transcriptionally regulated in response to changes 
in environmental and host stimuli during infection:

–– MglA:

⚬⚬ Macrophage growth locus A; essential for virulence
⚬⚬ Global positive regulator of >100 genes inside and outside of FPI; binds 

directly to RNA polymerase
⚬⚬ Upregulated during macrophage infection

–– SspA:

⚬⚬ High homology to MglA
⚬⚬ Required for binding of MglA to RNA polymerase

–– PmrA/KdpD:

⚬⚬ Two-component phosphorelay system
⚬⚬ KpdD: sensor kinase; responds to unknown signal
⚬⚬ PmrA: response regulator

•	 Transcription activator
•	 DNA-binding protein that interacts with MglA and SspA in activating 

virulence gene transcription

–– FevR (Francisella effector of virulence regulator):

⚬⚬ Essential for replication of Francisella in macrophages
⚬⚬ fevR mutants are trapped in phagosome
⚬⚬ Does not bind DNA or RNA polymerase; acts upstream or parallel to 

MglA
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Chapter 17
Haemophilus spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Haemophilus influenzae chromosome: 1,830,140  bp; 736 predicted ORFs 
(Fleischmann et al. 1995)

•	 Cell morphology:

–– Very small pleomorphic coccobacilli (Fig. 17.1)

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Aerotolerant anaerobes; catalase positive, oxidase positive:

⚬⚬ In vitro growth requires CO2-enriched environment

–– Very fastidious growth
–– H. influenzae requires X factor and V factor:

⚬⚬ X factor: hemin; contains Fe3+ ion; released from lysed red blood cells 
(chocolate agar)

⚬⚬ V factor: nicotinamide adenine dinucleotide (NAD)

–– Temperature sensitive:

⚬⚬ Stocks must be stored at 37 °C for survival

–– Human commensal that colonizes mucous membranes of the upper respira-
tory tract, nasopharynx, mouth, vagina, and intestinal tract; opportunistic 
pathogen
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–– Eighteen species: one major human pathogenic species (H. influenzae) and 
several minor pathogenic species:

⚬⚬ Haemophilus influenzae subtype aegyptius: acute, purulent conjunctivitis, 
Brazilian purpuric fever

⚬⚬ Haemophilus parainfluenzae: opportunistic pathogen of chronic obstruc-
tive pulmonary disease (COPD) patients

⚬⚬ Haemophilus ducreyi: causes inflammatory chancroid; sexually transmit-
ted disease (Lewis and Mitjà 2016); contains a CDT DNAase that damages 
chromosomal DNA and causes a cell cycle arrest (Fais et al. 2016)

–– H. influenzae strains are characterized (typed) by the presence or absence of 
polyribosylribitolphosphate (PRP) capsule (Fig. 17.2)

⚬⚬ Encapsulated strains – typeable strains:

•	 Serotypes a–f: based on antibodies against PRP capsule antigens
•	 Serotype b (Hib): most common; caused serious systemic infections 

(meningitis) before Hib vaccine
•	 PRP capsule antigens: primary antigenic constituent in polysaccharide 

and polysaccharide conjugate Hib vaccines

⚬⚬ Nonencapsulated strains – non-typeable H. influenza (NTHi):

•	 Normal serum is usually bacteriocidal for most NTHi strains but not 
encapsulated strains

•	 Great heterogeneity between NTHi strains

Fig. 17.1  H. influenzae 
cells (From: PHIL #1947)

17  Haemophilus spp.
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�Disease States Associated with Haemophilus influenzae

•	 Typeable strains (De Schutter et al. 2011):

–– Lung infections, epiglottitis, meningitis, septicemia, and community-acquired 
pneumonia

–– Transmitted person to person via respiratory aerosols
–– Primary cause of disseminated H. influenzae diseases

•	 NTHi strains (Duell et al. 2016; King 2012):

–– Cause majority of upper respiratory infections, pneumonia, sinusitis, con-
junctivitis, and acute otitis media

–– Reemerging pathogen for COPD patients
–– Invasive to macrophage and epithelial cells in vitro; in vivo significance is 

unclear

�Virulence Factors

•	 Adherence to host cells – respiratory and nasopharynx epithelial cells (Fig. 17.3):

–– Fimbrial adhesins:

⚬⚬ Pili:

•	 Found in typeable and non-typeable H. influenzae
•	 Enhance adherence to mucosal cells in nasopharynx
•	 Bind intercellular adhesion molecule 1 (ICAM1) and mucins (Kubiet 

et al. 2000)

Fig. 17.2  H. influenzae 
capsule (From: balamoti.
bol.ucla.edu)

Virulence Factors

http://balamoti.bol.ucla.edu/h-influ/virulent/virulent.shtml
http://balamoti.bol.ucla.edu/h-influ/virulent/virulent.shtml


252

•	 HifA: structural protein
•	 PilA: tip protein

–– Afimbrial adhesins:

⚬⚬ HMW1 and HMW2 (St. Geme and Yeo 2009):

•	 Only found in non-typeable H. influenzae
•	 Mediate adherence to human respiratory and nasopharynx Epithelial 

cells; also bind proteoglycans in the ECM
•	 Structurally similar to B. pertussis filamentous hemagglutinin (FHA)
•	 Hmw1A and Hmw2A – structural proteins:

Fig. 17.3  H. influenzae NTHi adherence mechanisms (From: Duell et al. 2016)

17  Haemophilus spp.
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–– Secreted via T5SS two-partner secretion (TPS) system (St. Geme 
and Yeo 2009)

⚬⚬ Hia (St. Geme and Cutter 2000):

•	 Only found in non-typeable H. influenzae
•	 T5SS autotransporter family of outer membrane proteins

⚬⚬ Hap (Fink et al. 2002):

•	 Only found in non-typeable H. influenzae
•	 Bind to ECM components laminin, fibronectin, and collagen IV

⚬⚬ P2, P5, protein E, and protein F (Finney et al. 2014):

•	 Membrane proteins
•	 Only found in non-typeable H. influenzae
•	 P2 and P5 bind to mucins
•	 Protein E and protein F bind to epithelial cells and extracellular matrix 

proteins

•	 Growth within the host milieu:

–– Iron acquisition (Hariadi et al. 2015):

⚬⚬ Instead of using siderophores, acquires iron from host iron-binding 
proteins

⚬⚬ HgpA, HgpB, and HgpC (Morton et  al. 1999); HhuA (Maciver et  al. 
1996):

•	 Hemoglobin- and hemoglobin-haptoglobin-binding proteins

⚬⚬ Tbp1 and Tbp2 (Gray-Owen and Schryvers 1995); HitA (Sanders et al. 
1994):

•	 Transferrin-binding proteins

⚬⚬ HxuA, HemR, and Hup (Pidcock et al. 1988):

•	 Heme uptake from host hemin and hemoglobin

•	 Damage to host cells:

–– Lipooligosaccharide (LOS):

⚬⚬ LPS lacking extensive O-antigen polysaccharides
⚬⚬ Essential for virulence
⚬⚬ Elicits endotoxin pro-inflammatory response

•	 Evasion of host immune system:

–– Polyribosylribitolphosphate (PRP) capsule:

Virulence Factors
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⚬⚬ Anti-phagocytic; more copies of capsule genes lead to greater resistance to 
phagocytosis and to complement-mediated cell lysis (Noel et al. 1996) (see 
below)

⚬⚬ Major role in bloodstream dissemination leading to meningitis
⚬⚬ cap b locus (Kroll and Moxon 1988):

•	 Encodes the genes needed for the synthesis of type b capsule; capsule 
polysaccharide synthesis, modification, and export.

•	 IS element-mediated recombination can lead to gene amplification and 
more copies of the locus; more PRP capsule is produced (Gilsdorf et al. 
2004; Kroll et al. 1991).

–– IgA1 proteases (Mulks et al. 1982):

⚬⚬ Three endopeptidases that cleave IgA antibodies in lung mucosa

–– Phase variation:

⚬⚬ Modification of cell structures, such as LOS, adhesins, and pili that con-
tribute to disease

⚬⚬ P2 and P5 proteins undergo antigenic drift (Duell et al. 2016)

–– Complement-mediated lysis inhibition: (Hallstrom and Riesbeck 2010)

⚬⚬ Principle defense against H. influenzae infection
⚬⚬ Physical barriers (capsule, LOS) block activation and deposition of serum 

complement proteins, e.g., C4b; leads to blockage of membrane attack 
complex (MAC) formation

⚬⚬ Co-opt host complement regulators to block complement-mediated lysis

•	 Adhesin proteins (protein E, protein F, and P4) and surface fibril Hsf 
bind host vitronectin (Hallstrom and Riesbeck 2010):

–– Binding enhances vitronectin’s ability to block complement C5b-C9 
proteins; inhibits MAC formation

⚬⚬ Bind to and activate host regulatory proteins C4BP, factor H, FHL-1

–– Binding blocks complement proteolysis cascade; inhibits MAC forma-
tion host cell invasion:

⚬⚬ Primarily NTHi strains; facultative intracellular pathogen
⚬⚬ Invade macrophage and lung epithelial cells

�Regulation of Virulence Factor Expression

•	 Oxygen concentrations (Wong and Akerley 2012):

–– Must adapt to O2-rich environment in the lungs and O2-poor environment in 
inner ear and bloodstream when disseminating

17  Haemophilus spp.
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–– Lung environment – aerobic:

⚬⚬ High in reactive oxygen species (ROS); need to scavenge for amino acids, 
nucleotides, and metal ions (Fe, Zn), which are in low concentrations

⚬⚬ Increase LOS synthesis genes because LOS is damaged by ROS
⚬⚬ Increase antioxidants, such as superoxide dismutase (SOD) and catalase, 

amino acid metabolism, ion transport

–– Bloodstream environment – anaerobic:

⚬⚬ Presence of macrophage and reactive nitrogen species (RNS)
⚬⚬ Still need antioxidants and LOS synthesis genes expressed

–– ArcA–ArcB – oxygen-sensing TCS:

⚬⚬ ArcB: sensor kinase; transfers phosphate to ArcA
⚬⚬ ArcA: response regulator

•	 Transcriptional activator and repressor
•	 Represses genes involved in aerobic respiration and de-represses genes 

involved in anaerobic respiration
•	 Low oxygen conditions: ArcB phosphorylates ArcA in response to 

redox status of quinone electron carrier pool; phosphorylated ArcA 
transcriptionally activates or represses target genes

•	 High oxygen conditions: oxidized quinones block ArcB activity – inac-
tive in lungs

–– FNR – transcription activator:

⚬⚬ O2 sensor; contains Fe–S center
⚬⚬ O2-binding inactivates Fe–S center and FNR activity
⚬⚬ Active in anaerobic environments; needed to protect against RNS
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Chapter 18
Helicobacter spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Helicobacter pylori chromosome: 1,667,867 bp; 1,590 predicted ORFs (Tomb 
et al. 1997)

•	 Cell morphology:

–– Small, helical or curved, rod-shaped cells (Fig. 18.1)
–– Flagella: four to six lophotrichous flagella

⚬⚬ Motility is essential for virulence (see below).
⚬⚬ Two copolymerized flagellin proteins: FlaA and FlaB

–– LPS: has fucose-containing O-antigens

⚬⚬ Mimics Lewis b-like blood group antigens
⚬⚬ Plays a role in cell adherence (see below)
⚬⚬ Can undergo phase variation to elude immune system (Salaun et al. 2004)

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Microaerophilic; oxidase positive, catalase positive, urease positive (see 
below)

–– Normal reservoir: stomach and upper gastrointestinal tract
–– Biofilm formation: can form on abiotic surfaces and on gastric epithelial cells; 

under the regulation of the ArsR–ArsS TCS (Servetas et al. 2016; Stark et al. 
1999)

–– ~23 species – classified as either gastric species or enterohepatic species:
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⚬⚬ Helicobacter pylori is the primary human pathogen
⚬⚬ Highly heterogeneous bacteria; probably due to coevolution with humans, 

its only ecological niche, and horizontal gene transfer events

�Disease States Associated with Helicobacter pylori (Kao et al. 
2016)

•	 Marshall and Warren: first to observe association between H. pylori and gastritis 
and peptic ulcers; Nobel Prize in 2005 (Marshall and Warren 1984)

•	 Transmission: usually acquired in childhood; person-to-person transmission or 
ingestion of fecal contaminated water or food

•	 Gastritis – stomach colonization with minor inflammation:

–– Abdominal pain, nausea, bloating, and belching
–– ~50% of world population is colonized; most widespread infection 

worldwide
–– ~80% of infected people are asymptomatic

•	 Peptic ulcers and duodenal ulcers:

–– Associated with high levels of inflammation caused by multiple virulence fac-
tors (see below)

–– H. pylori invade the gastric mucus layer using flagellar motility, attach to 
gastric epithelial cells, and induce inflammation that weakens the epithelial 
layer, leading in an efflux of acidic gastric juices into underlying tissues 
resulting in ulcers

Fig. 18.1  H. pylori cells 
(From: scopeblog.stanford.
edu; Photo by Shuman Tan 
and Lydia-Marie Joubert)

18  Helicobacter spp.
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•	 B-cell lymphoma of mucosal-associated lymphoid tissue (MALT lymphoma) 
and invasive gastric adenocarcinoma (third leading cause of cancer deaths 
worldwide):

–– H. pylori is the only recognized bacterial carcinogen
–– Incidence of gastric cancer varies geographically vs. ulcers and may be due to 

the presence of DupA virulence factor (Yamaoka 2010)
–– Increased levels of outer membrane proteins OipA, BabA, and SabA (see 

below) are more often seen with gastric cancer sera than with duodenal ulcer 
sera and may be a useful biomarker in the future (Su et al. 2016)

•	 Virulence varies geographically due, in part, to different forms and expression of 
the virulence factors CagA, VacA, and OipA; these virulence factors are co-
expressed in virulent and carcinogenic strains (Yamaoka 2010)

�Virulence Factors

•	 Urease (Mobley et al. 1995, 1988):

–– Essential for virulence
–– Dimeric Ni+2-dependent urease
–– Encoded by ureA and ureB genes
–– ureEFGH genes encode urease activating proteins; ureI gene encodes an acid-

dependent urea channel
–– Hydrolyzes urea found in abundance in the stomach into bicarbonate and 

ammonia:

⚬⚬ Urea + H+ + 2H2O → HCO3
− + 2(NH4

+)

–– Urea is also released from gastric epithelial cells via VacA-dependent pores
–– NH4

+ molecules increase net pH in the stomach and disrupt tight junctions of 
gastric epithelial cells

–– Raising the pH also reduces the viscosity of mucus, which increases motility

•	 Host cell attachment:

–– Adhesins: attach to stomach epithelial cells (Kalali et al. 2014)

⚬⚬ Hop family of outer membrane proteins (OMPs): AlpA (HopC), AlpB 
(HopB), SabA (HopP), BabA (HopS), BabB (HopT), OipA (HopH), 
HopQ, and HopZ

⚬⚬ Hop expression can vary from patient to patient but is clonal within a 
patient

⚬⚬ OipA (HopH) (Kwon and Graham 2000):

•	 Necessary for virulence

Virulence Factors
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•	 Induces the expression of pro-inflammatory cytokines, especially IL-8, 
similarly to CagA (see below)

•	 Regulation of expression: slipped-strand mispairing (CT dinucleotide 
repeats) in 5′-region of the oipA gene

–– OipA “on” – virulent; associated with more severe gastric diseases 
(duodenal ulcer and gastric cancer), neutrophil infiltration, and high 
IL-8 levels (Kudo et al. 2004)

–– OipA “off” – avirulent

•	 Secreted through cagPAI T4SS (see below)

⚬⚬ BabA (HopS)–BabB (HopT) (da Costa et al. 2015; Ilver et al. 1998):

•	 Bind to fucose sugar residues on Lewis b antigens on the surface of 
gastric epithelial cells

⚬⚬ SabA (HopP) (Pang et al. 2014):

•	 Binds to sialic acid sugar residues on Lewis b antigens on the surface of 
gastric epithelial cells.

•	 X-ray crystal structure has been resolved

⚬⚬ HopZ (Peck et al. 1999):

•	 Putative adhesin; hopZ knockout mutant has reduced binding to gastric 
epithelial cells

⚬⚬ AlpA (HopC)–AlpB (HopB) (Alm et al. 2000; Yonezawa et al. 2017):

•	 Cell surface lipoproteins
•	 Function in adherence and in biofilm formation

⚬⚬ HP-NAP (H. pylori neutrophil-activating protein) (Montecucco and de 
Bernard 2003):

•	 Promotes attachment of neutrophils to endothelial cells and production 
of reactive oxygen species (ROS)

•	 Induces inflammation that enhances nutrient availability for H. pylori 
growth

•	 Encoded by napA gene

⚬⚬ HpPrtC (Zhao et al. 2017):

•	 Collagenase
•	 May function in ECM breakdown

⚬⚬ HpHtrA (Hoy et al. 2010):

•	 Serine protease
•	 Cleaves host E-cadherin at adherens junctions
•	 May enhance paracellular dissemination beyond the gastric epithelium

18  Helicobacter spp.
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–– Flagella (Huang et al. 2017):

⚬⚬ Motility enables H. pylori penetration of the gastric mucus layer
⚬⚬ essential for initial gastric colonization and subsequent virulence 

(Ottemann 2002)
⚬⚬ Flagella propel H. pylori from stomach lumen (low pH) through the mucus 

layer and close to gastric epithelial cells (physiological pH)
⚬⚬ Uses pH-sensitive sensors TlpA, TlpB, and TlpD for chemotaxis

•	 Iron and nickel acquisition – essential nutrients:

–– H. pylori is very sensitive to host levels of Fe and other metal cofactors such 
as Ni, Zn, and Cu (Haley and Gaddy 2015)

–– Does not use Fe+3 siderophores
–– Uses multiple outer membrane protein systems to directly import Fe from Fe-

bound proteins such as hemoglobin, transferrin, heme, and lactoferrin (Haley 
and Gaddy 2015)

–– Under transcriptional regulation by Fe+2-dependent Fur repressor (Gilbreath 
et al. 2013)

–– Nickel acquisition (Fischer et al. 2016; Cherrier et al. 2008):

⚬⚬ Needed for essential urease activity
⚬⚬ NixA, NiuBDE, FrpB4, FrpB2, and FecA3:

•	 Ni+2 transporters
•	 Under Ni+2-dependent NikR transcriptional regulation; can act as a 

repressor or activator of transcription (Dosanjh and Michel 2006)

•	 Host cell damage:

–– H. pylori has the ability to induce host inflammatory processes in order to 
gain access to nutrients but also has the ability to block inflammation for sur-
vival in the host (Varga and Peek 2017)

–– TlyA (Javadi and Katzenmeier 2016):

⚬⚬ Putative hemolysin; unknown mechanism
⚬⚬ Putative RNA methyltransferase; unknown mechanism

–– VacA (Cover and Blanke 2005; Junaid et al. 2016):

⚬⚬ Pore-forming exotoxin
⚬⚬ Essential for colonization of the stomach
⚬⚬ Induces multiple effects inside host cells (Fig. 18.2):

•	 Adhesin: surface-bound VacA binds to host membrane sphingolipid, 
sphingomyelin (SM), within lipid rafts; likely to play a role in VacA 
internalization (Gupta et al. 2008)

•	 Vacuolation: internalized VacA creates large vacuoles inside host cells 
(Leunk et al. 1988)

Virulence Factors
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•	 Membrane channels: secreted VacA forms anion-selective oligomeric 
channels in host cell endosomes and in the plasma membrane (Szabò 
et al. 1999)

•	 Alters mitochondrial membrane permeability: forms pores in mito-
chondria causing release of cytochrome c; leads to host cell apoptosis 
and programmed cell necrosis (de Bernard and Josenhans 2014; 
Galmiche et al. 2000)

•	 Activates several host cell-signaling pathways: leads to induction of 
pro-inflammatory responses (Nakayama et al. 2004)

•	 Disrupts gastric epithelial tight junction permeability: enhances para-
cellular dissemination of H. pylori outside the gastrointestinal epithe-
lium (Papini et al. 1998)

–– cag-PAI pathogenicity island (da Costa et al. 2015):

⚬⚬ ~40 kB of chromosomal DNA
⚬⚬ Encode 31 ORFs; most of which are components of the type 4 secretion 

system (T4SS):

•	 Translocates bacterial effector proteins into host cells
•	 CagE (Kutter et al. 2008):

–– ATPase; provides energy for effector translocation

•	 CagT (Fischer et al. 2001):

Stomach lumen

Lamina propria

Nature Reviews | Microbiology

Surface-bound
VacA functioning
as an adhesin

Pro-inflammatory
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Nucleus
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Release of cytochrome c
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channel activity

Localization
to mitochondria

Cell
death

T cell
Inhibition of T-cell
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H. pylori-induced
signalling disrupts
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Fig. 18.2  VacA cellular effects (From: Cover and Blanke 2005)
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–– Induces pro-inflammatory cytokine IL-8

•	 CagM (Fischer et al. 2001; Glocker et al. 1998):

–– Induces NF-kB-dependent signaling and IL-8 secretion

•	 CagL (Barden et al. 2013):

–– Localized at tip of T4SS
–– Binds to α5β1 integrin; induces IL-8 dependent inflammation

–– CagA (Basso et  al. 2010; da Costa et  al. 2015; Backert and Blaser 2016) 
(Fig. 18.3):

Fig. 18.3  CagA cellular effects (From: Yamaoka 2010)

Virulence Factors
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⚬⚬ Bacteria-derived carcinogen; CagA-positive strains have a higher inci-
dence of gastric carcinomas than CagA-negative strains

⚬⚬ Binds to ~20 host proteins in phosphorylation-dependent and 
phosphorylation-independent mechanisms (Fig. 18.3) (Bergé and Terradot 
2017)

⚬⚬ Can disrupt tight junction permeability, enhancing paracellular dissemina-
tion of H. pylori outside the gastrointestinal epithelium

⚬⚬ Affects signaling pathways that lead to pro-inflammatory responses and 
host cell proliferation (oncogenesis)

⚬⚬ Three functional domains:

•	 α5β1 integrin binding
•	 Phosphatidylserine (PS) binding domain: attachment to host cell 

membrane
•	 Phosphorylation domains: contain differing numbers of EPIYA amino 

acid repeats

–– Tyrosine (Y) in EPIYA is site of host Src and Abl tyrosine kinase-
dependent phosphorylation

–– DupA (Duodenal ulcer promoting gene A) (Abadi and Perez-Perez 2016; 
Hussein et al. 2010):

⚬⚬ Associated with ulcer formation and suppression of gastric cancer
⚬⚬ Induces secretion of pro-inflammatory cytokines (Lu et al. 2005)

•	 Evasion of host immune system (Mejías-Luque and Gerhard 2017):

–– Phase variation:

⚬⚬ Alters virulence proteins, allowing cells to escape immune detection
⚬⚬ Can occur via gene switching through slipped-strand mispairing during 

chromosomal replication (Salaun et al. 2004)
⚬⚬ Seen with LPS sugars, outer membrane adhesins, and flagella

–– LPS:

⚬⚬ Lipid A is under-acylated and under-phosphorylated vs. typical LPS
⚬⚬ One thousand-fold less active than typical endotoxin
⚬⚬ Lipid A is not recognized by TLR-4, so inflammatory processes are not 

induced
⚬⚬ Contains fucose and sialic acid Lewis blood group antigen-like sugars; 

molecular mimicry and phase variation of genes needed for the synthesis 
of these sugars (Bergman et al. 2006; Moran and Prendergast 2001)

–– Flagellin:

⚬⚬ Modified N-terminal domain; not recognized by TLR-5
⚬⚬ Can undergo phase variation

18  Helicobacter spp.
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–– Fucose-containing OMPs (Bergman et al. 2006):

⚬⚬ Activate anti-inflammatory cytokines
⚬⚬ Can undergo phase variation

–– VacA:

⚬⚬ Inhibits T-cell proliferation by blocking G1/S cell cycle transition
⚬⚬ Leads to localized immunosuppression (Gebert et al. 2003)

–– gGT (Gong et al. 2010):

⚬⚬ γ-glutamyltranspeptidase
⚬⚬ Metabolizes extracellular glutathione leading to H2O2 production and 

inflammation
⚬⚬ Induces apoptosis
⚬⚬ Inhibits T-cell proliferation

�Regulation of Virulence Factor Expression

•	 Multiple transcriptional regulatory circuits that respond to changes in host envi-
ronment and metal ions (Danielli et al. 2010):

–– Fe+2-dependent Fur regulation of iron-responsive genes (see above)
–– Ni+2-dependent NikR regulation of nickel-response genes (see above)
–– Two-component phosphorelay systems (TCSs)

⚬⚬ ArsR–ArsS (Goodwin et al. 2008; Servetas et al. 2016):

•	 Acid response, SabA regulation, and biofilm formation

⚬⚬ CheA–CheY and FlgR–FlgS (Niehus et al. 2004):

•	 Flagellar motility

⚬⚬ CrdR–CrdS (Waidner et al. 2005):

•	 Copper resistance
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Chapter 19
Klebsiella spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Klebsiella pneumoniae strain MGH78578 chromosome: 5,315,120 bp; 4776 
predicted ORFs (Lery et al. 2014)

•	 Cell morphology:

–– Rod-shaped cells (Fig. 18.1)
–– Nonmotile
–– Capsule: major virulence factor (Fig. 18.1; see below)
–– Lipopolysaccharide (LPS): immunostimulatory; associated with inflamma-

tion and endotoxic shock; also functions in immune evasion (see below)

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Facultative anaerobes; oxidase negative
–– Urease positive; used to obtain nitrogen from host urea
–– Reservoirs: contaminated soil and surface water; human hosts (primary)
–– Can colonize human mucosal layers, including the gastrointestinal tract and 

the nasopharynx
–– Excellent biofilm formers (see below)
–– Six species and several subspecies: K. pneumoniae is the primary human 

pathogen; K. oxytoca is next most prevalent:

⚬⚬ K. pneumoniae strains can be classified as either classical or hypervirulent 
(HV)
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⚬⚬ K. pneumoniae strains are serotyped by LPS (O) antigens and capsular (K) 
antigens:

•	 9 O antigen serotypes: O1 (most common)
•	 78 K antigen serotypes: K1–K78

⚬⚬ Member of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aerugi-
nosa, Enterobacter spp.) family of antibiotic-resistant nosocomial 
pathogens

⚬⚬ Significant increases worldwide in antibiotic-resistant strains and HV 
strains:

•	 Antibiotic resistance – two major mechanisms:

–– Expression of carbapenemases; display resistance to all β-lactam 
antibiotics

–– Expression of extended spectrum β-lactamases (ESBLs); display 
resistance to cephalosporins and monobactams

–– Isolates can be found worldwide
–– Antibiotic resistance does not increase the virulence of these strains

•	 HV strains (Paczosa and Mecsas 2016; Patel et  al. 2014; Shon et  al. 
2013):

–– Predominantly O1:K1 (93%) and O1:K2 strains
–– Exhibit a hypermucoviscous phenotype on agar plates; due to the 

presence of a hypercapsule with increased production of capsule 
polysaccharide (CPS)

Fig. 18.1  K. pneumoniae 
cells (From: PHIL #14342)

19  Klebsiella spp.
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–– Also increased production and utilization of iron siderophores 
enterobactin, yersiniabactin, salmochelin, aerobactin

–– Isolates are found predominantly in Southeast Asia and Taiwan, 
although incidents are spreading worldwide

�Disease States Associated with Klebsiella pneumoniae

•	 Inflammatory symptoms  – correlated with either a classical or HV K. pneu-
moniae strain (Paczosa and Mecsas 2016):

–– Classical disease states:

⚬⚬ Opportunistic infections of immunocompromised hosts; primarily 
nosocomial

⚬⚬ pneumonia, urinary tract infections (UTIs), bacteremia, neonatal sepsis:

•	 Pneumonia:

–– Community-acquired and hospital-acquired (HA); HA pneumonia 
isolates are much more likely to be antibiotic resistant

–– Cough, fever, leukocytosis, chest pain
–– “Currant jelly sputum”: thick blood-tinged mucous
–– Transmission: primarily the aspiration of host’s own nasopharyngeal 

microbiota; also associated with biofilms on contaminated medical 
devices (ventilators)

•	 UTIs:

–– Ascending UTIs
–– Transmission: seeding from host’s own GI tract or from contami-

nated urinary catheters [catheter-associated (CA) UTIs]
–– Painful urination (dysuria), increased frequency of voiding, and 

blood in urine (hematuria)

•	 Bacteremia: either a primary infection within the bloodstream or a sec-
ondary infection due to dissemination from lungs or bladder

–– HV disease states:

•	 Can occur in immunocompetent hosts
•	 Primarily CA infections and systemic infections
•	 Pyogenic liver abscesses and other organ abscesses, pneumonia, bactere-

mia, meningitis, soft tissue diseases, endophthalmitis

Disease States Associated with Klebsiella pneumoniae
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�Virulence Factors (Paczosa and Mecsas 2016)

•	 Adherence to host cells:

–– Fimbrial adhesins:

⚬⚬ Type I fimbriae (Struve et al. 2008):

•	 Chaperone–usher assembly mechanism
•	 Expressed in ~90% of isolates, including HV O1:K1 strains
•	 FimA: major structural component
•	 FimH (tip adhesin):

–– Binds to D-mannosylated glycoproteins (mannose-sensitive 
binding)

–– Can bind to mast cells; induces inflammation, chemokine produc-
tion, and neutrophil infiltration

•	 Expressed in the urinary tract but not in the lungs or GI tract; plays an 
important role in UTIs and biofilm formation in the bladder

•	 Regulated by phase variation involving an invertible DNA promoter 
element upstream of the fim operon:

–– On orientation – transcription occurs
–– Off orientation – transcription is blocked
–– Orientation of promoter element is regulated by site-specific 

recombinases

⚬⚬ Type III fimbriae (Murphy and Clegg 2012):

•	 Chaperone–usher assembly mechanism
•	 Expressed in almost all isolates, including HV O1:K1 strains
•	 MrkA: major structural component; also adheres to abiotic surfaces in 

biofilms
•	 MrkD (tip adhesin):

–– Binds to ECM types IV and V collagens
–– Does not bind mannose (mannose-resistant binding)

•	 Not necessary for UTIs or in lung or GI tract infections
•	 Primary fimbriae associated with biofilm formation on tissues and abi-

otic medical devices (VAP; ventilator-associated pneumonia)
•	 Regulated by intracellular levels of cyclic di-GMP through the MrkHI 

proteins

⚬⚬ Kpc fimbriae (Wu et al. 2010):

•	 Expressed in HV O1:K1 strains
•	 KpcA: major structural component
•	 Important role in biofilm formation

19  Klebsiella spp.
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•	 Regulated by phase variation similar to type I fimbriae

⚬⚬ KPF-28 fimbriae: (Di Martino et al. 1996)

•	 Expressed in strains producing the CAZ-5/SHV-4 extended-spectrum 
β-lactamase

•	 Encoded on the same R virulence plasmid that encodes the β-lactamase 
gene

•	 May be involved in binding intestinal epithelial cells

–– Non-fimbrial adhesins:

⚬⚬ CF29K (Darfeuille-Michaud et al. 1992):

•	 Encoded on a R virulence plasmid that encodes the CAZ-1/TEM-5 
extended-spectrum β-lactamase and the aerobactin siderophore associ-
ated with HV strains

•	 Involved in binding microvilli of intestinal epithelial cells

•	 Growth in host milieu:

–– Iron acquisition (Hsieh et al. 2008):

⚬⚬ Twelve iron uptake systems are encoded in the genome
⚬⚬ Fe+3 siderophores:

•	 Enterochelin (enterobactin) (Tarkkanen et al. 1992):

–– Primary siderophore
–– Cyclic polyester containing three DHBS (N-(2,3-dihydroxybenzoyl)-

L-serine) residues
–– Expressed in UTIs and lung infections
–– Neutralized by host lipocalin-2 (Bachman et al. 2012)
–– Fep–Ent system expressed in classical and HV strains

•	 Salmochelin (Muller et al. 2009):

–– Enterochelin derivative; contains DHBS linked by a glucose residue; 
increases the hydrophilicity of enterochelin; protects against lipo-
calin-2 neutralization

–– Important for nasopharynx colonization
–– IroA system; rare in classical strains; predominantly expressed in 

HV clinical isolates (>90%)

•	 Aerobactin (Nassif and Sansonetti 1986):

–– Citrate–hydroxamate structure
–– Major siderophore in lung infections
–– Iuc system; rare in classical strains; predominantly produced in HV 

clinical isolates (93–100%):

⚬⚬ Always associated with hypercapsule formation

Virulence Factors
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⚬⚬ Encoded on the same large (180–220  kb) R virulence plasmid 
with the capsule-enhancing transcription factor RmpA (see 
below)

•	 Yersiniabactin (Lawlor et al. 2007):

–– First identified in Yersinia spp.
–– Synthesized by a mixed nonribosomal peptide synthetase (NRPS)/

polyketide synthase (PKS) mechanism
–– Expressed in lung infections
–– Blocked by host transferrin
–– Ybt system; rare in classical strains; predominantly produced in HV 

clinical isolates (~ 90%)

⚬⚬ Fe+2 uptake: FeoABC system (Hsueh et al. 2013)
⚬⚬ Hemoprotein uptake: HmuRSTUV hemophore system
⚬⚬ ABC transporters:

•	 Sit (Fe+2), Kfu (Fe+3), Fec (ferric citrate)
•	 Kfu expression is associated with disseminated invasive infections in 

the liver and brain (Ma et al. 2005)

⚬⚬ Hemoprotein uptake (HmuRSTUV hemophore system):

•	 Expression is regulated by Fe+2-bound Fur repressor and RhyB sRNA 
molecules

–– Biofilm formation (Vuotto et al. 2014):

⚬⚬ Able to form biofilms on biotic and abiotic surfaces:

•	 Most often associated with urinary catheters, intravascular catheters, 
and ventilator tubing in hospital environments

⚬⚬ Type I and type III fimbriae (major determinant), capsule, and LPS play 
important roles in biofilm formation

⚬⚬ Strong correlation between biofilm formation and antibiotic resistance

•	 Evasion of host immune system (Fig. 18.2) (Li et al. 2014; Paczosa and Mecsas 
2016):

–– Capsule (Cortés et al. 2002):

⚬⚬ Major virulence factor of K. pneumoniae
⚬⚬ Composed of strain-specific capsule polysaccharides (CPS) K antigens
⚬⚬ Biosynthetic genes are encoded on the chromosomal cps operon (Shu et al. 

2009)
⚬⚬ Essential for immune evasion:

•	 Blocks opsonophagocytosis and maturation of dendritic cells (DC)
•	 Protects against neutrophil killing; allows dissemination of K. pneu-

moniae and systemic infections

19  Klebsiella spp.
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•	 Blocks the action of antimicrobial peptides, such as β-defensins
•	 Blocks C3-dependent complement-mediated lysis
•	 Blocks NF-κB-dependent inflammatory responses, including reactive 

oxygen species (ROS), pro-inflammatory cytokines, and LPS recogni-
tion by TLR4

⚬⚬ HV K1 and K2 serotypes express a hypercapsule; due to increased produc-
tion of CPS:

•	 Increased expression of CPS is under transcriptional control
•	 RmpA/RmpA2 (Hsu et al. 2011; Lai et al. 2003):

–– Transcriptional activators
–– RmpA is encoded on the chromosome and on a large (180–220 kb) 

R virulence plasmid (primary regulator)
–– RmpA2 is encoded on a large (180–220 kb) virulence plasmid

•	 RcsA/RcsB (Stout et al. 1991):

–– Low level expression; unstable due to proteolysis by Lon protease

–– LPS (Llobet et al. 2015):

⚬⚬ Can modify the lipid A moiety by addition of a 2-hydroxyacyl group; mod-
ified lipid A, which is found in isolates from lung tissue, abrogates the 
innate immunity inflammatory response; modification is regulated by the 
PhoP–PhoQ TCS

⚬⚬ Lipid A modification also provides resistance to small cationic antimicro-
bial peptides (APs), such as β-defensins, colistin (polymyxin A), and 

Fig. 18.2  Immune system evasion (From: Li et al. 2014)

Virulence Factors
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polymyxin B; colistin is one of the last effective treatments for multidrug-
resistant K. pneumoniae infections

⚬⚬ LPS also protects against complement-mediated lysis; segregates comple-
ment C3b protein away from the cell membrane, blocking MAC forma-
tion; associated with the O antigen-dependent smooth colony phenotype

–– OmpA (Llobet et al. 2009; March et al. 2011):

⚬⚬ Outer membrane protein
⚬⚬ Inhibits pro-inflammatory cytokine production and provides resistance to 
β-defensins; only seen in the context of the whole cell (i.e., mutant analy-
sis), not with purified protein

–– OmpK35; OmpK36 (Chen et al. 2010; Shin et al. 2012):

⚬⚬ Outer membrane porins
⚬⚬ Deletion mutants have reduced virulence; increased uptake into 

neutrophils
⚬⚬ May function in blocking phagocytosis; also plays a role in antibiotic 

resistance
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Chapter 20
Legionella spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Legionella pneumophila chromosome: 3,397,754 bp; 2,943 predicted ORFs 
(Chien et al. 2004)

•	 Cell morphology:

–– Thin, rod-shaped cells; appear as coccobacilli in tissue (Fig. 20.1)
–– Atypical LPS:

⚬⚬ Fifteen different O-chains
⚬⚬ Lipid A: more hydrophobic and less endotoxic than typical LPS

–– Pili: long type IV; PilE subunits
–– Flagellum: monopolar; associated with increased virulence

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Aerobes: catalase positive, oxidase positive
–– Prefers high temperatures: 32–45 °C
–– Requires cysteine, iron, low sodium (Na):

⚬⚬ Lacks cysteine biosynthetic genes
⚬⚬ Sodium (Na) sensitivity:

•	 Na-sensitive cells – virulent
•	 Na-resistant cells – avirulent
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–– Two growth phases:

⚬⚬ Replicative (intracellular) phase: nonmotile, long filamentous rods
⚬⚬ Active infective (transmissive) phase: motile, short rods; monopolar 

flagellum

–– Normal reservoir: primarily aquatic environments; protozoans (amoeba) liv-
ing in lakes and ponds:

⚬⚬ Endosymbiotic relationship with freshwater amoeba (e.g., Acanthamoeba 
castellanii)

⚬⚬ Same genes needed to grow in amoeba and human macrophage
⚬⚬ Has access to DNA from a variety of bacterial, viral, and protozoan 

sources – “global mobilome” (Gomez-Valero and Buchrieser 2013)
⚬⚬ Has the most eukaryotic-like genes of any prokaryote; acquired through 

horizon gene transfer (HGT)

–– Sources of contaminated H2O: biofilm formation on piping and other abiotic 
surfaces:

⚬⚬ Premise plumbing: tap H2O in schools, hospitals, and public and private 
housing

⚬⚬ Cooling towers (40–60% tested)
⚬⚬ Air-conditioning systems
⚬⚬ Humidifiers
⚬⚬ Hot tubs, spas, showers
⚬⚬ Misting equipment for vegetables

–– Excellent biofilm former: abiotic and biotic surfaces (lung epithelial cells)
–– Fifty eight species with three subspecies and ~60 serotypes

Fig. 20.1  L. pneumophila cells (From: PHIL #11101)

20  Legionella spp.
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�Disease States Associated with Legionella pneumophila

•	 Legionnaire’s disease (legionellosis) (Cunha et al. 2016):

–– Most diseases are caused by L. pneumophila strains Lp1 and Lp6
–– Opportunistic pathogen: “accidental pathogen” for humans
–– Lower respiratory tract infection: atypical pneumonia with flu-like symptoms, 

fever, chills, dry cough; also gastrointestinal and neurological symptoms
–– Predisposed in patients with underlying chronic obstructive pulmonary dis-

ease (COPD)
–– Facultative intracellular pathogen; primarily grows inside alveolar 

macrophage
–– Airborne transmission: aerosols from environmental sources

•	 Pontiac fever:

–– Non-pneumonia with flu-like symptoms
–– Usually self-limiting

�Virulence Factors

•	 Adherence to host cells:

–– Biofilm formation facilitates binding to lung epithelial cells
–– Atypical LPS (see above): plays a role in adherence
–– Fimbrial adhesins:

⚬⚬ Type IV pili (Stone and Abu Kwaik 1998):

•	 Function in adherence and in biofilm formation

–– Afimbrial adhesins:

⚬⚬ Lcl (Vandersmissen et al. 2010):

•	 Collagen-like protein
•	 Functions in adherence

⚬⚬ Mip (Macrophage infectivity potentiator) (Kohler et al. 2003):

•	 Binds ECM collagen

–– PlaB (Schunder et al. 2010):

⚬⚬ Phospholipase B; outer membrane protein; important in infection

–– Flagellum (Heunera and Steinert 2003):

⚬⚬ Functions in adhesion, host invasion, cell motility, and biofilm formation

Virulence Factors



282

•	 Host cell invasion and growth (Fig. 20.2) (Isberg et al. 2009):

–– Facultative intracellular pathogen; primarily alveolar macrophage
–– Coiling phagocytosis:

⚬⚬ Macrophage pseudopodia engulf L. pneumophila in coiled vesicle
⚬⚬ Recruits host phospholipids from endoplasmic reticulum (ER); becomes 

Legionella-containing vacuole (LCV)
⚬⚬ LCV does not acidify; phagosome–lysosome fusion is inhibited
⚬⚬ Outer membrane vesicles (OMVs): also inhibit phagosome–lysosome 

fusion (Shevchuk et al. 2011)

–– Intracellular replicative phase (Isaac and Isberg 2014):

⚬⚬ Grows within LCV; lag time of ~6 h
⚬⚬ Surface of LCV is covered with ER–ribosomes
⚬⚬ Intracellular growth depends on bacterial effectors secreted by the Icm/Dot 

type 4 secretion system (T4SS) and the Lsp type 2 secretion system (T2SS)

–– Icm/Dot T4SS (intracellular multiplication/defective organelle trafficking):

⚬⚬ Icm/Dot translocated substrates (IDTS) (Ge and Shao 2011; Isaac and 
Isberg 2014; Jo et al. 2013):

•	 ~330 bacterial proteins injected into host cytoplasm
•	 ~75 of these effectors are eukaryotic-like proteins
•	 Mimic host posttranslational modifications: methylation, phosphoryla-

tion, prenylation, ubiquitination, glycosylation, etc.

Fig. 20.2  L. pneumophila intracellular replication (From: Isberg et al. 2009)

20  Legionella spp.



283

•	 Affect multiple host processes: vesicle trafficking, autophagy, host pro-
tein synthesis, host inflammatory response, macrophage apoptosis, host 
cell egress:

–– Host vesicle trafficking:

⚬⚬ Induces creation of LCV and fusion events between host ER and 
the LCV

⚬⚬ Numerous effectors regulate host Rab and Arf GTPases localiza-
tion to the LCV and act as GEFs, GAPs, and GDIs regulatory 
proteins for GTP/GDP cycling

–– Host cell autophagy: mammalian process used to capture and recy-
cle cytosolic components; creates autophagosome that fuses with 
lysosome:

⚬⚬ Triggered by nutrient starvation, hypoxia, stresses, and intracel-
lular pathogens (xenophagy) such as L. pneumophila

⚬⚬ RavZ (Choy et al. 2012; Horenkamp et al. 2015):

•	 Blocks autophagosome formation; allows cytosolic growth

–– Host protein synthesis:

⚬⚬ Lgt1, Lgt2, Lgt3 (Belyi et al. 2008):

•	 Inactivate host elongation factor EF-1A, thereby blocking host 
protein translation

•	 Glucosyltransferases: add glucose residues to the EF-1A GTP-
binding protein; inhibits its activity

⚬⚬ SidI, SidL:

•	 Inhibit EF-1A by unknown mechanisms

–– Block macrophage apoptosis and inflammatory response:

⚬⚬ Induces activation of antiapoptotic genes downstream of NF-κB 
signaling pathway (Abu-Zant et al. 2007)

⚬⚬ SidF:

•	 Inactivates “pro-death” host genes BNIP3 and Bcl-rambo

⚬⚬ SdhA (Creasey and Isberg 2012):

•	 Maintains the membrane integrity of LCV; prevents L. pneu-
mophila degradation products from leaving the LCV and 
inducing inflammatory cell death

–– Egress of L. pneumophila from host cells:

⚬⚬ LepA, LepB:

•	 GTPase-activating proteins (GAPs) for Rab1 GTPase
•	 Inactivates Rab1

Virulence Factors
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⚬⚬ LegG1:

•	 Guanine nucleotide exchange factor (GEF) for Ran GTPase
•	 Activates Ran

–– Kat1, Kat2 (Bandyopadhyay et al. 2003):

•	 Catalase–peroxidases
•	 Essential for intracellular growth

–– RtxA (Cirillo et al. 2001):

•	 Cytolytic RTX exotoxin
•	 Plays a role in adherence

•	 Iron acquisition (essential nutrient):

–– FeoB (Robey and Cianciotto 2002):

⚬⚬ GTP-dependent Fe+2 transporter

–– Legiobactin (Cianciotto 2007):

⚬⚬ Fe+3 siderophore
⚬⚬ LbtA, LbtB: function in the synthesis and secretion of legiobactin

–– Ccm (cytochrome c maturation) system (Cianciotto et al. 2005):

⚬⚬ Function in heme uptake

–– Regulated by the classic Fur repressor regulon

�Regulation of Virulence Factor Expression

•	 Regulation of the synthesis of 100 s of Icm/Dot effectors (Fig. 20.3):

–– Three TCSs (Feldheim et al. 2016; Lucchetti-Miganeh et al. 2008):

⚬⚬ LetS–LetA:

•	 Indirect regulators of Icm/Dot effector expression
•	 Mediated by RsmY/RsmZ and CsrA regulator (see below)
•	 Activated in stationary phase by low amino acid levels and the (p)

ppGpp alarmone

⚬⚬ PmrA–PmrB:

•	 Direct regulators of Icm/Dot effector expression
•	 Unknown environmental signals

20  Legionella spp.
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⚬⚬ CpxA–CpxR:

•	 Direct regulators of Icm/Dot effector expression
•	 Unknown environmental activators

•	 Regulation of bacterial protein translation:

–– CsrA (Molofsky and Swanson 2003):

⚬⚬ One of three Csr RNA-binding proteins; found in many Gram-negative 
pathogens

⚬⚬ Binds to mRNA sequences near the Shine–Dalgarno ribosome-binding site 
(RBS); inhibits ribosome binding, blocking translation

⚬⚬ Inhibits LetE-dependent transmission phase genes
⚬⚬ Activates intracellular growth (replicative) phase genes, primarily in the 

Icm/Dot system
⚬⚬ When intracellular nutrients become limiting, increases in (p)ppGpp alar-

mone concentrations trigger differentiation to transmissive motile phase 
(see above) to aid in dissemination; mediated by the LetS–LetA TCS
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Chapter 21
Leptospira spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics (Huang et al. 2014; Ren et al. 2003; Zuerner 1991):

–– Leptospira interrogans serovar Lai str. 56,601 chromosome CI: 4,332,241 bp; 
4,360 predicted ORFs

–– Leptospira interrogans chromosome CII: 358,943 bp; 367 predicted ORFs

•	 Cell morphology:

–– Thin (0.1 μm), long (6–20 μm) spirochete:

⚬⚬ Hooked ends – “question marks” (interrogans) (Fig. 21.1)

–– Two endoflagella (axial filaments):

⚬⚬ Anchored at both ends of the cell and run lengthwise between the inner and 
outer membranes in the periplasmic space; enclosed in outer sheath

⚬⚬ Causes twisting motion used for motility; important for dissemination in 
host

⚬⚬ Endoflagella subunits (Lambert et al. 2012):

•	 FlaA1, FlaA2: outer sheath
•	 FlaB1, FlaB2, FlaB3, FlaB4: core polymer

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Anaerobic or microaerophilic growth.
–– Slow grower (30–50 h doubling time); metabolically crippled:

⚬⚬ No Krebs cycle or electron transport chain; gets ATP from glycolysis



290

⚬⚬ No genes for synthesis of nucleotides, fatty acids, vitamins, cofactors, or 
amino acids; gets most of its nutrients through transport, not biosynthesis

–– Reservoir: almost all-known mammals; humans are not reservoirs.
–– At least 19 species: 13 are pathogenic and 6 are saprophytic; > 250 serovars:

⚬⚬ Leptospirosis: L. interrogans (predominant), L. borgpetersenii, L. santaro-
sai, L. noguchii, L. weilli, L. kirschneri, L. alexanderi

�Disease States Associated with Leptospira interrogans  
(Adler 2014; Picardeau 2017)

•	 Leptospirosis:

–– Most widespread zoonotic disease
–– Various clinical manifestations from mild flu-like symptoms to life-threatening 

kidney and liver failure

Fig. 21.1  L. interrogans 
cells (From: Adler and de 
la Pena Moctezuma 2010)

21  Leptospira spp.
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–– Systemic disease: humans, dogs, cattle, swine
–– Transmission: not person-to-person

⚬⚬ Animals are renal (kidney) carriers; renal tubules are immunoprivileged 
sites

⚬⚬ Transmitted through contact with urine from infected wild or domestic 
animals

⚬⚬ Transmitted through contact with water (or floodwaters), soil, or food con-
taminated with the urine of infected animals:

•	 Water sports enthusiasts are at significant risk due to spending extended 
time in contaminated water

⚬⚬ Very rapid spread in bloodstream and tissues after infection

–– Disease has two stages:

⚬⚬ Stage 1 – anicteric leptospirosis; usually 7–12 days of incubation:

•	 Rash (Fig. 21.2), fever, headache, muscle aches, vomiting, or diarrhea; 
patient may recover for a time but may become ill again

⚬⚬ Stage 2 – icteric (jaundice) leptospirosis, Weil’s disease:

•	 More severe: affects multiple organ systems
•	 Kidney or liver failure (jaundice), pulmonary damage, meningitis
•	 Severe cases: pulmonary hemorrhages, platelet deficiency

�Virulence Factors

•	 Adherence to host cells (Adler 2014):

–– Extracellular pathogen, so adherence to host cells is important for infection
–– Binds to renal tubular epithelial cells and ECM components
–– At least 30 putative adhesins; bind to multiple ECM components in vitro
–– However, none have been shown to be essential for virulence in  vivo yet; 

probably due to extensive genetic redundancy

Fig. 21.2  L. interrogans 
rash (From: leptospirosis.
com)

Virulence Factors
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•	 Dissemination and growth within the host:

–– Capable of rapid dissemination and invasion of body tissues
–– Endoflagella and corkscrew motility: essential for dissemination and 

invasion
–– KatE (Eshghi et al. 2012):

⚬⚬ Catalase
⚬⚬ Protects against ROS inside macrophage

–– Iron acquisition:

⚬⚬ LipL41 (Lin et al. 2013):

•	 Hemin-binding protein

⚬⚬ HbpA (Lo et al. 2010; Sridhar et al. 2008):

•	 Hemin-binding protein
•	 Upregulated under low iron conditions by Fe+2-regulated Fur repressor

⚬⚬ FecA (Louvel et al. 2005):

•	 Ferric citrate uptake

⚬⚬ FeoB (Louvel et al. 2005):

•	 Fe+2 uptake

•	 Biofilms (Ristow et al. 2008):

–– Capable of forming biofilms on the surface of water and abiotic and biotic 
substrates

–– May play a role in environmental persistence in aquatic environments and 
possibly in chronic persistence in human hosts

–– A number of outer membrane proteins are transcriptionally induced during 
biofilm formation (Iraola et al. 2016)

•	 Outer membrane stability:

–– Loa22 (Ristow et al. 2007):

⚬⚬ One of seven OmpA-like outer membrane proteins; second most abundant 
protein in L. interrogans

⚬⚬ Probably functions in anchoring the outer membrane to the peptidoglycan 
layer

⚬⚬ Expressed during infection and required for virulence in the hamster and 
guinea pig models of leptospirosis

•	 Host cell damage:

–– No known exotoxins
–– LPS/endotoxin (Haake and Zuckert 2015):

21  Leptospira spp.



293

⚬⚬ Low toxicity
⚬⚬ Structurally different lipid A subunit; not recognized by host TLR-4

–– Outer membrane lipoproteins induce inflammatory responses:

⚬⚬ LipL32 (Hauk et al. 2008; Murray 2013):

•	 Most abundant protein in L. interrogans; only found in pathogenic 
serovars

•	 Binds to ECM laminin, collagen, and fibronectin
•	 Recognized by TLR-2; activates signal transduction pathways that lead 

to the production of pro-inflammatory cytokines (Yang et al. 2006)

–– Sph1, 2, 3, 4 (Zhang et al. 2008):

⚬⚬ Putative cytolytic sphingomyelinases
⚬⚬ Only Sph2 has been shown to have cytolytic activity

–– Hemolysins (Ren et al. 2003):

⚬⚬ Four putative hemolysins
⚬⚬ In vitro hemolytic activity

•	 Evasion of host immune system:

–– Inhibition of complement (Adler 2014; Castiblanco-Valencia et al. 2012):

⚬⚬ LenA, LenB: bind to host complement regulatory protein factor H
⚬⚬ LcpA, lsa30: bind to host complement regulatory protein C4BP
⚬⚬ LigA, LigB: bind to host factor H and C4BP; expression is regulated by 

temperature and osmolarity (Haake and Zuckert 2015)
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Chapter 22
Neisseria spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Neisseria gonorrhoeae (Ng) NCCP11945 chromosome: 2,232,025 bp; 2,662 
predicted ORFs (Chung et al. 2008); polyploid containing two to four genome 
equivalents (Tobiason and Seifert 2010)

–– Neisseria meningitidis (Nm) serogroup A chromosome: 2,184,406 bp; 2,121 
predicted ORFs (Parkhill et  al. 2000); polyploid containing three to five 
genome equivalents (Tobiason and Seifert 2010)

•	 Cell morphology:

–– Diplococci (small cells in Fig. 22.1) with flattened adjacent sides (Fig. 22.2):

⚬⚬ Ng: gonococcus
⚬⚬ Nm: meningococcus

–– Type IV pili (Tfp), present in Nm and Ng (Fig. 22.2):

⚬⚬ Essential function in adherence (see below)
⚬⚬ Responsible for twitching motility; due to attachment/retraction of pili
⚬⚬ Important in transmission and colonization

–– Capsule, only present in Nm:

⚬⚬ Responsible for the high level of virulence associated with Nm
⚬⚬ Allows dissemination and survival within the bloodstream (see below)

–– Lipooligosaccharide (LOS) (Tong et al. 2002; Tsai 2001):

⚬⚬ Atypical LPS; highly branched oligosaccharides
⚬⚬ Undergoes antigenic variations that aid in immune evasion (see below)
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•	 Gram stain:

–– Gram negative

•	 Growth:

–– Obligate aerobes
–– Fastidious: requires hemoglobin, NAD (V factor), and iron [(found in choco-

late agar plates (CAP)]
–– Capnophilic: requires 5–10% CO2 in vitro
–– Temperature sensitive: clinical samples must be stored at 37 °C for survival
–– Fragile growth: susceptible to temperature changes, drying, UV light, and 

other environmental conditions; does not exist outside human host niches

Fig. 22.1  Ng diplococci 
(From: PHIL #4086)

Fig. 22.2  Nm pili (From: 
medical-labs.net)
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–– Biofilms:

⚬⚬ Ng can form biofilms during infection
⚬⚬ May play a role in persistence in women (Falsetta et al. 2011)

–– At least 25 species; only Ng and Nm are human pathogens

�Disease States Associated with Neisseria spp.

•	 Inflammatory diseases: very different clinical symptoms; due to differences in 
sites of colonization, portals of entry, adherence mechanisms, and virulence 
factors:

–– Ng:

⚬⚬ Gonorrheal urethritis
⚬⚬ Pelvic inflammatory disease (PID) in women
⚬⚬ Sexually transmitted, primary pathogen of the urogenital tract
⚬⚬ High prevalence in population; low mortality rate associated with 

infection
⚬⚬ Emergence of antibiotic-resistant gonorrhea; one of top three urgent threats 

to health in the USA (CDC: Antibiotic Resistance Threats in the United 
States, 2013)

⚬⚬ Infects epithelial cells of urethra; also throat, rectum, and conjunctiva 
mucosa (neonatal gonorrheal conjunctivitis)

⚬⚬ Facultative intracellular pathogen; can invade epithelial cells, neutrophils, 
and macrophage

⚬⚬ Male symptoms: purulent urethritis; usually self-limiting
⚬⚬ Female symptoms: higher risk of infection; 20–80% of infected women 

are asymptomatic:

•	 Purulent cervicitis, abdominal pain
•	 Can induce inflammation in deeper tissue:

–– Progression into the fallopian tubes; can result in scarring, PID, tubal 
infertility, ectopic pregnancy, and chronic pelvic pain

⚬⚬ Dissemination can lead to septic arthritis, dermatitis, and endocarditis

–– Nm:

⚬⚬ Meningitis; septicemia (meningococcemia)
⚬⚬ Opportunistic pathogen: asymptomatic commensal in the nasopharynx of 

5–10% of healthy individuals (may be higher in different geographical 
niches)

⚬⚬ Transmitted person-to-person by contact
⚬⚬ Low prevalence in population; high mortality rate associated with infec-

tion – due to capsule-dependent dissemination and growth

Disease States Associated with Neisseria spp.
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⚬⚬ Low percentage of cells enter the bloodstream and disseminate to the cen-
tral nervous system:

•	 Capable of uncontrolled growth in cerebral spinal fluid (CSF)
•	 Can cross the blood–brain barrier, leading to meningitis and potential 

neurological sequelae

⚬⚬ Epidemic meningitis: usually occurs in populations of military recruits or 
college students

⚬⚬ Bacteremia; septicemia (meningococcemia): septic shock can lead to pur-
pura fulminans (high mortality) and petechiae from broken capillary blood 
vessels

�Virulence Factors

•	 Ng:

–– No known exotoxins
–– Adherence to host cells (Hung and Christodoulides 2013):

⚬⚬ Binds to microvilli of non-ciliated columnar epithelial cells
⚬⚬ Fimbrial adhesin:

•	 Type IV pili (Tfp) (Thanassi et al. 2012):

–– At least 23 Pil proteins are involved in pili synthesis and function
–– PilE (Hung and Christodoulides 2013):

⚬⚬ Major structural protein

–– First step in attachment: Tfp binding to α1β1 or α2β1 integrins
–– Binding induces a tight attachment via interactions with host asialo-

glycoprotein receptor (ASPG-R); LOS also binds to ASPG-R on epi-
thelial cell surface

–– Tfp may also bind in vivo to CD46 – transmembrane glycoprotein 
that binds to complement proteins C3b/C4b; interferes with 
complement-based lysis

–– Tfp undergoes antigenic variation and phase variation:

⚬⚬ Provides protection against the host immune system
⚬⚬ These variations are facilitated by the Ng polyploid genome

⚬⚬ Non-fimbrial adhesins:

•	 Opa proteins (Hauck and Meyer 2003; Hung and Christodoulides 
2013):

–– At least ten proteins; differentially expressed
–– Second step in attachment; provides tight attachment to epithelial 

cells

22  Neisseria spp.



299

–– Eight-stranded β-barrel outer membrane proteins with four surface-
exposed loops

–– Two classes of Opa proteins:

⚬⚬ OpaHS proteins:

•	 Bind heparan sulfate proteoglycans (HSPGs)
•	 Bind ECM proteins vitronectin and fibronectin, which connect 

to host integrins

⚬⚬ OpaCEA proteins:

•	 Bind carcinoembryonic antigen-related cellular adhesion mol-
ecules (CEACAMs)

–– Also function as invasins (see below)
–– Antigenic variation provides protection; facilitated by its polyploid 

genome

•	 PorB (Massari et al. 2003):

–– Porin; outer membrane, voltage-gated ion channel
–– Nm has two porins: PorA, PorB.1A, and PorB.1B alleles
–– Form 16-strand β-barrel fold structure
–– Functions in attachment and invasion into epithelial cells:

⚬⚬ Prevents phagosome–lysosome fusion inside infected 
neutrophils

–– Also binds complement regulator C4BP (see Nm below)
–– Antigenic variation within and between strains

•	 MafA (Paruchuri et al. 1990):

–– Glycolipid-binding protein
–– Encoded on MGI (maf genomic islands) in Ng and Nm (Jamet et al. 

2015); likely the result of horizontal gene transfer
–– Belongs to family of Maf adhesins in Ng and Nm

–– Cell invasion:

⚬⚬ Facultative intracellular pathogen
⚬⚬ Invades epithelial cells and phagocytic cells
⚬⚬ Opa proteins (Billker et al. 2002):

•	 Binding to host CEACAMs triggers phosphorylation of host Src tyro-
sine kinases

•	 Leads to actin-dependent phagocytosis through a zipper mechanism; 
depends on host Cdc42/Rac GTPases

Virulence Factors
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⚬⚬ Inside neutrophils:

•	 Catalase and superoxide dismutase: protects against the action of 
reactive oxygen species (ROS)

•	 Polyploid genome allows for rapid DNA repair
•	 Blocks activity of defensins and other antimicrobial peptides
•	 Uses efflux pumps (Jerse et al. 2003):

–– Exports antimicrobial peptides, antibiotics, and detergents
–– Encoded by mtrCDE genes under the regulation of the mtrR gene

–– Iron acquisition (Perkins-Balding et al. 2004):

⚬⚬ Does not use siderophores
⚬⚬ Direct uptake of host iron-bound proteins:

•	 TbpA and TbpB: outer membrane transferrin receptor system
•	 LbpA and LbpB: outer membrane lactoferrin receptor system
•	 HmbR: outer membrane hemoglobin receptor protein
•	 HpuA and HpuB: outer membrane receptor system for hemoglobin, 

methemoglobin, haptoglobin, and hemoglobin–haptoglobin complexes

⚬⚬ Expression is regulated by Fe+2-bound Fur repressor

–– Host cell damage:

⚬⚬ LOS (endotoxin activity leads to septic shock):

•	 Triggers an intense inflammatory response that is responsible for the 
symptoms associated with gonorrhea:

–– Ng lipid A is optimally recognized by TLR-4, which activates the 
inflammation cascade

–– Subsequent lysis of phagocytes generates the purulent discharge 
associated with gonorrheal infections

–– Production of the cytokine tumor necrosis factor (TNF) is responsi-
ble for the PID complications

–– Evasion of host immune system:

⚬⚬ Can survive extracellularly in the presence of neutrophils and also inside 
neutrophils (see above)

⚬⚬ LOS (Lewis and Ram 2014; Pizza and Rappuoli 2015):

•	 Binds host sialic acid; forms microcapsule of sialylated LOS that blocks 
complement activation and phagocytosis by neutrophils – example of 
molecular mimicry

•	 Phosphoethanolamine modification of lipid A increases Ng fitness dur-
ing infection, blocks complement activation, and induces resistance to 
antimicrobial peptides (Hobbs et al. 2013; Lewis et al. 2013)

22  Neisseria spp.
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•	 Undergoes phase variation and antigenic variation; hinders antibody 
(Ab) recognition

•	 Released as “blebs”; acts as molecular decoys

⚬⚬ IgA protease (Almogren et al. 2003; Pohlner et al. 1987):

•	 Cleave host respiratory immunoglobulin IgA1 and secretory IgA1 
(S-IgA1)

•	 Nm:

–– Adherence to host cells (Virji 2009; Hung and Christodoulides 2013; Simonis 
and Schubert-Unkmeir 2016):

⚬⚬ Binds to brain microvascular endothelial cells and bloodstream endothelial 
cells

⚬⚬ Fimbrial adhesin:

•	 Type IV pili (Tfp) (Fig. 22.3):

–– Essential for adherence of encapsulated Nm; non-fimbrial adhesins 
such as Opa and Opc are sterically blocked by capsule

–– Adherence is mediated by binding to host CD147, an immunoglobu-
lin (Ig) superfamily receptor (Bernard et al. 2014)

–– Leads to the formation of microcolonies on endothelial cells
–– Tfp binding activates the β2-adrenergic receptor; leads to the genera-

tion of multi-protein complexes called cortical plaques within the 
membranes of endothelial cells:

⚬⚬ Induces Cdc42 GTPase-dependent polymerization of the actin 
cytoskeleton; generates microvilli-like membrane protrusions 
that protect the attached cells from shear stress

–– Tfp binding enhances paracellular movement between the brain–
endothelial cell junction, thereby allowing Nm to cross the blood–
brain barrier:

⚬⚬ Binding inappropriately recruits host Par3/Par6/PKCζ polarity 
complex (Coureuil et al. 2009) and adherens junctions proteins 
VE-cadherin and p120-catenin (Simonis and Schubert-Unkmeir 
2016); leads to opening of cell–cell tight junctions

–– Similar signaling processes lead to loss of vascular integrity, result-
ing in purpuric lesions

⚬⚬ Non-fimbrial adhesins (Fig. 22.3):

•	 NadA (Nm adhesin A) (Comanducci et al. 2002):

–– Only found in some Nm strains
–– Trimeric surface protein; highly antigenic
–– Functions in adherence to epithelial cells through interactions with 

host β1 integrins

Virulence Factors
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–– Also functions in invasion of epithelial cells
–– Adherence is blocked by host Hsp90 heat shock protein (Montanari 

et al. 2012)

•	 Opc (Sa et al. 2010):

–– Only found in Nm; encoded by opcA gene
–– Ten-stranded β-barrel transmembrane protein

Fig. 22.3  Nm adherence factors (From: Hung and Christodoulides 2013)

22  Neisseria spp.
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–– Functionally equivalent binding as the Ng OpaHS proteins
–– Opc binds HSPGs; binding activates human acid sphingomyelinase 

(ASM):

⚬⚬ ASM cleaves sphingomyelin in the outer leaflet of the host plasma 
membrane, resulting in increased levels of ceramide and 
ceramide-enriched platforms in the membrane

⚬⚬ Opc-expressing Nm uses ceramide-enriched platforms for entry 
into brain endothelial cells (Simonis et al. 2014)

•	 Opa proteins:

–– Usually three to four proteins
–– Equivalent binding as the Ng Opa proteins (see above)

•	 NhhA (Neisseria hia/hsf homologue)/Msf (Scarselli et al. 2006):

–– Only found in Nm
–– Trimeric autotransporter adhesin
–– Similarity to Hsf and Hia adhesins of H. influenzae
–– Binds to epithelial cells and ECM components laminin and HSPGs
–– Blocks complement activation via binding to host vitronectin 

(Sjolinder et al. 2008)

•	 MspA (meningococcal serine protease A) (Turner et al. 2006; Khairalla 
et al. 2015):

–– Only found in Nm
–– Autotransporter protein with auto-proteolytic serine protease 

activity
–– Binds to mannose receptor and transferrin receptors on epithelial 

cells and dendritic cells
–– Internalized into host cell nucleus; cleaves histone H3
–– Induces caspase-dependent apoptosis

•	 App (adhesion and penetration protein) (Khairalla et al. 2015; Serruto 
et al. 2003):

–– Found in Ng and Nm
–– Contains auto-proteolytic serine protease activity; essential for func-

tion as adhesin
–– Binds to mannose receptor and transferrin receptors on epithelial 

cells and dendritic cells
–– Internalized into host cell nucleus; cleaves histone H3
–– Induces caspase-dependent apoptosis
–– Homologous to H. influenzae Hap

Virulence Factors
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•	 PorA, PorB (Massari et al. 2003):

–– Porins: outer membrane, voltage-gated ion channels
–– PorB functions in attachment and invasion of epithelial and endothe-

lial cells through binding to TLR-2 (Toussi et al. 2016)
–– PorA binds to ECM laminin and complement regulator C4BP (see 

below)

•	 HrpA (TspA; T-cell stimulating protein A) (Oldfield et al. 2007):

–– Only expressed in Nm
–– Part of two partner secretion (TPS) system (Jacob-Dubuisson et al. 

2001)
–– HrpA undergoes HrpB (TspB)-dependent secretion; functions in 

pili-independent adherence to epithelial cells (Schielke et al. 2010)

•	 ACP (adhesin complex protein) (Hung et al. 2013)

–– Multiple versions found in Nm and Ng
–– Host cell damage:

⚬⚬ Capsule polysaccharides (Zughaier 2011):

•	 Induces release of pro-inflammatory cytokines
•	 Triggered by interactions with TLR-2 and TLR-4

⚬⚬ LOS: septic shock (see above for Ng)
⚬⚬ NarE (Valeri et al. 2015):

•	 Bacterial ADP-ribosyltransferase (bARTT)
•	 Induces cytoskeletal effects and apoptosis in epithelial cells; no known 

target
•	 Undergoes auto-ADP-ribosylation to regulate its activity

–– Evasion of host immune system (Gasparini et al. 2015; Lewis and Ram 2014; 
Pizza and Rappuoli 2015):

⚬⚬ Most of these bacterial components undergo extensive antigenic variation 
and phase variation; important in the evasion of host immune system

⚬⚬ Capsule:

•	 Only found in Nm
•	 Thirteen serogroups; based on capsule polysaccharides
•	 A, B, C, Y, and W135: most important serogroups; vaccines are avail-

able against all of these serogroups
•	 Blocks opsonophagocytosis and complement protein C4b 

accumulation

⚬⚬ LOS: binds to complement regulatory protein factor H (fH); see Ng above
⚬⚬ Multiple proteins block complement-mediated lysis: bind to complement 

regulatory proteins C4bp (C4-binding protein), fH, and vitronectin; blocks 
complement activation and opsonophagocytosis (Fig. 22.4):

22  Neisseria spp.
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•	 Fhbp (GNA1870), PorB2, and NspA (Madico et al. 2006; Pizza and 
Rappuoli 2015):

–– Bind to complement regulatory protein fH

•	 PorA and NspA (Jarva et al. 2005):

–– Bind to host regulatory protein C4bp

•	 NHBA (neisserial heparin-binding antigen) (Serruto et al. 2010):

–– Binds heparin, which interacts with fH, C4bp, and vitronectin:

⚬⚬ Heparin binding may block complement activation and increase 
serum resistance

–– NHBA is cleaved by NalP, resulting in the release of the C2 frag-
ment; C2 induces increased endothelial permeability by inappropri-
ately recruiting VE-cadherin (see Tfp section above) (Casellato et al. 
2014)

•	 NalP (Del Tordello et al. 2014):

–– Serine protease autotransporter
–– Cleaves complement protein C3 and NHBA

�Regulation of Virulence Factor Expression

•	 Ng and Nm survive in different niches within the human host – this is due, in part, 
to different transcriptional patterns (Claus et al. 2007; Echenique-Rivera et al. 
2011; Schielke et al. 2010)

Fig. 22.4  Complement evasion mechanisms (From Pizza and Rappuoli 2015)

Regulation of Virulence Factor Expression
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•	 Nm must adapt and survive within the host bloodstream:

–– When grown in ex vivo human blood for 90 min, 637 genes were differen-
tially regulated; predominantly upregulated (Echenique-Rivera et al. 2011)

–– Regulated genes: iron acquisition and Fur regulation, sugar transporters, 
energy metabolism, amino acid biosynthesis, multiple adhesins, complement 
evasion proteins, and ROS detoxification survival genes

–– Similar results were obtained through proteomic analysis (Liu et al. 2016) and 
in a long-term in vitro colonization model (Hey et al. 2013)

•	 PhoQ–PhoP (MisS-MisR) (Jamet et al. 2009; Newcombe et al. 2003):

–– Two-component phosphorelay system (TCS); one of four TCSs expressed in 
Nm

–– Involved in regulating virulence, colonization, and the LOS inner core struc-
ture (Tzeng et al. 2004)

–– Only TCS that is upregulated during growth in the blood (Claus et  al. 
2007)

•	 Long-chain fatty acid resistance:

–– Long-chain fatty acids have antimicrobial activity; resistance promotes sur-
vival of Ng in urogenital tract (Schielke et al. 2010)

–– FarR (fatty acid resistance regulator):

⚬⚬ Transcription repressor
⚬⚬ NgFarR represses farAB operon, which encodes a long-chain fatty acid 

efflux pump (Lee and Shafer 1999):

•	 Repression depends on the MtrR regulatory protein (see above; cell 
invasion), which regulates NgFarR expression (Lee et al. 2003)

•	 Repression or inactivation of FarR leads to fatty acid resistance; pro-
motes survival of Ng in the urogenital tract

⚬⚬ NmFarR represses the NadA adhesin, not the farAB operon:

•	 Repression or inactivation of FarR leads to greater NadA-dependent 
adherence to, and invasion of, epithelial and endothelial cells

•	 FarR activation reduces amount of NadA, which is highly immuno-
genic – enhances immune system evasion

•	 fHbp (factor H-binding protein) regulation (Loh et al. 2016):

–– Levels of fHbp are upregulated at high temperatures (37 °C and higher)
–– Regulation is through a RNA thermosensor at the level of translation, not 

transcription
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Chapter 23
Nocardia spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Nocardia asteroides: chromosome: 6,954,780  bp; 6106 predicted ORFs 
(Komaki et al. 2014)

–– Nocardia cyriacigeorgica GUH-2: chromosome 6,194,650  bp; 5405 pre-
dicted ORFs (Komaki et al. 2014)

–– Nocardia brasiliensis: chromosome: 9,436,348  bp; 8414 predicted ORFs 
(Vera-Cabrera et al. 2013)

•	 Cell morphology:

–– Filamentous hypha-like cells (Fig. 23.1)

•	 Gram stain:

–– Gram positive
–– “Beaded,” partially acid-fast appearance; depends on the quantity of mycolic 

acid in the cell wall

•	 Growth:

–– Aerobes; catalase positive
–– Found primarily in soil and water
–– >80 species; most are rarely associated with human disease:

⚬⚬ Antibiotic susceptibilities and molecular characteristics have allowed tax-
onomic differentiation of previous species into new complexes and clades 
(Brown-Elliott et al. 2006)
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�Disease States Associated with Nocardia spp.

•	 Nocardiosis (Brown-Elliott et al. 2006; Wilson 2012):

–– Opportunistic pathogens and primary pathogens
–– Inhalation infections; cutaneous infections; catheter-related bacteremia
–– Pulmonary nocardiosis:

⚬⚬ Opportunistic infection of immunosuppressed individuals
⚬⚬ Predominantly N. asteroides; also N. cyriacigeorgica, N. brasiliensis
⚬⚬ Transmission: inhalation of mycelial cells
⚬⚬ Symptoms: persistent cough with purulent sputum, shortness of breath, 

chest pain, coughing up blood (hemoptysis), fever, night sweats, weight 
loss, and progressive fatigue

–– Extrapulmonary nocardiosis:

⚬⚬ Hematogenous spread; CNS and cerebral nocardiosis are most common
⚬⚬ Symptoms: abscess formation in the brain; headache, nausea, vomiting, 

neurological symptoms

–– Primary cutaneous nocardiosis:

⚬⚬ Primary infection of immunocompetent individuals
⚬⚬ Predominantly N. brasiliensis; also N. asteroides
⚬⚬ Transmission: contact with contaminated soil
⚬⚬ Produces skin abscesses and localized cellulitis; can also lead to myceto-

mas (Fig. 23.2)
⚬⚬ Can disseminate to the lymph nodes, resulting in lymphocutaneous nocar-

diosis; similar to fungal sporotrichosis symptoms

–– Catheter-related bacteremia:

⚬⚬ Rare but increasingly observed among immunocompromised patients
⚬⚬ Associated with central venous catheter infections

Fig. 23.1  N. asteroides 
cells (From: PHIL #4232)
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�Virulence Factors

•	 Many of the virulence factors listed below are predicted based on the genome 
sequencing and annotation of several Nocardia spp. (Komaki et al. 2014; Vera-
Cabrera et al. 2013); experimental verification of many of their activities has yet 
to be determined

•	 Biofilms (Al Akhrass et al. 2011):

–– Excellent biofilm former on catheters

•	 Adherence to host cells and invasion:

–– Facultative intracellular pathogens (Vera-Cabrera et al. 2013)
–– Invasin:

⚬⚬ Protein used to attach to host cells
⚬⚬ Encoded by O3I_027570 gene
⚬⚬ Similar to Yersinia pestis Inv

–– Mce proteins (mammalian cell entry):

⚬⚬ 33 genes encoded in genome
⚬⚬ Analogous to M. tuberculosis Mce proteins (Gioffre et al. 2005)

–– KatN and KatG (Vera-Cabrera et al. 1999):

⚬⚬ Five catalase genes
⚬⚬ Detoxify H2O2 in phagocytes

–– SodA (Alcendor et al. 1995):

⚬⚬ Two superoxide dismutases
⚬⚬ Destroys H2O2

Fig. 23.2  Mycetoma 
(From: Vera-Cabrera et al. 
2013)

Virulence Factors



314

–– Cord factor (Crowe et al. 1994):

⚬⚬ Blocks phagosome–lysosome fusion in phagocytic cells
⚬⚬ Induces granuloma formation in mice (Han et al. 1998)
⚬⚬ Analogous to Mycobacterium tuberculosis cord factor

–– Mycolic acids (Beaman and Moring 1988; Nishiuchia et al. 1999):

⚬⚬ Found in the cell wall; associated with partial acid-fast staining
⚬⚬ Increases hydrophobicity of cells and provides resistance to harsh environ-

mental conditions
⚬⚬ Analogous to Mycobacterium tuberculosis mycolic acids

•	 Damage to host cells:

–– Phospholipases C (Vera-Cabrera et al. 2013):

⚬⚬ Five potential PLC genes found in N. brasiliensis (not found in other 
Nocardia spp.)

⚬⚬ Cytolytic activity; disrupts host cell membranes
⚬⚬ Destroys host tissue; may play a role in cutaneous nocardiosis

–– Hemolysins (Barry and Beaman 2007):

⚬⚬ Two genes identified
⚬⚬ May be involved in the previously described ability of Nocardia spp. to 

induce caspase-dependent apoptosis in cultured human cell lines, possibly 
through activation of the host cell proteasome

•	 Iron acquisition:

–– Siderophores:

⚬⚬ Nocobactin (Hoshino et al. 2011):

•	 nbt-like siderophore
•	 Similar to M. tuberculosis mycobactin

⚬⚬ Asterobactin (Nemoto et al. 2002)
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Chapter 24
Proteus spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Proteus mirabilis chromosome: 4,099,900 bp; 3685 predicted ORFs (Pearson 
et al. 2008)

–– Plasmid pHI4320: 36,289 bp; 55 predicted ORFs

•	 Cell morphology:

–– Rod-shaped cells (Fig. 24.1)
–– Changes morphology to polyploid elongated swarmer cells on solid 

surfaces:

⚬⚬ “Bull’s-eye pattern” due to differentiation changes (Fig. 24.2)

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Facultative anaerobes; catalase positive
–– Few peritrichous flagella in liquid; hyper-flagellation in swarmer cells on 

solid surfaces
–– Normal microbiota of human intestinal tract; also found in soil, water, hospi-

tals, and long-term care facilities
–– Three pathogenic species:

⚬⚬ Proteus mirabilis: ~80 % of infections
⚬⚬ Proteus vulgaris
⚬⚬ Proteus penneri
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�Disease States Associated with Proteus mirabilis

•	 Ascending urinary tract infections (UTIs) (Norsworthy and Pearson 2017):

–– Form urease-dependent crystalline biofilms on catheters
–– Catheters prevent clearance of P. mirabilis from the urethra, leading to 

catheter-associated urinary tract infections (CA-UTIs)

•	 Ascending bladder and kidney infections
•	 Infectious urinary stones, including bladder stones and kidney stones, which can 

lead to urosepsis (Bichler et al. 2002)

Fig. 24.1  P. mirabilis 
swarmer cells (From: 
slideshare.net)

Fig. 24.2  Swarming 
motility on trypticase soy 
agar (From: PHIL #1046)

24  Proteus spp.
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�Virulence Factors (Fig. 24.3) (Coker et al. 2000; Norsworthy 
and Pearson 2017)

•	 Urease (Mobley et al. 1995):

–– Essential for virulence
–– Trimeric Ni+2-dependent urease:

⚬⚬ Encoded by ureA, ureB, ureC genes (Island and Mobley 1995)
⚬⚬ Hydrolyzes urea into bicarbonate and ammonia:

•	 Urea + H+ + 2H2O → HCO3
−+2(NH4

+)

⚬⚬ NH4
+ molecules increase net pH; leads to precipitation of Mg2+ and Ca2+ 

ions
⚬⚬ NH4

+ binds with Mg2+ in urine to form struvite crystals [(NH4) 
(MgPO4·6H2O)] (Bichler et al. 2002)

⚬⚬ CO2 binds with Ca2+ in urine to form carbonate apatite [Ca10(PO4)6CO3] 
(Bichler et al. 2002)

⚬⚬ Struvite and apatite crystalline biofilms block catheter flow; more recalci-
trant biofilms than typical biofilms

⚬⚬ Also plays a role in bladder and kidney infections

•	 Adherence to host cells/tissues:

–– Fimbrial adhesins:

Fig. 24.3  Virulence mechanisms (From: Norsworthy and Pearson 2017)

Virulence Factors
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⚬⚬ Fimbriae:

•	 Chaperone usher assembly mechanism; 17 different operons
•	 MR/P (mannose-resistant/Proteus-like) fimbriae:

–– Essential for the colonization of the urethra, kidney, and bladder 
(Coker et al. 2000)

–– Major contributor to biofilm formation (Rocha et al. 2007)
–– Structural subunit encoded by mrpA gene

•	 UCA (uroepithelial cell adhesin) fimbriae (Pellegrino et al. 2013):

–– a.k.a. NAF (nonagglutinating fimbriae)
–– Functions in the colonization of the urinary tract via attachment to 

uroepithelial cells
–– Structural subunit encoded by ucaA gene

•	 PMF (P. mirabilis fimbriae):

–– Functions in the colonization of the urethra, kidney, and bladder
–– Structural subunit encoded by pmfA gene

•	 PMP (P. mirabilis P-like fimbriae) (Bijlsma et al. 1995):

–– May be involved in the colonization of the large intestine
–– Structural subunit encoded by pmpA gene
–– Homologous to Pap fimbriae of uropathogenic E. coli (UPEC)

•	 Fimbriae 8 (fim8A); fimbriae 14 (fim14A): unknown functions; pro-
teins found in surface protein preparations

–– Afimbrial adhesins:

⚬⚬ AipA (adhesion and invasion mediated by the Proteus autotransporter) 
and TaaP (trimeric autoagglutination autotransporter of Proteus):

•	 Bind to ECM collagen and laminin in vitro

–– Flagella:

⚬⚬ Functions in the dissemination of P. mirabilis from the urethra to the blad-
der and kidneys (Coker et al. 2000)

⚬⚬ Essential for the colonization of the urethra and bladder epithelial cells
⚬⚬ Essential for the invasion of cultured urinary tract cells in vitro; in vivo 

invasion is unclear (Schaffer and Pearson 2015)
⚬⚬ Structural subunits encoded by flaA and flaB genes (Belas 1994); hybrid 

flagella may indicate antigen variation (Coker et  al. 2000; Schaffer and 
Pearson 2015)

•	 Growth within the host milieu:

–– Iron acquisition (Himpsl et al. 2010):

24  Proteus spp.
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⚬⚬ Expression of iron acquisition pathways is induced in low-iron environ-
ments that exist in the urinary tract

⚬⚬ Siderophores:

•	 Yersiniabactin related:

–– Encoded by nrp genes
–– Synthesized by nonribosomal peptide synthetase (NRPS)

•	 Proteobactin:

–– Encoded by pbt genes
–– NRPS-independent synthesis

⚬⚬ Heme uptake:

•	 Encoded by hmu genes

⚬⚬ Fe+2 iron uptake:

•	 Encoded by sit genes

⚬⚬ Ferric citrate transport:

•	 Facilitated by TonB-dependent receptor 3706

–– Catheter-associated biofilms; major medical problem (see above) (Stickler 
2014)

•	 Damage to host cells:

–– HpmA (Swihart and Welch 1990):

⚬⚬ Hemolysin
⚬⚬ Cytotoxic to kidney epithelial cells
⚬⚬ Encoded by hpmA
⚬⚬ Transported and activated by HpmB (Coker et al. 2000)

–– Pta (Proteus toxic agglutinin) toxin (Alamuri and Mobley 2008):

⚬⚬ Serine protease; remains attached to Proteus cell
⚬⚬ Cytotoxic to host cells
⚬⚬ Causes urinary tissue damage

–– LPS endotoxin

•	 Evasion of host immune system:

–– IgA protease (ZapA):

⚬⚬ Zinc metalloprotease
⚬⚬ Cleaves both serum and secretory IgA1and IgA2 antibodies; also IgG anti-

bodies (Senior et al. 1991)
⚬⚬ Degrades β-defensin-1 and LL-37 antimicrobial proteins
⚬⚬ Encoded by zapA gene (Wassif et al. 1995)

Virulence Factors
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–– Flagellin subunits undergo antigen variation (Coker et al. 2000).

�Regulation of Virulence Factor Expression

•	 MrpJ regulon (Bode et al. 2015):

–– Master regulator of virulence factors
–– Regulates the transition between swarming cells and swimming cells
–– Numerous virulence factors are positively upregulated: MR/P fimbriae, Pta 

toxin, ZapA protease, LPS modification genes, and Type 6 secretion system 
(T6SS)

–– Oxygen limitation induces MrpJ regulon; upregulated during infection
–– MrpJ:

⚬⚬ Transcription activator
⚬⚬ Helix-turn-helix (HTH) protein
⚬⚬ Induces transcription of MrpJ regulon genes by binding to MrpJ binding 

site upstream of target gene

–– Fifteen other MrpJ-type transcription factors regulate other fimbrial regulons
–– Also represses motility through the flagellin flhDC regulon [(Pearson and 

Mobley 2008); see below] and swarming through the umoA and umoB regula-
tors; supports inverse relationship between fimbria-mediated attachment and 
motility/swarming

•	 FlhDC regulon (Belas 1994; Clemmer and Rather 2007):

–– Master regulatory of flagella biosynthesis and chemotaxis
–– Positively upregulates flagellar components and assembly machinery
–– Essential for swarming motility; increased FlaA flagellin synthesis in swarm-

ing cells
–– FlhD4C2:

⚬⚬ Heterodimeric complex
⚬⚬ Transcription activator; binds to DNA upstream of target genes

–– Transcriptionally repressed by MrpJ and RcsBCD phosphorelay RcsB repres-
sor (Howery et al. 2016)

–– Lon protease negative regulates FlhDC by degrading FlhD (Clemmer and 
Rather 2008)

•	 Urease regulation (Schaffer and Pearson 2015):

–– Expression is induced in the urinary tract
–– UreR:

⚬⚬ Transcriptional activator of ureDABCEFG operon
⚬⚬ Induces urease expression in the presence of urea

24  Proteus spp.
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Chapter 25
Pseudomonas spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Pseudomonas aeruginosa chromosome: 6,264,403 bp; 5570 predicted ORFs 
(Stover et al. 2000)

•	 Cell morphology:

–– Rod-shaped cells (Fig. 25.1)
–– Flagellum: monotrichous (P. aeruginosa); other species can be 

lophotrichous:

⚬⚬ Swimming motility
⚬⚬ Important role in adherence; immunostimulatory

–– Type IV pili:

⚬⚬ Several pili at the same pole as the flagellum
⚬⚬ Essential function in adherence; immunostimulatory
⚬⚬ Responsible for twitching motility; due to attachment/retraction of pili

–– Capsule:

⚬⚬ Can form an alginate-based pseudocapsule during chronic infections (see 
below)

–– Lipopolysaccharide (LPS):

⚬⚬ Associated with inflammation and endotoxic shock
⚬⚬ Also functions in adherence (see below)

•	 Gram stain:

–– Gram negative
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•	 Growth:

–– Aerobes; catalase positive, oxidase positive; respiration (no fermentation)
–– Ubiquitous in environment; soil and water; transient microbiota in humans
–– Can infect animals, plants, and nematodes
–– Produces several pigments; can be useful for species identification

⚬⚬ Pyocyanin: blue green

•	 Redox-active metabolite; virulence factor

⚬⚬ Pyoverdine: yellow green; fluorescent

•	 Fe+3 siderophore (also pyochelin)

⚬⚬ Pyorubin: red
⚬⚬ Pyomelanin: brown black

–– Excellent biofilm formers: can tolerate poorly oxygenated atmospheres (see 
below)

–– >190 species; one major human pathogen – Pseudomonas aeruginosa

�Disease States Associated with Pseudomonas aeruginosa 
(Gellatly and Hancock 2013)

•	 Opportunistic pathogen; third most common nosocomial infection

Fig. 25.1  P. aeruginosa 
cells (From: PHIL #2118)

25  Pseudomonas spp.
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•	 Member of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, 
Enterobacter spp.) family of antibiotic-resistant nosocomial pathogens

–– Metabolically versatile with a large plastic genome; makes it a dangerous 
opportunistic pathogen

–– Multidrug resistance strains are present in healthcare environments

•	 Respiratory pneumonia: acute and chronic infections

–– Acute infections:

⚬⚬ Associated with immunocompromised and COPD patients
⚬⚬ Establishing acute infections (Fig. 25.2) (Hauser 2009):

•	 ExoT (dual activity exotoxin, see below) aids in P. aeruginosa bypass 
of the lung epithelial mucosa

•	 ExoU (phospholipase A2) and ExoS (dual activity exotoxin, see below) 
block early inflammatory responses; later inflammatory responses are 
enhanced by ExoU-induced eicosanoid release; leads to host tissue 
damage

•	 ExoS, ExoT, ExoU, and ExoY (adenylate cyclase) collectively block 
phagocytic activity; also disrupt epithelial and endothelial barriers

•	 Disruption of barriers leads to bacteremia and septic shock; also leads 
to fluid influx into the lung, reducing levels of pulmonary surfactant and 
deceasing oxygenation

–– Chronic infections:

⚬⚬ Adapts to the lung environment; grows as a biofilm; associated with cystic 
fibrosis (CF) patients and COPD patients

⚬⚬ CF:

•	 Result of a mutation in the CFTR (cystic fibrosis transmembrane con-
ductance regulator) cAMP-dependent chloride channel; usually a loss-
of-function misfolding mutation

•	 CFTR is essential for proper mucus consistency in the lung
•	 CFTR mutants have reduced water and Cl- secretion:

–– Mucus becomes too viscous
–– Failure of mucociliary clearance mechanisms
–– Results in an intense chronic inflammatory response, leading to lung 

tissue damage and secondary bacterial infections
–– Also results in the loss of lung surfactant and decreases in O2 ten-

sion, usually leading to death

–– P. aeruginosa expresses different virulence factors during acute infections vs. 
chronic infections (Fig. 25.3) (Smith et al. 2006; Sousa and Pereira 2014):

Disease States Associated with Pseudomonas aeruginosa
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⚬⚬ Isolates from chronic infections lack flagella and pili and are found in 
biofilms

⚬⚬ Results from the increased production of an alginate pseudocapsule; the 
reduced expression and secretion of many virulence factors, including the 
PlcH hemolytic phospholipase; increases in small colony variants (SCVs); 
and increased antibiotic resistance

⚬⚬ Immune responses during chronic infections generate reactive oxygen spe-
cies (ROS; e.g., H2O2), which induce a hyper-mutator phenotype that gen-
erates mutations in many P. aeruginosa genes:

•	 Flagellar synthesis mutations (e.g., fliC mutant); decreases phagocytosis
•	 Quorum-sensing mutations (e.g., lasR mutant)
•	 Induction of a mucoid phenotype; increased alginate synthesis through 

the inactivation of the MucA anti-sigma (σ) factor; enhances biofilm 
formation

Fig. 25.2  Establishing acute pneumonia (From: Hauser 2009)

25  Pseudomonas spp.
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•	 Decrease in ciliary clearance
•	 Decrease in innate immune clearance

•	 Soft tissue infections: burns, open wounds, surgery (nosocomial); the presence 
of blue–green pyocyanin in burn victim’s wounds can lead to acute, rapid 
sepsis

•	 Eye (keratitis) infections (Fig.  25.4): corneal abrasions, contaminated eye 
solutions

•	 Biofilm-associated diseases:

–– Ventilator-associated pneumonia (VAP); second most common pathogen; can 
lead to sepsis

–– Urinary tract infections; associated with urinary catheters

•	 Otitis externa (swimmer’s ear): primary pathogen
•	 Otitis media folliculitis: rash associated with hot tubs; primary pathogen

Flagella
Pili

normal
metabolism

LasR

T3SS AHLs
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gene expression

microevolution Adapted
metabolismOprF

NO3-/No2-

mucA
mutation

alginate
Efflux
pump

Selection of
fitter variants

OprF

Early infection Chronic infection
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expression
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Adapted metabolism
Increased mutation rates

P. aeruginosa characteristics P. aeruginosa characteristics

proteases
pyoverdine
rhamnolipid

Fig. 25.3  Changes during chronic infection (From: Sousa and Pereira 2014)

Fig. 25.4  P. aeruginosa 
corneal ulcer (From: 
Charles T. Campbell 
Laboratory)

Disease States Associated with Pseudomonas aeruginosa
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�Virulence Factors

•	 Adherence to host cells:

–– LPS:

⚬⚬ Binds to CFTR in host membrane, inducing binding and internalization

–– Flagellum (Adamo et al. 2004):

⚬⚬ Binds to host cell surface asialo-GM1,2 gangliosides – generated when P. 
aeruginosa neuraminidase removes sialic acid residues from GM1,2 
gangliosides

⚬⚬ Binding activates Ca+2-dependent pro-inflammatory responses

–– Fimbrial adhesins:

⚬⚬ Type IV pili (Hahn 1997; Mikkelsen et al. 2011):

•	 Type IVa pili: essential for twitching motility
•	 Type IVb pili (Flp pili): major adherence factor; also necessary for bio-

film formation
•	 At least 37 proteins are involved in pili synthesis, function, and regula-

tion; PilA is major Type IVa structural subunit
•	 Binds the same asialo-GM1,2 gangliosides as flagella
•	 Synthesis of pili is regulated by the PilR–PilS and PprA–PprB two-

component phosphorelay systems (TCSs)

⚬⚬ CUP (chaperone–usher pathway) fimbriae (Mikkelsen et al. 2011):

•	 Five CUP fimbriae: CupA–CupE; each encoded by different gene 
clusters

•	 Important for adherence and biofilm formation
•	 Primarily regulated by the RocS1-RocA1-RocR TCS

–– Afimbrial adhesins:

⚬⚬ LecA (PA-IL), LecB (PA-IIL) (Grishin et al. 2015):

•	 Lectins; bind glycoproteins on lung epithelial cells
•	 LecA: binds to terminal D-galactose (highest affinity) and N-acetyl-D-

galactosamine sugars on host glycoproteins
•	 LecB: binds to terminal L-fucose (highest affinity), D-mannose, 

L-fucosylamine, L-galactose, D-arabinose, and D-fructose on host 
glycoproteins

•	 Form homo-tetrameric structures that can bind four sugar molecules
•	 Also play a role in biofilm formation, reduction of mucociliary beating, 

and exotoxin A-mediated epithelial barrier disruption

•	 Damage to host cells:

25  Pseudomonas spp.
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–– LPS: endotoxin activity; triggers inflammatory reactions that lead to septic 
shock

–– Hydrogen cyanide (HCN) (Pessi and Haas 2000):

⚬⚬ Inhibits host cytochrome c oxidase within the electron transport chain
⚬⚬ Produced by HCN synthase; encode by the hcnABC genes
⚬⚬ Synthesized in low oxygen concentrations; regulated by the ANR anaero-

bic transcription regulator and by the LasI-LasR, RhlI–RhlR, and PQS 
quorum-sensing systems (see below)

–– Pyocyanin (Rada et al. 2011):

⚬⚬ Secreted, membrane-permeable heterocyclic member of the phenazine 
family

⚬⚬ Redox-active metabolite; triggers the formation of superoxide and other 
reactive oxygen species (ROS) inside host epithelial cells

⚬⚬ Oxidative stress affects multiple host functions, including ciliary function, 
epithelial cell growth, pro-inflammatory cytokine release, and neutrophil 
apoptosis

⚬⚬ Also is bacteriocidal, giving P. aeruginosa a selective advantage in the 
lung

–– Rhamnolipids (Maier and Soberon-Chavez 2000):

⚬⚬ Rhamnose-containing glycolipids; produce mono- and di-rhamnolipids
⚬⚬ Biological surfactants; can solubilize lung surfactant, facilitating its degra-

dation during infection

–– T2SS (Type 2 secretion system) and T3SS (Type 3 secretion system) (Filloux 
et al. 1998; Roy-Burman et al. 2001):

⚬⚬ Secrete numerous bacterial effectors that act as virulence factors
⚬⚬ T2SS effectors:

•	 ExoA (exotoxin A) (Michalska and Wolf 2015):

–– A–B exotoxin
–– Adenosine diphosphate ribosyl transferase (ADPRT) activity
–– ADP-ribosylates host elongation factor eEF-2; same mechanism as 

diphtheria toxin
–– Blocks host cell translation; induces cell necrosis

•	 PlcH (Ostroff et al. 1990):

–– Hemolytic phospholipase C
–– Degrades phosphatidylcholine and sphingomyelin in host 

membranes
–– Damages lung epithelial cells and degrades lung phospholipid sur-

factant (>80 % phosphatidylcholine)

Virulence Factors
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•	 LasA (staphylolysin), LasB (pseudolysin) (Kessler et  al. 1998; 
Spencer et al. 2010):

–– Zn metalloproteinases: LasA (protease); LasB (elastase)
–– LasA enhances the elastase activity of LasB; work synergistically to 

destroys host elastin within connective tissue
–– LasA has staphylolytic activity; targets peptidoglycan pentaglycine 

bridges; rapid lysis (Barequet et al. 2012)

•	 Protease IV (PrpL) (Engel et al. 1998; Malloy et al. 2005):

–– Serine protease
–– Can cleave Igs, complement proteins, fibrinogen, plasminogen, 

transferrin, lactoferrin, elastin, and lung surfactant

•	 AprA (aeruginolysin) (Zhang et al. 2014):

–– Secreted alkaline protease; belongs to family of Ca2+-dependent 
repeats-in-toxin (RTX) exoproteases

–– Cleaves host fibrin, cytokines, Igs, and complement proteins
–– Cleaves P. aeruginosa flagella (along with LasB); abrogates host 

immune reaction against flagellin (Casilag et al. 2015)

⚬⚬ T3SS effectors (Fig. 25.5) (Engel and Balachandran 2009; Hauser 2009):

•	 Four effectors; not expressed in all strains
•	 ExoS: dual activity

–– N-terminus: GTPase-activating protein (GAP) activity (Goehring 
et al. 1999)

⚬⚬ Stimulates the GTPase activity of Rho/Rac/Cdc42 GTPases
⚬⚬ Leads to disruption of the actin cytoskeleton
⚬⚬ Inhibits phagocytosis, cell migration, and cell division; induces 

apoptosis

–– C-terminus: adenosine diphosphate ribosyl transferase (ADPRT) 
activity

⚬⚬ ADP-ribosylates and inactivates Ras, Rap, and Rab GTPases, dis-
rupting many cell signaling pathways (Ganesan et al. 1999)

•	 Activated by host 14-3-3 protein

⚬⚬ Also ADP-ribosylates ezrin, radixin, moesin (ERM) proteins; dis-
rupts actin cytoskeleton, blocks phagocytosis, and increases cell 
rounding

⚬⚬ Can ADP-ribosylate many other host proteins (vimentin, 
cyclophilin A, IgG3, apolipoprotein A1, Rac1, Cdc42), but the 
role of these modifications is unclear

25  Pseudomonas spp.
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•	 ExoT: dual activity

–– 76% identical to ExoS; lesser role in virulence than ExoS
–– Rho-GAP activity and substrates are the same as ExoS
–– ADPRT activity is the same but different set of substrates from 

ExoS:

⚬⚬ ADP-ribosylates the Crk-I and Crk-II adaptor proteins; prevents 
binding to focal adhesion proteins p130cas and paxillin; blocks 
Rac GTPase signaling and cell division (Sun and Barbieri 2003)

•	 ExoU (Sato et al. 2003):

–– Phospholipase A2 (PLA2) activity
–– Rapid cytolytic host cell death
–– Induces inflammatory responses

•	 ExoY (Yahr et al. 1998):

–– Inherent adenylate cyclase; increases host cell cAMP 
concentrations

–– Disrupts actin cytoskeleton; increases endothelial permeability
–– Similar to B. anthracis edema factor (EF)

Fig. 25.5  T3SS effectors (From: Engel and Balachandran 2009)

Virulence Factors
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–– PASP (P. aeruginosa small protease) (Tang et al. 2013):

⚬⚬ Secreted protease
⚬⚬ Induces corneal abrasions; plays a role in keratitis
⚬⚬ Degrades collagens, complement C3, fibrinogen, antimicrobial peptide 

LL-37

–– LepA (large exoprotease A) (Kida et al. 2008):

⚬⚬ Secreted protease
⚬⚬ Cleaves the tethered ligand of protease-activated receptors (PAR)-1, PAR-

2, PAR-4
⚬⚬ Leads to activation of NF–κB-dependent inflammation pathways

•	 Growth in host milieu

–– Iron acquisition (Cornelis 2010):

⚬⚬ Fe+3 siderophores:

•	 Pyoverdine:

–– Major peptide siderophore; multiple peptide variants
–– Ferribactin precursor is modified in periplasm to form pyoverdine

•	 Pyochelin:

–– Minor peptide siderophore

•	 Can utilize many xenosiderophores made by other bacteria

⚬⚬ Direct uptake of host iron-bound proteins:

•	 Phu system:

–– Binds directly to host hemoproteins, such as hemoglobin, hemo-
pexin, and leghemoglobin

•	 Has system:

–– HasAp: secreted hemophore; takes heme from host hemoproteins 
and brings it to the HasR receptor

⚬⚬ Expression is regulated by Fe+2-bound Fur repressor

–– Pyocins (Michel-Briand and Baysse 2002):

⚬⚬ Bacteriocin
⚬⚬ Cytolytic to other Pseudomonas species and a few other Gram-negative 

bacteria
⚬⚬ May give P. aeruginosa an advantage in specific growth niches

•	 Evasion of host immune system:

–– Biofilm formation (Rybtke et al. 2015):

25  Pseudomonas spp.
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⚬⚬ Involved in medical device-related infections as well as chronic diseases 
such as CF pneumonia, wound infections, and otitis media

⚬⚬ Important for immune evasion and increased antibiotic resistance
⚬⚬ EPS matrix comprised of DNA, polysaccharides, and protein
⚬⚬ Major exopolysaccharides: Pel, Psl, and alginate

•	 Synthesis is regulated by the RetS, LadS, and GacS–GacA TCSs

⚬⚬ Biofilm formation is regulated by the BfiS–BfiR (biofilm initiation), 
BfmS–BfmR (biofilm maturation), and MifS–MifR (microcolony forma-
tion) TCSs (Mikkelsen et al. 2011)

–– Alginate (Ertesvag 2015; Whitfield et al. 2015):

⚬⚬ High molecular weight polymer of β-D-mannuronate linked to 
α-L-guluronate

⚬⚬ Forms a pseudocapsule structure, giving colonies a shiny mucoid 
appearance

⚬⚬ Essential for biofilm formation and persistence in the lung
⚬⚬ Protects against phagocytosis and antibody binding
⚬⚬ Tightly regulated synthesis; induced late in CF infection

�Regulation of Virulence Factor Expression

•	 Highly complex process involving many transcription regulatory factors, two-
component phosphorelay systems (TCSs), and quorum-sensing (QS) systems 
(Balasubramanian et al. 2013)

–– 14 TCSs, 434 transcription factors; 24 σ factors (8  % of genome), 3 QS 
systems

⚬⚬ QS systems (Fig. 25.6) (Chatterjee et al. 2016):

•	 Each QS system regulates a different subset of virulence factors as well 
as biofilm formation

•	 LasI-LasR system:

–– 3-oxo-C12-AHL (N-(3-oxododecanoyl)-L-homoserine lactone)

⚬⚬ Diffusible autoinducer signaling molecule
⚬⚬ LasI directs the synthesis of 3-oxo-C12-AHL
⚬⚬ Binds to LasR to activate the transcription of multiple virulence 

factors (LasA, LasB, AprA, ExoA, phospholipases C and A2, and 
hydrogen cyanide) as well as the T2SS

–– Also affects host cell signaling and immune responses (Liu et  al. 
2015)

Regulation of Virulence Factor Expression
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•	 PQS (Pseudomonas quinolone signal) system:

–– PQS (2-heptyl-3-hydroxy-4-(1H)-quinolone) and its precursor HHQ 
(2-heptyl-4(1H)-quinolone)

⚬⚬ Diffusible autoinducer signaling molecules
⚬⚬ PqsA-E proteins direct the synthesis of PQS and HHQ.

•	 Production of PQS is induced by the LasI-LasR system and 
repressed by the RhlI–RhlR system

⚬⚬ Bind to MvfR (PqsR) to activate the transcription of the pqsA-E 
and phnAB operons, and multiple virulence factors – pyocyanin, 
LecA and LecB lectins, rhamnolipids, neuraminidase (chitinase), 
hydrogen cyanide

–– Also affects host cell signaling and immune responses (Liu et  al. 
2015)

•	 RhlI–RhlR system:

–– C4-AHL (N-butanoyl-l-homoserine lactone)

⚬⚬ Diffusible autoinducer signaling molecule
⚬⚬ RhlI directs the synthesis of C4-AHL
⚬⚬ Binds to RhlR to activate the transcription of multiple virulence 

factors  – LasA, LasB, AprA, pyocyanin and other phenazines, 
Type IV pili, rhamnolipids, phospholipases C and A2, hydrogen 
cyanide, and LecA and LecB lectins

Fig. 25.6  QS systems (From: Chatterjee et al. 2016)
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Chapter 26
Rickettsia spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Rickettsia prowazekii chromosome: 1,111,523  bp; 834 predicted ORFs 
(Andersson et al. 1998)

–– Rickettsia rickettsii chromosome: 1,257,710 bp; 1218 predicted ORFs (Ellison 
et al. 2008)

•	 Cell morphology:

–– Small coccobacilli (Fig. 26.1)
–– Surrounded by LPS and protein-containing S-layer

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Aerobes
–– Obligate intracellular pathogens
–– Reservoirs: mammals and some arthropods
–– Can be transmitted by arthropods such as lice, ticks, fleas, and chiggers
–– Two groups of mammalian pathogenic species:

⚬⚬ Typhus group (TG) – two species; cause typhus worldwide:

•	 Rickettsia prowazekii: epidemic typhus fever
•	 Rickettsia typhi: endemic murine typhus

⚬⚬ Spotted fever group (SFG) – at least 20 species; cause spotted fevers in 
different geographic locations:

•	 Rickettsia rickettsii: Rocky Mountain spotted fever (North America)
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•	 Rickettsia sibirica: Siberian tick typhus
•	 Rickettsia australis: Queensland tick typhus
•	 Rickettsia japonica: Oriental spotted fever
•	 Rickettsia africae: African tick-bite fever
•	 Rickettsia felis: cat-flea typhus; emerging worldwide pathogen

�Disease States Associated with Rickettsia spp.

•	 Zoonotic diseases transmitted from mammalian reservoirs via arthropod vectors
•	 Infections lead to disseminated inflammation of the microvascular epithelium; 

usually caused by induction and release of many pro-inflammatory cytokines and 
chemokines (Sahni et al. 2013)

•	 Rickettsia prowazekii – typhus fever; “war fever”:

–– Transmitted by body lice and fleas or from flying squirrel ectoparasites (North 
America reservoir)

–– Fever, chills, headache, and myalgia
–– Small, flat macular rash appears on the trunk and later spreads to extremities 

(Fig. 26.2)
–– Other symptoms can include rales and delirium
–– Can reoccur as a milder form of disease – recrudescent typhus or Brill–Zinsser 

disease

Fig. 26.1  R. rickettsii 
cells (From: PHIL #19028)
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•	 Rickettsia rickettsii – Rocky Mountain spotted fever:

–– Transmitted by members of the Ixodidae tick family (hard ticks); also the 
natural reservoirs

–– Initial symptoms: fever, nausea, vomiting, severe headache, muscle pain, and 
lack of appetite

–– Later signs and symptoms: maculopapular rash (Fig.  26.3), petechial rash, 
diarrhea, and abdominal pain

Fig. 26.2  Typhus fever 
rash (From: PHIL #14489)

Fig. 26.3  Rocky Mountain 
spotted fever rash (From: 
CDC)

Disease States Associated with Rickettsia spp.
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–– Can be a very severe long-term disease that requires hospitalization; blood 
vessel disruption in the respiratory system, CNS, gastrointestinal system, or 
kidneys

�Virulence Factors (Sahni et al. 2013)

•	 Obligate intracellular pathogen
•	 Prefers to infect vascular endothelial cells in blood vessels, leading to multiple 

dysfunctions of the cardiovascular, respiratory, and neural endothelium
•	 Adherence to host cells/tissues:

–– Sca (surface cell antigen) (Balraj et al. 2009; Gillespie et al. 2015):

⚬⚬ Family of surface proteins:

•	 β-barrel autotransporter (T5SS) proteins
•	 Seventeen members (Sca0–Sca16) in nine Rickettsii genomes

⚬⚬ rOmpA (Sca0) (Li and Walker 1998):

•	 Involved in adherence and invasion of host cells

⚬⚬ rOmpB (Sca5) (Uchiyama et al. 2006):

•	 Predominant component of S-layer
•	 Interacts with host Ku70 subunit of DNA-dependent protein kinase in 

areas of host lipid rafts; interaction promotes actin cytoskeletal recruit-
ment to the membrane (Martinez et al. 2005)

⚬⚬ Sca1, Sca2, and Sca4 (Chan et al. 2010; Gillespie et al. 2015):

•	 Also play a role in adherence and actin polymerization (see below)

–– Adr1 and Adr2 (Renesto et al. 2006; Vellaiswamy et al. 2011):

⚬⚬ Potential adhesins

•	 Host cell invasion and growth:

–– Enter host cells through classic actin-dependent zipper mechanism of induced 
phagocytosis (Walker 1984)

–– Rapidly escape the phagosome to multiply in the cytosol of infected cells
–– R. rickettsii and other SFG pathogens can co-opt the host actin cytoskeleton 

for cell-to-cell motility, but R. prowazekii cannot; they are released through 
cell lysis (Heinzen et al. 1993)

–– Phagosome escape:

⚬⚬ PLD (Renesto et al. 2003; Whitworth et al. 2005):

•	 Phospholipase D activity

26  Rickettsia spp.
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•	 Disrupts the phagosome membrane; major effector of phagosome 
escape

⚬⚬ TlyC (Whitworth et al. 2005):

•	 Putative hemolysin C that has membranolytic activity

⚬⚬ Pat1 and Pat2 (Rahman et al. 2013):

•	 Phospholipase A2 (PLA2) activity
•	 Pat1 is only found in TG pathogens; Pat2 is in TG and SFG pathogens

–– Actin-based motility – only seen in SFG group:

⚬⚬ RickA (Gouin et al. 2004; Jeng et al. 2004):

•	 Involved in promoting the nucleation of host actin polymerization
•	 Works through the Cdc42 GTPase and the mammalian Arp2/3 

complex
•	 Used for cell-to-cell motility
•	 Similar to mammalian Wiskott–Aldrich syndrome protein (WASP) and 

Listeria monocytogenes ActA

⚬⚬ Sca2: similar to mammalian formins; actin nucleators
⚬⚬ Sca4: binds host vinculin; anchors actin to the membrane
⚬⚬ RpRalF (Alix et al. 2012):

•	 R. prowazekii-secreted effector
•	 May have guanine nucleotide exchange factor (GEF) activity and play 

a role in actin nucleation
•	 Probably secreted through Type 4 secretion system (T4SS) (Gillespie 

et al. 2015)
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Chapter 27
Salmonella spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Salmonella enterica serovar Typhimurium LT2 chromosome: 4,857,432 bp; 
4,489 predicted ORFs (McClelland et al. 2001)

–– Salmonella enterica serovar Typhi CT18 chromosome: 4,809,037 bp; 4599 
predicted ORFs (Parkhill et al. 2001)

•	 Cell morphology:

–– Rod-shaped cells (Fig. 27.1)
–– Flagella (peritrichous (Fig. 27.1)):

⚬⚬ Swimming motility is essential for Salmonella cells to approach and attach 
to the intestinal epithelium

⚬⚬ Immunostimulatory

–– Lipopolysaccharide (LPS): immunostimulatory; associated with inflamma-
tion and endotoxic shock

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Facultative anaerobes: catalase positive, oxidase positive
–– Reservoirs: poultry, pet birds, reptiles pet turtles, livestock; contaminated soil 

and water
–– Excellent biofilm formers (see below)
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–– Two species, six subspecies:

⚬⚬ Salmonella enterica subspecies: enterica (I), salamae (II), arizonae (IIIa), 
diarizonae (IIIb), houtenae (IV), indica (VI)

•	 S. Enteritidis: Salmonella enterica subspecies enterica serovar 
Enteritidis

•	 S. Typhimurium: Salmonella enterica subspecies enterica serovar 
Typhimurium

•	 S. Typhi: Salmonella enterica subspecies enterica serovar Typhi
•	 S. Paratyphi: Salmonella enterica subspecies enterica serovar 

Paratyphi

⚬⚬ Salmonella bongori (subspecies V; rare)
⚬⚬ >2500 serotypes; 99% of clinical isolates belong to subspecies I enterica

•	 Based on O antigens (LPS) and H antigens (flagella)
•	 Also S. Typhi Vi antigens (capsule)

�Disease States Associated with Salmonella spp. (Fabrega 
and Vila 2013; Wiedemann et al. 2014)

•	 Zoonotic pathogen: transmitted from animal reservoirs to humans
•	 Non-typhoidal salmonellosis:

–– Caused by strains other than S. Typhi
–– Foodborne salmonellosis:

Fig. 27.1  S. enterica 
serovar Typhi cells (From: 
wikidoc.org)

27  Salmonella spp.
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⚬⚬ Enterocolitis: most common disease state

•	 Primarily caused by S. Enteritidis; S. Typhimurium
•	 Must ingest 106–108 cells for symptoms; appear 6–48 h post ingestion
•	 Sources: contaminated chicken meat, contaminated eggs, direct contact 

with infected animals
•	 Massive inflammatory symptoms: fever, diarrhea, non-bloody stools, 

abdominal cramps, nausea, vomiting
•	 Self-limiting; can cause serious life-threatening illness (dehydration) in 

immunocompromised patients, elderly, and very young

–– Invasive septicemia:

⚬⚬ Dissemination of S. Typhimurium in the bloodstream (bacteremia)
⚬⚬ Usually progresses to the liver and spleen; leads to massive inflammatory 

reaction

•	 Typhoidal salmonellosis:

–– Paratyphoid fever: S. Paratyphi; less severe symptoms
–– Typhoid fever: S. Typhi:

⚬⚬ Systemic disease: if untreated, fatal in 10–30% of cases
⚬⚬ Early symptoms (0–2 weeks):

•	 Fever (often as high as 103–104  °F), rash, headache, weakness and 
fatigue, abdominal pain, diarrhea (rare; more common in children), or 
constipation

⚬⚬ Late symptoms (3–4 weeks):

•	 High fever, diarrhea (“pea soup”), distended abdomen, extreme weight 
loss, delirium

⚬⚬ Complications:

•	 Intestinal hemorrhage; usually not fatal
•	 Intestinal perforation in distal ileum; frequently fatal
•	 Encephalitis
•	 Neuropsychiatric symptoms (“muttering delirium”)
•	 Metastatic abscesses, cholecystitis, endocarditis, osteitis

⚬⚬ Dissemination:

•	 Transcytosis through intestinal epithelial M cells and invasion into 
phagocytic cells, predominantly macrophage; protects against host 
immune system; doesn’t elicit an inflammatory reaction

•	 Travel in macrophage to lymph nodes and other tissues (liver, spleen, 
bone marrow, gall bladder):

–– Persists in gall bladder (carrier state)
–– Forms biofilms on gall stones; protects against bile

•	 Shed in bile back through intestinal epithelium

Disease States Associated with Salmonella spp.
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�Virulence Factors

•	 It is important to note that with so many different S. enterica strains and sero-
types, not all of the virulence factors discussed below will be encoded or 
expressed in each strain

•	 Many of these virulence factors are encoded on Salmonella pathogenicity islands 
(SPI); – 21 SPIs; SPI-1, SPI-2, SPI-3, SPI-4, SPI-5 encoded genes play the pre-
dominate role in virulence

•	 Adherence to host cells: intestinal epithelial M cells within Peyer’s patches.

–– Fimbrial adhesins (Townsend et  al. 2001; Wagner and Hensel 2011; 
Wiedemann et al. 2014):

⚬⚬ At least 13 different fimbrial operons
⚬⚬ agf (csg), fim, pef, lpf, bcf, saf, stb, stc, std, stf, sth, sti, and stj.
⚬⚬ Not all are expressed in every S. enterica strain; most are not expressed 

in vitro, and it is unclear which are expressed in human hosts
⚬⚬ Bind to host cells with different specificities
⚬⚬ Agf (Collinson et al. 1996):

•	 Curli fimbriae; thin aggregative fimbriae (Tafi); chaperone-usher assem-
bly mechanism

•	 Encoded by divergent agfDEFG and agfBAC; AgfA is primary struc-
tural subunit

•	 Attach to intestinal microvilli; interact with extracellular matrix fibro-
nectin and other glycoproteins

•	 Important for biofilm formation; aggregation with other bacterial cells

⚬⚬ Type 1 fimbriae (Korhonen et al. 1980):

•	 Chaperone-usher assembly mechanism
•	 Encoded by fimAICDHF operon
•	 FimA: major structural subunit
•	 FimH: tip adhesin; binds to host laminin through its terminal α-D-

mannose residues; plays a role in T3SS-1 independent uptake into host 
cells

•	 Can undergo phase variation for immune system evasion

⚬⚬ Lpf (long polar fimbriae) (Bäumler et al. 1996b):

•	 Chaperone-usher assembly mechanism
•	 Encoded by the lpfABCDE operon
•	 Attachment to intestinal Peyer’s patches
•	 Plays a role in biofilm formation
•	 Can undergo phase variation for immune system evasion

27  Salmonella spp.
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⚬⚬ Pef (plasmid-encoded fimbriae) (Bäumler et al. 1996a):

•	 Encoded by pefABCD operon on pSLT plasmid
•	 Attachment to intestinal microvilli; interact with Lewis-X blood group 

carbohydrate
•	 Plays a role in biofilm formation
•	 Can undergo phase variation for immune system evasion

⚬⚬ Std (Chessa et al. 2009):

•	 Chaperone-usher assembly mechanism
•	 Binds to a host cell receptor containing terminal α(1-2) fucose residues
•	 StdA: major pilin subunit

⚬⚬ Type IV pili (Wagner and Hensel 2011; Zhang et al. 2000):

•	 Only found in S. Typhi
•	 Required for twitching motility, adherence, and invasion
•	 Encoded by pil operon on SPI-7

–– Non-fimbrial adhesins:

⚬⚬ T5SS (type 5 secretion system): autotransporters

•	 MisL (Dorsey et al. 2005):

–– Binds extracellular matrix fibronectin
–– Encoded on SPI-3

•	 SadA (Raghunathan et al. 2011):

–– Trimeric adhesin
–– Important for adherence and biofilm formation
–– Does not bind extracellular matrix proteins; role in virulence is 

unclear

•	 ShdA (Kingsley et al. 2002):

–– Binds extracellular matrix fibronectin and collagen I
–– Encoded on CS54 genomic island

⚬⚬ T1SS (type 1 secretion system):

•	 SiiE (Gerlach et al. 2007):

–– Large secreted adhesin
–– Encoded on SPI-4; siiABCDEF operon encodes adhesin and T1SS
–– Adherence to epithelial cells; interacts with N-acetyl-glucosamine 

and α-2,3-linked sialic acid terminal residues on host proteins and 
sugars

–– Adherence is required for T3SS-1-dependent invasion

Virulence Factors



350

•	 BapA (Latasa et al. 2005):

–– Large secreted adhesin; contains numerous bacterial immunoglobulin-
like domains

–– Important for colonization and biofilm formation

•	 SivH (Kingsley et al. 2003):

–– Involved in colonization and host cell invasion
–– Homologous to Yersinia pseudotuberculosis invasin and E. coli 

intimin
–– Encoded on CS54 genomic island

•	 RatB (Kingsley et al. 2003):

–– Involved in colonization
–– Encoded on CS54 genomic island

–– LPS: role for the LPS in adherence is unclear
–– Flagella: role for flagella in adherence is unclear

Fig. 27.2  S. enterica trigger and zipper mechanisms (From: Velge et al. 2012)

27  Salmonella spp.
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•	 Growth in host milieu (facultative intracellular pathogen):

–– Host cell invasion (Fig. 27.2):

⚬⚬ Uses both trigger mechanism (Fig. 27.2a, b; host cell membrane ruffling) 
and zipper mechanism (Fig. 27.2c, d; receptor-mediated entry) for inter-
nalization (Velge et al. 2012)

⚬⚬ Both mechanisms involve manipulation of the host actin cytoskeleton
⚬⚬ Trigger mechanism (Galán 2001):

•	 T3SS-1 (type 3 secretion system-1) dependent
•	 Injects at least 15 effectors into host cytoplasm
•	 Disrupt the host actin cytoskeleton, leading to induction of the massive 

inflammatory processes associated with non-Typhi serovars
•	 Encoded on Salmonella pathogenicity island 1 (SPI-1):

–– SopA (Zhang et al. 2006):

⚬⚬ Ubiquitin ligase
⚬⚬ Plays a role in inflammation and neutrophil transepithelial 

migration

–– SopB (SigD) (Zhou et al. 2001):

⚬⚬ Inositol 3-phosphatase (IPase)
⚬⚬ Activates SGEF (SH3-containing GEF) for RhoG (Patel and 

Galán 2006)
⚬⚬ Trigger actin remodeling
⚬⚬ Also induces signaling pathways that stimulate pro-inflammatory 

cytokine production

–– SopD (Bakowski et al. 2007):

⚬⚬ Acts with SopB to induce inflammation and fluid secretion

–– SopE, SopE2 (Bakshi et al. 2000; Hardt et al. 1998):

⚬⚬ Guanine nucleotide exchange factor (GEF) for Cdc42 and Rac1 
GTPases; ~70% identical

⚬⚬ Stimulates GDP/GTP exchange; converts GTPase to an active, 
GTP-bound form

⚬⚬ Induces Arp2/3-dependent actin remodeling
⚬⚬ Also induces signaling pathways that stimulate pro-inflammatory 

cytokine production

–– SptP (Fu and Galán 1999; Kaniga et al. 1996):

⚬⚬ N-terminus (GTPase-activating protein (GAP) for Cdc42, Rac1):

•	 Converts GTPases back to an inactive GDP-bound form
•	 Counteracts SopE, SopE2 function; allows actin cytoskeleton 

to recover; reverses inflammatory responses

Virulence Factors
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⚬⚬ C-terminus (tyrosine phosphatase activity):

•	 Reverses phosphorylation events that occur upon S. enterica 
invasion

–– SipA, SipC (Myeni and Zhou 2010; Zhou et al. 1999):

⚬⚬ Part of the translocase machinery
⚬⚬ Binds to host F-actin
⚬⚬ Nucleates and promotes F-actin bundling; stabilizes actin 

filaments

–– SipB (Hersh et al. 1999):

⚬⚬ Part of the translocase machinery
⚬⚬ Binds and activates caspase-1
⚬⚬ Induces inflammasome-dependent pyroptosis in macrophage
⚬⚬ Homologous to IpaB from Shigella flexneri

⚬⚬ Zipper mechanism (T3SS-1 independent):

•	 Rck (Ho et al. 2010; Rosselin et al. 2010):

–– 19  kDa outer membrane protein (OMP); homologous to  
S. Typhimurium PagC and Yersinia enterocolitica Ail

–– Encoded on virulence plasmids
–– Binding to its host cell receptor induces cell signaling pathways that 

result in the activation of the Rac1 and Cdc42 GTPases
–– Leads to induction of Arp2/3-dependent actin polymerization
–– Also displays serum resistance through binding host complement 

factor H (fH)

•	 PagN (Lambert and Smith 2009):

–– 26 kDa OMP invasin
–– Binds heparin sulfate proteoglycans

–– Formation of replicative niche (Fig. 27.3):

⚬⚬ Internalized Salmonella cells manipulate the host endocytic trafficking 
machinery to block early endosome to late endosome maturation and sub-
sequent lysosome fusion; results in the creation of a protected replicative 
environment within Salmonella-containing vacuoles (SCVs).

⚬⚬ Limits inflammation; activates pro-survival, anti-apoptotic mechanisms
⚬⚬ SCVs migration to the perinuclear space induces the formation of mem-

brane tubules called Salmonella-induced filaments (SIFs); SIF formation 
signals replication to begin.

⚬⚬ SopB (see above):

•	 IPase activity; secreted by T3SS-1
•	 Blocks endosome maturation and lysosome fusion

27  Salmonella spp.
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Fig. 27.3  S. enterica cell invasion and survival (From: Patel et al. 2005)

Virulence Factors
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⚬⚬ T3SS-2 (type 3 secretion system-2):
•	 Encoded on SPI-2; only expressed after cell entry
•	 Secretes more than 30 effectors from the SCV into the host cytosol
•	 Essential for the integrity of the SCV
•	 Responsible for SIF formation and replication within the SIF
•	 SseBCD (Nikolaus et al. 2001):

–– Translocase machinery; secretes effectors into the host cytosol

•	 SifA (Jackson et al. 2008):
–– Binds host SKIP (SifA and kinesin-interacting protein)
–– Blocks Rab9 GTPase function in endocytic trafficking
–– Promotes SIF formation; localizes to SCV and SIF
–– Stabilized by SipA binding (see above)

•	 SopD2 (Brumell et al. 2003):

–– 41% identical to SopD (see above)
–– Blocks endocytic trafficking by blocking Rab7 GTPase

•	 SsaB (SpiC) (Uchiya et al. 1999):

–– Inactivates host Hook3 protein
–– Inhibits endocytic trafficking by blocking SCV-lysosome fusion

•	 SpvB (Lesnick et al. 2001):

–– Adenosine diphosphate ribosyl transferase (ADPRT) activity
–– ADP-ribosylates actin; blocks vacuolar-associated actin polymeriza-

tion (VAP) around the SCV
–– Triggers apoptosis of infected cells late in infection
–– Facilitates host dissemination associated with severe systemic 

infection
–– Part of the spvRABCD operon; located on pSLT virulence plasmids 

found in S. enterica serovar I strains

•	 SpvC (Mazurkiewicz et al. 2008):

–– Phosphothreonine lyase activity; removes phosphate groups from 
host signaling proteins

–– Deactivates inflammatory signaling pathways (anti-inflammatory)
–– Can be secreted by T3SS-1 and T3SS-2
–– Located on pSLT virulence plasmids

•	 SspH2 (Miao et al. 2003):

–– Interacts with actin-remodeling proteins filamin and profilin
–– Plays a role in vacuole-associated actin polymerization (VAP) 

around the SCV

27  Salmonella spp.
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•	 SseI (Miao et al. 2003):

–– Interacts with actin-remodeling proteins filamin and profilin
–– Plays a role in VAP around the SCV

•	 SseJ (Ruiz-Albert et al. 2002):
–– Acyltransferase/lipase activity
–– Recruits active RhoA to the SCV; contributes to SIF formation

•	 SseF, SseG (Kuhle and Hensel 2002):

–– Interact with each other; localize to SCV and SIF
–– Function in SCV migration and microtubule reorganization neces-

sary for SIF formation

–– Iron acquisition:

⚬⚬ Fe+3 siderophores:

•	 Enterochelin (enterobactin) (Pollack and Neilands 1970; Raymond 
et al. 2003):

–– Minor siderophore in S. enterica; major siderophore in E. coli
–– Cyclic polyester containing three DHBS (N-(2,3-dihydroxybenzoyl)-

L-serine) residues

•	 Salmochelin (Hantke et al. 2003; Muller et al. 2009):

–– Major siderophore
–– Enterochelin derivative; contains DHBS linked by a glucose residue; 

increases the hydrophilicity of enterochelin
–– Synthesis, excretion, and uptake are mediated by the iroBCDEN 

operon

⚬⚬ Expression is regulated by Fe+2-bound Fur repressor and RhyB sRNA 
molecules

–– Biofilm formation (Fabrega and Vila 2013; Wolska et al. 2016):

⚬⚬ Induced in stationary phase, reduced nutrient availability, aerobic condi-
tions, low osmolarity, and low temperature

⚬⚬ Primarily depends on the secretion of cellulose exopolysaccharide and Agf 
curli fimbriae

⚬⚬ Also uses the BapA surface protein and the type I, Lpf, and Pef fimbriae
⚬⚬ S. Typhi forms biofilms on gall stones within the gall bladder; protects 

against antimicrobial effects of bile, leading to a carrier state

•	 Damage to host cells:

–– LPS (Patel and McCormick 2014):

⚬⚬ Endotoxin activity
⚬⚬ Bacteremia triggers TLR4-dependent inflammatory reactions that lead to a 

cytokine storm and septic shock

Virulence Factors



356

–– Typhoid toxin (Spano and Galan 2008; Spano et al. 2008):

⚬⚬ Only found in S. Typhi and S. Paratyphi
⚬⚬ CdtB-PltA-PltB (Fig. 27.4):

•	 Forms a tripartite A2B5 complex (CdtB)(PltA)(PltB)5 (Song et al. 2013)
•	 Only toxigenic when all three subunits are bound together
•	 Contains two separate biochemical activities
•	 CdtB:

–– A subunit of the tripartite family of A-B cytolethal distending toxins 
(Cdts); also found in Haemophilus ducreyi and Campylobacter 
jejuni:

⚬⚬ The usual receptor B subunits (CdtA, CdtC) are not encoded in 
S. Typhi

–– DNAase I: dsDNA break activity
–– DNA damage activates a cell cycle checkpoint; leads to G2 phase 

arrest (epithelial cells) or cell apoptosis (lymphocytes and 
monocytes)

–– Expression is only induced after cells are internalized into the SCV
–– CdtB must be exported from the SCV to the extracellular medium in 

order to invade and destroy other uninfected host cells
–– Travels through autocrine and paracrine pathways for host 

dissemination

⚬⚬ PltA and PltB: needed for export from SCV and invasion of non-
infected cells

Fig. 27.4  Typhoid toxin delivery (From: Spano and Galan 2008)
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•	 PltA:

–– Homologous to pertussis toxin ADP-ribosyltransferase A subunit
–– ADP-ribosylates Gαi protein; inhibits cell signaling activity
–– This activity is not needed for transport or activity of CdtB

•	 PltB:

–– Homologous to one subunit of the pertussis toxin B subunit
–– Forms a homopentameric polymer in host cell membranes
–– Binds to host N-acetylneuraminic acid (Neu5Ac) terminated glycan 

molecules (Deng et al. 2014)

–– ClyA (HlyE, SheA) (Oscarsson et al. 2002; Wallace et al. 2000):

•	 Pore-forming cytolysin; found in S. Typhi and S. Paratyphi
•	 Encoded by SPI-18
•	 Homologues found in E. coli and S. flexneri

•	 Evasion of host immune system (Keestra-Gounder et al. 2015):

–– S. Typhi can evade the host innate immune system:

⚬⚬ Ability to grow and disseminate within macrophage

•	 Mig-14; VirK (Brodsky et al. 2005):

–– Important for survival within host macrophage
–– Blocks binding of CRAMP (cathelin-related antimicrobial peptide); 

high levels in macrophages
–– Provides resistance to the antimicrobial peptides polymyxin B and 

protegrin-1

•	 Blocks recruitment of phagocyte NADPH oxidase to SCV (Vazquez-
Torres et al. 2000)

⚬⚬ Vi capsular polysaccharide antigen expression (Raffatellu et al. 2006):

•	 Contains polymers of α-1,4 (2-deoxy)-2-N-acetylgalacturonic acid
•	 Biosynthetic genes are located on SPI-7, which is absent in non-Typhi 

serovars
•	 Blocks opsonophagocytosis and neutrophil infiltration
•	 Increases resistance to complement-mediated lysis

⚬⚬ Repression of flagella expression:

•	 Lack of flagella blocks TLR5-dependent inflammation
•	 Mediated by the TviA auxiliary regulatory protein; represses flagella 

and induces capsule formation (Winter et al. 2009)
•	 TviA expression is autoregulated in conjunction with the RcsB response 

regulator of the RcsC-RcsD-RcsB TCS
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–– S. Typhimurium and S. Enteritidis cannot evade the host immune system:

⚬⚬ Toll-like receptors (TLRs) recognize the PAMPs LPS (TLR4) and flagellin 
(TLR5); induce pro-inflammatory pathways

⚬⚬ T3SS-1 secretes effectors that induce cytokine secretion; leads to neutro-
phil infiltration and the inflammatory symptoms associated with non-Typhi 
infections

⚬⚬ Also functions to contain the localized infection, blocking dissemination

�Regulation of Virulence Factor Expression

•	 Highly complex, interdependent transcriptional regulation involving many tran-
scriptional regulatory factors, two-component phosphorelay systems (TCSs), 
and quorum-sensing (QS) systems (Fabrega and Vila 2013)

•	 Primarily associated with differential expression of the virulence factors encoded 
in SPI-1, SPI-2, and the pSLT virulence plasmid

•	 HilA:

–– Transcription activator
–– Encoded within SPI-1
–– Plays a major role in invasion:

⚬⚬ hilA deletion phenotypes mimic SPI-1 deletion phenotypes
⚬⚬ HilA activates the expression of all of the T3SS-1 genes encoded in SPI-1
⚬⚬ Expression of HilA is affected by all the TCSs and the environmental sig-

nals encountered by S. enterica cells
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Chapter 28
Shigella spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Shigella flexneri serotype 2a chromosome: 4,607,203  bp; 4434 predicted 
ORFs (Jin et al. 2002):

⚬⚬ pCP301 virulence plasmid: 221,618 kb; 267 predicted ORFs

•	 Similar virulence plasmids (pINV) are found in all pathogenic Shigella 
spp. (The et al. 2016)

•	 Contains ~31 kb pathogenicity island (SHI) that encodes ~34 genes that 
are necessary and sufficient for virulence, including the Mxi-Spa Type 
3 secretion system (T3SS)

–– Shigella dysenteriae serotype 1 chromosome: 4,369,232 bp; 4557 predicted 
ORFs (Yang et al. (2005); genomic sequences for S. sonnei and S. boydii are 
also included)

•	 Cell morphology:

–– Rod-shaped cells (Fig. 28.1)
–– No flagellar motility

⚬⚬ Flagellar genes are inactivated
⚬⚬ Actin-based motility (ABM) is used within and between host cells (see 

below)

–– Lipopolysaccharide (LPS):

⚬⚬ Immunostimulatory
⚬⚬ Associated with inflammation and endotoxic shock
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•	 Gram stain:

–– Gram negative

•	 Growth:

–– Facultative anaerobes; oxidase negative
–– Found in fecal-contaminated food and water; endemic in tropical and sub-

tropical regions
–– Four groups: phylogenetically almost identical to enteroinvasive E. coli 

(EIEC)
–– Sequence analyses indicate that pathogenic Shigella spp. evolved from nonin-

vasive E. coli ancestor through the acquisition of virulence genes on plasmids 
and pathogenicity islands by horizontal gene transfer and the loss of anti-
virulence genes, such as porins, flagella, and fimbriae (Prosseda et al. 2012; 
Schroeder and Hilbi 2008)

⚬⚬ Shigella dysenteriae: Group A (15 serotypes; based on LPS O-antigens)
⚬⚬ Shigella flexneri: Group B (19 serotypes)
⚬⚬ Shigella boydii: Group C (19 serotypes)
⚬⚬ Shigella sonnei: Group D (1 serotype)

�Disease States Associated with Shigella spp.

•	 Shigellosis (bacillary dysentery):

–– Human-adapted invasive disease; highly specific for primates
–– Transmission: fecal–oral route; contaminated food or water

Fig. 28.1  S. dysenteriae cells in stool exudate (From: PHIL #6659)

28  Shigella spp.



365

–– Invades and destroys intestinal epithelial cells (IECs) within the colon
–– 5–15% of all diarrheal cases worldwide; ~150 million cases/year
–– Localized infections; no dissemination throughout the host
–– Highly infectious; ~10–100 cells infective dose; acid resistant, so can survive 

transit through the stomach
–– Symptoms: inflammatory; moderate to severe diarrhea

⚬⚬ Early symptoms: fever, watery diarrhea, cramping, abdominal pain
⚬⚬ Later symptoms: bacillary dysentery – bloody, mucous-filled diarrhea

–– Shigella dysenteriae:

⚬⚬ Expresses Shiga toxin [serotypes 1, 4 (rare)]
⚬⚬ Can lead to hemolytic uremic syndrome (HUS); uncommon in the USA

•	 Lysis of red blood cells; low platelet count; kidney failure
•	 Symptoms: vomiting, bloody diarrhea, lethargy, purpura, weakness
•	 Leads to dehydration, anemia, and uremia

⚬⚬ Can lead to inflammation-dependent neurological effects, such as seizures, 
paralysis, blindness

–– Shigella flexneri:

⚬⚬ Expresses ShET1 and ShET2 enterotoxins
⚬⚬ Most common disease isolates outside the USA; 60% of the cases in devel-

oping nations

–– Shigella sonnei:

⚬⚬ Common infections in children <5 years old
⚬⚬ Most common disease isolates in USA; 77% of cases in developed nations

�Virulence Factors (Carayol and Tran Van Nhieu 2013; 
Mattock and Blocker 2017; Schroeder and Hilbi 2008)

•	 Facultative intracellular pathogen
•	 Adherence to host cells:

–– Fimbrial adhesins: none

⚬⚬ Fimbriae genes are inactivated
⚬⚬ Lack of fimbriae (and flagella) provide cells with the ability to evade the 

TLR-dependent host innate immune system

–– Non-fimbrial adhesins:

⚬⚬ IcsA (VirG) (Brotcke Zumsteg et al. 2014):

•	 Dual-function protein:

–– Adhesin activity

Virulence Factors
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–– Induced by the presence of bile salts
–– Helps Type 3 secretion system (T3SS)-based invasion
–– Nucleates actin-based motility (see below)

⚬⚬ OspE1, OspE2 (Faherty et al. 2012b):

•	 Outer membrane proteins
•	 Interact with integrin-linked kinase (ILK) at focal adhesions
•	 Induced by bile salts
•	 Secreted through T3SS

•	 Host cell invasion: multistep process (Fig. 28.2):

–– Penetration of host mucus layer:

⚬⚬ Expresses mucinases and neuraminidases (Haider et al. 1993); disruption 
of the mucosal layer can also lead to intestinal fluid accumulation.

⚬⚬ Pic (Henderson et al. 1999):

•	 Serine protease; mucinase activity
•	 Auto-secreted protein; belongs to SPATE (serine protease autotrans-

porters of Enterobacteriaceae) family (Dautin 2010)
•	 Encoded in pathogenicity island SHI-1 (she) in S. flexneri 2A and S. 

sonnei; not found in S. flexneri 5A
•	 Contributes to serum resistance by unknown mechanism

Fig. 28.2  Host cell invasion process (From: The et al. 2016)
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⚬⚬ SepA (Shigella extracellular protein A) (Benjelloun-Touimi et al. 1995):

•	 SPATE protease; enterotoxic activity
•	 Encoded on pINV virulence plasmid

⚬⚬ EatA:

•	 Homologous to enterotoxigenic E. coli EatA
•	 Predicted to degrade MUC2 mucin

–– M cell transcytosis:

⚬⚬ Invasion and passage through M cells within intestinal Peyer’s patches
⚬⚬ Stays within endosome for transit; little is known about the mechanism 

(Adam 2001)

–– Macrophage phagocytosis and pyroptosis:

⚬⚬ After transcytosis across M cells, Shigella cells are phagocytosed by sub-
mucosal macrophage

⚬⚬ Rapidly lyse phagosomes and induce IpaB-dependent macrophage 
pyroptosis:

•	 Due to binding and activation of caspase-1 by IpaB (see below)
•	 Releases pro-inflammatory cytokines IL-1β and IL-18, resulting in the 

inflammatory response associated with shigellosis

⚬⚬ Macrophage pyroptosis releases Shigella into the submucosal space, where 
it can reinvade colonic IECs

–– Reinvasion of IECs from basolateral side:

⚬⚬ Uses a trigger mechanism with the Mxi-Spa T3SS; similar to the Salmonella 
enterica mechanism:

•	 Effector proteins promote actin cytoskeletal rearrangements, resulting 
in localized filopodia and lamellipodia formation (membrane ruffles)

•	 Membrane ruffles mediate engulfment through macropinocytosis

⚬⚬ Mxi-Spa T3SS (Fig. 28.3):

•	 Mxi (membrane excretion of Ipa) and Spa (surface presentation of anti-
gens) genes:

–– Structural and assembly proteins of T3SS
–– MxiH: needle structural subunit

•	 IpaB, IpaC, IpaD:

–– Translocator proteins
–– Localized to the T3SS tip complex in the presence of bile salts
–– Regulate the binding to filopodia on IECs and the secretion of 

effectors
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–– Complex binds to α5β1 integrin receptor within cholesterol-rich 
lipid rafts in IEC membranes

–– IpaB (Picking and Picking 2016):

⚬⚬ Multifunctional protein
⚬⚬ Forms the pore complex (translocon) with IpaC that is necessary 

for effector secretion
⚬⚬ Binds to cholesterol and host hyaluronic acid receptor CD44 

within the IEC membrane; plays a role in recognition of IEC 
membrane

⚬⚬ Binding and activation of cytosolic caspase-1 induce macrophage 
pyroptosis

⚬⚬ Also promotes survival within infected IECs by inducing cell 
cycle arrest (see below)

⚬⚬ Stabilized in the Shigella cytoplasm by forming a heterodimeric 
complex with the IpgC chaperone

–– IpaC (Nhieu et al. 1999):

⚬⚬ Forms the pore complex (translocon) with IpaB that is necessary 
for effector secretion

Fig. 28.3  T3SS effectors 
(From: Rottner et al. 2005)
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⚬⚬ Induces Arp2/Arp3-dependent actin polymerization through acti-
vation of a Cdc42 GTPase-dependent and Src kinase-dependent 
signaling cascade (Mounier et al. 2009)

⚬⚬ Major role in lysing phagosome (see below)

–– IpaD (Espina et al. 2006):

⚬⚬ Forms a homopentameric structure
⚬⚬ Major component of tip complex
⚬⚬ Binds bile salts; induces invasion

⚬⚬ IpaA (Bourdet-Sicard et al. 1999):

•	 Binds and activates host vinculin; reinforces actin cytoskeleton interac-
tions with host integrins during the invasion process

•	 Also induces actin depolymerization post-invasion

⚬⚬ IpgD (Niebuhr et al. 2002):

•	 Inositol 4-phosphatase
•	 Dephosphorylates phosphatidylinositol 4,5-bisphosphate [PtdIns-(4,5)

P2] to phosphatidylinositol 5-monophosphate [PtdIns-(5)P], facilitates 
uptake into host cells by disrupting cortical actin structures

•	 Also blocks CXCL12-dependent T-cell migration

⚬⚬ IpgB1, IpgB2 (Handa et al. 2007; Killackey et al. 2016):

•	 IpgB1 binds to host ELMO protein:

–– Co-localizes with ELMO and Dock180 in membrane ruffles
–– IpgB1 stimulates membrane ruffling through RhoA–ELMO–

Dock180 complex by acting as a guanine-nucleotide exchange factor 
(GEF) for Rac1 and Cdc42 GTPases

•	 IpgB2 acts as a GEF for RhoA

⚬⚬ Following internalization, the Shigella-containing vacuole (SCV) is rap-
idly disrupted; allows for growth and replication in the IEC cytosol

•	 IpaB, IpaC, IpaD (see above):

–– Form a vacuolytic pore within SCV membrane
–– IpaC plays the major role in this membrane disruption
–– IpaD induces B-cell apoptosis

•	 IpgD (see above):

–– Recruits Rab11 GTPase to site of invasion; needed for subsequent 
SCV rupture and rapid escape from the SCV (Mellouk et al. 2014)
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–– Intracellular growth:

⚬⚬ OmpC; OmpF (Bernardini et al. 1993):

•	 Outer membrane porins
•	 Form hydrophilic channels in membrane
•	 Essential for virulence
•	 Regulated by the EnvZ–OmpR two-component phosphorelay system 

(TCS) in response to osmolarity changes

⚬⚬ Shigella spp. use multiple T3SS effectors to block host cell signaling path-
ways (primarily MAPK and NF–κB signaling) that promote inflammation 
and apoptosis in order to enable replication and survival within the infected 
IECs

•	 Blocks secretion of pro-inflammatory cytokines by disrupting Golgi 
and ER–Golgi trafficking

⚬⚬ IpaB (Iwai et al. 2007):

•	 Interacts with the anaphase-promoting complex (APC) inhibitor 
MAD2L2 (mitotic arrest deficient 2-like protein 2; MAD2B)

•	 Induces a G2/M phase cell cycle arrest; facilitates growth within IECs

⚬⚬ IpaH (Ashida and Sasakawa 2015):

•	 12 ipaH genes; IpaH0722 encoded on the chromosome; IpaH9.8 
encoded on the virulence plasmid

•	 E3 ubiquitin ligase activity; auto-inhibition is released by substrate 
binding

•	 Blocks NF–κB-dependent inflammation; promotes cell survival
•	 Also induces caspase-1-dependent inflammasome activation and mac-

rophage pyroptosis; enhances escape from macrophage

⚬⚬ IpaJ (Burnaevskiy et al. 2013):

•	 Cysteine protease and de-myristoylation activity
•	 Cleaves the ARF1p and ARF2p GTPases at the N-terminal site of 

myristoylation
•	 Leads to Golgi fragmentation

⚬⚬ OspB (Ambrosi et al. 2015):

•	 Activates MAPK pathways, inducing inflammation early in infection
•	 May function with OspF in the nucleus to block MAPK-dependent 

inflammation late in infection
•	 Blocks xenoautophagy

⚬⚬ OspC3 (Kobayashi et al. 2013):

•	 Blocks activation of caspase-4
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•	 Prevents heterodimerization of caspase-4-p19 and caspase-4-p10 
subunits

•	 Inhibits pyroptosis within IECs

⚬⚬ OspF (Li et al. 2007):

•	 Phosphothreonine lyase; removes the phosphate group from MAP 
kinases within the host nucleus

•	 Blocks MAPK activity and downstream NF–κB signaling; blocks 
inflammatory responses

⚬⚬ OspG (Kim et al. 2005):

•	 Ser/Thr kinase activity
•	 Binds to E2~ubiquitin (E2~Ub) complex; inhibits TNFα-dependent 

degradation of IκBα signaling protein; blocks NFκB-dependent 
inflammation

⚬⚬ OspI (Sanada et al. 2012):

•	 Deamidase activity
•	 Inactivates the E2 ubiquitin-conjugating enzyme Ubc13 by converting 

Gln-100 to Glu-100
•	 Blocks TRAF-6 ubiquitin ligase-dependent NF–κB signaling; blocks 

acute inflammation

⚬⚬ OspZ (Newton et al. 2010):

•	 Predicted methyltransferase activity
•	 Blocks nuclear translocation of p65 subunit of NF–κB; blocks NFκB-

dependent acute inflammation

–– Intracellular motility and intercellular dissemination (Agaisse 2016):

⚬⚬ Actin-based motility (ABM) propels cells through the cytoplasm and 
between adjacent IECs; same mechanism as Listeria monocytogenes

⚬⚬ Intercellular spread requires the generation of cell protrusions at cell–cell 
junctions; mediated by host proteins (Valencia-Gallardo et al. 2015)

⚬⚬ IcsA (VirG) (Brotcke Zumsteg et al. 2014; Egile et al. 1999):

•	 Autotransporter protein
•	 Polar localization in outer cell membrane; depends on IcsP and LPS; 

important for unidirectional ABM
•	 Mimics the Cdc42p GTPase by binding and autoactivating its effector, 

neural Wiskott–Aldrich syndrome protein (N-WASP)
•	 Induces ARP2-/ARP3-dependent actin polymerization

⚬⚬ IcsB (Campbell-Valois et al. 2015; Campbell-Valois and Pontier 2016):

•	 Plays a role in autophagy escape:

–– Protects IcsA/VirG from ATG8-/LC3-dependent and Atg5-dependent 
xenoautophagy recognition during cell-to-cell dissemination
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–– Blocks Atg5 binding to IcsA/VirG

•	 Functions with VirA to facilitate escape from LC3-containing vacuoles
•	 Binds cholesterol

⚬⚬ VirA (Campbell-Valois et al. 2015; Campbell-Valois and Pontier 2016):

•	 GTPase-activating protein (GAP) for Rab GTPases
•	 Blocks recruitment of autophagy protein ATG8/LC3 during cell-to-cell 

dissemination
•	 Functions with IcsB to facilitate escape from LC3-containing vacuoles
•	 Also induces the degradation of p53; blocks apoptosis

–– Neutrophil recruitment (Schroeder and Hilbi 2008):

⚬⚬ Growth of Shigella inside IECs induces IL-8 chemokine production
⚬⚬ Leads to massive infiltration of neutrophils:

•	 Kills Shigella and resolves infection; blocks dissemination to deeper 
tissues

•	 Neutrophil elastase: degrades IpaB, IpaC, and IcsA; blocks phagosome 
destruction (Averhoff et al. 2008)

•	 Neutrophils also contribute to the destruction of the intestinal epithelial 
layer – bacillary dysentery symptoms

•	 Iron acquisition (Wei and Murphy 2016):

–– Essential for intracellular growth
–– Fe+3 siderophores:

⚬⚬ Enterobactin:

•	 Not expressed in S. flexneri or S. boydii due to mutational inactivation

⚬⚬ Salmochelin:

•	 Only expressed in S. dysenteriae

⚬⚬ Aerobactin:

•	 Variants are encoded on SHI-2 and SHI-3
•	 IucABCD operon: biosynthesis genes; not expressed in S. dysenteriae

⚬⚬ Ferric dicitrate:

•	 Uptake system
•	 Encoded by fec genes encoded on SRL pathogenicity island

–– Heme uptake system:

⚬⚬ Shu system:

•	 Direct binding of heme or heme-containing proteins to ShuA receptor
•	 Expressed in S. dysenteriae and S. sonnei
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–– Fe+2 uptake:

⚬⚬ Feo, Sit, Efe systems:

•	 Direct binding of Fe+2 to inner membrane receptors

–– Expression is regulated by Fe+2-bound Fur repressor and RhyB sRNA 
molecules

•	 Damage to host cells:

–– LPS:

⚬⚬ Endotoxin activity
⚬⚬ Bacteremia triggers TLR4-dependent inflammatory reactions that lead to a 

cytokine storm and septic shock

–– Shiga toxin (Stx; verotoxin) (Lee et al. 2016; Melton-Celsa 2014):

⚬⚬ Only expressed in Shigella dysenteriae serotype 1 (serotype 4 rarely)
⚬⚬ Homologues are expressed in enterohemorrhagic E. coli strains (Stx1a, 

Stx2a)
⚬⚬ A-B5 exotoxin:

•	 Encoded by stx operon on lysogenic bacteriophage
•	 A subunit:

–– Cleaved by furin or furin-like proteases into A1 and A2 subunits
–– Held together by disulfide bond, which is disrupted within the host 

ER; A1 enters the host cytosol
–– A1 has catalytic activity; A2 binds to B subunits
–– N-glycosidase catalytic activity:

⚬⚬ Removes an adenine residue from the 28S rRNA of the 60S 
ribosome

⚬⚬ Blocks binding to translation elongation factor 1 (EF1); inhibits 
host protein translation

⚬⚬ Leads to ribotoxic stress response and ER stress response
⚬⚬ Induces inflammation, apoptosis, autophagy (Fig. 28.4)

•	 B subunits:

–– Forms homopentameric ring structure
–– Binds to glycosphingolipid globotriaosylceramide (Gb3; CD77) in 

cholesterol-containing lipid rafts

⚬⚬ Gb3: ceramide lipid connected to [α-gal(1→4)-β-gal(1→4)-β-
glc] trisaccharide (Lindberg et al. 1987)

–– Induces membrane invagination and internalization in endosomes
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–– ShET1 (Fasano et al. 1995):

⚬⚬ Dimeric protein
⚬⚬ Encoded by set1A and set1B genes within the SHI-1 pathogenicity island; 

only encoded in S. flexneri
⚬⚬ Associated with watery diarrhea symptoms associated with S. flexneri 

infections (Faherty et al. 2012a)

–– ShET2 (Nataro et al. 1995):

⚬⚬ Encoded by ospD3 (sen) gene on virulence plasmid; only encoded in S. 
flexneri

⚬⚬ Secreted by T3SS
⚬⚬ Associated with watery diarrhea symptoms associated with S. flexneri 

infections (Faherty et al. 2012a)

–– SigA (Al-Hasani et al. 2000, 2009):

⚬⚬ SPATE protease
⚬⚬ Cleaves host fodrin
⚬⚬ Enterotoxic activity; plays a role in fluid accumulation
⚬⚬ Encoded on SHI-1
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Fig. 28.4  Stx cellular effects (From: Lee et al. 2016)

28  Shigella spp.



375

�Regulation of Virulence Factor Expression

•	 Regulation occurs in response to environmental factors within the human host; 
temperature, pH, osmolarity, iron concentrations (Fig. 28.5) (Di Martino et al. 
2016; Picker and Wing 2016; Schroeder and Hilbi 2008)

–– H-NS (Picker and Wing 2016):

⚬⚬ Histone-like nucleoid-structuring protein; H-NS paralogs StpA, Sfh
⚬⚬ Binds to A-T-rich regions of DNA; oligomerizes along DNA, forming 

large H-NS:DNA complexes
⚬⚬ Complexes silence the expression of virulence genes on the virulence plas-

mid under non-host conditions; <37°C; pH <7.4; low osmolarity
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Fig. 28.5  Transcriptional regulation of virulence factors (From: Di Martino et al. 2016)
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⚬⚬ At <37°C, H-NS:DNA complexes induce DNA bending that precludes 
RNA polymerase binding to promoter sequences; acts as a thermosensor

⚬⚬ At 37°C, DNA bending within the virF promoter is relaxed; allows RNA 
polymerase binding and triggers VirF expression; also involves the FIS and 
INH transcription factors

–– VirF (Di Martino et al. 2016):

⚬⚬ Master regulator of virulence gene expression
⚬⚬ Member of the AraC family of transcription activators
⚬⚬ pH changes affect VirF expression; mediated by the CpxA-CpxR TCS
⚬⚬ Directly activates the transcription of the VirB anti-silencing factor as well 

as the IcsA actin nucleator (see above)

–– VirB:

⚬⚬ Acts by transcriptional anti-silencing; relieves H-NS silencing, thereby 
leading to the transcriptional induction of >30 plasmid-encoded virulence 
genes

•	 Induces the expression of an initial set of genes, including the T3SS and 
its effectors (Fig. 28.5)

•	 Induces the expression of the MxiE transcription factor

–– MxiE:

⚬⚬ Binds to IpgG co-activator
⚬⚬ Induction of the T3SS triggers MxiE-IpgG to transcriptionally activate the 

expression of a secondary set of T3SS effectors

–– sRNA riboregulators (Fris and Murphy 2016):

⚬⚬ Function in rapid responses to changes in environmental conditions
⚬⚬ CsrB-CsrC (carbon metabolism); RnaG (temperature); RyhB (iron avail-

ability); 5′ UTR of ShuA (ribothermometer for heme uptake)
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Chapter 29
Treponema spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Treponema pallidum chromosome: 1,138,006  bp; 1041 predicted ORFs 
(Fraser et al. 1998)

•	 Cell morphology:

–– Thin (0.2 μm), long (6–15 μm) spirochete (Fig. 29.1):

⚬⚬ Tightly coiled corkscrew shape (Charon et al. 2012)
⚬⚬ Three to six endoflagella (axial filaments):

•	 Anchored at both ends of the cell and run lengthwise between the inner 
and outer membranes in the periplasmic space; enclosed in outer sheath

•	 Causes twisting motion used for motility; important for dissemination 
in host

•	 Endoflagella subunits (Champion et  al. 1990; Lafond and Lukehart 
2006):

–– FlaB1, FlaB2, and FlaB3 – flagellar core
–– FlaA subunit – outer sheath

–– Outer membrane – very fragile:

⚬⚬ No LPS (endotoxin)
⚬⚬ Not tightly associated with underlying peptidoglycan and cellular 

membrane

•	 Gram stain:

–– Gram negative: no LPS
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•	 Growth:

–– Anaerobic or microaerophilic growth; no catalases or oxidases
–– Slow grower (30–50 h doubling time); metabolically crippled:

⚬⚬ No Kreb’s cycle or electron transport chain; gets ATP from glycolysis
⚬⚬ No genes for synthesis of nucleotides, fatty acids, vitamins, cofactors, or 

amino acids; gets most of its nutrients through transport, not biosynthesis

–– Reservoir: humans (T. pallidum); survives poorly outside human host
–– At least 33 species – four Treponema pallidum subspecies and T. denticola are 

human pathogens:

⚬⚬ T. pallidum subsp. pallidum: causes syphilis; sexually transmitted disease
⚬⚬ T. pallidum subsp. endemicum: causes bejel (endemic syphilis); chronic 

disease of skin and tissues, usually found in arid environment
⚬⚬ T. pallidum subsp. carateum: causes pinta; skin disease; usually found in 

Central America and South America
⚬⚬ T. pallidum subsp. pertenue: causes yaws; non-sexually transmitted infec-

tion of skin, bones, and joints; usually found in the tropics
⚬⚬ T. denticola: oral pathogen; periodontitis

Fig. 29.1  T. pallidum 
cells; Levaditi stain (From: 
PHIL #2144)

29  Treponema spp.
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�Disease States Associated with Treponema pallidum

•	 Syphilis (Lafond and Lukehart 2006):

–– Sexually transmitted infection
–– Inflammatory disease of blood vessels and perivascular areas
–– Transmission requires direct skin or mucous membrane contact with infec-

tious secretions from syphilitic lesions
–– Chronic disease: T. pallidum cells can persist for decades inside human hosts 

despite intense immune response
–– If untreated, disease has three stages:

⚬⚬ Primary stage:

•	 Localized infection
•	 Sensitive to penicillins
•	 Transmission  – most often via genital contact; can be contracted in 

mouth, anal area, or other areas of skin:

–– Enters through breaches in the skin or penetrates mucous membranes

•	 Multiplies quickly, disseminates through bloodstream from original 
infection site; can invade many tissue types

•	 T. pallidum lipoproteins induce an inflammatory reaction in host blood 
vessels and capillary system at the original site of infection

•	 Chancre appears 3–4 weeks postinfection (Fig. 29.2):

–– Ulcerated but typically non-purulent syphilitic lesion at the original 
site of infection

–– Usually not painful, so it can often be overlooked if it is located in 
areas that are not visible (e.g., anal or cervical area)

–– Usually spontaneously heals in 4–6 weeks

•	 Also leads to regional lymphadenopathy

Fig. 29.2  Primary syphilis 
chancre (From PHIL 
#6758)

Disease States Associated with Treponema pallidum
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⚬⚬ Secondary stage:

•	 Two to 20 weeks postinfection (if there is no treatment)
•	 Sensitive to penicillins
•	 Fever, sore throat, and generalized lymphadenopathy
•	 Disseminated mucocutaneous rash: trunk, palms of the hands, and soles 

of the feet; crusting over (Fig. 29.3)
•	 Condylomata lata:

–– Wart-like lesions on arms and genitals
–– ~5% of patients

•	 Can lead to kidney damage and arthritis; due to deposition of antibody-
antigen complexes

•	 If there is no treatment; patient enters latency period:

–– After 4–10 years: ~70% of patients will display no progression of 
the disease

–– The other ~30% of the patients will go on to tertiary stage

⚬⚬ Tertiary stage:

•	 Non-infectious period; symptoms are due to immunological reactions
•	 Insensitive to penicillins
•	 Gummas: necrotic granulomatous lesions mostly on skin and bones
•	 Cardiovascular syphilis; aneurysms
•	 Neurosyphilis: paralysis with dementia, seizures, blindness, meningitis, 

and other neurological symptoms

Fig. 29.3  Secondary 
syphilis lesions (From: 
PHIL #6756)

29  Treponema spp.
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⚬⚬ Congenital syphilis:

•	 T. pallidum cells passes through the placenta
•	 Infants can be born with secondary or tertiary syphilis

⚬⚬ Chronic syphilis:

•	 Can lead to spontaneous abortion, stillbirth, death of the neonate, or 
disease in the infant

•	 T. pallidum cells can disseminate to immune-privileged sites and evade 
the immune system

•	 Rare outer membrane proteins (Tpr proteins) are poorly antigenic; 
immunogenic proteins are usually periplasmic or attached to the inner 
membrane and only uncovered after Treponema cell death

�Virulence Factors (Radolf et al. 2016)

•	 Adherence to host cells and extracellular matrix (ECM):

–– Extracellular pathogen, so adherence to host cells is important for infection
–– Afimbrial adhesins:

⚬⚬ Bind to ECM components
⚬⚬ Tp0155, Tp0483, and Tp0136 (Brinkman et  al. 2008; Cameron et  al. 

2004):

•	 Fibronectin-binding proteins

⚬⚬ Tp0751 (Cameron 2003):

•	 Laminin-binding protein

⚬⚬ BamA (Desrosiers et al. 2011):

•	 Outer membrane protein
•	 Part of complex that inserts OMPs into the outer membrane

•	 Dissemination and growth within the host:

–– Capable of rapid dissemination and invasion of body tissues
–– Motility essential for dissemination and invasion
–– Induce host collagenase (MMP-1); breaks down ECM collagen barrier 

(Chung et al. 2002)
–– Iron acquisition: can bind to host transferrin and lactoferrin (Alderete et al. 

1988)

•	 Host cell damage:

–– No known exotoxins
–– No LPS (endotoxin) but still induces host inflammatory responses: major 

mechanism for host cell and tissue damage

Virulence Factors
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–– TpN15, TpN17, and TpN47 (Brightbill et al. 2006; Chung et al. 2002):

⚬⚬ Lipoproteins recognized by TLR-2 on target cells
⚬⚬ Activate signal transduction pathways that lead to the production of pro-

inflammatory cytokines

•	 Evasion of host immune system:

–– Few integral outer membrane proteins; helps avoid antibody-based immune 
detection (Salazar et al. 2002)

–– TprK (Centurion-Lara et al. 2004):

⚬⚬ Outer membrane protein undergoes extensive antigen variation; helps 
avoid immune detection
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Chapter 30
Vibrio spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Vibrio cholerae El Tor N16961 chromosomes (Heidelberg et al. 2000):

⚬⚬ Chromosome 1: 2,961,151 bp; 2770 predicted ORFs; contains most of the 
genes involved in pathogenicity and essential cell functions

⚬⚬ Chromosome 2: 1,072,914 bp; 1115 predicted ORFs

–– Vibrio vulnificus strain YJ016 chromosomes (Chen et al. 2003):

⚬⚬ Chromosome 1: 3,354,505 bp; 3262 predicted ORFs; contains most of the 
genes involved in pathogenicity and essential cell functions

⚬⚬ Chromosome 2: 1,857,073 bp; 1697 predicted ORFs

–– Vibrio parahaemolyticus strain RIMD2210633 chromosome (Makino et al. 
2003):

⚬⚬ Chromosome 1: 3,288,558 bp; 3080 predicted ORFs; contains most of the 
genes involved in pathogenicity and essential cell functions

⚬⚬ Chromosome 2: 1,877,212 bp; 1752 predicted ORFs

•	 Cell morphology:

–– Curved rods (Fig. 30.1)
–– Flagellar motility:

⚬⚬ Polar flagella with sheaths
⚬⚬ Monopolar (V. cholerae), peritrichous, or lophotrichous
⚬⚬ Essential for attachment, virulence, and biofilm formation (Watnick et al. 

2001)
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–– LPS: endotoxin

⚬⚬ Responsible for cytokine-induced shock associated with Vibrio infections
⚬⚬ Modified by glycine addition; this changes the charge of the outer mem-

brane, which affects immune recognition; modifications are regulated by 
the VprA-VprB TCS (Herrera et al. 2014)

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Facultative anaerobes; oxidase positive
–– Halophilic marine microbes: typically found in seawater associated with con-

taminated water or seafood
–– Exists in the environment as either individual planktonic cells or colonized 

within biofilms on chitin-covered zooplankton, crustaceans, and/or 
phytoplankton

–– Biofilms (Teschler et al. 2015):

⚬⚬ Essential for environmental persistence, dissemination, transmission
⚬⚬ Vibrio polysaccharide (VPS): comprises 50% of the biofilm mass
⚬⚬ Flagella and type IV pili function in adherence within biofilms (Utada 

et al. 2014)

–– Species: ~110 species; three major human pathogens; V. cholerae, V. vulnifi-
cus, V. parahaemolyticus

Fig. 30.1  V. cholerae cells 
(From: PHIL #5324)

30  Vibrio spp.
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⚬⚬ V. cholerae: different serotypes are associated with cholera outbreaks

•	 V. cholerae (O1): pandemic cholera:

–– Subgroups are based on LPS O-antigen serotypes – Inaba (A, B), 
Ogawa (A, C), Hikojima (A, B, C)

–– Biotypes: Classic and El Tor (twentieth century)
–– Phage types: >100 vibriophage

•	 V. cholerae (O139): epidemic cholera in India, 1992
•	 V. cholerae (non-O1/non-O139): much milder diarrhea; do not aggluti-

nate with O1 antibodies
•	 V. cholerae virulence evolution is primarily due to extensive horizontal 

gene transfer (HGT) mechanisms; binding to chitin on zooplankton can 
activate DNA uptake machinery:

–– All pathogenic V. cholerae strains have the CTXϕ bacteriophage and 
the pathogenicity islands VPI-1 and VPI-2:

⚬⚬ CTXϕ lysogenic bacteriophage:

•	 Encodes cholera toxin, Ace toxin, and Zot virulence factor
•	 Differs among Vibrio serotypes

⚬⚬ Vibrio pathogenicity island-1 (VPI-1) (Faruque and Mekalanos 
2003):

•	 Encodes the Tcp pilus: essential for host cell attachment; 
receptor for CTXϕ bacteriophage

•	 Encodes the ToxT transcription factor and the TcpP-TcpH 
TCS (see below)

⚬⚬ VPI-2 (Faruque and Mekalanos 2003):

•	 Encodes NanH neuraminidase

�Disease States Associated with Vibrio spp.

•	 Vibrio cholerae:

–– Cholera:

⚬⚬ Greatest epidemic disease of the nineteenth century
⚬⚬ Brought about great changes in public health and sanitation of drinking 

water

–– Noninvasive, toxigenic pathogen
–– Affects epithelial cells in the small intestine
–– Signs and symptoms: primarily associated with the action of cholera toxin

Disease States Associated with Vibrio spp.
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⚬⚬ Watery diarrhea:

•	 “Rice water” stools
•	 Clear, watery stool containing flecks of mucus and epithelial cells; fishy 

odor

⚬⚬ Very, rapid onset with duration of ~5 days
⚬⚬ In serious cases, patients can lose up to 1 l of water/h
⚬⚬ Without rigorous fluid replacement, death is due to dehydration, electro-

lyte loss, and metabolic acidosis

•	 Vibrio vulnificus:

–– Highly invasive pathogen

⚬⚬ ~50% mortality rate
⚬⚬ Responsible for ~95% of seafood-related deaths in the USA

–– Found associated with shrimp, fish, oysters, clams
–– Transmission: ingesting contaminated seafood (primarily raw oysters) or 

through open wounds exposed to saltwater
–– Signs and symptoms:

⚬⚬ Seven to 16 h post-consumption
⚬⚬ Fever, chills, nausea, hypotensive septic shock
⚬⚬ Formation of secondary blister-like lesions on extremities; rapidly spread-

ing necrosis (Fig. 30.2)

Fig. 30.2  V. vulnificus 
necrosis (From: Hsueh 
et al. 2004)

30  Vibrio spp.
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•	 Vibrio parahaemolyticus:

–– Acute seafood-borne gastroenteritis (vibriosis)
–– Invasive pathogen; primarily affecting epithelial cells in the colon
–– Transmission: ingesting contaminated seafood (primarily raw oysters)
–– Signs and symptoms:

⚬⚬ Twenty-four hours post-consumption; relatively mild
⚬⚬ Explosive, watery diarrhea
⚬⚬ May be accompanied by nausea, vomiting, abdominal cramps

�Virulence Factors

•	 Vibrio cholerae:

–– Colonization on chitin-covered zooplankton or phytoplankton:

⚬⚬ Chitin:

•	 Insoluble polymer of β1,4-linked N-acetylglucosamine (GlcNAc)
•	 Second most abundant polysaccharide in nature
•	 Major component of crustacean exoskeletons
•	 V. cholerae and other Vibrio spp. can utilize chitin as a carbon, nitrogen, 

and energy source
•	 In the presence of chitin, V. cholerae upregulates the synthesis of two 

secreted chitinases (ChiA-1, ChiA-2), a chitin porin (ChiP), and a 
chitin-regulated type IV pilus (ChiRP), which functions as an fimbrial 
adhesin in binding to chitin surfaces (Meibom et al. 2004)

•	 Multiple chitin-binding proteins function in attachment:

–– ChiRP, MSHA, GpbA, FrhA
–– These proteins also function in adherence to human epithelial cells 

and play a role in biofilm formation (see below)

–– Colonization of human hosts:

⚬⚬ Gains access to the small intestine either as planktonic cells or part of 
microcolonies or biofilm, which protects against acid environment within 
the stomach

⚬⚬ Flagella: needed for movement through the host mucus layer
⚬⚬ Mucinases: degrades mucin, ECM fibronectin

Virulence Factors
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–– Adherence to host cells (Almagro-Moreno et al. 2015):

⚬⚬ Fimbrial adhesins:

•	 Maltose-sensitive hemagglutinin (MSHA) (Utada et al. 2014):

–– Type IV pilus
–– Binds sialic acid sugars on host cells and chitin polymers
–– Similar functions as chitin-regulated pilus ChiRP (see above)
–– Mediates binding of V. cholerae to secretory immunoglobulin A 

(s-IgA); binding blocks penetration of mucus barriers and attach-
ment to epithelial cells:

⚬⚬ Repression of MSHA expression by the ToxT transcription factor 
(see below) protects against s-IgA (Hsiao et al. 2006).

–– Important for biofilm formation

•	 Tcp (Toxin co-regulated pili) (Thelin and Taylor 1996):

–– Type IV pili
–– Acts as a receptor for CTXϕ bacteriophage
–– Also functions in protein secretion
–– Expression is co-regulated with cholera toxin genes by the ToxT 

transcription factor (see below)

⚬⚬ Afimbrial adhesins:

•	 Mam7 (multivalent adhesion molecule 7) (Krachler and Orth 2011):

–– Binds fibronectin and membrane phosphatidic acid
–– Also found in V. parahaemolyticus

•	 OmpU (Goo et al. 2006; Sperandio et al. 1995):

–– Fibronectin-binding protein
–– Found in all Vibrio spp.

•	 GpbA (Bhowmick et al. 2008):

–– Binds to N-acetylglucosamine (GlcNAc), the monomeric sugar that 
comprises polymeric chitin, on zooplankton (Kirn et al. 2005)

–– Also interacts with GlcNAc residues within mucin surrounding 
human epithelial cells

–– Important for biofilm formation
–– Also found in V. parahaemolyticus

•	 FrhA (Syed et al. 2009):

–– Flagella-regulated hemagglutinin A
–– Binds to N-acetylglucosamine (chitin) on zooplankton and human 

epithelial cells
–– Important for biofilm formation

30  Vibrio spp.
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•	 AcfA-D (accessory colonization factors) (Everiss et al. 1994; Hughes 
et al. 1995):

–– Chemotaxis regulatory proteins that are important for colonization
–– Part of the ToxT regulon (see below)

•	 NanH:

–– Neuraminidase
–– Binds host sialic acid residues on glycoproteins
–– Degrades host gangliosides to form GM1 gangliosides

–– Dissemination in host:

⚬⚬ Disrupts tight junctions (TJs); increases paracellular permeability
⚬⚬ Affects TJ proteins occulin and zonulin (ZO-1), which regulate the host 

actin cytoskeleton

•	 HA/P (hemagglutinin/protease):

–– Cleaves occludin but not ZO-1

•	 Zot (zonula occludens toxin) (Di Pierro et  al. 2001; Fasano 2011; 
Fasano et al. 1995):

–– Mimics host ZO-1; binds ZO-1 receptor
–– Activates PLC/PKC (phospholipase C/protein kinase C) signaling, 

which regulates actin cytoskeleton reorganization

•	 RtxA (Satchell 2015):

–– Member of the MARTX (multifunctional-autoprocessing repeats-in-
toxin) family of toxins

⚬⚬ Unique toxins that encode their own secretion system for bacte-
rial effectors; can be used in lieu of T3SS

⚬⚬ Also found in V. vulnificus but not V. parahaemolyticus, which 
has a T3SS

⚬⚬ Single polypeptide:

•	 Secreted by T1SS
•	 N-terminal glycine-rich repeat domain binds to host receptor 

and forms pores in the membrane
•	 Cysteine protease domain (CPD): cleaves the MARTX toxin, 

releasing effector domain(s) into the host cell
•	 At least ten different effector domains with different 

biochemical functions, e.g., adenylate cyclases, 
ADP-ribosyltransferases

•	 Two to five domains are contained in each MARTX

Virulence Factors
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–– RtxA effector domains:

⚬⚬ Actin cross-linking domain (ACD):

•	 Covalently cross-links G-actin monomers; creates bond 
between lysine 50 and glutamic acid 270

•	 Blocks actin polymerization

⚬⚬ Rho inactivation domain (RID):

•	 Peptidase
•	 Localized to cell membrane
•	 Proteolysis of, as yet unknown, target(s) (presumably Rho-

GEFs) block the activation of Rho GTPase

⚬⚬ Alpha/beta hydrolase (ABH):

•	 Indirectly activates the Cdc42 GTPase by unknown 
mechanism

•	 Antagonizes Rho GTPase

–– Overall RtxA effect is the disruption of actin polymerization and the 
actin cytoskeleton; induces cell rounding and increases paracellular 
permeability

–– Iron acquisition (Payne et al. 2016):
⚬⚬ Fe+2 and Fe+3 are essential nutrients for Vibrio spp.
⚬⚬ Multiple mechanisms for obtaining Fe from environment; reflects different 

environment niches
⚬⚬ Fe+3 siderophores:

•	 Vibriobactin:

–– V. cholerae catechol siderophore
–– Synthesized by nonribosomal peptide synthetase (NRPS) complex

•	 Also, capable of using multiple xenosiderophores in the environment

⚬⚬ Heme receptors: HutA, HutR, and HasR
⚬⚬ Fe+2 transporters: FeoABC
⚬⚬ Fe+3 transporters: FbpABC
⚬⚬ All mechanisms are regulated by the Fe+2 – Fur repressor system

–– Host cell damage:

⚬⚬ Exotoxins:

•	 Cholera toxin (CT) (Cassel and Pfeuffer 1978; Clemens et al. 2011):

–– Encoded on the CTXϕ bacteriophage
–– Part of ToxR regulon (see below)

30  Vibrio spp.
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–– A-B exotoxin:

⚬⚬ One A subunit (CTA): ADP-ribosyltransferase activity
⚬⚬ Five B subunits (CTB): binding subunit; forms ringlike structure

–– CTB ring binds to GM1 gangliosides within lipid raft domains in the 
cell membrane of intestinal epithelial cells in the small intestine 
(Fig. 30.3).

⚬⚬ V. cholerae secretes neuraminidase (see above), which degrades 
host gangliosides to form GM1 gangliosides

–– A–B complex is internalized by endocytosis and transits to the endo-
plasmic reticulum (ER)

–– CTA is released from CTB within ER, where it dissociates into 
CTA-1 and CTA-2 subunits through the reduction of a disulfide bond

–– CTA-1 subunit binds to ADP-ribosylation factor 6 (Arf6) within the 
ER; binding activates CTA-1 catalytic activity
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CTA-1
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Cholera toxin
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Fig. 30.3  Cholera toxin mechanism (From: Clemens et al. 2011)

Virulence Factors



398

–– CTA-1/Arf6 complex ADP-ribosylates the Gαs subunit of the hetero-
trimeric G protein

–– The inactivated Gαs subunit cannot hydrolyze its bound GTP  – 
remains constitutively active

–– Results in constitutive activation of the downstream effector adenyl-
ate cyclase (AC), which converts ATP into cAMP:

⚬⚬ Increases cAMP concentration more than 100-fold

–– cAMP binds to, and activates, protein kinase A (PKA), which phos-
phorylates and activates the cystic fibrosis transmembrane conduc-
tance regulator (CFTR):

⚬⚬ CFTR: membrane ion channel protein; conducts Cl− ions across 
epithelial cell membranes

–– Cl− release, as well as Na+ entry into cells, causes a massive water 
efflux from intestinal epithelial cells – diarrhea

•	 Ace (accessory cholera exotoxin) (Trucksis et al. 1993):

–– Stimulates Ca2+-dependent Cl− secretion
–– Encoded on CTXϕ bacteriophage

•	 NAG-ST (non-agglutinable heat stable enterotoxin) (Arita et al. 1986):

–– Only produced in non-O1 strains
–– Activates guanylyl cyclase; increases cGMP production (Chaudhuri 

et al. 1998)
–– cGMP activates protein kinase G (PKG), which also. phosphorylates 

and activates the CFTR ion channel

•	 Cholix toxin (ChxA) (Awasthi et al. 2013):

–– Only produced in non-O1/non-O139 strains
–– A-B exotoxin:

⚬⚬ ADP-ribosylates translation elongation factor 2 (EF-2)
⚬⚬ Similar to Corynebacterium diphtheriae diphtheria toxin

–– Blocks translation, resulting in cell death

•	 Vibrio cholerae cytolysin (VCC) (Khilwani and Chattopadhyay 
2015):

–– β-barrel pore-forming toxin (β-PFT); similar to S. aureus α-hemolysin
–– Creates anion permeable pores; leads to cytolysis and vacuolation

⚬⚬ Induces cholera symptoms without expression of the cholera 
toxin

–– Also induces apoptosis and pro-inflammatory cytokine production

30  Vibrio spp.
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•	 Vibrio vulnificus (Horseman and Surani 2011; Jones and Oliver 2009):

–– Acid resistant (V. cholerae is acid sensitive):

⚬⚬ Neutralizes low-pH environments using lysine decarboxylase, which 
breaks down lysine to form cadaverine and CO2 (Rhee et al. 2002)

⚬⚬ Lysine decarboxylase:

•	 Encoded by the cadBA operon
•	 Upregulated in low-pH environments

⚬⚬ Cadaverine is also a superoxide radical scavenger; connection between 
acid resistance and oxidative stress

–– Host cell adherence:

⚬⚬ Fimbrial adhesin:

•	 Type IV pili (Paranjpye and Strom 2005):

–– Essential for adherence to epithelial cells, biofilm formation and 
virulence

⚬⚬ Afimbrial adhesins:

•	 IlpA (immunogenic lipoprotein A) (Lee et al. 2010):

–– Adhesin and immunostimulant

•	 OmpU (Goo et al. 2006; Sperandio et al. 1995):

–– Fibronectin-binding protein
–– Found in all Vibrio spp.

–– Host cell damage:

⚬⚬ RtxA1 (VvRtxA) (Lee et al. 2007):

•	 MARTX exotoxin (see V. cholerae RtxA above)
•	 Primary virulence factor for V. vulnificus
•	 Deletion mutants are avirulent
•	 Expression is regulated by the HlyU transcription factor

⚬⚬ VvhA (Kim et al. 1993; Wright and Morris 1991):

•	 Cholesterol-dependent pore-forming hemolysin
•	 Also releases iron from host hemoglobin
•	 Deletion mutants are still cytotoxic; role in virulence is unclear

⚬⚬ VvpE (Chang et al. 2005):

•	 Metalloprotease: destroys type IV collagen
•	 Activates procaspases in the apoptosis pathway
•	 Deletion mutants are still cytotoxic; role in virulence is unclear

Virulence Factors
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–– Iron acquisition (Payne et al. 2016; Simpson and Oliver 1987):
⚬⚬ Increased serum iron levels enhance V. vulnificus virulence

⚬⚬ Fe+3 siderophores:

•	 Vulnibactin:

–– V. vulnificus catechol siderophore
–– Synthesized by a nonribosomal peptide synthetase (NRPS) 

complex

•	 Scavenges iron from transferrin and holotransferrin
•	 Also, capable of scavenging multiple xenosiderophores in the environment

⚬⚬ Heme receptors:

•	 HupA, HvtA: transport hemin
•	 HupA: transports hemoglobin and haptoglobin

⚬⚬ All mechanisms are regulated by the Fe+2–Fur repressor system

–– Evasion of host immune system:

⚬⚬ Capsule (Yoshida et al. 1985):

•	 Blocks opsonophagocytosis and increases serum resistance
•	 Essential for virulence and dissemination in the infected host

•	 Vibrio parahaemolyticus (Lovell 2017; Zhang and Orth 2013):

–– Adherence to host cells:

⚬⚬ MAM7: see V. cholerae MAM7 above
⚬⚬ GbpA: see V. cholerae GbpA above

–– Host cell invasion and growth:

⚬⚬ Uses two T3SS: T3SS1 (all Vibrio spp.) and T3SS2 (V. parahaemolyticus 
clinical isolates); similar to Yersinia spp. Ysc T3SS

⚬⚬ Three characterized T3SS1 effectors:

•	 VopQ (VepA) (Burdette et al. 2009):

–– Functions in generating autophagic vesicles in host cells; protects 
against phagocytosis and apoptosis

–– Blocks inflammasome activation
–– Also induces MAPK signaling pathways

•	 VopS (Yarbrough et al. 2009):

–– Transfers AMP molecule (AMPylation) onto Rho/Rac/Cdc42 
GTPases; blocks interactions with downstream effectors

–– Disrupts actin cytoskeleton, resulting in cell rounding and increased 
paracellular movement

–– Blocks inflammasome activation

30  Vibrio spp.
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•	 VPA0450 (Broberg et al. 2010):

–– Inositol polyphosphate-5-phosphatase
–– Blocks actin binding to host cell membrane

⚬⚬ Five characterized T3SS2 effectors: also found in non-O1/non-O139 V. 
cholerae strains that lack cholera toxin

•	 VopC (Zhang et al. 2012):

–– Deamidates glutamine 61 on Rac and Cdc42 GTPases
–– Constitutively activates the GTPase, leading to actin cytoskeleton 

changes and invasion into non-phagocytic cells

•	 VopV (Hiyoshi et al. 2011):

–– Binds and bundles F actin; role in invasion is unclear

•	 VopL (Yu et al. 2011):

–– Actin nucleation factor
–– Induces stress fibers in host cells

•	 VopA (VopP) (Trosky et al. 2004):

–– Acetylates MAPK kinases; unknown substrate in V. parahaemolyticus
–– Homologue of Yersinia spp. YopJ
–– Unclear which MAPK signaling pathways are affected by VopA/P 

(i.e., cell growth, differentiation, and/or cytokine induction)

•	 VopT (Kodama et al. 2007):

–– ADP-ribosyltransferase
–– Modifies Ras GTPase, which controls multiple MAPK signaling 

pathways

⚬⚬ Iron acquisition (Payne et al. 2016):

•	 Fe+3 siderophores:

–– Vibrioferrin:

⚬⚬ Hydrophilic carboxylate siderophore
⚬⚬ Unlike siderophore in other Vibrio spp. (Yamamoto et al. 1994)

–– Also, capable of using multiple xenosiderophores in the 
environment

–– Scavenges iron from transferrin and holotransferrin

•	 All mechanisms are regulated by the Fe+2–Fur repressor system

Virulence Factors
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–– Host cell damage:

⚬⚬ TDH (thermostable direct hemolysin) (Yanagihara et al. 2010):

•	 Pore-forming cytolysin
•	 Cardiotoxicity and enterotoxicity
•	 Activates intracellular Ca2+ release, which leads to activation of the 

CLCA Cl− channel; water loss and diarrhea
•	 Only found in V. parahaemolyticus

⚬⚬ TRH (TDH-related hemolysin) (Ohnishi et al. 2011):

•	 Heat labile pore-forming cytolysin
•	 ~70% homologous with TDH
•	 Only found in V. parahaemolyticus

�Regulation of Virulence Factor Expression

•	 V. cholerae CT, Tcp, and AcfA expression (Skorupski and Taylor 1997):

–– Coordinately upregulated by ToxT transcription factor
–– ToxT expression responds to changes in pH, osmolarity, bile salts, temperature

⚬⚬ Strain specific – El Tor strains are sensitive to high temperature

–– ToxT expression is co-regulated by two TCSs:

⚬⚬ ToxR-ToxS: also regulates porin production

•	 ToxS: sensor kinase; phosphorylates and activates ToxR
•	 ToxR: response regulator

–– Transcription activator
–– Activates ToxT expression directly
–– Also, directly activates CT expression independent of ToxT

⚬⚬ TcpP-TcpH:

•	 TcpH: sensor kinase; phosphorylates and activates TcpP
•	 TcpP: response regulator

–– Transcription activator
–– Activates ToxT expression directly

•	 Quorum sensing (Cámara et al. 2002):

–– Regulates virulence factor expression in V. cholerae and V. vulnificus
–– Two autoinducer peptides (AI-2, CAI-1) act through two TCSs (CqsS, LuxP-

LuxQ) signaling cascades to induce virulence gene expression at low cell 
density and to repress virulence gene expression at high cell densities

–– Ultimately mediated through the ToxT regulatory protein

30  Vibrio spp.
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Chapter 31
Yersinia spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Yersinia pestis (Ype) chromosome: 4,653,728  bp; 4012 predicted ORFs 
(Parkhill et al. 2001):

⚬⚬ pPst/pPCP1: 9612 bp; 9 predicted ORFs
⚬⚬ pYV1/pCD1: 70,305  bp; 97 predicted ORFs; found in all pathogenic 

Yersinia
⚬⚬ pFra/pMT1: 96,210 bp; 103 predicted ORFs

–– Yersinia enterocolitica (Ye) chromosome: 4,615,899 bp; 4037 predicted ORFs 
(Thomson et al. 2006)

–– Yersinia pseudotuberculosis (Yp) chromosome: 4,744,671 bp; 3974 predicted 
ORFs; ancestor to Ype and Ye (Chain et al. 2004)

•	 Cell morphology:

–– Rod-shaped coccobacilli (Fig. 31.1)
–– Ype: lipooligosaccharide (LOS, rough LPS) outer membrane; does not have O 

antigens – IS insertions inactivated O antigen synthesis genes
–– Yp and Ye: smooth LPS
–– Ype – F1 protein fibrillar capsule:

⚬⚬ Comprised of Caf1 subunits
⚬⚬ Synthesized in humans (37 °C) but not in fleas (27 °C)
⚬⚬ Blocks phagocytosis (Du 2002)
⚬⚬ Involved in forming biofilms in fleas but not humans  – biofilm blocks 

swallowing in fleas, enhancing the spread of Ype through a flea bite
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–– Flagellar motility:
⚬⚬ Ye and Yp: low-temperature (28 °C) motility – essential for virulence
⚬⚬ Ype: nonmotile in host

•	 Gram stain:

–– Gram negative

•	 Growth:

–– Facultative anaerobes; catalase positive
–– Lactose negative, oxidase negative, urease negative, indole negative
–– Calcium-dependent growth at 37°C; affects the function of the type 3 secre-

tion system (T3SS)
–– Ye and Yp are psychrophiles:

⚬⚬ Can grow at 0°C
⚬⚬ Major problem for food safety
⚬⚬ Mediated through cold shock proteins (Csp) (Keto-Timonen et al. 2016)

–– Environmental reservoirs:

⚬⚬ Ype: fleas on rodents; amplifying hosts – ground squirrels [prairie dogs 
(Fig. 31.2), chipmunks], mice (“wobbly”), rats

⚬⚬ Yp and Ye: contaminated food and water

Fig. 31.1  Y. pestis cells 
(From: PHIL #2117)

31  Yersinia spp.
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–– 17 species – three cause human disease:

⚬⚬ Yersinia pestis (Ype):

•	 Bubonic plague; pneumonic plague
•	 Evolved from Yp by horizontal gene transfer (HGT) and gene loss 

through insertion sequences (IS) mutations

⚬⚬ Yersinia enterocolitica (Ye):

•	 Enteropathogenic: food-borne disease
•	 Six biogroups (1A, 1B, 2, 3, 4, 5) based on phenotypic characteristics

–– Biovar 1B is highly virulent

⚬⚬ Yersinia pseudotuberculosis (Yp):

•	 Enteropathogenic: food-borne disease
•	 Subgroups based on O antigens

�Disease States Associated with Yersinia spp.

•	 First stage:

–– Invasion of host cells
–– Facultative intracellular pathogens

•	 Second stage:

–– Dissemination, egress from cells, and extracellular growth
–– Virulence mechanisms are needed to avoid the immune system both intracel-

lularly and extracellularly

Fig. 31.2  Black-tailed 
prairie dog (From: Dean 
Biggins, courtesy USGS)

Disease States Associated with Yersinia spp.
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•	 Plague (black death): Ype

–– Bubonic plague:

⚬⚬ Urban plague: infection of rats in urban areas
⚬⚬ Sylvatic plague: infection of prairie dogs, mice, etc.
⚬⚬ Transmitted by bite of flea (endemic reservoir)
⚬⚬ Following flea bite, Ype travels to lymph nodes inducing inflammatory 

lesions called buboes
⚬⚬ Can also be transmitted by cutaneous exposure to infected animal
⚬⚬ Early symptoms: high fever, buboes, headaches, and chills
⚬⚬ Later symptoms: tissue necrosis (“black death”), endotoxic shock (usually 

fatal), and septicemia
⚬⚬ Can disseminate to the spleen and liver (primary targets)

–– Primary septicemic plague:

⚬⚬ Transmitted by flea bite
⚬⚬ Ype does not travel to lymph nodes
⚬⚬ Disseminates through the bloodstream
⚬⚬ Symptoms: hypotension, delirium, seizures, and septic shock

–– Primary pneumonic plague (Pechous et al. 2016):

⚬⚬ Person-to-person transmission through inhaled aerosols containing Ype
⚬⚬ Symptoms: initially flu-like, fever, chills, coughing, and chest pain; leads 

to pneumonia
⚬⚬ Dissemination leads to rapid multi-system failure and septic shock

–– If treated: ~15% mortality
–– If untreated, death comes quickly; average 8 days from first symptoms:

⚬⚬ ~50 to 60% mortality for bubonic plague
⚬⚬ ~100% mortality for septicemic plague and pneumonic plague

•	 Yersiniosis:

–– Enterocolitis associated with Ye and Yp (rare) infections
–– Zoonotic food-borne disease:

⚬⚬ Most often contaminated pork, dairy products
⚬⚬ Fecal contaminated water

–– Symptoms: diarrhea, abdominal pain, and fever; ranging from mild self-
limiting diarrhea to acute lymphoid tissue infection

–– Usually afflicts children and infants
–– Septicemia complications are rare in healthy individuals
–– Mortality much higher in immunocompromised patients, due to systemic 

infection
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�Virulence Factors (Atkinson and Williams 2016)

•	 Adherence to host cells:

–– Adhesins (Ke et al. 2013; Mikula et al. 2012):

⚬⚬ Ype, Ye, and Yp have different repertoires of adhesins (Fig. 31.3)
⚬⚬ Encoded on chromosome and plasmids expressed under different pH and 

temperature conditions
⚬⚬ Reflects different lifestyles – growth in flea (<30°C) vs. host cell invasion 

in human (37°C)
⚬⚬ Psa and Ail: found in all three species
⚬⚬ Fimbrial adhesins:

•	 Type IV pili: only expressed in Yp (Collyn et al. 2002)
•	 Psa (Ype,Yp)/MyfF (Ye):

–– 15 kDa fimbrial adhesin
–– Expressed at pH 5–6.7 (Psa, pH 6 antigen) and 37 °C (Lindler and 

Tall 1993)
–– Binds to glycosphingolipids in intestinal epithelial cells, through 
β1-linked galactosyl residues and lipoproteins (Makoveichuk et al. 
2003)

–– Binds to phosphatidylcholine (PC) in alveolar epithelial cells and to 
lung surfactant

–– Plays a role in pneumonic plague (Galvan et al. 2007; Pakharukova 
et al. 2016)

–– Adheres to and agglutinates red blood cells (RBCs)
–– Has anti-phagocytic properties

⚬⚬ Afimbrial adhesins:

•	 Ail (attachment-invasion locus) (Kolodziejek et al. 2012):

–– Ype (some strains), Ye, and Yp
–– 17 kDa adhesin; four protein variants
–– Highly expressed at 37 °C in stationary phase; comprises 20–30% of 

the outer membrane proteins (OMPs) expressed
–– Binds ECM fibronectin and laminin
–– Adherence to epithelial cells
–– Blocks complement-mediated lysis through activating host factor H 

and C4BP (Bliska and Falkow 1992)
–– Promotes Yop effector delivery into phagocytic cells, epithelial cells 

(Felek and Krukonis 2009)

•	 YadA (Muhlenkamp et al. 2015):

–– Ye and Yp
–– Trimeric type 5 autotransporter protein
–– Expressed at 37°C
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Ype
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periplasm

Schematic overview of proteins expressed in Yersiniae outer
membrane during infection.  Bacterial outer membrane (OM) with outer
core of LPS (OC) in purple and adhesins expressed at different stages
of infection. (A) Adhesisn of Y. enterocolitica and Y. pse udotuberculosis:

invasin in yellow, YadA in dark green, Ail in red, and O-Antigen in light grey;
(B) Adhesins of Y. pestis: Pla in green, YadB in blue, YadC in orange, Ail in
red.  ECM stands for extracellular matrix.  All the molecules are on
approximately the same scale.
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Fig. 31.3  Yersinia adhesins (From: Mikula et al. 2012)
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–– Binds to ECM components (Schulze-Koops et al. 1992):

⚬⚬ YeYadA: prefers collagen, laminin
⚬⚬ YpYadA: prefers fibronectin

–– Adheres to epithelial cells, macrophage, and neutrophils
–– Blocks complement-mediated lysis by activating host factor H and 

C4BP
–– Pseudogene in Ype due to point mutation that causes a frame-shift:

⚬⚬ Ype has YadB and YadC adhesin homologues

•	 Inv (invasin) (Young et al. 1990):

–– Ye and Yp
–– 92 kDa protein
–– Similar to enterohemorrhagic E. coli (EHEC) intimins
–– Expressed at 25°C and pH 8 prior to uptake into human host
–– Attachment and invasion into intestinal M cells in Peyer’s patch and 

other non-phagocytic cells (Marra and Isberg 1997)
–– Binds host β1-integrins (receptors) on epithelial cells:

⚬⚬ There is a high density of β1-integrin binding around the entire 
host cell surface; needed for attachment and internalization via 
“zipper” mechanism

⚬⚬ Induces actin cytoskeletal rearrangements (Young et al. 1992)

–– Also induces host signaling pathways; increased expression of pro-
inflammatory cytokines

–– Not made in Ype due to an IS element insertion mutation

•	 YapC (Felek et al. 2008):

–– Ype autotransporter adhesin; biofilm formation

•	 YapE (Lawrenz et al. 2009):

–– Ype autotransporter adhesion
–– Proteolytically activated by Pla

•	 YapV, YapJ, YapK, and YapX (Nair et al. 2015):

–– Ype and Yp; high sequence identity
–– Bind ECM components

•	 Flagella:

–– Ye
–– Secretes YplA; phospholipase essential for survival in Peyer’s patch 

(McNally et al. 2007)
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•	 Host cell invasion and growth:

–– Enter host cells through classic actin-dependent zipper mechanism of induced 
phagocytosis

–– Uses type 3 secretion system (T3SS) (see below)
–– Ype:

⚬⚬ Invades epithelial cells, macrophage, and dendritic cells by phagocytosis
⚬⚬ Can disseminate to lymph nodes inside macrophage and dendritic cells
⚬⚬ Mediated by Ail, YadB, YadC, and Pla
⚬⚬ Pla (Lahteenmaki et al. 2001):

•	 Only found in Ype
•	 Belongs to the omptin family of outer membrane proteases
•	 Plasminogen activator
•	 Essential for virulence
•	 Encoded on virulence plasmid pPst/pPCP1
•	 Adhesin:

–– Binds to epithelial cells and macrophage
–– Binds to host CD205 protein for internalization

•	 Aspartic protease activity (Kukkonen et al. 2003):

–– Independent of adhesin activity
–– Sterically inhibited by LPS but not by LOS
–– Has many host targets; enhances invasion, dissemination, and 

survival
–– Degrades host ECM laminin
–– Activates host plasminogen; affects host coagulation and fibrinolytic 

pathways
–– Inactivates complement protein C3
–– Cleaves antimicrobial peptides

–– Ye and Yp:

⚬⚬ Invade intestinal M cells in Peyer’s patch (PP)
⚬⚬ Can disseminate to lymph nodes and then liver, spleen
⚬⚬ Inv: binds host β1-integrin receptors in M cells

–– Type 3 secretion system (T3SS) (Cornelis 2002):

⚬⚬ Found in Ype, Ye, and Ype
⚬⚬ Essential for virulence; greater than 10,000-fold loss of virulence in the 

absence of T3SS
⚬⚬ Encoded on virulence plasmid pYV1/pCD1
⚬⚬ Encode Yop (Yersinia outer membrane protein) effector proteins and Ysc 

T3SS system:
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•	 Ysc T3SS system:

–– Comprised of 29 proteins that comprised the T3SS needle structure
–– LcrV (V factor) (Brubaker 2003):

⚬⚬ Adhesin on tip of T3SS
⚬⚬ Secreted LcrV induces IL-10 release

•	 Yops (Cornelis and Wolf-Watz 1997):

–– Translocator Yops (Yop B/D) (Håkansson et al. 1996):

⚬⚬ Form pores in host membrane

–– Effector Yops:

⚬⚬ Enter host cell
⚬⚬ Affect cell signaling pathways that regulate the actin cytoskele-

ton; drives initial phagocytosis into the cell:

•	 YopE (Pawel-Rammingen et al. 2000):

–– GTPase-activating protein (GAP) activity
–– Turns off multiple Rho GTPases

•	 YopT (Iriarte and Cornelis 1998):

–– Cysteine protease
–– Inhibits RhoA GTPase
–– Disrupts actin cytoskeleton and inhibits phagocytosis 

post-egress

•	 YopO/YpkA – dual functions (Barz et al. 2000):

–– Kinase activity:

⚬⚬ Binding to actin turns on kinase activity
⚬⚬ Phosphorylation inactivates cytoskeletal-assembly 

proteins

–– Guanine-nucleotide dissociation inhibitor (GDI):

⚬⚬ Binds to and inhibits RhoA and Rac1 GTPases
⚬⚬ Blocks actin polymerization

⚬⚬ Affect inflammation and apoptosis:

•	 YopH (Sauvonnet et al. 2002):

–– Tyrosine phosphatase
–– Blocks ROS production
–– Induces apoptosis in T cells
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•	 YopJ (Mukherjee et al. 2006; Palmer et al. 1998):

–– Acetyltransferase
–– Acetylates MAPK kinases
–– Induces macrophage apoptosis

•	 YopP (Boland and Cornelis 1998; Orth et al. 2000):

–– Cysteine protease
–– Inhibits pro-inflammatory cytokine release
–– Activates macrophage apoptosis
–– Reduces neutrophil phagocytosis post-egress

•	 YopM (Chung et al. 2016; Ratner et al. 2016):

–– Inhibits YopE-mediated pyrin inflammasome activation
–– Also shown to have E3 ubiquitin ligase activity
–– Activates NOD-like receptor (NLR)-family pyrin domain-

containing 3 (NLRP3) inflammasome
–– Induces host cell necrosis (Wei et al. 2016)
–– May reflect the ability of Yersinia to both activate and elude 

inflammation (Philip et al. 2016)

–– Iron acquisition:

⚬⚬ Yersiniabactin (Ybt) (Perry and Fetherston 2011; Perry et al. 1999):

•	 Fe+3 siderophore
•	 Ype, Ye, and Yp, essential for plague
•	 Synthesized by a mixed nonribosomal peptide synthetase (NRPS)/

polyketide synthase (PKS) mechanism
•	 Repressed by Fe+2–Fur repressor
•	 Activated by YbtA–Ybt complex

⚬⚬ Hmu (Thompson et al. 1999):

•	 Acquires iron from hemin, hemoglobin, haptoglobin–hemoglobin, 
myoglobin, heme–hemopexin, and heme–albumin

⚬⚬ YfeABCD; YfuABC (Bearden and Perry 1999; Gong et al. 2001):

•	 ABC transport systems for iron and manganese

•	 Dissemination and egress from macrophage:

–– Ype systemic dissemination is inside dendritic cells and macrophage; can 
cause septicemic plague in bloodstream

–– In lymph nodes, Ype egresses from macrophage through apoptosis/necrosis of 
the macrophage

–– Replicates to high numbers extracellularly
–– Also replicates in micro-abscesses within infected tissues, leads to tissue 

necrosis
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–– Activates anti-phagocytic factors (Psa, F1 capsule, Yops) while in initial 
macrophage; protects extracellular Ype cells from macrophage and 
neutrophils

–– F1 protein (Caf1) (Du 2002):

⚬⚬ 16 kDa protein; encoded on pFra/pMT1 only found in Ype
⚬⚬ Forms fibrillar capsule; blocks phagocytosis upon initial infection
⚬⚬ Also produced inside macrophage to block phagocytosis upon egress

•	 Host cell damage – exotoxins:

–– CNFY (cytotoxic necrotizing factor Yersinia) (Schweer et al. 2013):

⚬⚬ Only found in Yp
⚬⚬ Activates Rho/Rac/Cdc42 GTPases through deamidation of the Glu63 

residue
⚬⚬ Increases Yop effector translocation

–– Yst (Delor et al. 1990):

⚬⚬ Only found in Ye
⚬⚬ Three variants
⚬⚬ Heat-stable enterotoxin
⚬⚬ Homologous to enterotoxigenic E. coli (ETEC) ST toxin

–– YaxA and YaxB (Wagner et al. 2013):

⚬⚬ Only in Ye
⚬⚬ Pore-forming toxin

�Regulation of Virulence Factor Expression (Erhardt 
and Dersch 2015)

•	 As an enteric pathogen, Yersinia must respond to a myriad of environmental and 
host cues

•	 Utilizes combinations of protein and RNA regulators in complex pathways 
(Fig. 31.4)

•	 Invasion and motility are inversely regulated (Ellison et al. 2004; Fabrega and 
Vila 2012):

–– Yops, YadA, Ysc T3SS, and VirF/LcrF transcription factor are expressed at 
37°C through a translational thermoswitch mechanism:

⚬⚬ Similar thermoswitch mechanisms also regulate adaptation to oxidative 
stress and heat shock, induction of immune suppression, and metabolic 
processes (Nuss et al. 2017)

Regulation of Virulence Factor Expression
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–– Inv, flagella genes: expressed at <30°C; repressed at 37°C:

⚬⚬ RovA: transcription activator; expressed at <30°C; repressed at 37°C
⚬⚬ H-NS and YmoA: repressors that compete with RovA binding at inv 

promoter
⚬⚬ Transcription activated by RovA and repressed by H-NS/YmoA complex

•	 Carbon source regulation (Porcheron et al. 2016):

–– Mediated through cAMP + cAMP receptor protein (CRP)
–– Impinges on RovM–RovR regulon
–– Regulates Pla, T3SS, PhoP–PhoQ two-component phosphorelay system 

(TCS) and sRNA molecules CsrB and CsrA:

⚬⚬ Csr regulon, etc. (Nuss et al. 2017; Porcheron et al. 2016):

•	 Large numbers of RNA molecules function as riboregulators in many 
Yersinia regulatory networks
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Fig. 31.4  Regulatory networks (From: Erhardt and Dersch 2015)
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Chapter 32
Chlamydia spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Chlamydia trachomatis chromosome: 1,042,512  bp; 887 predicted ORFs 
(Stephens et al. 1998)

–– Chlamydia pneumoniae chromosome: 1,230,230  bp; 1029 predicted ORFs 
(Kalman et al. 1999)

•	 Cell morphology:

–– Ovoid shape (Fig. 32.1)
–– Two developmental states with different morphologies:

⚬⚬ Elementary body (E; EB): 0.3–0.4 μm
⚬⚬ Reticulate body (R; RB): 1 μm

–– Cell wall:

⚬⚬ Thick structure of LPS and a meshwork of cysteine-rich adhesin proteins, 
but no peptidoglycan layer

⚬⚬ “chlamydial anomaly” (Liechti et al. 2014; Klockner et al. 2014)

•	 There is no peptidoglycan (PG) layer surrounding the cell, but:

–– PG biosynthetic genes and penicillin-binding proteins (PBPs) genes 
are present in the genome and expressed

–– Penicillins block cytokinesis but are not cytolytic to C. trachomatis 
cells

•	 Resolution: PG is found predominantly at cell division site but is not 
found around the periphery of the cell
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•	 Gram stain:

–– Gram-negative staining – contain LPS but no peptidoglycan around the cell

•	 Growth:

–– Obligate aerobes
–– Extremely temperature sensitive; clinical samples need to be refrigerated as 

soon as they are obtained
–– Obligate intracellular pathogen of humans and other vertebrates; also, can 

exist in aquatic environments:

⚬⚬ Co-adapted to human host through “use it or lose it” evolution
⚬⚬ Must get nutrients and ATP from infected host cells

–– Two developmental states with different morphologies: (Fig. 32.2).

⚬⚬ Elementary body (EB):

•	 Extracellular, metabolically inactive, non-replicating, infectious form
•	 Resistant to environmental stresses

⚬⚬ Reticulate body (RB):

•	 Intracellular, metabolically active, replicating, noninfectious form
•	 EB differentiate into RB and develop inside membrane-bound inclu-

sions in host cytosol

Fig. 32.1  C. trachomatis EB and RB cells in HeLa cells (From: Michael Ward, www.chlamydiae.
com)
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•	 After cell division, RB re-differentiates back into EB, which are released 
through exocytosis or cell lysis

•	 Aberrant bodies (AB): large, abnormally shaped RB

–– Non-replicating, noninfectious form induced by stress, such as nutri-
ent deprivation or penicillin treatment

–– Leads to chronic (persistent state) infection

–– At least 11 species; two infect humans:

⚬⚬ Chlamydia trachomatis: sexually transmitted pathogen; genital and ocular 
infections

⚬⚬ Chlamydia pneumoniae: bronchitis, pharyngitis, community acquired 
pneumonia

Fig. 32.2  C. trachomatis life cycle and developmental states (From Damiani et al. 2014)

Genomics, Morphologies, and Growth Characteristics



426

�Disease States Associated with Chlamydia spp.

•	 Inflammatory diseases: (Bastidas et al. 2013; Redgrove and McLaughlin 2014)

–– Associated with release of pro-inflammatory cytokines, such as 
interleukin1(IL-1), IL-6, and tumor necrosis factor α (TNFα)

–– Triggered by TLR2 and TLR4 recognition of LPS and cytosolic pattern rec-
ognition receptors (PRRs) recognizing peptidoglycan

•	 Chlamydia trachomatis:

–– Ocular and genital infections

⚬⚬ Serovars Ab, B, Ba, and C:

•	 Trachoma eye infections; leading cause of preventable blindness 
worldwide

•	 Transmitted via hands and fomites and through respiratory tract
•	 Causes inflammation and scarring of cornea
•	 Reduces the function of tear glands, leading to bacterial infections
•	 Inclusion conjunctivitis: milder form of trachoma

⚬⚬ Serovars D–K:

•	 Sexually transmitted; leading cause of bacterial sexually transmitted 
disease in the USA

•	 Nongonococcal urethritis, pelvic inflammatory disease
•	 Mostly silent; ~75% of infected women and ~50% of infected men are 

asymptomatic
•	 Males: urethritis with purulent discharge
•	 Females  – cervicitis, pelvic inflammatory disease (PID); can lead to 

tubal scarring, ectopic pregnancies, and infertility:

–– ~40% of infected woman get PID
–– ~20% of them become infertile; 9% will have ectopic pregnancy

⚬⚬ Serovars L1, L2, and L3:

•	 Sexually transmitted
•	 Lymphogranuloma venereum; infection of the lymphatic system chan-

cre on genitals; often overlooked
•	 Lymphatic inflammation; buboes
•	 Fever, headache, and myalgia

•	 Chlamydia pneumoniae:

–– Responsible for 10–15% of community acquired pneumonia:

⚬⚬ More common in elderly
⚬⚬ Pharyngitis, bronchitis, and sinusitis

32  Chlamydia spp.
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–– Person-to-person transmission through small water droplets
–– Also associated with asthma, bronchitis, coronary heart disease, and athero-

sclerosis, but a causative connection is unclear

�Virulence Factors

•	 Adherence to host cells: (Frohlich et al. 2014)

–– Can invade most cells
–– Cell wall:

⚬⚬ LPS + meshwork of cysteine-rich adhesin proteins
⚬⚬ MOMP: major outer membrane protein

•	 Functions as adhesin and as a β-barrel porin
•	 Undergoes antigenic variation – immune system evasion

⚬⚬ OmcB and OmcA:

•	 Only found in EB
•	 Cross-link MOMP to peptidoglycan

⚬⚬ Pmps:

•	 Nine polymorphic outer membrane proteins
•	 PmpA-I: can undergo antigenic variation to evade the host immune 

system

•	 Host cell invasion: (Nans et al. 2015)

–– C. trachomatis:

⚬⚬ Uses classic trigger mechanism
⚬⚬ Type 3 secretion system (T3SS) in EB secretes effectors into the infected 

cell that affect the actin cytoskeleton, thereby inducing endocytosis

•	 TARP (translocated actin-recruiting phosphoprotein): (Lane et  al. 
2008)

–– Activates Rac and Cdc42 GTPases that control actin 
polymerization

–– Acts as a scaffold for Rac guanine nucleotide exchange factors 
(GEFs)

•	 CT166:

–– Cytotoxin
–– Glucosyltransferase activity
–– Inactivates Rac and Cdc42 GTPases
–– Analogous to Clostridium difficile toxin B (TcdB)

Virulence Factors
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•	 CT694:
–– Binds to AHNAK (desmoyokin) in host cell
–– Actin-binding protein

–– C. pneumoniae:

⚬⚬ Uses classic zipper mechanism
⚬⚬ Pmp21:

•	 Invasin protein
•	 Binds to epidermal growth factor receptor (EGFR)
•	 Induces cell signaling pathways

•	 Growth inside host cells: (Bastidas et al. 2013; Damiani et al. 2014)

–– Obligate intracellular pathogen
–– EB differentiate into RB that reside in membrane-bound inclusions within the 

host cytosol
–– Inclusions interact with the rough endoplasmic reticulum (rER), creates a 

“pathogen synapse”

⚬⚬ Host nutrients (cholesterol, lipids, peptides, etc.) are obtained through 
inclusion interactions with host cell rER and Golgi

–– Incs:
⚬⚬ Inclusion proteins
⚬⚬ Inserted into inclusion membrane from RB through a T3SS
⚬⚬ Interact with host cell proteins in rER and cytosol, such as Rab GTPases 

that regulate membrane trafficking in the host cell

•	 e.g., CT229 Inc. protein interacts with Rab4 GTPase

–– CPAF (Chlamydia protease-like activity factor): (Jorgensen et  al. 2011; 
Zhong et al. 2001)

⚬⚬ Serine protease activity
⚬⚬ Recent reassessment of CPAF activities suggests that a number of its previ-

ously identified substrates are artifactual (Bavoil and Byrne 2014)
⚬⚬ Does cleaves host proteins later in infection after inclusion breakdown; 

vimentin filaments and lamin-associated protein-1 (LAP1) (Snavely et al. 
2014)
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Chapter 33
Mycoplasma spp.

�Genomics, Morphologies, and Growth Characteristics

•	 Genomics:

–– Mycoplasma pneumoniae chromosome: 816,394  bp; 677 predicted ORFs 
(Dandekar et al. 2000; Himmelreich et al. 1996)

–– Mycoplasma genitalium chromosome: 580,076  bp; 470 predicted ORFs 
(Fraser et al. 1995)

•	 Cell morphology: (Fig. 33.1)

–– Pleomorphic – due to lack of cell wall:

⚬⚬ M. pneumoniae: elongated cell with attachment organelle (AO) at the tip
⚬⚬ M. genitalium: less elongated but still contains AO

–– Some of the smallest living microbes
–– No peptidoglycan; no Gram stain:

⚬⚬ Lack peptidoglycan biosynthetic genes
⚬⚬ Naturally resistant to cell wall disrupting antibiotics

–– Cell membranes contain cholesterol:

⚬⚬ Essential growth factor; must get it from host

•	 Gram stain:

–– No Gram staining

•	 Growth:

–– Facultative anaerobes
–– Very small genome; lost the genes necessary for Kreb’s cycle, the biosynthe-

sis of amino acids, fatty acids, vitamins, and electron transport chain
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–– Grows very slowly; must get nutrients and ATP from infected host cells
–– Specifically infects humans; does not exist as a free-living organism
–– At least 104 species

⚬⚬ Mycoplasma pneumoniae:

•	 Respiratory tract infections
•	 Type 1 and type 2 clinical isolates: based on P1 adhesin sequence 

differences

⚬⚬ Mycoplasma genitalium:

•	 Urogenital tract infections

Fig. 33.1  M. pneumoniae cells (From: microbewiki.kenyon.edu)
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�Disease States Associated with Mycoplasma spp.

•	 Mycoplasma pneumoniae (Parrott et al. 2016; Waites et al. 2017):

–– Upper and lower respiratory tract infections
–– Community acquired pneumonia
–– Usually self-limiting and not fatal and depends on bacterial load
–– Person-to-person transmission through small aerosol droplets

⚬⚬ Primary atypical pneumonia:

•	 “Walking pneumonia”
•	 Caused by host inflammatory responses

⚬⚬ Lower respiratory tract infection:

•	 Cough, fever, and headache
•	 Can be a long convalescence; several weeks
•	 Mainly affects children 5–9 years old; 8–15 % of all pneumonias in 

school-age children

–– Serious increases in worldwide antibiotic-resistant M. pneumoniae (Saraya 
et al. 2014)

•	 Mycoplasma genitalium (Taylor-Robinson and Jensen 2011):

–– Urogenital tract infections
–– Emerging sexually transmitted pathogen
–– Symptoms:

⚬⚬ Men: nongonococcal urethritis
⚬⚬ Women: urethritis, pelvic inflammatory disease, and cervicitis

•	 Increased risk of preterm birth, spontaneous abortion, and infertility

–– Serious increases in worldwide antibiotic-resistant M. genitalium (Unemo 
and Jensen 2017)

�Virulence Factors

•	 Adherence to host cells/tissues:

–– Primary colonization and virulence mechanism
–– Surface attachment to ciliated respiratory epithelial cells (M. pneumoniae) or 

urogenital epithelial cells (M. genitalium); binds to the base of ciliated cells
–– Attachment organelle (AO):

⚬⚬ Polar extension at the tip of filamentous cells
⚬⚬ Essential for adherence to host cells

Virulence Factors
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⚬⚬ Large proteinaceous structure (~37 proteins) that has cytoskeletal qualities 
(Nakane et al. 2015); many of the proteins are phosphorylated (Su et al. 
2007) (Fig. 33.2)

⚬⚬ Attaches to sialoglycoproteins and glycolipids on host cells
⚬⚬ Also involved in gliding motility and cell division (Balish 2014)

–– Afimbrial adhesins:

⚬⚬ Interact with multiple cytadherence accessory proteins
⚬⚬ P1 (M. pneumoniae); MgPa (M. genitalium) (Krause 1996, 1998):

•	 Found around periphery of cell but concentrated in the AO

⚬⚬ P30 (M. pneumoniae) (Baseman et al. 1987; Romero-Arroyo et al. 1999); 
P32 (M. genitalium) (Relich and Balish 2011)

•	 Restricted localization to the AO tip structure

⚬⚬ Cytadherence accessory proteins:

•	 Responsible for AO structure and for P1 and P30 localization to AO
•	 P40, P90: surface proteins (along with P1 and P30)
•	 HMW1, HMW2, HMW3, P24, P28, P41, P65, P200, TopJ: internal 

proteins

–– Biofilm formation (Simmons et al. 2013):

⚬⚬ Type 2 strains form more robust biofilms than type 1

P1, Phos (+?)
P90 (?)
P40 (?)

P65, Phos (+)
P30 (?)

Filamentous network

Wheel-like structure

Electron-dense core

HMW1, Phos (+)
HMW2, Phos (+)
HMW3, Phos (+)

(~) EF-Tu, Phos (+)
(~) Pyruvate dehydrogenase, Phos (+)
(~) Dnak, Phos (+)

Fig. 33.2  AO proteins (From: Su et al. 2007)
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•	 Damage to host cells:

–– Induce inflammatory responses (Shimizu 2016; Waites and Talkington 2004): 
(Fig. 33.3)

⚬⚬ H2O2 and ROS production: induces oxidative stress and damages host cells
⚬⚬ Membrane lipoproteins (Shimizu 2016):

•	 Induce inflammatory response through interaction with host Toll-like 
receptor-2 (TLR-2)

•	 Increases expression of pro-inflammatory cytokines (TNF-α, IL-1, 
IL-6) and chemokines; leads to neutrophil infiltration into lungs

–– CARDS (community-acquired respiratory distress syndrome) toxin (Kannan 
and Baseman 2006):

⚬⚬ Induces host inflammatory response
⚬⚬ ADP-ribosylation and vacuolating activity; similar to Bordetella pertussis 

pertussis toxin activity
⚬⚬ ADP-ribosylates and activates the NOD-like receptor containing pyrin 

domain 3 (NLRP3) inflammasome (Bose et al. 2014)

ATP

TLR4

TLR 1/2/6

P2×7 receptor

cytadherence

NLRP3
ASC

Caspase-1

CARDS TX

inflammasome

macrophage/dendritic cell

autophagy

IL-4

IL-6

TNF-α
IL-1β

IL-17

pro-inflammatory cytokines
IL-18

1

3
4

2

Fig. 33.3  Inflammation pathways (From Shimizu 2016)
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⚬⚬ expression is increased during infection (Kannan et al. 2010); higher levels 
in type 2 strains, which may correlate to increased toxicity (Lluch-Senar 
et al. 2015)

•	 MyMpn database (http://mympn.crg.eu): online database on Mycoplasma  – 
omics (Wodke et al. 2015)
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Chapter 34
Anti-Virulence Factor Therapeutics

There is little doubt that the startling increases in the prevalence and diversity of 
antibiotic-resistant bacterial pathogens, which are leading to the significant loss of 
effective antibiotics to treat bacterial infections, are one of the most, if not the most, 
critical threats to the health of the entire world population. “We risk being in a post-
antibiotic world,” said Thomas Frieden, former director of the US Centers for 
Disease Control and Prevention (Fortune, May 27, 2016). Dr. Frieden also stated 
that “It basically shows us that the end of the road isn’t very far away for antibiot-
ics – that we may be in a situation where we have patients in our intensive care units, 
or patients getting urinary-tract infections for which we do not have antibiotics” 
(Washington Post, May 27, 2016). These remarks were in reference to the first iden-
tification of a colistin-resistant E. coli isolate in the USA, which the study’s authors 
state “heralds the emergence of a truly pan-drug resistant bacteria” (McGann et al. 
2016). Former United Nations Secretary General Ban Ki-moon remarked: 
“Antimicrobial resistance poses ‘a fundamental, long-term threat to human health, 
sustainable food production and development.’ It is not that it may happen in the 
future. It is a very present reality – in all parts of the world, in developing and devel-
oped countries; in rural and urban areas; in hospitals; on farms and in communities, 
we are losing our ability to protect both people and animals from life-threatening 
infections” (SG/SM/18107-DEV/3241; 21 September 2016).

Beyond curbing the inappropriate prescription and use of antibiotics in the 
healthcare and agricultural fields, which is one of the major factors driving the rise 
of antibiotic resistance, new strategies must be explored that overcome or bypass 
the molecular mechanisms that are responsible for the resistance (Kostyanev et al. 
2016; Nathan 2015). By their very nature, antibacterial antibiotics target essential 
functions within the bacterial cell, including metabolic processes, replicative pro-
cesses (replication, transcription, translation), and structural components (cell wall, 
membranes), leading to inhibited growth (bacteriostatic) or death (bacteriocidal) of 
the bacterial cell (Blair et al. 2015; Geisinger and Isberg 2017; Holmes et al. 2016). 
Hence, antibiotic treatment imposes a significant selective pressure on the affected 
bacteria, leading not only to the loss of sensitive bacteria (the goal of antibiotic use) 
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but also to the proliferation of mutant bacteria that are resistant (the unintended 
consequence). Bacteria can be intrinsically resistant to an antibiotic (i.e., lack the 
target or is impermeable to the antibiotic), or they can acquire resistance through 
mutations (i.e., changes in target, bypass of target process, or increase in efflux of 
antibiotic) or through the horizontal gene transfer (HGT) of mobile genetic ele-
ments that encode resistance genes (i.e., enzymes that inactivate the antibiotic). 
Since most antibiotics are actually produced by microbes themselves, they have 
been present in the environment for millions of years, as have the mechanisms that 
lead to resistance. Therefore, it is not uncommon to clinically observe resistance to 
a bacteriocidal antibiotic within a very short amount of time following introduction 
into the patient population. It is also important to keep in mind that although anti-
bacterials usually target specific proteins or structures, these structures can be con-
served in many different bacterial species, including the beneficial normal microbiota 
found in human hosts.

To circumvent antibiotic resistance, new (and old) therapeutics are being evalu-
ated. These approaches include the use of specific bacteriophage (and their associ-
ated lysins) and structurally nanoengineered antimicrobial peptide polymers 
[SNAPPs; (Lam et al. 2016)] to disrupt the cell membranes of susceptible bacterial 
pathogens (Fernebro 2011; Gadakh and Aerschot 2015; Rios et al. 2016), the use of 
antibiotic adjuvants that can minimize resistance mechanisms and enhance the effi-
cacy of current antibiotics (Fernebro 2011; Mühlen and Dersch 2016; Wright 2016), 
the generation of virulence factor-specific vaccines that enhance the host antibody 
responses (Fernebro 2011; Rios et al. 2016), and the use of photoexcited quantum 
dots or photoreactive dyes to either alter the redox state of the bacteria (Courtney 
et  al. 2016) or generate reactive oxygen species (ROS)-based cell death (Taylor 
et al. 2002). In addition, new antibiotics are being identified by screening unculti-
vable microbes using iChip technology (Nichols et al. 2010) [e.g., teixobactin (Ling 
et al. 2015)] and target-based approaches [e.g., bedaquiline (Osborne 2013; Zumla 
et  al. 2013)]. Also, semisynthetic chemical methodologies [i.e., new macrolides; 
(Seiple et  al. 2016)] and metagenomic in silico approaches (Fortman and 
Mukhopadhyay 2016) are being used to generate new antibiotics. However, most of 
these approaches still rely on the ability of the antibiotic to kill or stop the growth of 
the bacterial pathogen.

Instead of attacking the growth and replication of bacterial pathogens, new anti-
virulence (anti-infection) strategies target specific virulence traits without affecting 
the viability of the pathogen itself (Cegelski et al. 2008; Czaplewski et al. 2016; 
Dickey et  al. 2017; Escaich 2010; Fernebro 2011; Gadakh and Aerschot 2015; 
Hauser et al. 2016; Mühlen and Dersch 2016; Rasko and Sperandio 2010). These 
approaches have the potential to significantly lessen the selective pressure driving 
antibiotic resistance while mitigating the effects on the normal microbiota and the 
associated clinical side effects. However, since these strategies do not result in the 
direct destruction of the bacterial pathogen, they may still persist within the host and 
eventually cause damage if not attacked by the host immune system. In addition, 
these so-called virulence blockers would only be effective against pathogens that 
express the specific targeted virulence factor. Therefore, anti-virulence factors may 
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find their most useful clinical effects in combination with other anti-virulence fac-
tors or with known antibiotics.

Previous chapters in this book have described the different classes of bacterial 
virulence factors and their expression in specific pathogens. This chapter will focus 
on anti-virulence strategies and molecules that are directed against these different 
classes, including adherence factors, secretion systems, exotoxins, immune evasion, 
biofilm formation, and quorum-sensing/two-component system (QS/TCS) regula-
tory networks. While this chapter is not designed to be an exhaustive compilation of 
specific anti-virulence therapeutics, informative examples of molecules that have 
been identified will be presented, some of which have been approved by the FDA 
and/or studied in clinical trials (Fig. 34.1) (Czaplewski et al. 2016; Dickey et al. 
2017). The hope is that the reader will be informed by this material as well as stimu-
lated to think about new strategies to combat this serious healthcare risk into the 
future.

�Anti-adherence Factor Therapeutics

Attachment to host surfaces is often the first step in the infection process and, there-
fore, a critical target for anti-virulence strategies. In addition, bacterial adhesins 
play an important role in promoting biofilm formation, another key virulence trait 
of many bacterial pathogens. Major adherence factors include fimbrial adhesins 
(e.g., type I fimbriae; Curli fimbriae, type IV fimbriae; P pili, etc.), afimbrial adhes-
ins (e.g., sortase-dependent MSCRAMMs, OMPs, adhesive autotransporters, etc.), 
and outer surface lipopolysaccharides. One strategy to block adherence is to inter-
fere with the binding of bacterial adhesins to their cognate host receptors. This 
effect can be accomplished by using either derivatives of host receptors to compete 
for the binding to the adhesin, specific antibodies to block the adhesin binding sites, 
or small molecules that interfere with the binding. For instance, preclinical studies 
identified the mAb926 monoclonal antibody and the small molecule sugar biaryl 
mannoside 22, both of which can compete with the binding of host mannose resi-
dues to the FimH tip adhesin of type I fimbriae in UPEC (Jarvis et al. 2016; Kisiela 
et  al. 2015). Also, the KP3-engineered antibody can interfere with the K. pneu-
moniae MrkA type III fimbriae subunit (Wang et  al. 2016), and the SMITB14 
monoclonal antibody can block the binding of M. tuberculosis outer surface lipoara-
binomannan (Hamasur et al. 2004).

Another strategy is to inhibit the synthesis and/or assembly of fimbrial and afim-
brial adhesins. Many fimbrial adhesins, including type I fimbriae and P pili, are 
secreted and assembled by the chaperone-usher pathway (CUP). Pilicides and curli-
cides inhibit the assembly of fimbriae/pili by targeting the CUP chaperone function. 
For instance, the pilicide bicyclic 2-pyridone 2c blocks the ability of the chaperone 
to transfer the structural fimbriae/pili subunits to the CUP usher component in both 
type I and P pili assembly (Pinkner et al. 2006). The antiparasitic drug nitazoxanide 
(NTZ) prevents the proper folding of the usher transmembrane β-barrel pore, which 
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inhibits the type I and P pili from UPEC (Chahales et al. 2016). The curliside ring-
fused 2-pyridone FN075 blocks the formation of Curli fimbriae, as well as Curli-
dependent biofilms, by interfering with the polymerization of the CsgA structural 
subunit (Cegelski et al. 2009). Using a structure-based in silico screening approach, 

Fig. 34.1  Antivirulence agents targeting secreted and surface-exposed virulence factors. Overview 
of pathogenic secreted and surface-exposed virulence factors and inhibitors. Antivirulence agents 
in green or orange boxes are FDA approved or in clinical trials, respectively. Bacillus anthracis 
secretes lethal factor (LF) and oedema factor (EF), which interact with the common receptor-
binding component, protective antigen (PA), to form lethal toxin (LT) or oedema toxin (ET). 
Raxibacumab and obiltoxaximab block the interaction of PA with the receptor. In Staphylococcus 
aureus infections, α-toxin and four members of the leukotoxin family have been targeted by anti-
bodies: MEDI4893 binds α-toxin; ASN-1 binds α-toxin and three members of the S. aureus leuko-
toxin family; and ASN-2 targets LukGH, the only leukotoxin not recognized by ASN-1. The 
combined ASN-1 and ASN-2 mAb combination is called ASN-100. MEDI3902 is an engineered 
bispecific antibody that recognizes both Psl and PcrV. Fimbriae and pili are involved in cell adhe-
sion, and these have been targeted by EbpA anti-sera (which blocks the EbpA pilus tip subunit in 
Enterococcus faecalis), Compound 22 (which inhibits the FimH component of type I fimbriae in 
Escherichia coli) and KP3 (which binds the MrkA shaft of type III fimbriae in Klebsiella pneu-
moniae). BabyBIG, botulism immune globulin intravenous; BAT, botulism antitoxin heptavalent; 
BoNT, botulinum neurotoxin; LAM, lipoarabinomannan; mAbs, monoclonal antibodies; PGA, 
poly-γ-D-glutamic acid; scFv, single-chain variable fragment; Stx, Shiga toxin; T3SS, type III 
secretion system
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the small molecule AL1 [N-(4-chloro-phenyl)-2-(5-[4-(pyrrolidine-1-sulfonyl)-
phenyl]-[1,3,4]oxadiazol-2-yl-sulfanyl)-acetamide)] was identified by its ability to 
inhibit the polymerization of type I fimbriae structural subunits (Lo et al. 2014).

Afimbrial adhesins (MSCRAMMs) and fimbriae in Gram-positive pathogens are 
linked to the peptidoglycan layer through a sortase-dependent mechanism. Sortases 
are cysteine transpeptidases that catalyze the covalent linkage of the adhesin poly-
peptide to the pentapeptide cross-bridges found within the lipid II component of the 
peptidoglycan layer. Inhibition of sortase enzymatic or substrate-binding activity is 
predicted to hinder adherence of Gram-positive pathogens such as S. aureus and S. 
pyogenes, thus providing potential anti-virulence capabilities (Cascioferro et  al. 
2014). Using high-throughput screening and virtual in silico screening, numerous 
small organic molecules have been identified that block these activities. One of the 
most promising is molecule 6e ([3-(4-pyridinyl)-6-(2-sodiumsulfonatephenyl)
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole]), which inhibits SrtA from S. aureus and S. 
pyogenes and is protective in BALB/c mice studies (Zhang et al. 2014). Other prom-
ising synthetic and plant natural small molecule inhibitors include DMMA [(Z)-3-
(2,5-dimethoxyphenyl)-2-(4-methoxyphenyl) acrylonitrile)] (Oh et  al. 2010), 
β-sitosterol-3-O-glucopyranoside, berberine chloride, curcumin, diihydro-β-
carboline, and aryl(β-amino)ethyl ketones (AAEKs) (Cascioferro et al. 2014). Non-
cleavable, substrate-derived peptidomimetic peptides also have irreversible, 
competitive inhibitory activity, including the peptidyl-diazomethane and peptidyl-
chloromethane analogs Cbz (benzyloxycarbonyl)-Leu-Pro-Ala-Thr-CHN2 and 
Cbz-Leu-Pro-Ala-Thr-CH2Cl (Scott et al. 2002).

�Anti-secretion System Therapeutics

Gram-negative bacterial pathogens use several different secretion systems to export 
exotoxins and effector polypeptides beyond their hydrophobic outer membranes 
into the environment or directly into host cells. T3SSs and T4SSs are usually only 
expressed in pathogens and are the predominant secretion systems used to insert 
effector proteins into host cells. T3SSs are used by ~25 Gram-negative pathogens 
including E. coli, S. enterica, EIEC/Shigella, P. aeruginosa, and Y. pestis, and 
T4SSs are used by L. pneumophila and H. pylori to insert effector proteins. Since 
the structural components for T3SSs and T4SSs are located outside the bacterial 
surface, they are prime candidates for anti-virulence strategies (Charro and Mota 
2015; Duncan et  al. 2012; Hauser et  al. 2016; Johnson and Abramovitch 2017; 
Marshall and Finlay 2014; Mühlen and Dersch 2016). The synthesis, assembly, and 
secretory functions of these systems are complex, involving many different poly-
peptides. Therefore, to block these systems, one could target the regulation of the 
synthesis of the structural polypeptides, their assembly into a functioning “needle” 
complex, or their interaction with host cell receptors. In the Gram-positive acid-fast 
pathogen M. tuberculosis, T7SS (ESX) secretion systems play an essential role in 
virulence, and anticytolytic screens have recently identified benzothiophene 
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(BPT15) and benzyloxy benzylidene hydrazine (BBH7) compounds that block 
secretion in this important pathogen (Johnson and Abramovitch 2017; Rybniker 
et al. 2014).

Whole-cell-based high-throughput screens (HTS) have identified numerous nat-
ural and synthetic small molecules that can interfere with T3SSs. For instance, the 
O-acetyl salicylideneanilide clioxanide and N-hydroxybenzamidazole derivatives 
block the multiple adaptational response (Mar) transcription factor LcrF that regu-
lates the T3SS in Y. pseudotuberculosis (Kauppi et al. 2003; Kim et al. 2009), and 
the fungal metabolite cytosporone B (Csn-B) inhibits the S. enterica T3SS by affect-
ing the transcription of key regulator proteins (Li et  al. 2013). Essential T3SS 
ATPases, such as Y. pestis YscN, provide the energy for translocation and are 
involved in dissociating effectors from their bacterial chaperones. Compounds 
7086, 7832, and 7812, which were identified in an in silico approach for molecules 
that inhibit the catalytic domain of the YscN ATPase, could block translocation of a 
Y. pestis effector protein (Swietnicki et al. 2011). Secretin proteins, which form the 
pore within the T3SS basal body through which effectors are translocated, are effec-
tively blocked by TTS29 and other 2-imino-5-arylidenethiazolidin-4-one analogs in 
S. enterica, Y. enterocolitica, and P. aeruginosa (Kline et al. 2008). Assembly of the 
needle complex is the target of the salicylidene acylhydrazide (SAH) compound 
INP0400 (Veenendaal et al. 2009). Numerous SAH compounds have been identified 
and seem to block various different aspects of T3SS function in EHEC, 
EIEC/Shigella, S. enterica, Y. pseudotuberculosis, and C. trachomatis, some of 
which can be reversed by the addition of iron (Charro and Mota 2015; Ernst and 
Peschel 2011; Marshall and Finlay 2014). Another target within the assembly pro-
cess is the structural filament itself, and a target-based approach identified two 
15-amino acid peptidomimetics, CoilA and CoilB, that block assembly of the EspA 
EPEC filament protein by mimicking its essential coiled-coil domain (Larzabal 
et al. 2010). One of the most promising strategies is using specific antibodies to 
block tip adhesin proteins, such as P. aeruginosa PcrV, that interact with host recep-
tors in the cell membrane (Sawa et al. 2014). The multifunctional bispecific anti-
PcrV/anti-Psl antibody MEDI3902 (a.k.a. BiS4αPa) is protective in mouse models 
of pulmonary infection and is undergoing testing in Phase II trials (Dickey et al. 
2017; DiGiandomenico et al. 2014). Numerous natural products have been shown 
to be effective T3SS inhibitors, including the glycolipid caminoside B isolated from 
the marine sponge Caminus sphaeroconia (Linington et al. 2006) and the guadino-
mines and Aurodox produced by Streptomyces spp. (Iwatsuki et al. 2008; Kimura 
et al. 2011).

�Anti-exotoxin Therapeutics

Exotoxins are secreted polypeptides that have been implicated in the pathogenesis 
of most medically relevant bacterial pathogens, including B. anthracis, C. botuli-
num, C. tetani, C. diphtheriae, EIEC/Shigella, S. aureus, S. pyogenes, and V. 
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cholerae. Anti-exotoxin therapeutics have focused on chemical inhibitors that either 
block the expression and secretion of exotoxins or affect the entry and trafficking of 
exotoxins into host cells, and on specific antibodies that neutralize the toxin once 
inside the human host (Dickey et al. 2017; Garland et al. 2017; Hauser et al. 2016; 
Johnson and Abramovitch 2017; Mühlen and Dersch 2016; Ruer et al. 2015). For 
instance, the small molecule virstatin blocks the dimerization of the V. cholerae 
ToxT transcription factor that regulates the expression of cholera toxin (Hung et al. 
2005; Shakhnovich et al. 2007), and toxtazins A and B affect the expression of ToxT 
(Anthouard and DiRita 2013). Several of the T3SS inhibitors described above, such 
as compounds 7086, 7832, and 7812 and some SAHs, block the translocation of 
exotoxins into the host cytoplasm.

The B subunit of A-B exotoxins, such as anthrax toxin, botulinum toxin, and 
Shiga toxin, interacts with specific host cell surface molecules to promote attach-
ment of the toxin and entry of the catalytic A subunit into susceptible host cells. This 
essential interaction is the target of small molecule inhibitors and antibody inhibi-
tors (Dickey et al. 2017; Fernebro 2011; Nestorovich and Bezrukov 2014). Binding 
of the PA anthrax toxin B subunit to the host receptors ANTRX2/CMG2 and 
ANTRX1/TEM8 can be blocked by peptidomimetic peptides and small molecules 
(Basha et al. 2006; Rogers et al. 2012). Several monoclonal antibodies have been 
successfully used to block anthrax toxin binding to its receptors, including raxi-
bacumab from GlaxoSmithKline and obiltoxaximab from Elusys Therapeutics, 
both of which are now FDA approved for use (Greig 2016; Migone et al. 2009; Tsai 
and Morris 2015). The B subunits of Shiga and Shiga-like toxins interact with Gb3 
glycolipid receptors; however, attempts to block this interaction with Gb3 sugar 
mimics and the C-9 inhibitor of glucosylceramide synthase have had varying 
degrees of success (Kitov et al. 2000; Silberstein et al. 2011). Branched multivalent 
ligands can be used as GM1 receptor mimics for cholera toxin B subunits (Pickens 
et al. 2002). These receptor mimics, which are derived from m-nitrophenyl-α-D-
galactoside (MNPG), also show efficacy against ETEC heat labile LT toxin, raising 
the possibility that they may be effective against both toxins in the human host.

Numerous antibody-based therapeutics have been successfully used to neutralize 
exotoxin activity, several of which are FDA approved for use (Fig. 34.1). Examples 
include BabyBIG and BAT antibodies directed against C. botulinum (botulinum 
toxin) [(Arnon et al. 2006); FDA approved], Shigamab antibodies directed against 
EHEC/Shigella Shiga and Shiga-like toxins [(Sauter et  al. 2008); Phase I trials], 
bezlotoxumab antibodies directed against C. difficile TcdB toxin [(Lowy et  al. 
2010); FDA approved], and the MEDI4893 and AR-301 antibodies directed against 
S. aureus α-hemolysin [(Oganesyan et al. 2014); Phase II clinical trial]. Small mol-
ecule inhibitors of exotoxin activity have also been identified, including PT-8420 
and PT-8541 that block lethal factor (LF) anthrax toxin activity (Jiao et al. 2010), 
compound 22 that blocks edema factor (EF) anthrax toxin activity (Chen et  al. 
2012), and ebselen, a small organoselenium compound that blocks C. difficile TcdA/
TcdB cysteine protease domain activity (Bender et al. 2015).

Hemolytic pore-forming toxins (PFTs), such as S. aureus α-toxin and S. pyo-
genes streptolysin-O, bind to host red blood cell (RBC) membranes resulting in 

Anti-exotoxin Therapeutics



446

cytolytic effects. A fascinating new strategy is to use hydrogel retaining toxin-
absorbing nanosponges that are coated with RBC membranes to absorb and neutral-
ize the toxins at infection sites away from their cellular targets (Hu et  al. 2013; 
Wang et al. 2015). These nanosponges were effective in neutralizing α-toxin and in 
treating methicillin-resistant S. aureus (MRSA) infection in a mouse model (Wang 
et al. 2015). This hydrogel/RBC membrane hybrid material approach promises to 
be an effective weapon against PFTs in the future. In a similar approach, toxin-
absorbing ion exchange resins, such as Synsorb 90 (Synsorb-CD), colestipol, and 
tolevamer, have been used to bind to the C. difficile TcdA and TcdB toxins. However, 
unsuccessful clinical trials have led to abandonment of these resins (Fernebro 2011).

�Anti-immune Evasion (Immunomodulatory) Therapeutics

The ability to evade the host innate immune system is a characteristic of many bac-
terial pathogens. The major mechanism to avoid phagocytosis is the expression of 
an anti-phagocytic capsule. Beyond the vaccine-derived antibodies that are effective 
against S. pneumoniae, N. meningitidis, and H. influenzae (Hib) capsules, engi-
neered monoclonal antibodies (11D, 4C, F26G3, F24F2, and F26G4) directed 
against the B. anthracis poly-γ-D-glutamic acid (PGA) polypeptide capsule are pro-
tective in preclinical mouse models of inhalation anthrax (Chen et al. 2011). An 
early step in the activation of host inflammatory processes is the recognition of 
bacterial pathogen-associated molecular patterns (PAMPs) by host pattern recogni-
tion receptors (PRRs), including the Toll-like receptors TLR4 (binds LPS), TLR1-
TLR2 (binds lipoteichoic acid and lipoproteins), and TLR5 (binds flagellin). Thus, 
anti-virulence strategies that activate these TLRs or induce pro-inflammatory 
responses are under investigation, especially with pathogens that stimulate intense 
inflammatory reactions such as GI pathogens (Hennessy et  al. 2010). Examples 
include eritoran, a synthetic lipodisaccharide TLR4 antagonist [(Mullarkey et  al. 
2003); Phase III trials] and Cadi-05, a polyTLR agonist [(Parkinson 2008); Phase 
III trials]. Also, in diseases associated with abnormal immune responses to GI 
microbiota, such as ulcerative colitis and Crohn’s disease, immunosuppressive anti-
inflammatory antibodies targeting the TNFα cytokine (infliximab) and the α4 integ-
rin subunit of leukocyte adhesion molecules (natalizumab) are in Phase II clinical 
trials (Jiang et al. 2011).

The use of antimicrobial peptides [AMPs; a.k.a., host defense proteins (HDPs)] 
and bacteriocins has garnered significant interest (Fernebro 2011; Rios et al. 2016). 
AMPs are 10–50 amino acid cationic polypeptides that have pore-forming cytolytic 
activity, primarily through electrostatic attachment to anionic membrane structures 
(Hancock and Sahl 2006). Eukaryotic AMPs, such as the cathelicidin LL-37, 
β-defensins, and magainins, can have bacteriolytic and/or immunomodulatory 
mechanisms of action and are effective against bacterial biofilms (Batoni et  al. 
2016; Bowdish et al. 2005; Dawgul et al. 2014; Duplantier and van Hoek 2013). The 
defensin-mimetic PMX-30063 (brilacidin) is active against S. aureus skin infections 
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and is currently in Phase II trials for two types of inflammatory bowel disease (IBD) 
(www.polymedix.com). The fungal AMP, plectasin, and its improved derivative, 
NZ2114, are effective against MRSA and S. pneumoniae and act by targeting the 
bacterial cell wall precursor lipid II (Schneider et al. 2010). The synthetic AMPs 
pexiganan and omiganan are being developed for the topical treatment of diabetic 
foot ulcers and the prevention of catheter-related infections, respectively. While 
numerous host factors, including proteolytic degradation, binding to serum pro-
teins, and binding to host cells (albeit with lower affinity), may affect the clinical 
usefulness of AMPs (Starr et al. 2016), new approaches combining two or more 
AMPs that have synergistic effects and/or adjusting pH, ionic strength, and specific 
ionic factors are being explored to optimize AMP activity (Walkenhorst 2016).

Bacteriocins are bacterially produced cationic AMPs that can block the growth 
of other related species (Riley and Wertz 2002). Both Gram-positive bacteriocins 
(e.g., nisins) and Gram-negative bacteriocins (e.g., colicins) have potential as anti-
virulence factors. For instance, nisins and other lactic acid bacteria (LAB)-produced 
lantibiotics (class I bacteriocins) are already being used as preservatives in the food 
industry to combat food-borne pathogens (Huang et  al. 2013) and are effective 
against MRSA and VRE (vancomycin-resistant Enterococci) (Brand et al. 2010). In 
addition, piscicolin 126 and diversin RV41 (class IIa bacteriocins) are effective 
against Listeria monocytogenes in mice (Lohans and Vederas 2012). Nisin Z can 
modulate the immune system by stimulating the expression of chemokines MCP-1, 
IL-8, and Gro-α, providing protection against S. aureus, S. enterica, and E. coli in 
mice models (Kindrachuk et al. 2012). This immune system modulation is similar 
to that seen with the host AMPs LL-37 and defensins.

�Anti-biofilm Therapeutics

Biofilms account for ~80% of persistent bacterial infections in humans (National 
Institutes of Health) including antibiotic-resistant infections, many of which are 
associated with indwelling medical devices, such as catheters, IV tubes, ventilators, 
and prosthetic devices. Primary biofilm infections are localized at the site of the 
indwelling medical device or the initial colonization, whereas secondary biofilm 
infections can result from cells dispersing from the initial biofilm and migrating 
throughout the body. Current options for managing biofilm infections include surgi-
cally removing the biofilm and/or the contaminated indwelling device or using 
pulsed, low-dose antibiotic treatment with a combination of bacteriostatic drugs. 
Anti-virulence strategies to block biofilm-related diseases could involve creating an 
antibacterial surface by stopping initial attachment (primarily mediated by type I 
fimbriae and Curli fimbriae or MSCRAMMs; see above), disrupting the synthesis, 
maturation, and stability of the biofilm extracellular polymeric substances (EPS) 
matrix structure or blocking the quorum-sensing mechanisms used by biofilm-
forming bacteria (Fig. 34.2) (Beloin et al. 2014; Bjarnsholt et al. 2013; de la Fuente-
Nunez et al. 2013; Wu et al. 2015).

Anti-biofilm Therapeutics
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Creating an antibacterial surface that reduces the attachment and subsequent pro-
liferation of bacteria can be accomplished by multiple strategies (Campoccia et al. 
2013; Hasan et  al. 2013). Surface modification through coating or impregnating 
central venous catheters and other indwelling devices with antimicrobial molecules, 
such as AMPs (de la Fuente-Nunez et al. 2016), chlorhexidine plus silver sulfadia-
zine (Silvazine), or nanoparticle silver (and other metal) ion coatings (Markowska 
et al. 2013), or with broad-spectrum antibiotics, such as minocycline plus rifampin, 
has had promising results in blocking catheter colonization but does not signifi-
cantly reduce sepsis or mortality (Gominet et al. 2017; Lai et al. 2016; Miquel et al. 
2016; Ramasamy and Lee 2016). Blocking the synthesis and/or assembly of bacte-
rial fimbrial adherence factors has anti-virulence and anti-biofilm possibilities. As 
mentioned above, the curliside FN075 blocks Curli fimbriae-dependent biofilms 
(Cegelski et al. 2009). Also, B. subtilis biofilms can be inhibited by AA-861 (a ben-
zoquinone derivative), which blocks the formation of TasA-dependent amyloid-like 
fibers needed for biofilm formation (Romero et al. 2013).

Once formed, the regulated dispersal of biofilms occurs naturally in response to 
environmental signals, with the subsequent bacterial dissemination leading to life-
threatening secondary site infections. There are multiple potential anti-virulence 
mechanisms by which biofilm dispersal could be achieved (Guilhen et al. 2017). 

Fig. 34.2  Anti-biofilm strategies (From: de la Fuente-Nunez et al. 2013)
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Biofilms can be dispersed by enzymatically destroying the EPS matrix. Dispersin B 
(DspB) is a glycoside hydrolase produced by the oral pathogen Aggregatibacter 
actinomycetemcomitans that destroys glucosamine sugars in the EPS matrix 
(Ramasubbu et al. 2005). Dispersin B, along with other hydrolytic enzymes such as 
lysostaphin, alpha amylase, and serrapeptase, can increase the efficacy of antibiot-
ics vancomycin and rifampin against MRSA biofilms (Hogan et  al. 2017). 
Overexpression of the P. aeruginosa PslG protein, a periplasmic β-D-xylosidase 
that degrades the Psl polysaccharide in biofilms, can disperse preformed biofilms 
and has a synergistic effect with the antibiotic tobramycin (Yu et al. 2015). DNAases 
have also been shown to be effective in targeting the extracellular DNA (eDNA) 
found in S. aureus biofilms (Bhattacharya et  al. 2015). The 2-aminoimidazoles, 
including oroidin, ageliferin, mauritiamine, and 2-aminoimidazole/triazole (2-AIT) 
conjugates, can disperse biofilms and increase the sensitivity of biofilm cells to typi-
cal antibiotics (Rogers et al. 2010). In addition, the QS autoinducer analogs cis-2-
decenoic acid and furanones can disperse biofilms generated by multiple pathogens, 
including P. aeruginosa, E. coli, K. pneumoniae, S. pyogenes, and S. aureus (Davies 
and Marques 2009; Lonn-Stensrud et al. 2009).

Another strategy for blocking biofilm formation and/or enhancing dispersal is to 
alter the concentrations of the second messenger c-di-GMP (bis-(3′,5′)-cyclic 
diguanylic acid) (Antoniani et al. 2010; Guilhen et al. 2017; Ryjenkov et al. 2005; 
Tolker-Nielsen 2014). In Gram-negative pathogens, high levels of c-di-GMP acti-
vate the switch from motile planktonic cells to sessile cells in biofilms, primarily by 
inducing the synthesis of matrix polysaccharides, such as P. aeruginosa Pel and Psl, 
and by inhibiting motility. However, low levels of c-di-GMP induce biofilm disper-
sal. Diguanylate cyclases (DGCs) catalyze the synthesis of c-di-GMP, whereas 
phosphodiesterases (PDEs) break down the molecule. Therefore, inhibitors of 
DGCs or activators of PDEs would be good anti-virulence targets. For instance, 
nitric oxide gas (NO) triggers biofilm dispersal in P. aeruginosa by activating spe-
cific PDEs that break down c-di-GMP (Barraud et al. 2009). The E. coli c-di-GMP-
binding biofilm dispersal mediator protein BdcA effectively binds and blocks 
c-di-GMP, leading to biofilm dispersal (Ma et al. 2011). The antimicrobial com-
pound sulphathiazole was identified in a screen for inhibitors of the AdrA DGC and 
can inhibit c-di-GMP biosynthesis and prevent biofilm formation (Antoniani et al. 
2010). Also, a catechol-containing sulfonohydrazide was identified in a screen for 
inhibitors of the PleD DGC (Fernicola et al. 2015).

�Anti-QS Therapeutics

Quorum sensing (QS) is widely used by Gram-positive and Gram-negative patho-
gens to regulate virulence gene expression and biofilm formation in response to host 
signals and population densities (Castillo-Juarez et al. 2015; Dow 2017; Hawver 
et al. 2016; Papenfort and Bassler 2016; Parker and Sperandio 2009). Therefore, it 
is not surprising that anti-QS therapeutics, termed quorum quenching (QQ), is a 
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very active area of anti-virulence and anti-biofilm research (Fetzner 2015; 
Grandclément et al. 2016; Jiang and Li 2013; Kalia 2013; Rampioni et al. 2014; 
Saurav et al. 2017; Tay and Yew 2013; Wang and Ma 2014; Welsh and Blackwell 
2016). Pathogens produce and secrete extracellular signaling molecules, termed 
autoinducers, that accumulate in the extracellular milieu. Gram-negative pathogens, 
such as P. aeruginosa, V. cholerae, E. coli, and L. pneumophila, synthesize N-acyl 
L-homoserine lactone (AHL) autoinducers by LuxI-type synthases, which diffuse 
across cell membranes and are sensed by intracellular LuxR-type receptors to con-
trol virulence factor transcription. Gram-positive pathogens, such as S. aureus, E. 
faecalis, and B. anthracis, synthesize and secrete autoinducing peptide (AIP) auto-
inducers that are sensed by TCSs. AI-1 and AI-2 autoinducers are active against 
both Gram-negative and Gram-positive bacteria. Therefore, QS inhibitors (QSIs) 
could target the biosynthesis and secretion of the autoinducer, the receptor sensing 
the autoinducer, or the autoinducer itself.

Biosynthesis of Gram-negative AHLs by LuxI-type synthases requires S-adenosyl 
methionine (SAM) and an acyl chain. Therefore, QSIs could block AHL synthase 
activity, SAM biosynthesis, or fatty acid biosynthesis (the source of acyl chains). 
For instance, inhibition of the LuxI-type synthase enzyme 50-methylthioadenosine/
S-adenosylhomocysteine nucleosidase (MTAN) by the transition state SAM ana-
logs MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A, and 
BuT-DADMe-Immucillin-A can inhibit AI-2-based QS in V. cholerae and E. coli 
O157:H7 (Gutierrez et al. 2009). Also, S-adenosyl-homocysteine can block AHL 
synthesis in P. aeruginosa (Parsek et  al. 1999). Recent high-throughput screens 
have identified several small molecule inhibitors of LuxI-type AHL synthases 
(Christensen et  al. 2013) and the AHL analog J8–C8 (N-(3-oxocyclohex-1-enyl)
octanamide from the rice pathogen Burkholderia glumae, which inhibits the TofI 
LuxI-like synthase (Chung et al. 2011). Gram-positive AIP biosynthesis inhibitors 
identified to date include the fungal cyclohexenone metabolite ambuic acid, which 
inhibits AgrB-dependent AIP maturation in S. aureus and L. monocytogenes 
(Nakayama et al. 2009).

Many small molecules, including many plant natural products, have been identi-
fied that competitively inhibit the binding of autoinducers to their cognate receptors. 
The S. aureus Agr QS system uses the AgrA–AgrC TCS to regulate the expression 
of a number of major virulence factors, including phenol-soluble modulins (PSMs), 
peptidases, and nucleases that are needed for biofilm dispersal. The small molecule 
inhibitor savirin [3-(4-propan-2-ylphenyl)sulfonyl-1H-triazolo[1,5-a]quinazolin-5-
one] targets the AgrA response regulator and efficiently blocks Agr-regulated gene 
expression and protects against S. aureus-induced dermonecrosis without affecting 
the commensal S. epidermidis Agr system (Sully et al. 2014). Also, the N-acetylated 
trAIP-I D2A derivative of one of the four S. aureus AIPs, AIP-I, could inhibit all 
four Agr systems (Gordon et  al. 2013; Lyon et  al. 2002). P. aeruginosa has two 
major LuxR-LuxI-type QS systems, and multiple structural analogs of AHL autoin-
ducers have been used successfully to competitively inhibit binding to LuxR-type 
receptors. For instance, E22 (a phenoxyacetyl homoserine lactone) and mBTL 
(meta-bromo-thiolactone) are active against the RhlR-RhlI pathway (Eibergen et al. 
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2015; O’Loughlin et al. 2013), whereas ITC-12 and ITC-13 (isothiocyanate-AHLs), 
C-30 (halogenated furanone), and 3-oxo-C12-(2-amino-cyclohexanone) act on the 
LasR–LasI pathway (Hentzer et al. 2003; Wu et al. 2004). The halogenated fura-
none (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone, isolated from 
the marine algae Delisea pulchra, blocks LuxR from binding DNA and disrupts QS 
in E. coli, V. harveyi, and V. fischeri (Defoirdt et al. 2007). Also, the cyclic peptide 
antagonist ZBz1-YAA5911 can block the Fsr QS system in E. faecalis (Nakayama 
et al. 2013). The small molecule, LED209 [N-phenyl-4-(3-phenylthioureido) ben-
zenesulfonamide], inhibits the binding of AI-3 autoinducers to their cognate recep-
tors, QseC-like sensor histidine kinases, thereby inhibiting QseC-mediated 
activation of E. coli virulence gene expression (see Anti-TCS Therapeutics below). 
Finally, the use of antibody-based QQ to block autoinducer binding to receptors has 
had recent success (Grandclément et al. 2016). Antibody RS2–1G9, raised against 
4-methoxyphenyl amide AHL analogs, can inhibit QS signaling in P. aeruginosa 
(Kaufmann et al. 2006), whereas, antibody AP4-24H11, directed against AIP ana-
logs, blocks the production of the QS-regulated α-hemolysin in S. aureus and pro-
tects mice from a S. aureus challenge (Park et al. 2007).

Four catalytic classes of QQ enzymes that degrade or modify AHLs have been 
identified in many QS and non-QS bacteria (Chen et  al. 2013; Fetzner 2015; 
Grandclément et al. 2016). Lactonases, such as the prototypical Bacillus spp. AiiA 
(Dong et al. 2002), hydrolyze the homoserine lactone ring, whereas amidases/acyl-
ases, including P. aeruginosa PvdQ (Huang et  al. 2003), hydrolyze AHLs at the 
amide bond. Reductases, such as the metagenome-derived BpiB09 (Bijtenhoorn 
et  al. 2011), convert 3-oxo-substituted AHLs to inactive 3-hydroxyl-substituted 
AHLs, whereas cytochrome oxidases such as cytochrome P450 oxidase CYP102A1 
from Bacillus megaterium (Chowdhary et al. 2007) oxidize acyl chains. In addition, 
mammalian paraoxonases (PON1, PON2, and PON3) can cleave AHLs (Draganov 
et al. 2005). It is important to note that simple sequestration of the autoinducer may 
accomplish the same goal as destruction. For instance, apolipoprotein B, which is a 
major structural protein of very low-density lipoproteins (VLDL) and low-density 
lipoproteins (LDL), can sequester AIP-1, thereby blocking MRSA invasive infec-
tions (Peterson et al. 2008).

�Anti-TCS Therapeutics

Many bacterial pathogens use two-component phosphorelay systems (TCSs) to 
sense environmental and host signals and respond to these cues by regulating the 
transcription of many different genes, including virulence genes (Beier and Gross 
2006; West and Stock 2001; Zschiedrich et al. 2016). TCSs are comprised of a sen-
sor histidine kinase (HK) located at the bacterial cell surface and a response regula-
tor (RR), which usually acts as a positive or negative transcription factor. Recognition 
of an environmental or host signal by the HK leads to its autophosphorylation on a 
histidine residue, followed by phosphorelay from the histidine residue to an 
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aspartate residue in the RR, which in turn activates its transcriptional activity. 
Therefore, blocking TCS-dependent transcription of virulence factors would be a 
good target for anti-virulence strategies (Gotoh et al. 2010; Johnson and Abramovitch 
2017; Mühlen and Dersch 2016; Worthington et al. 2013). This inhibition could be 
accomplished by either blocking the ability of the HK to sense the signal, inhibiting 
HK autophosphorylation, interfering with HK-RR interactions, or inhibiting the RR 
transcriptional activity. Some well-studied TCSs that have been targeted include 
WalK–WalR (a.k.a. YycG–YycF), which regulates Gram-positive cell wall metabo-
lism; KinA–Spo0F, which regulates endospore development; the QS regulators E. 
coli QseC–QseB and S. aureus AgrA–AgrC; M. tuberculosis PhoP–PhoR, which 
responds to acidic pH; and M. tuberculosis DosR–DosS–DosT, which responds to 
oxygen concentrations to regulate latency and resistance to NO.

Several ATP-competitive molecules that inhibit the histidine kinase catalytic 
activity through binding to the ATP-binding domain have been identified. For exam-
ple, walkmycin C inhibits the WalK (a.k.a., YycG) kinase from B. subtilis, S. aureus, 
and S. mutans (Eguchi et al. 2011; Okada et al. 2010; Wilke et al. 2015). Closantel 
and RWJ-49815 are two of several synthetic molecules that block the autophos-
phorylation activity of KinA and KinA-like sensor kinases in S. aureus, S. pneu-
moniae, and VRE (Stephenson and Hoch 2002). As mentioned above, LED209 
blocks binding of AI-3 autoinducers to QseC and QseC-like sensor histidine kinases, 
thereby inhibiting QseC-mediated signaling in EHEC, S. enterica, and F. tularensis. 
Also, the small molecule savirin targets the AgrA response regulator and efficiently 
blocks Agr-regulated gene expression. Ethoxzolamide (ETZ; 6-ethoxy-1,3-
benzathiazole-2-sulfonamide) was identified as an inhibitor of PhoP-PhoR signal-
ing in M. tuberculosis, blocking T7SS (ESX-1) secretion and attenuating virulence 
in a mouse model (Johnson et al. 2015). Three molecules, artemisinin, HC102A, 
and HC103A, were shown to block the M. tuberculosis DosS and DosT sensor 
kinases, leading to inhibition of the DosR regulon and M. tuberculosis persistence 
(Zheng et al. 2017). Anti-virulence molecules targeting HK-RR interactions or RR 
transcriptional activity have not been identified to date.

�Concluding Remarks

Identifying and characterizing the virulence factors of established and emerging 
bacterial pathogens, which this book has hopefully promoted, as well as under-
standing the host-pathogen interactions that drive disease manifestation, are the first 
steps in developing meaningful anti-virulence strategies. To facilitate these studies, 
multidisciplinary approaches will need to be utilized, including “-omics” (genom-
ics, proteomics, transcriptomics, etc.) as well as genetic, biochemical, immunologi-
cal, and structure-based rational design strategies. Since these strategies will be 
inherently specific for individual pathogens and virulence mechanisms, a therapeu-
tic protocol combining established antibiotics and new anti-virulence factors may 
well need to be used to impede the increasing incidence of antibiotic resistance.

34  Anti-Virulence Factor Therapeutics



453

From the limited studies undertaken to date, it is nonetheless clear that anti-
virulence strategies can have profound effects on bacterial pathogenesis in the labo-
ratory. However, for this new anti-virulence paradigm to gather momentum and, 
more importantly, acquire increased funding from both government agencies and 
commercial biopharmaceutical companies, more research and clinical studies need 
to be advanced. Only a few anti-virulence agents have begun clinical trials, and even 
fewer have received FDA approval, most of which are antibody-based approaches 
directed against exotoxins (Dickey et al. 2017; Czaplewski et al. 2016). Since most 
anti-virulence molecules are being identified and characterized using in vitro and 
animal models, the next step of clinical trials is critical and must be aggressively 
fostered intellectually and financially. Only through successful clinical trials will 
potential new anti-virulence drugs be identified and, eventually, be available for use 
in the treatment of highly recalcitrant antibiotic-resistant bacterial infections.
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