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Abstract

This study investigated magneto-thermoelastic interactions in rotating viscoelastic
nanorods under moving heat sources, advancing the modeling of nanoscale systems.
A key innovation was the adoption of Klein-Gordon-type nonlocal elasticity theory,
which incorporated internal length and time scales to capture small-scale interactions
effectively. Additionally, a fractional heat conduction model using two-parameter
tempered-Caputo derivatives introduced memory effects and nonlocality, ensuring
finite thermal wave speeds and overcoming the limitations of the classical Fourier
model. The inclusion of the Kelvin-Voigt viscoelastic framework accounted for energy
dissipation, enhancing the model’s accuracy. By integrating rotation, viscoelasticity,
magnetic forces, and fractional heat conduction, the study developed a
comprehensive nonlinear model of nanorod behavior. Numerical simulations
demonstrated that fractional-order heat conduction and nonlocal elasticity
significantly influenced the thermal and mechanical responses, reducing
discrepancies in heat propagation predictions. These findings showed that the
fractional and tempering parameters controlled thermal dissipation rates and thermal
wave propagation velocity, ensuring physically realistic thermal responses. The
incorporation of nonlocal length scale and time scale parameters enabled accurate
representation of size-dependent behaviors, including stiffness reduction and stress
redistribution in nanorods. These parameters also influenced memory effects
affecting wave propagation and relaxation in viscoelastic materials.

Keywords: Tempered-Caputo derivatives; Thermo-viscoelastic; Klein-Gordon type;
Internal length and time scale; Nanorods

1 Introduction

Viscoelastic materials demonstrate a unique interplay of elastic and viscous behaviors
when subjected to deformation, resulting in a response that is inherently time dependent.
These materials possess characteristics of both solids and fluids; they can store energy
similarly to elastic solids while also dissipating energy like viscous fluids. The viscoelastic
response is significantly influenced by various factors, including time, temperature, fre-
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quency, and the rate of loading, which collectively determine how these materials behave
under different conditions [1].

Viscoelastic materials exhibit several distinct characteristics that define their behavior
under stress and strain. One primary feature is their time-dependent behavior: the re-
sponse of these materials depends on the duration of applied stress or strain. Unlike purely
elastic materials, viscoelastic materials need time to return to their original shape after
load removal. Stress relaxation is another important characteristic [2]. When under con-
stant strain, the stress within the material gradually decreases over time as the material
relaxes, demonstrating its ability to adapt to sustained deformations. Creep behavior man-
ifests when these materials are subjected to constant stress. They progressively deform
over time, further illustrating their time-dependent response to applied loads. Energy dis-
sipation represents another key aspect of viscoelastic materials. During cyclic loading,
they display a hysteresis loop, indicating that some input energy dissipates as heat rather
than being fully recovered. This energy loss becomes critical in applications involving re-
peated loading. Temperature and loading frequency significantly influence viscoelastic re-
sponse [2, 3]. At elevated temperatures or low frequencies, these materials behave more
like viscous fluids. Conversely, at lower temperatures or higher frequencies, they exhibit
characteristics closer to elastic solids. This temperature and frequency dependence proves
crucial for predicting viscoelastic material performance across various applications [4].

To mathematically characterize viscoelastic behavior, various mechanical models are
employed, often combining springs (representing elastic elements) and dashpots (repre-
senting viscous elements). The Maxwell model consists of a spring and dashpot arranged
in series. This model effectively describes stress relaxation, capturing how stress decreases
over time under constant strain [5]. However, it inadequately represents creep behavior,
failing to account for progressive deformation under constant stress. The Kelvin—Voigt
model features a spring and dashpot arranged in parallel [6]. While this configuration
effectively captures creep behavior under constant stress, it fails to adequately describe
stress relaxation phenomena [7].

In recent decades, fractional calculus has gained recognition as a robust mathematical
framework for modeling and analyzing a diverse array of physical phenomena, especially
those characterized by complex, anomalous, or memory-dependent behaviors [8]. Classi-
cal calculus focuses on integer-order derivatives and integrals; in contrast, fractional cal-
culus extends these concepts to noninteger (fractional) orders. This generalization enables
a more precise representation of processes that exhibit long-term memory, nonlocality,
and hereditary effects, making it particularly valuable in fields such as physics, engineer-
ing, and applied mathematics [9].

Fractional calculus has emerged as a powerful mathematical tool across diverse scien-
tific fields, offering enhanced modeling capabilities for complex physical phenomena. In
thermal sciences and transport phenomena, fractional calculus addresses limitations of
classical approaches. It models anomalous heat conduction and diffusion processes where
the laws of Fourier and Fick prove inadequate, particularly in heterogeneous materials and
biological systems [10].

The viscoelastic behavior of materials finds precise description through fractional mod-
els. The fractional Maxwell and Kelvin—Voigt models effectively capture stress—strain rela-
tionships across multiple time scales, offering superior representation of material memory
effects [11]. Electromagnetic applications benefit from fractional-order models, especially
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in analyzing wave propagation through complex media. These models excel at describing
frequency-dependent phenomena in biological tissues and metamaterials. Control sys-
tems engineering employs fractional calculus in controller design, notably in fractional-
order PID controllers, achieving improved performance for systems with hereditary char-
acteristics. In biological applications, fractional modeling illuminates complex processes
from microcirculation to cellular transport. The approach particularly suits systems ex-
hibiting power-law behavior and memory effects [12]. The realm of quantum mechanics
and structural analysis has also embraced fractional calculus, enabling advanced descrip-
tions of quantum phenomena and thermoelastic coupling in nanostructures and compos-
ites [13].

The development of fractional calculus has its roots in the works of pioneers like Liou-
ville and Caputo, who were influenced by the real-world applications and practical mod-
eling capabilities offered by fractional derivatives [14]. The classical fractional derivative
frameworks, such as the Riemann—-Liouville and Caputo definitions, have become widely
used due to their ability to describe memory-dependent and nonlocal processes in a vari-
ety of scientific and engineering disciplines [15].

In recent years, fractional calculus has been extended beyond the classical Riemann—
Liouville and Caputo definitions to address new challenges in modeling real-world phe-
nomena. Caputo and Fabrizio [16, 17] introduced a novel fractional derivative with a non-
singular exponential kernel, addressing a key limitation of traditional fractional derivatives
that contained singularities in time-domain formulations.

The Atangana—Baleanu fractional derivative [18, 19] represents another significant ad-
vancement, introducing a generalized framework with a Mittag-Leffler function kernel.
This derivative accounts for processes with more complex memory behaviors, effectively
bridging the gap between classical fractional models and real-world dynamics. These
modern approaches, featuring nonsingular and Mittag-Leffler kernels, represent a fun-
damental paradigm shift in fractional calculus [20].

Elastic rods are fundamental components in engineering and physics, with applications
spanning from large-scale structures to micro-scale and nanoscale systems. Their behav-
ior under axial, bending, torsional, and shear loads can be accurately described using
elasticity theories. These range from classical models like Euler—-Bernoulli to advanced
theories incorporating viscoelastic, thermal, and nonlinear effects [21]. As technology ad-
vances, the inclusion of nonlocal and scale-dependent effects (e.g., in nanorods) is becom-
ing increasingly important for accurate modeling and analysis of elastic rods in cutting-
edge applications. At the nanoscale, elastic rod models need to account for surface effects,
nonlocal elasticity, and scale-dependent behaviors [22]. The Klein—Gordon-type nonlocal
elasticity is often used to incorporate internal length scale effects.

The study of moving heat sources in elastic bodies is essential in analyzing the ther-
moelastic behavior of materials subjected to dynamic thermal loads. This phenomenon
arises in various engineering and physical applications, such as welding processes, fric-
tional heating, laser-material interactions, and thermal shock problems [23]. A moving
heat source across an elastic body generates transient temperature fields. These tempera-
ture changes induce thermal stresses and deformations in the material [24].

Moving heat source analysis plays a crucial role in numerous applications. In laser weld-
ing and machining processes, the moving heat source creates localized heating and ther-
mal stresses, making it essential to understand the thermoelastic response for reducing
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residual stresses and preventing thermal damage [25]. Similarly, in mechanical systems
like brakes and clutches, frictional heating generates moving heat sources relative to ro-
tating or sliding components, producing complex thermal gradients and stress patterns
[26].

Nonlocal elasticity theory has emerged as a foundational framework in nanomechanical
applications. This theory effectively addresses various phenomena, including wave propa-
gation, composite wave dynamics, dislocation mechanics, mechanical fractures, and fluid
surface tension effects [26]. Nanotubes and nanobeams have attracted significant research
attention due to their unique mechanical properties and widespread applications in minia-
turized systems. The theory of nonlocal elasticity continues to evolve, expanding its scope
to address increasingly complex problems in nanomechanics [26, 27]. This theoretical ad-
vancement has enabled researchers to develop deeper insights into material behavior at
molecular scales.

Classical continuum mechanics operates on a fundamental assumption: the stress at
any point depends exclusively on the strain at that same point. However, the nonlocal
theory revolutionized this perspective by recognizing that stress at a point is influenced by
the stress and strain fields throughout a finite spatial region. This consideration of long-
range molecular interactions and small-scale effects has proven particularly valuable in
understanding nanoscale systems, where such influences are significant. Eringen [28-30]
introduced the nonlocal continuum mechanics framework as a response to the limitations
of classical mechanics in analyzing small-scale structures. This groundbreaking theory
marked a significant departure from traditional approaches to material behavior.

Carbon nanotubes and nanobeams represent the most comprehensively studied struc-
tures within the framework of nonlocal elasticity theory. This focused attention stems
from their crucial role in nanoelectromechanical systems (NEMS) and their remarkable
potential in developing high-performance materials [31]. These structures serve as cor-
nerstone elements in modern nanotechnology, offering unique combinations of mechan-
ical, electrical, and thermal properties that make them invaluable for advanced applica-
tions.

The Klein—Gordon-type nonlocal elasticity theory represents a significant advancement
in modeling nanoscale systems. This sophisticated framework builds upon Eringen’s non-
local continuum mechanics by incorporating time-dependent dynamics and scale effects
into the governing equations [32]. The theory introduces both internal length and time
scale effects, addressing fundamental limitations of classical elasticity when applied to
small-scale structures. This enhancement is particularly crucial for nanoscale elements
such as nanorods, nanobeams, and nanotubes, where traditional models fail to capture
long-range interactions, size dependence, and dynamic effects [33].

The Klein—Gordon-type model excels in analyzing wave propagation, vibrations, and
transient phenomena in nanostructured materials. Its practical applications are especially
evident in nanomechanical systems, such as nanoresonators and nanoactuators, where it
accurately predicts size-dependent natural frequencies and damping behavior. The Klein—
Gordon-type nonlocal elasticity theory incorporates two essential parameters that work
together to provide comprehensive modeling capabilities at the nanoscale [34].

The internal length scale parameter plays a fundamental role in capturing size-depen-
dent behavior in nanostructures, addressing a critical limitation of classical elasticity the-
ory [35]. This element enables the accurate representation of mechanical properties that
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vary with the physical dimensions of nanoscale structures, a phenomenon that traditional
elasticity approaches cannot describe. The time scale parameter complements the spatial
component by accounting for dynamic effects in nanostructures [36]. This aspect is par-
ticularly crucial for modeling wave dispersion and relaxation processes, making the theory
well-suited for analyzing transient and high-frequency problems. Through the combined
action of these spatial and temporal parameters, the theory provides a robust framework
for understanding the complete mechanical behavior at molecular scales [37, 38].

The classical Fourier heat conduction model, despite its widespread use, suffers from
inherent limitations. Its assumption of infinite heat transfer speeds implies that thermal
disturbances propagate instantaneously through a medium, which directly contradicts the
principle of causality. This limitation becomes particularly problematic when analyzing
small-scale phenomena or in systems subject to high heat fluxes, where the rate of heat
transfer cannot be considered infinite. Such scenarios require more accurate models that
account for the finite speed of thermal wave propagation. This is a crucial consideration
for understanding thermal behavior in advanced materials and nanoscale systems [39].

To address these theoretical shortcomings, researchers have developed several advanced
models. Notable among these are the Lord—Shulman theory [40] and the dual-phase lag
(DPL) model [41, 42]. These modifications incorporate crucial physical considerations,
including finite propagation speeds and small-scale effects. The dual-phase lag model,
when coupled with nonlocal continuum mechanics, offers a particularly robust frame-
work for studying thermoelastic behavior in nanoscale systems [43]. This advanced ap-
proach successfully addresses the limitations of classical theories by incorporating three
key elements: finite heat propagation speeds, memory effects, and size-dependent phe-
nomena. These features make it especially valuable for analyzing thermal behavior at the
nanoscale [44].

Numerous investigations have greatly enhanced our understanding of piezoelectric ma-
terials and structures, leading to the development of advanced models for examining
their thermoelastic and dynamic behaviors. Guo et al. [45] introduced a groundbreak-
ing nonlocal piezoelectric thermoelasticity theory that incorporates Eringen-type non-
local single phase lag heat conduction. Their study focused on the transient thermo-
electromechanical responses of piezoelectric nanorods, shedding light on how these ma-
terials react under different thermal and mechanical circumstances. In another contribu-
tion, Guo et al. [46] also crafted a fractional-order rate-dependent piezoelectric thermoe-
lasticity theory utilizing new fractional derivatives. This framework was applied to study
the transient structural responses of smart piezoelectric composite laminates, taking into
account the impact of imperfect interfacial conditions and the variances in material prop-
erty ratios on wave behavior and structural responses.

Lietal. [47] presented a fractional-order rate-dependent thermoelastic diffusion theory,
employing new fractional derivatives with nonsingular kernels, to analyze the transient
dynamic responses of sandwich-like composite laminates. Their work provided a thor-
ough understanding of how these materials behave under thermal and mechanical loads.
Furthermore, Li et al. [48] investigated the size-dependent thermo-electromechanical re-
sponses of multi-layered piezoelectric nanoplates, emphasizing their potential applica-
tions in vibration control. They focused on the influence of size and material properties on
the vibration characteristics of these nanoplates. Lastly, Li et al. [49] proposed a non-Fick
diffusion-elasticity model rooted in a novel nonlocal dual phase lag diffusion approach.
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This innovative model was utilized to explore the transient dynamic responses of materi-
als, offering valuable insights into their behavior under diverse loading scenarios.

This paper introduces a novel framework for analyzing magneto-thermoelastic interac-
tions in rotating viscoelastic nanorods subjected to moving heat sources, representing a
significant advancement in the modeling of nanoscale systems. The core innovation lay in
the integration of the Klein—Gordon-type nonlocal elasticity theory, which incorporated
internal length and time scale effects into the governing equations to accurately capture
small-scale interactions. Additionally, a fractional heat conduction model employing two-
parameter tempered-Caputo derivatives introduced memory effects and nonlocal heat
conduction, ensuring finite thermal wave speeds and addressing the limitations of clas-
sical Fourier models. Furthermore, the model incorporated the Kelvin—Voigt viscoelastic
framework, which accounted for energy dissipation due to the viscoelastic behavior of the
material, thereby enhancing its predictive capabilities and realism.

What distinguishes this work is the unique combination of rotation, viscoelasticity, mag-
netic forces, and fractional heat conduction, resulting in a highly coupled and nonlinear
problem. This comprehensive formulation successfully captures the intricate interactions
among thermal, mechanical, and magnetic fields in nanorods. The inclusion of uniform
rotational motion under a primary magnetic field introduces additional complexities, such
as Lorentz forces, centrifugal effects, and Coriolis forces, which significantly influence the
system’s dynamics. The proposed model systematically addresses all these phenomena,
providing a robust framework for understanding and predicting the behavior of nanoscale
systems in dynamic environments.

Numerical simulations validate the model’s capability to accurately predict the dynamic
behavior of nanorods under the combined effects of thermal, mechanical, and magnetic
influences. The results underscore several critical insights—the integration of fractional-
order heat conduction, nonlocal elasticity, and viscoelastic damping are indispensable for
achieving realistic and reliable thermal and mechanical responses. This study establishes
a robust theoretical framework for the design and optimization of advanced nanoscale
devices, including nanoactuators, thermal sensors, and magneto-mechanical systems, tai-

lored to operate in complex and dynamic environmental conditions.

2 Formulation of fractional space-time nonlocal thermoelasticity theory
The theory of fractional spacetime nonlocal thermoelasticity presents an advanced math-
ematical framework that goes beyond conventional thermoelastic models. This intricate
approach merges two influential mathematical ideas: nonlocal effects and fractional oper-
ators applicable in both spatial and temporal domains. By integrating these components,
the model effectively addresses key limitations found in classical thermoelasticity. This all-
encompassing framework is particularly beneficial for examining materials at nanoscale
and microscale levels, where standard methods often struggle to account for vital behav-
iors. At these scales, materials display complex phenomena such as long-range molecular
interactions, enduring memory effects, and unusual thermal and mechanical responses.
The fractional spacetime framework adeptly models these sophisticated behaviors, equip-
ping researchers with powerful tools to understand and predict material responses that
traditional models may not fully capture.

The nonlocal elasticity theory extends classical elasticity by considering that the stress
tensor at a given point r in a nanomaterial is influenced not only by the strain at that
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point but also by the strain at all other points within the body. This principle is particu-
larly crucial for studying the mechanical and thermal behavior of nanostructures, where
size effects and long-range interactions become significant. To address these complex in-
teractions, the theoretical formulation combines nonlocal elasticity, viscoelasticity, and
thermoelasticity to describe the dynamic behavior of nanomaterials.

The nonlocal stress tensor 7y (r) in a nonlocal elastic medium is expressed as follows
[28-30]:

T (P) = /VK(|r’—r E)ou (F) AV (F). 1)

In Eq. (1), the nonlocal kernel function K (‘r’ —r|,& ) characterizes the influence of strain
at point r on the stress at point r'. The nonlocal parameter £ is defined by the material con-
stant ey, which is determined experimentally, and the internal characteristic length a (such
as lattice spacing or grain size) along with the external characteristic length / (represent-
ing the overall dimensions of the structure). The macroscopic stress tensor at point r’ is
denoted as oy (r), and V refers to the volume of the material.

For a Kelvin—Voigt viscoelastic medium, the macroscopic stress tensor o (r/) is given by

(50, 51]

ou (F) = ke (1 + Ao%> EmmOil + 2lke (1 + Mo%) Ex— Ve (1 + yo%> 0(r)su. (2

In this context, the strain tensor is indicated as &4, while the temperature changes from
the reference temperature 7y is given by 8 = T — Tj. Key material constants include Lame’s
constants A and u as well as the viscoelastic relaxation times A¢ and . The thermal ex-
pansion coefficient is denoted by «;. The thermoelastic coupling parameter is defined
as ¥, = (3Ae + 21Le) o, and the thermo-viscoelastic relaxation parameter is expressed as
Y0 = (BheAo + 2ihefho) Ut/ Ve

The strain tensor &y is defined as [52]

261 = Qut %, 3
8.761 axk
where 1 are the components of the displacement vector.

In the nonlocal elasticity framework, which incorporates both spatial and temporal ef-
fects, the stress tensor 7 (r,£) at a specific point r and time ¢ is influenced not only by
the strain at that point but also by the strain at other locations within the material and
at earlier times. This framework effectively captures the memory effect inherent in the
system, highlighting how previous states influence the current stress state. The nonlocal
stress tensor can be expressed as [53]

t
Tkz(r,t):/ /J{(|r—?
-0 JV

where KX (\r - ?’! JE— f) is the nonlocal elasticity tensor, and eoy (?’, f) represents the local

S b= 2) Ol (;’, 2) dVv (52) dz, (4)

stress at the point 7 and time . This integral formulation accounts for the spatial and tem-
poral nonlocal interactions, incorporating the effects of past strains and distant regions
on the stress state at (7, £).
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Formulation (4) inherently couples both spatial nonlocality, represented by the distance
, and temporal nonlocality, represented by the time difference ¢ — . This coupling

lr -7
allows the stress at a given point r and time ¢ to depend not only on the local strain but also
on strains at other spatial locations and previous times. By incorporating both spatial and
temporal dependencies, this formulation captures the memory effects and the influence
of past events on the current stress state, which is crucial for accurately modeling complex
materials and systems at small scales.

Based on the principles of nonlocal elasticity, the nonlocal stress tensor can be related
to the local stress tensor as follows [52]:

02 ,
(1—52V2+T2@) Tkl = Ofl (r) (5)

This represents a Klein—Gordon type equation that incorporates both spatial and tem-
poral nonlocality. The equation of motion in the Klein—-Gordon type nonlocal elasticity
framework, which includes body forces as functions of temperature and displacement, is

given by
A 1+ 0 82u1 1 0 82uk
el 1+20— e | 1+ po— | —
03¢ ) dxix H Hogs dx?
N ool ) 3\ %uy 1 a1\ 26 ©)
+ et e+ e + Ue . ] 4 0 T Ve + a. ) 4.
M 0+ Melo Py Z)xi Y Voat e
8%\ 9%uy 9?2
2v72 2 2v72 2
:p(l—ZV + 7T ﬁ)w‘l‘(l—ﬂv +7T E)Fk.

The DPL model [41-44] marks a significant advancement in thermal transport theory.
Unlike classical Fourier heat conduction theory, which relies on simplistic assumptions
about heat propagation, the DPL model introduces important refinements by incorporat-
ing relaxation time parameters for both heat flux and temperature gradient. This devel-
opment addresses a major limitation of Fourier’s theory, i.e., the unrealistic assumption of
infinite heat propagation speeds.

The theoretical development of thermal transport progressed through several key
stages, with the Cattaneo—Vernotte model playing a pivotal role. This intermediate model
introduced a single relaxation time parameter (7,) for heat flux, establishing the concept
of finite propagation speeds. The DPL model built upon this by incorporating two sep-
arate relaxation times (7, and 7y), providing a more robust framework for understand-
ing thermal transport. The dual-parameter approach is particularly valuable for analyzing
transient conditions and high-rate thermal processes, where classical theories fail to offer
accurate predictions. In the context of the DPL model, a generalized form of Fourier’s law
can be expressed as follows: [43, 44]:

9q; a0,
; — =-K|{6; =~ ], 7
q+rq3t <'+r98t> @

where g; (r, t) is the heat flux vector and K is the thermal conductivity.
Equation (7) ensures that both heat flux and temperature gradients exhibit time delays,
accurately reflecting more realistic thermal behavior. The energy balance equation, which



Abouelregal et al. Boundary Value Problems (2025) 2025:10 Page 9 of 30

links heat transport to mechanical effects, is given by [53]

90 3\ 9&mm
Cr— +Tove [1+90— | 222 = —g;; + Q, 8
pCe 0)’(+V08t) qii + Q (8)

where Cg denotes the specific heat capacity of the material and Q represents the internal
energy input into the system.

In materials science, the Caputo tempered fractional derivative has become a powerful
tool for modeling complex thermal dynamics and mechanical interactions that surpass
the capabilities of standard fractional derivatives. It is especially effective for describing
processes that exhibit memory effects, long-range interactions, and the gradual decay of
past influences over time, making it highly suitable for advanced materials subjected to
various thermal and mechanical conditions. The Caputo tempered fractional derivative
is an extension of the Caputo fractional derivative, incorporating an exponential temper-
ing factor. This factor modifies memory effects by adjusting the impact of past states on
the system’s current behavior. This modification offers a more flexible and realistic frame-
work for modeling materials with time-dependent interactions and gradually diminishing
correlations.

The Caputo fractional derivative is characterized by the definition [54]

1 t d
C (@) _ —
oDy Y (t) = Fd—a) )y Goa)F ddY(a)dd. 9)

The Caputo tempered (CT) fractional derivative, represented as 57 D;”*, is defined as
follows [55]:

CTDOXy (t) = Lﬂfti (Y (9)) (t-4)*dE, a€(0,1) (10)
o Frl-a) ), ds ’ T

In this context, o € (0,1) signifies the order of the derivative, reflecting the degree of
the memory effect present in the system. The parameter x > 0 acts as the tempering pa-
rameter, adjusting the strength of this memory effect. Furthermore, I" (1 — ) denotes the
gamma function, which is employed to maintain appropriate normalization in the formu-
lation.

The derivative retains the long-term memory effects typical of standard fractional
derivatives. However, the tempering factor e ** lessens the influence of previous states, al-
lowing for a more precise depiction of processes where memory effects decline over time
[56]. This modification facilitates a more realistic modeling of dynamic behaviors across
diverse systems. It proves especially beneficial for processes that display fading memory
effects, like thermal relaxation in materials.

The Laplace transform of the Caputo tempered fractional derivative streamlines its ap-
plication in solving differential equations. For any function Y (¢) with initial conditions

given by Y (0), the Laplace transform is expressed as [57]

L[DOY @] =6+ 07 LIY O1- 640" Y ©. ()
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By integrating the CT fractional derivative into the DPL model, the generalized heat
conduction law is formulated as [58]

(1 + T;Dg"”) gi = -K (1 + rgDﬁ'*)) 9,. (12)
Merging Eq. (12) with the energy balance Eq. (8) results in the fractional heat transport
equation [59]

a0
ot

1+7*D™) | pC
(”‘1 ‘ )[pE at) ot

+ ToYe (1 + y03> Omm _ Qi| =K (1 + I;Dga)) .- (13)
This equation captures the interaction of fractional memory, limited propagation
speeds, and thermal-mechanical coupling in thermoelastic systems.
In thermoelastic solids, the effect of electromagnetic fields is incorporated through
Maxwell’s equations, which detail the interactions between electric and magnetic fields
and matter. The governing equations can be represented as follows [60]:

- —
— — — oh — — ou —
J =Vx h,VX E =—ug—, J :00<E +M0<—><H>),

7:Vx(7xﬁ),V~7:

(14)

— —
In this context, J signifies the current density vector, whereas E represents the electric
- = - —

displacement vector. The complete magnetic field is expressed as H = & + H o, where h

is the induced magnetic field and ﬁo is the initial uniform magnetic field. Furthermore, o
denotes electrical conductivity, while jio refers to magnetic permeability. Together, these
variables characterize the electromagnetic properties and interactions occurring within
the system

When a thermoelastic medium rotates at a steady angular velocity 3 =Qn,where 1
is the unit vector aligned with the rotation axis, it becomes important to factor in the ef-
fects of centripetal acceleration and Coriolis force within the governing equations. These
rotational influences significantly affect the thermoelastic characteristics of the medium,
altering the stress, strain, and displacement fields, while also impacting the heat conduc-
tion process [61]. As a result, a thorough understanding of these dynamics is essential for
accurately modeling the behavior of rotating thermoelastic systems. In a rotating frame,
the inertial forces consist of centripetal acceleration and the Coriolis force. Centripetal

acceleration, which is proportional to 2, acts outward radially and is represented by the
— —

expression  x [ Q x ), with 0 being the displacement vector. The Coriolis force,
which results from rotation and is proportional to €2, acts at a right angle to the direction

- = —
of motion and is expressed as 2 x iz, where i signifies the velocity vector [62]. For a
rotating medium with angular velocity €2, extra terms accounting for centripetal acceler-
ation and Coriolis forces are incorporated into the equation of motion [54, 63]:

14 3\ %y ) 3\ 0%ux
+Ao— + +o— | —-
U 0% ) e 1\ T 0% ) ax?

N Ol ) 3\ 0%ux ) 3\ 90 (15)
+ + Ue + + — | = - +Yo— | —
et We eAo T Uelbo Y axi Ve Yo at ) oxs
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3%\ 3%uy 92
_ 202, 2 292, 2
_p<1—€ Vetr 8t2) Yo +(1—E Vetr 3t2>Fk

PZ\[—> — — - —
xp<1—£2V2+12@>|:i1 + Q X<Q XT1))+<2QX u):| .
k

3 Problem formulation for nonlocal visco-thermoelastic rotating rod

This problem addresses a homogeneous, isotropic nonlocal visco-thermoelastic finite rod
that is initially unstressed, unstrained, and uniformly maintained at a temperature Ty. As
depicted in Fig. 1, the rod rotates around the z-axis with a constant angular velocity 3 =
(0,0, 2), while the x-axis indicates the rod’s axial direction. A moving heat source Q (x, £)
is introduced at x = 0 and travels along the axial direction (x) of the rod. The coupled
thermoelastic behavior takes into account the influences of nonlocal elasticity, fractional
heat conduction, viscoelasticity, rotation, and the presence of an applied magnetic field.
The analysis also involves several key assumptions: it is treated as one-dimensional, with
the fields depending only on the spatial coordinate x and time ¢. Displacement is restricted

to the axial direction, represented as u, = u (x,t), while %, and u, remain zero.
—
Furthermore, the rod is exposed to a magnetic field H = (0, H,,0), which is oriented
ﬁ
perpendicular to the axis of the rod. The presence of this longitudinal magnetic field H

. - = = — )
results in a Lorentz force F = J x H, where ] denotes the current density. The com-
ponents of this force are as follows:

- u
E = (fufyfz) = —ootoHy (5,0,0) . (16)

The nonlocal stress tensor for the rod is determined by the principles of nonlocal elas-
ticity theory. By incorporating the strain tensor into the nonlocal stress equation, the axial

stress T, is formulated as follows:

(17)

b+ 200+ Oodg + 2ptupt) ) 2 1l ) o
= Ao+ 20 + (Aoho + 20epto) — | — = Ve [ 1+ 10— | 6.
M 0 Melto 3 ) ox Ve Voat

The rod’s equation of motion is obtained by inserting the nonlocal stress tensor (Eq. (17))
and the Lorentz force (Eq. (16)) into the linear momentum balance equation. This results

L

S

applied magnetic field

y

Figure 1 Schematic representation of the nonlocal thermo-viscoelastic finite rod
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in the following expression:

9\ 0%u a1\ a0
Ao+ 2k + (heho + 2itetto) o “Ye\l+vo- ) ==

ax? ot ) ox
2 2 2 (18)
1- E28—+ta— 8 +0Q%u + 0 Hau
w2 o) |Par TP oKy |

Heat transfer within the rod is described by the generalized fractional heat equation,
which utilizes Caputo tempered fractional time derivatives to incorporate memory effects.
The heat equation can be expressed as follows:

2
K (1 et D(“)) 2; (1 + T;D§°‘>) [pCE% + Toye ( yoﬂ) aam - Q] (19)

The governing equations can be streamlined by applying specific nondimensional vari-
ables to scale them appropriately. These variables usually encompass scale factors for dis-
placement, time, temperature, and other pertinent physical properties. This process of
dimensionalization simplifies the analysis of the system’s dynamics by reducing the num-
ber of parameters involved and enabling easier comparisons under various conditions.

The primary nondimensional variables are defined as follows:

{x/, I/l/} = CoWwo {x,u}; {t’, 'L'é, 'L'q/,‘[/] = C(%wo {t, ‘L'g,‘[q,‘[}, = cowgﬁ
20
Q= & o' = i T/ = Taex Q= Q 2 (Ao +2pe) _ pCE (20)
T dwo . To ™ k2~ KTodwd O 0T
Cowo 0 et 2le 0Ciw,

Here, ¢ represents the speed of longitudinal elastic waves, while w, denotes the speed
of thermal waves. For simplicity, we can omit the primes, allowing us to express the nondi-
mensional field equations in the following manner:

82 82 d ou d
2 2 2 2
(I—Z p ﬁ)fxx:(1+ﬂ1§)a_b<l+ﬁ05)9’ (21)
) £2 82 82 a u QZ ou 1 ,32 0 azu 14 IB 89
—F— 4 ‘L' — + u+e— | = + ~ 155~
a2 o) | or? ot Lot ) oa? °8t ax
(22)
920 20 9%u
a ~(@) _ a (@)
(1+70i”) 57 = (1 5D )[E+ ( ﬂ"at)atax Q}’ )
where
g2 o0 (heho +2ptetto) | veTo
1 Ae + 2le T et 2u,
, (24)
Y Ye

;‘32 = cza)oyo,s = g = .
0 pCiwo pCe

In this context, ¢ refers to the magnetic field coupling parameter. The initial conditions
are defined as follows:

0 (x,0) =

( O) = =0, Tox (x: 0) = T =0. (25)

a0 (x, ()) ou (x, 0) 0Txx (,0)
¢
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The boundary conditions describe a rod that is thermally insulated at both ends, indi-
cating that heat cannot flow across the boundaries. Furthermore, one end of the rod is
securely fixed, while the opposite end is unrestrained by axial stress, permitting thermal
expansion to occur freely.

At the first end, where x = 0, the rod is anchored in place, which results in the displace-
ment being zero:

u(xt)=0 at x=0. (26)

At end x = L, the rod is free from axial stress. This implies that the axial stress 7, van-
ishes at the free end, which translates to

T (%,6)=0 at x=1L. (27)

The boundaries (x = 0 and x = L) are thermally insulated, which means there is no heat
transfer across them. Mathematically, this condition implies that the heat flux vanishes at
both ends:

a0 (x,t) B

K =0 on x=0,L. (28)
ox

The rod experiences the influence of a moving heat source Q (x, t) with a steady strength
denoted as Qo, which consistently emits energy while advancing along the positive x-axis
at a constant speed ¢. This heat source is represented as a Dirac delta function § (x — ¥¢),
simulating a point heat source navigating through the rod. The nondimensionalized ver-
sion of the heat source can be articulated as follows [63, 64]:

Qx,t) = Qoé (x— V). (29)

The Dirac delta function § (x — ¥£) guarantees that the heat source is focused at a specific
location x = ¢ at any moment ¢. This kind of heat source is widely utilized in simulations
of localized heating phenomena, such as those occurring during laser heating or frictional
heating processes.

4 Laplace transform solution

The Laplace transform method is employed to obtain explicit solutions for the governing
equations of a nonlocal visco-thermoelastic rod. This technique translates the equations
from the time domain into the Laplace domain, making the process of finding solutions
more straightforward. The Laplace transform of a function f (x,£) can be expressed as
follows:

fxt) = / b f(x,t)eldt. (30)
0

The governing equations in the Laplace transform domain, incorporating the initial con-
ditions, can be articulated as follows:

1_g2d_2+f252 T _(1_,_’325)@_“1_,_’325)5 (31)
dx2 xx = 1 do 0 ’
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2—

d? _ d“u do
a0<1—£2d_+r252)u=(1+,3125) —b(l+ﬂg$)d—x,

x2 dx?
a6 (1 M T;A) o 2 du Qo —(s/0)x
@_7(1+1:3‘A) |:30+sg(1+,305)a—?e i|,

where o = s% + Q2 + es and

S for C fractional operotor,

A =
(s+ x)* for CT fractional operotor.

By substituting 6 from Eq. (32) into Eq. (33), the equation for % becomes

d4 2
(@ -y P + mz> u(x,s) = mye” /"%,
x

where the coefficients m1;, 15, and m3 are defined as follows:

(0% 0305 o704 SU30g
m) =04+ — + sy = ym3 = .
o1 o1 (03] 19011

Also, the intermediate quantities ¢; are given by

a1 = (1+B7s) + Lag,an =5 +s6 + Q% a3 = b (1 + B3s),

s<1+r(‘;A

oy = m,as =80y (1 +I33$);016

_ asQq
s

,ot7:ozo(1++r2 2).

(32)

(33)

(34)

(35)

(36)

(37)

The general solution to the fourth-order differential equation (35) can be expressed as

2
u(x,s)= Y (Cue™ + Cprneh*) + Coe 7%,

n=1

where k; and k;, are the roots of the characteristic equation

k* — myk* + my = 0.

(38)

(39)

The parameters C, (n = 1,2,3,4) are constants determined from the boundary condi-

tions, and the parameter Cs is given by

Cs = s
> I =y (s/9)% + my

(40)

Similarly, by eliminating % from Eq. (32) and Eq. (33), the governing equation for 6 be-

comes

d4 d? _
(@ —m w2 + m2) 0(x) = mye /%,

a7 s2ag

where my = o FEat

(41)
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The general solution for 6 can be expressed as

2
5 (xr S) = Z (IBnCne_knx + 13n+2cn+2eknx) + C6e—(s/19)x’ (42)

n=1

where 8, and B2 (n = 1,2) are given by

K2
g __kizar
Olgkn
K2 -
oz = 2 =%y, (43)
O[gkn
Cs M

TSI~y (5I9) 4y

The expression for the nonlocal thermal stress T, (x, s) is derived by substituting 7 (x, s)
(Eq. (38)) and 6 (x,s) (Eq. (42)) into the nonlocal stress-strain relation, Eq. (31):

2
Tox (%,8) = Z (_Vncne_knx + Vn+2Cn+Zeknx) + C7e—(s/1?)x’ (44)

n=1

where the coefficients y;,, ¥,,12, and C; are defined as follows:

(1+ Bis) ku+ b (1 + B3s) Bu

"= 1-02k2 + 1252 n=12,
(1+ Bis) ku— b (1 + B3s) Ba
Vn+2 1 _ sz% + ‘[232 ’ n ]-; 27 ( )
c —Cs(1+B7s) (3) —b(1+B3s) Cs
7= .

102 (s/0)% + 1282

The boundary conditions (26)—(28) in the Laplace domain are:

u (O; 3) = O: ?xx (0: S) = 0:

36 (0,5) o 30 (L,s) (46)

, 0.
0x 0x

By substituting Egs. (38), (42), and (44) into the aforementioned boundary conditions,
we derive the following four linear equations:

2
Z (Cn + Cn+2) = —CS; (47)
n=1

2
an (Cne_k"L - C,ngk”L) = Cse /L (48)
n=1

2

sC,

an (=B1Cy + Bns2Cui2) = 76; (49)
n=1

2 sC,
an (_ﬂncne_k”L + ,3n+2cn+2€knL) = _66_(3/0)L' (50)

C

n=1
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Equations (47)—(50) form a linear system of four equations for the unknown parameters
C, (n=1,2,3,4). These parameters are determined by solving the system numerically or
symbolically.

The Riemann sum approximation technique serves as an effective numerical approach
for calculating the inverse Laplace transform, particularly when finding an analytical solu-
tion proves challenging or unfeasible. The inverse Laplace transform is represented by the
Bromwich integral, which often requires numerical computation in practical applications.
This method reformulates the inverse Laplace transform integral into a finite series across
selected points within the complex plane. The Bromwich integral can be numerically ap-

proximated as follows [65, 66]:

N
A _ ‘
e~ =2ReY F(x, U + inAw) e, (51)
T

n=1

In this context, W is a real constant that guarantees that f (x,s) is analytic to the right
of the line Re (s) = W. Typically, ¥ is chosen as a small positive value. Additionally, Aw
represents the step size in the imaginary direction, while N denotes the number of terms in
the summation, which serves as the truncation limit. Here, 4 is the imaginary unit defined

as 4 =+/—1.

5 Numerical results

This section presents a numerical case study focused on determining and examining
the variations in temperature 6 (x,¢), displacement u (x,t), and nonlocal thermal stress
T (%, £) within a copper rod subjected to a mobile heat source. It also considers the im-
plications of nonlocal elasticity and fractional heat conduction. The findings will demon-
strate the interplay between these factors and their impact on the rod’s behavior under
the given circumstances. The numerical analysis utilizes the mechanical and thermoelas-
tic properties of copper detailed below [67].

The material properties are characterized by a thermal conductivity of K =
386W m™'K™! and a specific heat of Cr = 384.56 J/kgK. The coefficient of thermal ex-
pansion is o = 1.78 x 107> K71, while the density is p = 8954 Kgm~3. The Lamé constant
is given as A, = 7.76 x 101° Nm™!, and the shear modulus is 4, = 3.86 x 10'® Nm™. The
reference temperature is set at 7y = 293 K.

In terms of electrical properties, the electrical conductivity is og = 102 £, and the

36
magnetic permeability is ;1o = 2% Hm'. The magnetic field strength is represented as H, =

107
% Am™. The viscoelastic relaxation times are specified as Ao = 0.05 s and g = 0.1 s.
Finally, the delay times are noted as 75 = 0.05 s and 7, = 0.1 s.

The numerical results for the 0 (x,t), u (x,t), and 7, (%, ) are obtained using Mathemat-
ica software. This is achieved by employing the Riemann sum approximation method (51)
to perform numerical computations of the inverse Laplace transforms. The field variables
are evaluated over the domain x € [0, 10], allowing for a detailed analysis of the system’s
behavior within this range.

The findings are showcased visually in Figs. 2 to 10 and Tables 1-3, highlighting the
influence of different factors on displacement, temperature, and nonlocal thermal stress.
These graphical illustrations clearly depict how the system responds to various paramet-
ric conditions, providing a thorough insight into the fundamental dynamics at play. The
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numerical outcomes uncover the cumulative effects of nonlocal elasticity in both spatial
and temporal dimensions (£ and t), fractional operators, the velocity of the moving heat
source, and rotational movements on the thermoelastic response of the rod.

5.1 Effect of rotation parameter 2 on thermoelastic fields

Grasping the intertwined mechanical and thermal behaviors of a rotating rod necessitates
an in-depth examination that takes into account the physical forces at play and the proper-
ties of the material itself. This evaluation is vital for the design and functionality of devices
and structures where rotating rods play a crucial role, including turbines, aerospace tech-
nologies, and rotating shafts within machinery.

As a rod spins, the coupling between mechanical and thermal stresses is dictated by
the rotation speed (£2). The interaction between thermal expansion from heat and me-
chanical strain from rotation generates intricate stress distributions throughout the rod.
This section explores how the rotation parameter Q2 affects the thermoelastic fields of a
rotating rod under the generalized heat conduction framework utilizing the tempered-
Caputo fractional derivative (CT). The analysis presents results for rotation parameters
setat 2 =0, 1, 3, and 5, while keeping other parameters constant (@ = 0.75, £ =0.1, ¥ = 2,
£=0.01, and 7 = 0.02). The numerical outcomes are visually represented in Figs. 1, 2, and
3, illustrating the fluctuations in the thermoelastic fields along the rod’s length within the
range x € [0,10].

The findings underscore the importance of accounting for rotational impacts when de-
signing and analyzing rotating elements in engineering contexts, especially for high-speed
machinery and nanomechanical systems. By integrating nonlocal elasticity and fractional
heat conduction into the analysis, a more realistic and precise depiction of the physical
behavior is achieved, enhancing the reliability and performance of such components.

Figure 2 depicts the correlation between temperature 6 and the rotation parameter €2. In
Fig. 2, we see that at one end of the rod (x = 0), the temperature 6 initially begins near zero,
rapidly ascends due to the influence of a heat source, and then symmetrically declines to
zero at the other end (x = L), adhering to the thermal boundary conditions that prevent

heat from flowing out at the ends. The results indicate that the rotation parameter €2 has

0 0.2 0.4 0.6 0.8 X 1

Figure 2 The temperature variation € under the influence of angular velocity of rotation (€2)
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Figure 3 The displacement u under the influence of angular velocity of rotation (€2)

a minimal impact on the temperature distribution 6. Additionally, as €2 increases, a slight
decrease in temperature is observed due to the centrifugal force that alters the distribution
of thermal energy within the rod. Overall, the temperature variation 6 along the rod is
largely driven by the heat source and the material’s thermal properties, while the role of
the rotation 2 is relatively minor, leading to only a subtle reduction in temperature with
rising values of €.

Figure 3 demonstrates how displacement u (x) varies with the rotation parameter .
The curves show that displacement starts at zero at one end of the rod, satisfying the fixed
boundary condition. It dips to a minimum, then rises again, ultimately approaching zero
near the free end, following the stress-free boundary condition. The rotation parameter
2 significantly influences the displacement profile; as the rotation parameter €2 increases,
the displacement curves shift upward. This upward movement is attributed to greater cen-
trifugal forces at higher rotation speeds, which stretch the rod and produce larger dis-
placements. Displacement u (x) is highly sensitive to alterations in €2, with higher values
resulting in more pronounced magnitudes of displacement due to the intensified centrifu-
gal effects.

Figure 4 illustrates how nonlocal thermal stress 7, (x) varies with the rotation parame-
ter Q. It is evident that 7, starts at a minimum value at one end of the rod (x = 0) and rises
to a peak around x = 1. Following this maximum, the stress then declines, nearing zero at
the free end of the rod (x = L). The findings indicate that nonlocal thermal stress ,, (x)
markedly increases as the rotation parameter 2 goes up. The centrifugal forces amplify
the stress distribution, particularly in the central region of the rod (x ~ 1). While nonlocal
effects contribute to a more uniform stress distribution, the influence of € significantly
elevates the overall stress levels. The response of nonlocal thermal stress 7, to changes in
2 is pronounced; as rotation increases, so do the stress values, showcasing the combined
effects of centrifugal forces and thermal expansion on the rod.

In the generalized model that includes rotation and fractional derivatives, the solutions
are restricted to a finite spatial area, effectively illustrating a realistic speed of wave prop-
agation. This model integrates the tempered-Caputo fractional derivative, which intro-
duces memory effects that enhance the smoothness of both thermal and mechanical re-
sponses, making them more consistent with physical reality. In contrast, classical ther-
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Figure 4 The nonlocal thermal stress T, under the influence of angular velocity of rotation (€2)

moelasticity suggests infinite wave propagation speeds, which are not physically realistic
and do not match real-world observations. Furthermore, within the classical framework,
solutions can diverge or exhibit unbounded behavior when faced with high rotation con-
ditions, resulting in predictions that may lack reliability for practical applications.

The findings emphasize the significant impact of the rotation parameter w on the ther-
moelastic properties exhibited by a rotating rod. It stresses the necessity of incorporating
rotational effects into the design and analysis of engineering components that rotate, par-
ticularly in high-speed machinery and nanomechanical systems. By combining nonlocal
elasticity with fractional heat conduction, the study achieves a more accurate and realistic
representation of the physical behaviors at play.

5.2 Effect of fractional operators and fractional order parameter «

This subsection investigates how fractional operators and the fractional order « affect
the thermoelastic response of conductive materials when subjected to an initial magnetic
field. A comparative analysis is conducted among the tempered-Caputo fractional deriva-
tive (CT), the Caputo fractional derivative (C), and the classical scenario (o = 1) within
the framework of the generalized DPL theory of thermoelasticity. The results are numer-
ically evaluated for fixed values of 2 =3, ¢ =2, £ = 0.01, and 7 = 0.02, and graphically
represented to highlight the effects of « on the fields.

In the classical case where « = 1, the model follows the DPL approach of generalized
thermoelasticity with one relaxation time, which leads to instantaneous wave propagation
and aligns with classical theories of heat transport. In the fractional case where 0 < & <
1, the model uses the tempered-Caputo fractional derivative (CT) and Caputo fractional
derivative (C) to alter the heat transport equation by adding fractional memory effects.
This is specifically examined at « = 0.85 and & = 0.75, allowing for an analysis of how the
fractional operator impacts thermal and mechanical wave behaviors.

Asseenin Fig. 5, the thermodynamic temperature 6 along the rod begins near zero at the
first end (x = 0) where the heat source is applied, sharply rises to a maximum, and then
symmetrically decreases to zero at the second end (x = 0), meeting the thermal bound-
ary conditions of no heat flux at the ends. As the fractional order « rises from 0.5 to 1,
there is a noticeable increase in temperature 6. In the classical LS model at « = 1, the rate
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Figure 5 Temperature change 0 for varying fractional operators and fractional order

0.03
u —— DPL model (a = 1.0)
0.025 -
—— FDPL-C model (a =0 .85)
0.02 4 FDPL-C model (a = 0.65)
FDPL-CT model (a =0 .85, x=5)
0.015 A
—— FDPL-CT model (a = 0.65, x=5)
0.01 A
—— FDPL-CT model (a =0 .65, x=10)
0.005 A
0
0.2 0.4 0.6 0.8
X
-0.005
Figure 6 The displacement u for varying fractional operators and fractional order o

of temperature propagation is faster, reaching higher values compared to fractional sce-
narios (o = 0.85, 0.75). When lower values of « are used, incorporating memory effects
through the tempered-Caputo derivative slows down the movement of the temperature
wave, leading to lower peak temperatures and a more gradual decrease in temperature
along the rod. A significant takeaway is that a higher fractional order o accelerates tem-
perature wave propagation while increasing the thermodynamic temperature 6.

Figure 6 shows that the displacement magnitude u along the rod starts at zero at one end
(¢ = 0), owing to the constant boundary condition, rises to a peak, and then tapers back to
zero at the other end (x = L), where a stress-free boundary condition is in effect. From this,
we can infer that increasing the fractional order « leads to a reduction in the propagation
of the displacement u along the rod. Furthermore, within the classical DPL thermoelas-
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Figure 7 The nonlocal thermal stress T, for varying fractional operators and fractional order o

tic model at « = 1, the displacement achieves its maximum value without showing any
memory effects. Conversely, for fractional values like o = 0.85 and « = 0.75, the tempered-
Caputo factor introduces damping effects that reduce the displacement magnitudes and
slow down the propagation of displacement waves. Hence, it is clear that lower fractional
orders o contribute to a decrease in displacement , as the fractional factors dampen wave
amplitude by utilizing memory effects.

Figure 7 demonstrates that the nonlocal thermal stress 7, starts off with negative but
nonzero values at one end, peaks near the heat source, and then gradually tapers to zero
at the other end. This pattern illustrates the combined effects of thermal, mechanical, and
nonlocal influences. A decrease in the fractional order « is linked to a reduction in the non-
local stress 7. At o = 1, corresponding to the classical DPL thermoelastic model, stress
levels peak due to the accelerated wave propagation. In contrast, for the fractional values
a =0.85and o = 0.75, the introduction of the fractional operator results in damping effects
that reduce stress magnitudes and slow down the stress wave’s propagation. Therefore, it
can be concluded that higher fractional orders « lead to increased nonlocal thermal stress
Txx, largely due to the damping effects of fractional memory on the propagation of stress.

The findings emphasize the crucial function of fractional operators, especially the
tempered-Caputo derivative, in simulating the behavior of nonlocal thermoelastic ma-
terials. The fractional order « serves as an adjustable parameter that controls wave prop-
agation, memory effects, and field distributions, making it an invaluable asset for inves-
tigating advanced materials. These results showcase the adaptability of the generalized
thermoelastic model with tempered-Caputo fractional derivatives in accurately reflecting
realistic material behaviors. Fractional models play a key role in thermal management,
enabling the design of materials with tailored thermal propagation characteristics, partic-
ularly beneficial for electronics and aerospace sectors. The tempered-Caputo framework
is particularly advantageous in the realm of nanomechanics, where nonlocal and memory
effects are commonly observed in materials at the nanoscale. Additionally, the impact of
a can be harnessed in material design to engineer materials with specific mechanical or
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thermal responses, which is especially valuable for applications like shock absorbers or

heat sinks.

5.3 The effect of moving heat source velocity parameter

When investigating the impact of altering the velocity parameter ¢ of a moving heat
source, denoted as Q = Qo8 (x — ¥'t), on key physical properties like temperature, displace-
ment, nonlocal thermal stress, and strain, it is essential to grasp how these changes shape
the material’s behavior. The velocity of the heat source modifies nonlocal interactions by
affecting the rate at which the thermal field fluctuates in both space and time. A quicker
movement of the heat source tends to amplify nonlocal effects over a larger area, poten-
tially resulting in lower peak stress even as the zone of influence expands. This dynamic
creates a complex interplay that significantly alters the material’s response to thermal stim-
uli.

This subsection delves into how the velocity of the heat source ¥ affects the thermal
and mechanical behavior of nanorods, a critical aspect in the design and assessment of
nanosystems exposed to dynamic thermal loads. Figures 8 to 10 present a comprehen-
sive analysis of these variations, emphasizing the complex interplay between heat source
velocity and the resulting characteristics of the material’s response.

From Fig. 8, it is evident that as the velocity of the heat source () increases, the peak
temperature 0 along the rod decreases. This decrease occurs because each point along
the rod is exposed to heat for a shorter duration. Consequently, several outcomes arise:
there are lower peak temperatures 6, a more rapid decay of temperature (9) along the
rod’s length, and a reduction in the amplitude of temperature oscillations. These effects
underscore the essential impact of heat source velocity () in determining the thermal
dynamics of the system.

As shown in Fig. 9, higher heat source velocities result in greater displacements « at
various locations along the rod. This occurs due to two main reasons: the generation of
steeper thermal gradients from the swiftly moving sources, and the increased thermal
distortion resulting from these gradients. This connection emphasizes the pivotal role of
velocity in influencing the rod’s mechanical response.

0.4
0.35 : — 9=1.0
03 9=15
025 }
1 9=2.0
02 +
9=25
015 }
01 +
0.05
0 —
0 0.2 0.4 0.6 0.8 1
X
Figure 8 Effect of varying heat source velocity ¢ on temperature 6
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Figure 10 Effect of varying heat source velocity © on nonlocal thermal stress T,

Figure 10 indicates that as the heat source velocity increases, the total nonlocal thermal
stress t,, also rises. This rise can be linked to two fundamental reasons: the formation of
more pronounced temperature gradients due to the increased velocities and the height-
ened thermal stresses that arise from these sharp gradients. This relationship highlights
the crucial influence of heat source velocity on the thermal stress experienced by the rod.

The numerical results and analysis demonstrate that the motion velocity coefficient
of the heat source significantly influences the behavior of various physical fields, includ-
ing temperature 6, displacement «, and thermal stress 7,,. The results reveal that with an
increase in ¥, there is a corresponding enhancement in thermal gradients, which leads
to greater displacement, stress, and strain experienced along the rod. Interestingly, while
these factors rise, the temperature 6 tends to decrease as ¥ ascends, mainly because there
is less time for local heat to accumulate. Furthermore, the moving heat source creates
concentrated thermal and mechanical effects, especially near its path, resulting in notable
spikes in displacement, stress, and strain. However, these peaks tend to fade as one moves
further from the heat source, a finding that is consistent with existing research. Further-
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more, heat sources that move at higher speeds enable a more rapid spread of thermal and
mechanical responses along the rod. As the velocity c of the heat source increases, the
oscillatory patterns in these fields become less pronounced. This decline in oscillations
happens because the swift movement of the heat source restricts the formation of signifi-
cant fluctuations.

The noted decrease in temperature with an increase in heat source velocity demon-
strates how the motion of the heat source affects the rate of heat diffusion. Swiftly moving
heat sources produce weaker thermal fields, which can be advantageous in preventing
overheating in nanoscale devices. On the other hand, the rise in displacement, stress, and
strain that accompanies an increase in ¥ emphasizes the importance of factoring in ther-
mal deformation when designing nanorods exposed to dynamic heating. If not carefully
controlled, these rapid heat sources can create high mechanical stresses, risking material
failure. This research offers critical insights into the behavior of nanorods under dynamic
thermal conditions. The findings lay groundwork for improving various applications: ther-
mal actuators where managed displacement is vital, nanosensors that depend on accurate
stress or strain measurements, and heat conduction systems that effectively address ther-
mal gradients.

5.4 The effect nonlocal length and time scale parameters

The incorporation of the Klein—Gordon operator in the theoretical analysis provides a
more detailed representation of the dynamics within elastic materials, especially at the
nanoscale. By including nonlocal length scale ¢ and time scale T parameters, this approach
effectively captures size-dependent behaviors and memory effects that traditional local
elasticity theories often miss. These enhancements are crucial for understanding nanos-
tructured materials as their mechanical and thermal performance is significantly influ-
enced by spatial and temporal interactions.

The importance of nonlocal parameters in modeling nanostructures is highlighted
through the inclusion of nonlocal length scale (£) and time scale () factors. The length
scale £ captures spatial nonlocality, indicating that the stress or strain at a given point is
affected by the stress or strain in nearby locations. This aspect is essential for introducing
size effects, allowing the model to forecast behaviors that are sensitive to the nanostruc-
ture’s dimensions, such as a decrease in stiffness or wave dispersion. At the nanoscale, £
becomes particularly vital as it accounts for the impact of atomic-scale interactions and
long-range forces, which play a significant role at this scale. The parameter 7 signifies tem-
poral nonlocality, integrating memory effects into the model. This is crucial for reflecting
the material’s capability to “recall” previous states, thereby affecting its present response.
Memory effects are especially pertinent in viscoelastic or thermoelastic systems, where
the response of the material is heavily influenced by time-dependent relaxation processes
and thermal histories.

The Klein—-Gordon operator, expressed as (1 - 02V? 4 rz%), integrates both spatial
and temporal nonlocality. It facilitates the modeling of phenomena such as wave disper-
sion, finite propagation speeds, and the interaction between spatial and temporal scales.
This operator is vital for effectively modeling wave dynamics in nanostructures, offering
a more accurate representation compared to classical elasticity theories, which frequently
suggest infinite wave speeds or fail to consider size-dependent effects.

When assessing the behavior of a nanobeam under both local and nonlocal conditions,
the differences between these models are defined by the presence or absence of nonlocal
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parameters £ and t. The local thermoelastic model, which assumes £ = 0 and t = 0, claims
that the stress at any location is solely linked to the strain at that same point. It overlooks
memory effects and ignores the influence of neighboring points. As a result, this model
often overestimates thermal gradients, leading to an accelerated heat transfer and unreal-
istically infinite thermal wave speeds, while demonstrating mechanical behavior that does
not vary with size. In contrast, the nonlocal thermoelastic model, which takes various
combinations of ¢ and t into account, reveals notable discrepancies in its predictions.

The spatial nonlocality parameter £ considers the effects of strains and stresses from
nearby points, leading to a reduction in the overall magnitude of stress and strain, smooth-
ing out variations, and introducing size-dependent behaviors. This modification enables
a more precise portrayal of physical behaviors in nanostructures, where atomic-scale in-
teractions hold considerable importance. On the other hand, the temporal nonlocality pa-
rameter 7 allows the model to account for damping and delays in wave propagation, show-
casing the material’s capacity to retain memory and gradually adjust to changes over time.
This aspect is particularly significant in viscoelastic or thermoelastic materials, where re-
laxation and memory effects play a crucial role in determining their response. The findings
presented in Tables 1, 2, and 3 illustrate how the parameters ¢ and t influence the behavior
of a nanobeam when examined through both local and nonlocal models.

The local model suggests unrealistic infinite thermal wave speeds. Conversely, the non-
local model guarantees finite speeds with the influence of v and promotes a more even
heat distribution as ¢ increases, leading to decreased thermal gradients. While the local
model, assuming ¢ = 0 and 7 = 0, inaccurately states that displacement is unaffected by

Table 1 Influence of the spatial and temporal nonlocality on the temperature 6

£ =0.000, £=0.001, £ =0.000, £=0.003, £ =0.005, £=0.003,

7 =0.000 T =0.000 T =0.002 7 =0.002 T =0.002 7 =0.004
0 0357215 0.342936 0332219 0.321502 0310786 0.296497
0.1 0.194764 0.18698 0.181137 0.175294 0.169451 0.16166
0.2 0.0786352 0.0754926 0.0731335 0.0707744 0.0684152 0.0652697
0.3 0.0307695 0.0295389 0.0286158 0.0276928 0.0267697 0.0255389
04 0.0119938 0.011513 0.0111532 0.0107934 0.0104336 0.00995392
05 0.00467362 0.00448526 0.0043451 0.00420493 0.00406477 0.00387788
0.6 0.00182217 0.00174794 0.00169332 0.00163869 0.00158407 0.00151124
0.7 0.000712475 0.000682889 0.000661549 0.000640209 0.000618869 0.000590415
0.8 0.000283295 0.000271182 0.000262707 0.000254233 0.000245758 0.000234459
0.9 0.000124412 0.000118923 0.000115206 0.00011149 0.000107774 0.000102819
1.0 8.41936E-05 8.04411E-05 7.79274E-05 7.54136E-05 7.28998E-05 6.95481E-05
Table 2 Influence of the spatial and temporal nonlocality on the displacement u

£ =0.000, £=0.001, £ =0.000, £ =0.003, £ =0.005, £ =0.003,

7 =0.000 7 =0.000 7 =0.002 7 =0.002 T =0.002 7 =0.004
0 0 0 0 0 0 0
0.1 0.0260673 0.0243436 0.021293 0.0188034 0.0157623 0.0136873
0.2 0.0136836 0.0137868 0.0136393 0.013212 0.0123126 0.0114557
0.3 0.0056229 0.00586163 0.00626896 0.00654388 0.00673533 0.00672781
04 0.00221204 0.00233347 0.00260135 0.00286545 0.00321482 0.00344004
0.5 0.000863532 0.000914157 0.00103958 0.00118728 0.00143177 0.0016356
0.6 0.000336549 0.000356628 0.00040924 0.000478406 0.000612243 0.000743966
0.7 0.000130817 0.000138682 0.000159879 0.000189812 0.000255268 0.000329132
0.8 5.01285E-05 0.000053334 6.21108E-05 0.000074969 0.00010578 0.000144985
09 1.94408E-05 2.17027E-05 2.66512E-05 3.30645E-05 4.87466E-05 7.07818E-05
1.0 4.89405E-05 4.22984E-05 3.69413E-05 3.66782E-05 4.37747E-05 5.84547E-05
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Table 3 Influence of the spatial and temporal nonlocality on the nonlocal thermal stress Ty

£ =0.000, £=0.001, £ =0.000, £ =0.003, £ =0.005, £ =0.003,

7 =0.000 7 =0.000 7 =0.002 T =0.002 T =0.002 T =0.004
0 -0.361024 -0.347027 -0.305166 -0.281201 -0.263667 -0.249645
0.1 -0.229759 -0.229417 -0.221993 -0.213907 -0.206475 -0.199703
0.2 -0.0988773 -0.10243 -0.113164 -0.117984 -0.120411 -0.121552
03 -0.0392567 -0.0413137 -0.0502265 -0.0566151 -0.0614414 -0.0651878
04 -0.0153513 -0.0162396 -0.0209512 -0.025294 -0.029181 -0.0326258
05 -0.00598763 -0.00634363 -0.00847448 -0.0108378 -0.0132598 -0.0156389
06 —0.00233531 -0.0024752 -0.00337346 -0.00452191 -0.00584731 -0.00727556
0.7 -0.000913016 -0.000967783 -0.00133291 -0.00185311 -0.00252017 -0.003303
0.8 -0.000362506 -0.000383713 -0.00052614 -0.000746207 -0.00105561 -0.00144735
09 -0.000153574 -0.000158566 -0.000199794 -0.000275389 -0.000392345 -0.000550437
1.0 0 0 0 0 0 0

size, the nonlocal model shows that as ¢ increases, displacement decreases due to strain
redistribution. Additionally, higher t values enhance this effect through damping. Under
the local model, stress tends to be overestimated, especially near edges or load applica-
tion points. In contrast, the nonlocal model moderates stress with a greater ¢, effectively
smoothing out the stress distribution, and introduces a delay in stress response with rising
7, simulating time-dependent relaxation.

The numerical findings indicate that incorporating the parameters ¢ and t into the
Klein—Gordon operator significantly deepens our comprehension and forecasting of ma-
terial behavior at the nanoscale, which carries profound implications across several ap-
plications. These insights are particularly valuable for mechanical devices operating on a
small scale, as they allow for precise predictions of stress and strain distribution in struc-
tures like beams, rods, and plates. Such accuracy is essential for the effective design of
actuators and mechanical resonators. Moreover, the results contribute to improved ther-
mal management in nanosystems by shedding light on how nonlocal thermal conduction
affects temperature distribution. This knowledge is crucial for the development of sen-
sors, heat sinks, and heat engines designed at the nanoscale. The size-dependent behav-
iors encapsulated by these parameters ultimately enhance the design of material prop-
erties in nanocomposites and metamaterials, driving progress in materials engineering.
Ultimately, the results highlight the limitations of traditional local models when analyzing
nanostructured materials, underscoring the critical role of nonlocal theories in the fields
of nanotechnology and materials science.

Some similar results can be found in [68-70].

6 Conclusions

The study addresses the complex dynamics of a rotating nanorod subjected to a mov-
ing heat source, using two sophisticated theoretical frameworks: the Klein—Gordon type
nonlocal theory and a fractional heat conduction model. This innovative approach aims
to capture the nuanced behavior of nanoscale structures under thermal and mechani-
cal influences, a topic of significant interest for advanced material engineering and nan-
otechnology applications. The theoretical model achieves its sophistication through the
seamless integration of multiple advanced concepts: nonlocal elasticity, fractional heat
conduction, Kelvin—Voigt viscoelasticity, and magnetic forces. This unified approach cre-
ates a robust platform for analyzing complex nanoscale system behaviors. The numerical
simulations powerfully demonstrate that accurate predictions of thermal and mechanical
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responses require the incorporation of three key elements: fractional-order heat conduc-
tion, nonlocal effects, and viscoelastic damping. These findings establish a new standard
for modeling nanoscale systems, offering enhanced precision and reliability in predicting
material behavior.

Based on the detailed discussions and analysis of the parameters influencing the ther-
moelastic behavior of rotating viscoelastic nanorods subjected to moving heat sources,
the following key conclusions can be drawn:

« The integration of the Klein—Gordon operator into the governing equations
effectively captures essential nonlocal spatial and temporal effects that are significant
at the nanoscale. The inclusion of nonlocal length scale and time scale parameters
enables a precise representation of size-dependent behaviors, such as stiffness
reduction and stress redistribution in nanorods, as well as the memory effects
influencing wave propagation and relaxation in viscoelastic materials.

« The use of the tempered-Caputo fractional derivative introduces critical nonlocality
and memory effects into the heat conduction model, ensuring finite thermal wave
speeds. The fractional and tempering parameters control thermal dissipation and the
velocity of thermal wave propagation, resulting in physically realistic thermal
responses. This fractional approach offers superior accuracy over classical heat
conduction models in predicting temperature distributions in nanorods and better
captures the localized heat effects of moving heat sources.

+ The Kelvin—Voigt viscoelastic framework successfully accounts for damping effects
and energy dissipation in materials subjected to dynamic loads. This viscoelasticity
plays a significant role in shaping the mechanical response, reducing displacement
and strain amplitudes through relaxation effects and creating smoother stress
distributions across the material.

+ Rotation proves to be a critical factor affecting all thermoelastic fields, increasing
displacement through centrifugal forces and amplifying thermal stress and strain. The
interaction between rotation and nonlocality results in complex dynamics that
necessitate advanced modeling techniques. Additionally, the velocity of moving heat
sources has a notable impact on both thermal and mechanical fields, with higher
velocities leading to lower temperatures but higher displacement, thermal stress, and
strain.

+ These findings provide crucial insights for advancing nanoengineering technologies,
contributing to the optimization of nanoscale devices operating in dynamic and

complex environments.
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