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IR
What is a model?

A model is a construct designed to help us understand a 

complex system

A particular way of “looking at things”

Models certainly make simplifying assumptions

What are the limitations of the model?

Different types of models:

Conceptual models

Physical analog models

Mathematical models

…



IR
The Central Problem in IR

Information Seeker Authors

Concepts Concepts

Query Terms Document Terms

Do these represent the same concepts?



IR
What is Information Retrieval?

Finding relevant information in large collections of data

In such a collection you may want to find:

“Give me information on the history of Saudi Arabia”

An article about Saudi Arabia(text retrieval)

“What does a brain tumor look like on a CT-scan”

A picture of a brain tumor (image retrieval)

“It goes like this: dnn dnn daah. . .”

A certain song (audio retrieval)



IR
The IR Problem

The standard information retrieval (IR) scenario

The user has an information need

The user types a query that describes the 

information need

The IR system retrieves a set of documents from a 

document collection that it believes to be 

relevant

The documents are ranked according to their 

likelihood of being relevant



IR
The IR Problem

Input:

a set/collection of documents (corpus) 

(plural corpora)

a user query

Output: 

a (ranked) list of relevant documents
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The IR Black Box
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IR
Information Retrieval

Given:

A source of textual documents

A user query (text based)

Find:

A set of (ranked) documents that are 

relevant to the query

IR

System

Query (Text)

Documents

Hits

Document

Document

Document
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IR System

Query

IR System
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IR System

Query

X

X
IR System

Interpretation

Knowledge



IR
Retrieval Models

A retrieval model is an idealization or abstraction of an 

actual retrieval process

Conclusions derived from a model depend on whether the 

model is a good approximation of the retrieval situation

Note that a retrieval model is not the same thing as a 

retrieval implementation



IR
Retrieval Models

Boolean model

Based on the notion of sets

Documents are retrieved only if they satisfy Boolean conditions 

specified in the query

Does not impose a ranking on retrieved documents

Exact match

Vector space model

Based on geometry, the notion of vectors in high dimensional 

space

Documents are ranked based on their similarity to the query 

(ranked retrieval)

Best/partial match



IR
Components of a Retrieval Model

The user:

Search expert (e.g., librarian) vs. non-expert

Background of the user (knowledge of the topic)

In-depth searching vs. „just-want-to-get-an-idea‟ 

searching

The documents:

Different languages

Semi-structured (e.g. HTML or XML) vs. plain
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Representing Text

DocumentsQuery

Hits

Representation
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Function
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IR
Automatic Content Representation

Using natural language understanding?

Computationally too expensive in real-world settings

Coverage

Language dependence

The resulting representations may be too explicit to 

deal with the vagueness of a user‟s information need



IR
How do we represent text?

How do we represent the complexities of language?

Keeping in mind that computers don‟t “understand” 

documents or queries

Simple, yet effective approach: “bag of words”

Treat all the words in a document as index terms for 

that document

Assign a “weight” to each term based on its 

“importance”

Disregard order, structure, meaning, etc. of the words



IR
What’s the point?

Retrieving relevant information is hard!

Evolving, ambiguous user needs, context, etc.

Complexities of language

Bag-of-words approach:

Information retrieval is all (and only) about matching 

words in documents with words in queries



IR
Bag-of-Words Approach

A document is an unordered list of words

Grammatical information is lost

Tokenization: What is a word?

Is „Saudi Arabia‟ one or two words?

Stemming or lemmatization

Morphological information is thrown away

„agreements‟ becomes „agreement‟ (lemmatization)

or even „agree‟ (stemming)



IR
Two Major Issues!

Indexing

representing the document collection using 

words/terms

for fast access to documents

Retrieval methods

matching a user query to indexed documents

Three major models are used:

1. Boolean model 

2. Vector-Space model (VS) 

3. Probabilistic model

VS



IR
Vector Representation

“Bags of words” can be represented as vectors

Why? Computational efficiency, ease of manipulation

Geometric metaphor: “arrows”

A vector is a set of values recorded in any consistent 

order “The quick brown fox jumped over the lazy dog’s back” 

 [ 1 1 1 1 1 1 1 1 2 ]

1st position corresponds to “back”

2nd position corresponds to “brown”

3rd position corresponds to “dog”

4th position corresponds to “fox”

5th position corresponds to “jump”

6th position corresponds to “lazy”

7th position corresponds to “over”

8th position corresponds to “quick”

9th position corresponds to “the”
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Representing Documents
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IR
Boolean Retrieval

Weights assigned to terms are either “0” or “1” 

“0” represents “absence”: term isn’t in the document

“1” represents “presence”: term is in the document

Build queries by combining terms with Boolean operators

AND, OR, NOT

The system returns all documents that satisfy the query
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AND/OR/NOT

A B

All documents

C
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Logic Tables
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IR
Boolean View of a Collection
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Each column represents the view of 

a particular document: What terms 

are contained in this document?

Each row represents the view of a 

particular term: What documents 

contain this term?

To execute a query, pick out rows 

corresponding to query terms and 

then apply logic table of 

corresponding Boolean operator



IR
Sample Queries

dog  fox 0 0 1 0 1 0 0 0

dog  fox 0 0 1 0 1 0 1 0

dog  fox 0 0 0 0 0 0 0 0

fox  dog 0 0 0 0 0 0 1 0

dog AND fox  Doc 3, Doc 5

dog OR fox  Doc 3, Doc 5, Doc 7

dog NOT fox  empty

fox NOT dog  Doc 7

g  p 0 0 0 0 0 1 0 1

g  p  o 0 0 0 0 0 1 0 0

good AND party  Doc 6, Doc 8
over 1 0 1 0 1 0 1 1

good AND party NOT over  Doc 6
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IR
Proximity Operators

More “precise” versions of AND

“NEAR n” allows at most n-1 intervening terms

“WITH” requires terms to be adjacent and in order

Other extensions: within n sentences, within n

paragraphs, etc.

Relatively easy to implement, but less efficient

Store position information for each word in the 

document vectors

Perform normal Boolean computations, but treat WITH 

and NEAR as extra constraints



IR
Other Extensions

Ability to search on fields

Leverage document structure: title, headings, etc.

Wildcards

comp* = compute, computing, computer, computation, 

computerization, computational, etc.

Special treatment of dates, names, companies, etc.



IR
Why Boolean Retrieval Works

Boolean operators approximate natural language

AND can discover relationships between concepts

OR can discover alternate terminology

NOT can discover alternate meanings



IR
Strengths and Weaknesses

Strengths

Precise, if you know the right strategies

Precise, if you have an idea of what you‟re looking for

Efficient for the computer

Weaknesses

Users must learn Boolean logic

Boolean logic insufficient to capture the richness of language

No control over size of result set: either too many documents or 

none

When do you stop reading? All documents in the result set are 

considered “equally good”

What about partial matches? Documents that “don‟t quite match” 

the query may be useful also



IR
Ranked Retrieval

Order documents by how likely they are to be relevant to 

the information need

Present hits one screen at a time

At any point, users can continue browsing through 

ranked list or reformulate query

Attempts to retrieve relevant documents directly, not 

merely provide tools for doing so



IR
Why Ranked Retrieval?

Arranging documents by relevance is

Closer to how humans think: some documents are 

“better” than others

Closer to user behavior: users can decide when to stop 

reading

Best (partial) match: documents need not have all query 

terms

Although documents with more query terms should be 

“better”



IR
Similarity-Based Queries

Let‟s replace relevance with “similarity”

Rank documents by their similarity with the query

Treat the query as if it were a document

Create a query bag-of-words

Find its similarity to each document

Rank order the documents by similarity

Surprisingly, this works pretty well!



IR
Documents in Vector Space

t1

t2

t3
D1

D10

D3

D5

D6

D2D4

D7

D8

D9

D11

Postulate: Documents that are “close together” in vector space 
“talk about” the same things

Therefore, retrieve documents based on how close the document 
is to the query (i.e., similarity ~ “closeness”)



IRIndexing

Most IR systems use an inverted file to represent the 

texts in the collection

Inverted file  = a table of terms with a list of texts that 

contain these terms

information {d1, d4, d95, d5, d90…}

retrieval {d3, d7, d95…}

system {d24, d7, d44…}

inverted {d3, d55, d90, d98…}



IR
Example of an inverted file



IR
Term-Value Vector Representation

term: all possible terms that occur in the query/document

value: presence or absence of term in query/document

T1 T2 T3 T4 T5 T6 T7 T8 T9 
… Tn 

V1 V2 V3 V4 V5 V6 V7 V8 V9 
… Vn 

 

 

value can be
Binary (0, if term is absent ; 1, if term is present)

Term frequency (raw frequency), or

Term weight, tf x idf
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Term-Weight Vector Representation

Binary values (1,0) do not tell if a term is more 

important than others

We should weight the terms by importance

weight of terms (for document & query) can be their 

raw frequency or other measure

T1 T2 T3 T4 T5 T6 T7 T8 T9 
… Tn 

W1 W2 W3 W4 W5 W6 W7 W8 W9 
… Wn 

 

 



IR
Term-by-document matrix

The collection of documents is represented by a matrix of 
weights called a term-by-document matrix

1 column = representation of 1 term across all documents

1 row = representation of one document

cell wij = weight of term i in document j

note: the matrix is sparse !!!

 term1 term2 term3 … termn 

D1 w11 w12 w13 … w1n 

D2 w21 w22 w23 … w2n 

D3 w31 w32 w33 … w3n 

… … … … … … 

Dn wn1 wn2 wn3  wnn 
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Term-Frequency Vector Space 

Example

The document collection:

D1 = “introduction knowledge, speech and language processing, 
language understanding and the state of the art, future some brief 
history summary”

D2 = “HMM and speech recognition, speech recognition architecture 
overview of the HM model and the viterbi algorithm in processing of 
speech computing probabilities and training a speech recognizer for 
speech synthesis and human speech recognition summary”

D3 = “language and complexity, how to tell if a language is regular, 
are English and other languages regular languages? is natural 
language context-free complexity and human processing summary”

The query:

Q = “speech language processing”



IR

The document collection:

D1 = “introduction knowledge, speech and language processing, 
language understanding and the state of the art, future some brief 
history summary”

D2 = “HMM and speech recognition, speech recognition 
architecture overview of the HM model and the viterbi algorithm in 
processing of speech computing probabilities and training a 
speech recognizer for speech synthesis and human speech
recognition summary”

D3 = “language and complexity, how to tell if a language is 
regular, English and other language regular language? is natural 
language context-free complexity and human processing
summary”

The query:

Q = “speech language processing”

Term-Frequency Vector Space 

Example
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speech

la
ng

ua
ge

D2 (6,0,1)

D1 (1,2,1)

D3 (0,5,1)

Q (1,1,1)

 … speech language processing … 

D1 … 1 2 1 … 

D2 … 6 0 1 … 

D3 … 0 5 1 … 

Q … 1 1 1 … 

 

using raw term frequencies

vectors for the documents and the query can be seen as a point 

in a multi-dimensional space 

Term-Frequency Vector Space 

Example
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Similarity between Two Vectors

(2-Documents)
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Similarity Example

Q = {speech language processing}
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Vector Normalization

The longer the document, the more chances it will 

be retrieved:

Because it may contain many of the query's terms

It may also contain lots of non-pertinent terms…

we can normalize raw term frequencies to convert 

all vectors to a standard length



IRThe cosine measure

The cosine of 2 vectors (in N dimensions)

Also known as the normalized inner product
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In the general case of N-dimensions (N-terms) & 
normalized vectors

which is the cosine of the angle between the vector 
D and vector Q in N-dimensions
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Similarity between two vectors (2-D)
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Back to our example

Q = {speech language processing}
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Components of Similarity

The “inner product” is the key to the similarity function

The denominator handles document length normalization
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Components of Similarity
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How do we weight doc terms?

Here‟s the intuition:

Terms that appear often in a document should get high weights

− The more often a document contains the term “dog”, the more likely 

that the document is “about” dogs.

Terms that appear in many documents should get low weights

− Words like “the”, “a”, “of” appear in (nearly) all documents.

How do we capture this mathematically?

Term frequency

Inverse document frequency



IRTerm weights

We have used term frequency as the weights

But the core of most weighting functions are tf & df:

tfij term frequency
− frequency of a term i in document j

− if a term appears often in a document, then it describes well 
the document contents

dfi   document frequency 

− number of documents in the collection containing the term i

− if a term appears in many documents, then it is not useful for 
distinguishing a document 

− used to compute idf
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Weighting Function

The most widely used family of weighting functions tf.idf

let: n = number of documents in the collection

Inverse Document Frequency for term i (idf) (measures weight of 
term i for the query)

weight of term i in document d is:

wid = tfid x idfi


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






i

i
df

n
logidf

If n = 1000 dfi log (n / dfi) comments

1000 Log(1) = 0 term i is ignored! (it appears in all docs)

10 Log(100) = 2 term i has weight of 2 in the query

1 Log(1000) = 3 term i has weight of 3 in the query
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TF.IDF Term Weighting

Simple, yet effective!
i

jiji
n

N
w logtf ,, 

jiw , 

ji,tf

N

in

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i
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TF.IDF Example
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Normalizing Document Vectors

Recall our similarity function:

Normalize document vectors in advance

Use the “cosine normalization” method: divide each 

term weight through by length of vector
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TF.IDF Example

4

5

6

3

1

3

1

6

5

3

4

3

7

1

nuclear

fallout

siberia

contaminated

interesting

complicated

information

retrieval

2

1 2 3

2

3

2

4

4

0.50

0.63

0.90

0.13

0.60

0.75

1.51

0.38

0.50

2.11

0.13

1.20

1 2 3

0.60

0.38

0.50

4

0.301

0.125

0.125

0.125

0.602

0.301

0.000

0.602

tf Wi,j

idf

1.70 0.97 2.67 0.87Length

0.29

0.37

0.53

0.13

0.62

0.77

0.57

0.14

0.19

0.79

0.05

0.71

1 2 3

0.69

0.44

0.57

4

W'i,j



IR
Retrieval Example

Do we need to normalize the query vector?

nuclear

fallout

siberia
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complicated

information

retrieval

Query: contaminated retrieval
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Summary

Boolean retrieval is powerful in the hands of a trained 

searcher

Ranked retrieval is preferred in other circumstances

Key ideas in the vector space model

Goal: find documents most similar to the query

Geometric interpretation: measure similarity in terms of angles 

between vectors in high dimensional space

Documents weights are some combinations of TF, DF, and 

Length

Length normalization is critical

Similarity is calculated via the inner product


