
IS 531 Document Storage &

Retrieval

Chapter 3-Information
Retrieval

Dr. Bassam Hammo

IR
What is a model?

A model is a construct designed to help us understand a

complex system

A particular way of “looking at things”

Models certainly make simplifying assumptions

What are the limitations of the model?

Different types of models:

Conceptual models

Physical analog models

Mathematical models

…

IR
The Central Problem in IR

Information Seeker Authors

Concepts Concepts

Query Terms Document Terms

Do these represent the same concepts?

IR
What is Information Retrieval?

Finding relevant information in large collections of data

In such a collection you may want to find:

“Give me information on the history of Saudi Arabia”

An article about Saudi Arabia(text retrieval)

“What does a brain tumor look like on a CT-scan”

A picture of a brain tumor (image retrieval)

“It goes like this: dnn dnn daah. . .”

A certain song (audio retrieval)

IR
The IR Problem

The standard information retrieval (IR) scenario

The user has an information need

The user types a query that describes the

information need

The IR system retrieves a set of documents from a

document collection that it believes to be

relevant

The documents are ranked according to their

likelihood of being relevant

IR
The IR Problem

Input:

a set/collection of documents (corpus)

(plural corpora)

a user query

Output:

a (ranked) list of relevant documents

IR
The IR Black Box

DocumentsQuery

Hits

Representation

Function

Representation

Function

Query Representation Document Representation

Comparison

Function Index

IR
Information Retrieval

Given:

A source of textual documents

A user query (text based)

Find:

A set of (ranked) documents that are

relevant to the query

IR

System

Query (Text)

Documents

Hits

Document

Document

Document

IR
IR System

Query

IR System

IR
IR System

Query

X

X
IR System

Interpretation

Knowledge

IR
Retrieval Models

A retrieval model is an idealization or abstraction of an

actual retrieval process

Conclusions derived from a model depend on whether the

model is a good approximation of the retrieval situation

Note that a retrieval model is not the same thing as a

retrieval implementation

IR
Retrieval Models

Boolean model

Based on the notion of sets

Documents are retrieved only if they satisfy Boolean conditions

specified in the query

Does not impose a ranking on retrieved documents

Exact match

Vector space model

Based on geometry, the notion of vectors in high dimensional

space

Documents are ranked based on their similarity to the query

(ranked retrieval)

Best/partial match

IR
Components of a Retrieval Model

The user:

Search expert (e.g., librarian) vs. non-expert

Background of the user (knowledge of the topic)

In-depth searching vs. „just-want-to-get-an-idea‟

searching

The documents:

Different languages

Semi-structured (e.g. HTML or XML) vs. plain

IR
Representing Text

DocumentsQuery

Hits

Representation

Function

Representation

Function

Query Representation Document Representation

Comparison

Function Index

IR
Automatic Content Representation

Using natural language understanding?

Computationally too expensive in real-world settings

Coverage

Language dependence

The resulting representations may be too explicit to

deal with the vagueness of a user‟s information need

IR
How do we represent text?

How do we represent the complexities of language?

Keeping in mind that computers don‟t “understand”

documents or queries

Simple, yet effective approach: “bag of words”

Treat all the words in a document as index terms for

that document

Assign a “weight” to each term based on its

“importance”

Disregard order, structure, meaning, etc. of the words

IR
What’s the point?

Retrieving relevant information is hard!

Evolving, ambiguous user needs, context, etc.

Complexities of language

Bag-of-words approach:

Information retrieval is all (and only) about matching

words in documents with words in queries

IR
Bag-of-Words Approach

A document is an unordered list of words

Grammatical information is lost

Tokenization: What is a word?

Is „Saudi Arabia‟ one or two words?

Stemming or lemmatization

Morphological information is thrown away

„agreements‟ becomes „agreement‟ (lemmatization)

or even „agree‟ (stemming)

IR
Two Major Issues!

Indexing

representing the document collection using

words/terms

for fast access to documents

Retrieval methods

matching a user query to indexed documents

Three major models are used:

1. Boolean model

2. Vector-Space model (VS)

3. Probabilistic model

VS

IR
Vector Representation

“Bags of words” can be represented as vectors

Why? Computational efficiency, ease of manipulation

Geometric metaphor: “arrows”

A vector is a set of values recorded in any consistent

order “The quick brown fox jumped over the lazy dog’s back”

 [1 1 1 1 1 1 1 1 2]

1st position corresponds to “back”

2nd position corresponds to “brown”

3rd position corresponds to “dog”

4th position corresponds to “fox”

5th position corresponds to “jump”

6th position corresponds to “lazy”

7th position corresponds to “over”

8th position corresponds to “quick”

9th position corresponds to “the”

IR
Representing Documents

The quick brown

fox jumped over

the lazy dog‟s

back.

Document 1 Document 2

Now is the time

for all good men

to come to the

aid of their party.

the

is

for

to

of

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0

0

1

1

0

1

1

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

0

0

1

0

0

1

1

0

1

0

1

1

Term

D
o

c
u

m
e
n

t
1

D
o

c
u

m
e
n

t
2

Stopword List

IR
Boolean Retrieval

Weights assigned to terms are either “0” or “1”

“0” represents “absence”: term isn’t in the document

“1” represents “presence”: term is in the document

Build queries by combining terms with Boolean operators

AND, OR, NOT

The system returns all documents that satisfy the query

IR
AND/OR/NOT

A B

All documents

C

IR
Logic Tables

A OR B

A AND B A NOT B

NOT B

0 1

1 1

0 1

0

1

A
B

(= A AND NOT B)

0 0

0 1

0 1

0

1

A
B

0 0

1 0

0 1

0

1

A
B

1 0

0 1B

IR
Boolean View of a Collection

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0

0

1

1

0

0

0

0

0

1

0

0

1

0

1

1

0

0

1

0

0

1

0

0

1

0

0

1

1

0

0

0

0

1

Term

D
o

c
 1

D
o

c
 2

0

0

1

1

0

1

1

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

0

0

1

0

0

1

0

0

0

0

0

1

D
o

c
 3

D
o

c
 4

0

0

0

1

0

1

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

1

0

1

0

0

1

D
o

c
 5

D
o

c
 6

0

0

1

1

0

0

1

0

0

1

0

0

1

0

0

1

0

1

0

0

0

1

0

0

1

0

0

1

1

1

1

0

0

0

D
o

c
 7

D
o

c
 8

Each column represents the view of

a particular document: What terms

are contained in this document?

Each row represents the view of a

particular term: What documents

contain this term?

To execute a query, pick out rows

corresponding to query terms and

then apply logic table of

corresponding Boolean operator

IR
Sample Queries

dog  fox 0 0 1 0 1 0 0 0

dog  fox 0 0 1 0 1 0 1 0

dog  fox 0 0 0 0 0 0 0 0

fox  dog 0 0 0 0 0 0 1 0

dog AND fox  Doc 3, Doc 5

dog OR fox  Doc 3, Doc 5, Doc 7

dog NOT fox  empty

fox NOT dog  Doc 7

g  p 0 0 0 0 0 1 0 1

g  p  o 0 0 0 0 0 1 0 0

good AND party  Doc 6, Doc 8
over 1 0 1 0 1 0 1 1

good AND party NOT over  Doc 6

fox

dog 0

0

0

0

Term

D
o

c
 1

D
o

c
 2

1

1

0

0

D
o

c
 3

D
o

c
 4

1

1

0

0

D
o

c
 5

D
o

c
 6

0

1

0

0

D
o

c
 7

D
o

c
 8

party 0 0 0 0 0 1 0

good 0 1 0 1 0 1 0 1

1

Term

D
o

c
 1

D
o

c
 2

D
o

c
 3

D
o

c
 4

D
o

c
 5

D
o

c
 6

D
o

c
 7

D
o

c
 8

IR
Proximity Operators

More “precise” versions of AND

“NEAR n” allows at most n-1 intervening terms

“WITH” requires terms to be adjacent and in order

Other extensions: within n sentences, within n

paragraphs, etc.

Relatively easy to implement, but less efficient

Store position information for each word in the

document vectors

Perform normal Boolean computations, but treat WITH

and NEAR as extra constraints

IR
Other Extensions

Ability to search on fields

Leverage document structure: title, headings, etc.

Wildcards

comp* = compute, computing, computer, computation,

computerization, computational, etc.

Special treatment of dates, names, companies, etc.

IR
Why Boolean Retrieval Works

Boolean operators approximate natural language

AND can discover relationships between concepts

OR can discover alternate terminology

NOT can discover alternate meanings

IR
Strengths and Weaknesses

Strengths

Precise, if you know the right strategies

Precise, if you have an idea of what you‟re looking for

Efficient for the computer

Weaknesses

Users must learn Boolean logic

Boolean logic insufficient to capture the richness of language

No control over size of result set: either too many documents or

none

When do you stop reading? All documents in the result set are

considered “equally good”

What about partial matches? Documents that “don‟t quite match”

the query may be useful also

IR
Ranked Retrieval

Order documents by how likely they are to be relevant to

the information need

Present hits one screen at a time

At any point, users can continue browsing through

ranked list or reformulate query

Attempts to retrieve relevant documents directly, not

merely provide tools for doing so

IR
Why Ranked Retrieval?

Arranging documents by relevance is

Closer to how humans think: some documents are

“better” than others

Closer to user behavior: users can decide when to stop

reading

Best (partial) match: documents need not have all query

terms

Although documents with more query terms should be

“better”

IR
Similarity-Based Queries

Let‟s replace relevance with “similarity”

Rank documents by their similarity with the query

Treat the query as if it were a document

Create a query bag-of-words

Find its similarity to each document

Rank order the documents by similarity

Surprisingly, this works pretty well!

IR
Documents in Vector Space

t1

t2

t3
D1

D10

D3

D5

D6

D2D4

D7

D8

D9

D11

Postulate: Documents that are “close together” in vector space
“talk about” the same things

Therefore, retrieve documents based on how close the document
is to the query (i.e., similarity ~ “closeness”)

IRIndexing

Most IR systems use an inverted file to represent the

texts in the collection

Inverted file = a table of terms with a list of texts that

contain these terms

information {d1, d4, d95, d5, d90…}

retrieval {d3, d7, d95…}

system {d24, d7, d44…}

inverted {d3, d55, d90, d98…}

IR
Example of an inverted file

IR
Term-Value Vector Representation

term: all possible terms that occur in the query/document

value: presence or absence of term in query/document

T1 T2 T3 T4 T5 T6 T7 T8 T9
… Tn

V1 V2 V3 V4 V5 V6 V7 V8 V9
… Vn

value can be
Binary (0, if term is absent ; 1, if term is present)

Term frequency (raw frequency), or

Term weight, tf x idf

IR
Term-Weight Vector Representation

Binary values (1,0) do not tell if a term is more

important than others

We should weight the terms by importance

weight of terms (for document & query) can be their

raw frequency or other measure

T1 T2 T3 T4 T5 T6 T7 T8 T9
… Tn

W1 W2 W3 W4 W5 W6 W7 W8 W9
… Wn

IR
Term-by-document matrix

The collection of documents is represented by a matrix of
weights called a term-by-document matrix

1 column = representation of 1 term across all documents

1 row = representation of one document

cell wij = weight of term i in document j

note: the matrix is sparse !!!

 term1 term2 term3 … termn

D1 w11 w12 w13 … w1n

D2 w21 w22 w23 … w2n

D3 w31 w32 w33 … w3n

… … … … … …

Dn wn1 wn2 wn3 wnn

IR

Term-Frequency Vector Space

Example

The document collection:

D1 = “introduction knowledge, speech and language processing,
language understanding and the state of the art, future some brief
history summary”

D2 = “HMM and speech recognition, speech recognition architecture
overview of the HM model and the viterbi algorithm in processing of
speech computing probabilities and training a speech recognizer for
speech synthesis and human speech recognition summary”

D3 = “language and complexity, how to tell if a language is regular,
are English and other languages regular languages? is natural
language context-free complexity and human processing summary”

The query:

Q = “speech language processing”

IR

The document collection:

D1 = “introduction knowledge, speech and language processing,
language understanding and the state of the art, future some brief
history summary”

D2 = “HMM and speech recognition, speech recognition
architecture overview of the HM model and the viterbi algorithm in
processing of speech computing probabilities and training a
speech recognizer for speech synthesis and human speech
recognition summary”

D3 = “language and complexity, how to tell if a language is
regular, English and other language regular language? is natural
language context-free complexity and human processing
summary”

The query:

Q = “speech language processing”

Term-Frequency Vector Space

Example

IR

speech

la
ng

ua
ge

D2 (6,0,1)

D1 (1,2,1)

D3 (0,5,1)

Q (1,1,1)

 … speech language processing …

D1 … 1 2 1 …

D2 … 6 0 1 …

D3 … 0 5 1 …

Q … 1 1 1 …

using raw term frequencies

vectors for the documents and the query can be seen as a point

in a multi-dimensional space

Term-Frequency Vector Space

Example

IR

Similarity between Two Vectors

(2-Documents)

)x w(wQ),sim(D
n

1i

qi dii 




IR
Similarity Example

Q = {speech language processing}

4121(1x1) (2x1) (1x1)Q),sim(D1 

7106(1x1) (0x1) (6x1)Q),sim(D2 

6150(1x1) (5x1) (0x1)Q),sim(D3 

 



n

i

ii qxd
1

i Q),sim(D

 speech language processing

D1 1 2 1

D2 6 0 1

D3 0 5 1

Q 1 1 1

RANK

3

1

2

IR
Vector Normalization

The longer the document, the more chances it will

be retrieved:

Because it may contain many of the query's terms

It may also contain lots of non-pertinent terms…

we can normalize raw term frequencies to convert

all vectors to a standard length

IRThe cosine measure

The cosine of 2 vectors (in N dimensions)

Also known as the normalized inner product











N

1i

2

i

N

1i

2

i

N

1i

ii

qd

q d

Q D

QD
)cos(





inner

product

Lengths of

The vectors

IR

In the general case of N-dimensions (N-terms) &
normalized vectors

which is the cosine of the angle between the vector
D and vector Q in N-dimensions










N

1i

2
id

N

1i

2
iq

N

1i

id iq

w x w

)w x(w
D)sim(Q,

Similarity between two vectors (2-D)

IR
Back to our example

Q = {speech language processing}

0.943
3 x 6

121

)11(1 x)12(1

(1x1) (2x1) (1x1)
Q),sim(D

222222
1 









0.664
3 x 37

106

)11(1 x)10(6

(1x1) (0x1) (6x1)
Q),sim(D

222222
2 









0.680
3 x 26

150

)11(1 x)15(0

(1x1) (5x1) (0x1)
Q),sim(D

222222
3 
















N

1i

2

i

N

1i

2

i

N

1i

ii

qd

q d

 Q)sim(D,

 speech language processing

D1 1 2 1

D2 6 0 1

D3 0 5 1

Q 1 1 1

RANK

3

1

2

IR
Components of Similarity

The “inner product” is the key to the similarity function

The denominator handles document length normalization

 


n

i kijikj wwdd
1 ,,



 


n

i kij wd
1

2

,



 

24.41840941

 20321



   
92200130221

2010220321




Example:

Example:

IR
Components of Similarity











n

i ki

n

i ji

n

i kiji

kj

kj

kj

ww

ww

dd

dd
ddsim

1

2

,1

2

,

1 ,,
),(



Document Vector

Query Vector

Inner Product

Length

Normalization

IR
How do we weight doc terms?

Here‟s the intuition:

Terms that appear often in a document should get high weights

− The more often a document contains the term “dog”, the more likely

that the document is “about” dogs.

Terms that appear in many documents should get low weights

− Words like “the”, “a”, “of” appear in (nearly) all documents.

How do we capture this mathematically?

Term frequency

Inverse document frequency

IRTerm weights

We have used term frequency as the weights

But the core of most weighting functions are tf & df:

tfij term frequency
− frequency of a term i in document j

− if a term appears often in a document, then it describes well
the document contents

dfi document frequency

− number of documents in the collection containing the term i

− if a term appears in many documents, then it is not useful for
distinguishing a document

− used to compute idf

IR
Weighting Function

The most widely used family of weighting functions tf.idf

let: n = number of documents in the collection

Inverse Document Frequency for term i (idf) (measures weight of
term i for the query)

weight of term i in document d is:

wid = tfid x idfi











i

i
df

n
logidf

If n = 1000 dfi log (n / dfi) comments

1000 Log(1) = 0 term i is ignored! (it appears in all docs)

10 Log(100) = 2 term i has weight of 2 in the query

1 Log(1000) = 3 term i has weight of 3 in the query

IR
TF.IDF Term Weighting

Simple, yet effective!
i

jiji
n

N
w logtf ,, 

jiw ,

ji,tf

N

in

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i

IR
TF.IDF Example

4

5

6

3

1

3

1

6

5

3

4

3

7

1

nuclear

fallout

siberia

contaminated

interesting

complicated

information

retrieval

2

1 2 3

2

3

2

4

4

0.50

0.63

0.90

0.13

0.60

0.75

1.51

0.38

0.50

2.11

0.13

1.20

1 2 3

0.60

0.38

0.50

4

0.301

0.125

0.125

0.125

0.602

0.301

0.000

0.602

tf Wi,j

idf

IR
Normalizing Document Vectors

Recall our similarity function:

Normalize document vectors in advance

Use the “cosine normalization” method: divide each

term weight through by length of vector











n

i ki

n

i ji

n

i kiji

kj

kj

kj

ww

ww

dd

dd
ddsim

1

2

,1

2

,

1 ,,
),(



IR
TF.IDF Example

4

5

6

3

1

3

1

6

5

3

4

3

7

1

nuclear

fallout

siberia

contaminated

interesting

complicated

information

retrieval

2

1 2 3

2

3

2

4

4

0.50

0.63

0.90

0.13

0.60

0.75

1.51

0.38

0.50

2.11

0.13

1.20

1 2 3

0.60

0.38

0.50

4

0.301

0.125

0.125

0.125

0.602

0.301

0.000

0.602

tf Wi,j

idf

1.70 0.97 2.67 0.87Length

0.29

0.37

0.53

0.13

0.62

0.77

0.57

0.14

0.19

0.79

0.05

0.71

1 2 3

0.69

0.44

0.57

4

W'i,j

IR
Retrieval Example

Do we need to normalize the query vector?

nuclear

fallout

siberia

contaminated

interesting

complicated

information

retrieval

Query: contaminated retrieval

query

0.29 0.9 0.19 0.57similarity score

Ranked list:

Doc 2

Doc 4

Doc 1

Doc 3

0.29

0.37

0.53

0.13

0.62

0.77

0.57

0.14

0.19

0.79

0.05

0.71

1 2 3

0.69

0.44

0.57

4

W'i,j

1

1

IR
Summary

Boolean retrieval is powerful in the hands of a trained

searcher

Ranked retrieval is preferred in other circumstances

Key ideas in the vector space model

Goal: find documents most similar to the query

Geometric interpretation: measure similarity in terms of angles

between vectors in high dimensional space

Documents weights are some combinations of TF, DF, and

Length

Length normalization is critical

Similarity is calculated via the inner product

