King Saud University: First Semester Maximum Marks = 40	Mathematics Departm 1446-47 H	nent Math-254 Final Examination Time: 180 mins.
Name of the Student:—		I.D. No. —
Name of the Teacher:—		Section No. ————

Note: Check the total number of pages are Seven (7). (11 Multiple choice questions and Three (3) Full questions)

The Answer Tables for Q.1 to Q.11 : Marks: 2 for each one $(2 \times 11 = 22)$

Ps.: Mark {a, b, c or d} for the correct answer in the box.

- ** (**, **, * *- **) ** *** ** *											
Q. No.	1	2	3	4	5	6	7	8	9	10	11
a,b,c,d											

Quest. No.	Marks Obtained	Marks for Question
Q. 1 to Q. 11		22
Q. 12		6
Q. 13		6
Q. 14		6
Total		40

Question 1: The number of bisections required to solve the equation $f(x) = 0$ in $[a, a + 1]$ accurate to within 10^{-3} is:							
(a)	10 (h	o) 9	(c) 12	(d) None of T	hese		
Question 2:	The value of $\alpha = \sqrt{5}$ is:	k which insu	res rapid conve	ergence of x_{n+1}	$= x_n + k(x_n^2 - 5)$ to		
(a)	$-\frac{1}{2\sqrt{5}}$	(b) $\frac{1}{2\sqrt{5}}$	(c) $-\frac{1}{2}$	$\frac{1}{\sqrt{3}}$ (d)) None of These		
Question 3:				nod of the inters $x_0 = 0.5$ and $x_0 = 0.5$			
(a)	0.6806 (b	0) 0.6608	(c) 0.8606	(d) None of T	hese		
Question 4:	Let $A = \begin{pmatrix} - \\ - \end{pmatrix}$ method is:	$\begin{pmatrix} 4 & 6 \\ 2 & 2 \end{pmatrix}$, then	the matrix L	of the LU facto	rization using Crout's		
(a) L =	$\left(\begin{array}{cc} -4 & 0 \\ -2 & -1 \end{array}\right)$	$(b) L = \begin{pmatrix} \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ /2 & 1 \end{pmatrix}$ (c) I	$L = \left(\begin{array}{cc} 4 & 0\\ 2 & -1 \end{array}\right)$	(d) None of These		
Question 5 :					$= [1,3]^T$ using Jacobi		
	iterative met	hod wit $A = $	$\left(\begin{array}{cc} -4 & 5 \\ 1 & 2 \end{array}\right)$ and	$\mathbf{l} \ \mathbf{x}^{(0)} = [0.5, 0.5]$	$]^T$ is:		
(a) $[0.378]$	$[5, 1.250]^T$ (b)) [1.375, 1.315]	[T] (c) $[1.375]$	$, 1.250]^T$ (d)	None of These		
Question 6:	_	-		n for the system conding residual			
(a)	1.5 (b) 0.5	(c) 0.25	(d) None	of These		
Question 7:	if $\max_{0 \le x \le 0.3} f^{(5)}$	(x) = 1, then t	(0.1, -1), (0.15) the error bound polynomial is		(3), sing $f(0.25)$ by using a		
(a)	7.8×10^{-8}	(b) 7.8×1	$0^{-7} \qquad \qquad (\mathbf{c})$	1.56×10^{-6}	(d) None of These		
Question 7 :	Using linear sp is:	oline which into	erpolates $f(2.5)$	using data: (1,	35), (2, 40), (3, 65), (4, 72)		
(a)	52.50	(b) 62.50	(c) 50.5	0 (d)	None of These		
Question 8:		$+\cos x$, then point formula is		nation of $f'(1)$	with stepsize $h = 0.1$		
(a)	1.1600	(b) 1.1585	(c) 1.	6100 (d) None of These		

Question 9: If f(0) = 3, $f(1) = \frac{\alpha}{2}$, $f(2) = \alpha$, and Simpson's rule for $\int_0^2 f(x) \ dx$ gives 2, then the value of α is:

- (a) 1.0
- **(b)** 2.0
- **(c)** 0.5
- (d) None of These

Question 10: Given xy' + y = 1, y(1) = 0, the approximate value of y(2) using Euler's method when n = 2 is:

- (a) 0.6667
- **(b)** 0.3333
- **(c)** 0.1667
- (d) None of These

Question 11: The absolute error by using the Modified Euler's method of y(0.05) where $y' = \sqrt{y}$, y(0) = 1, n = 1, and $y(x) = 0.25(x+2)^2$ is:

- (a) 0.0000
- **(b)** 0.0001
- **(c)** 0.0010
- (d) None of These

Question 12: If $f(x) = \frac{2}{x}$ and $x_0 = 1, x_1 = 1, x_2 = 1, x_3 = 2$, then compute the absolute error and an error bound for the approximation of f(1.5) using cubic Newton's polynomial.

Question 13: Let $f(x) = 3^x/x$. Then compute the approximate value of f''(x) at x = 3, taking h = 0.1. Compute the absolute error and an error bound for your approximation if $M = \max_{2.9 \le x \le 3.1} |f^{(4)}| = 6.1022$. How many subintervals required to obtain the approximate value of f''(3) within the accuracy 10^{-4} .

Question 14: Find the approximation of $\int_1^2 f(x) dx$, by the best composite integration rule using the following table:

x	1.0	1.11	1.2	1.32	1.4	1.5	1.6	1.73	1.8	1.9	2.0
f(x)	0.3679	0.3658	0.3614	0.3526	0.3452	0.3347	0.3230	0.3067	0.2975	0.2842	0.2707

The function tabulated is $f(x) = xe^{-x}$, compute an error bound and the subintervals to approximate the given integral to an accuracy of at least 10^{-6} ?

.