King Saud University: Mathematics Department Math-26 First Semester 1445 H Final Examination Maximum Marks = 40 Time: 180 min																
Name of the Student:									I.D. No							
Name of the Teacher:								———— Section No. —————								
	te: C												are S	Six	(6).	
-	The Ans	wer Ta	ables f	or C	Q.1	to Q	.15 :	Mar	ks: 2	for	each	one (2 × 15 =	= 30)		
		D	a . Ma	wle (a	, h	a on d	l) for	tha a		t an	awa in	+ha 1	hove			
	Q. No.	1	s. : Mai	гк {а 3	i, D,	$\frac{c \text{ or a}}{4}$	5 or	tne c	6		7 swer 111	8	9	10		
	a,b,c,d															
			0	No.	11	1	12	13		14	15			ı		
			a,b,													
<u> </u>	ıest. No.		Mark	rs O	htai	ned			1	Mar	ks for	Ones	stions			
Quest. No. Marks Obtained						Marks for Questions										
Q. 1	1 to Q. 15	•									30	0				
Q. 16 Q. 17									5							
											5)				
	Total										40)				

Question 1: If $x_{n+1} = \frac{a}{b - \cos(x_n)}$, $n \ge 0$, is the fixed-point iterative form of the nonlinear equation $\frac{2}{x} + \cos(x) - 3 = 0$, then the value of the constants a and b are:

(a) a = 2, b = 1(b) a = 3, b = 2(c) a = 2, b = 3(d) None of these

Question 2: The next iterative value of the root of $x^3 = 3x - 2$ using the secant method, if the initial guesses are -2.6 and -2.4 is:

(a) -2.2066

(b) -2.1066

(c) -2.3066

(d) None of these

Question 3: If the iterative scheme $x_{n+1} = x_n - k \frac{f(x_n)}{f'(x_n)}$, $n \ge 0$, converges at least quadratic to a simple root α , than the value of k is:

(a) k=1

(b) k=2

(c) k=3

(d) None of these

Question 4: The l_{∞} -norm of the inverse of the Jacobian matrix for the nonlinear system $x^2 + y^2 = 4$, $2x - y^2 = 0$ using $[x_0, y_0]^t = [1, 1]^t$ is:

(a) 2

(b) 0.5

(c) 4

(d) None of these

Question 5: Let $A = \begin{bmatrix} 1.001 & 1.5 \\ 2 & 3 \end{bmatrix}$, then the determinant of a lower-triangular matrix L of the LU factorization using Crouts method is:

(a) 0.300

(b) 1.001

(c) 0.003

(d) None of these

Question 6: The l_{∞} -norm of the Jacobi iteration matrix of the following linear system $4x_1 - x_2 + x_3 = 7$, $4x_1 - 8x_2 + x_3 = -21$, $-2x_1 + x_2 + 5x_3 = 15$ is:

(a) 0.625

(b) 0.5

(c) 0.4

(d) None of these

Question 7: Using Gauss-Seidel method and starting with $\mathbf{x^{(0)}} = [1.200, 0.467, 1.033]^t$, then the first approximation of the solution for the following linear system is: $5x_1 + 2x_2 - x_3 = 6$, $x_1 + 6x_2 - 3x_3 = 4$, $2x_1 + x_2 + 4x_3 = 7$ is:

(a)
$$\mathbf{x^{(1)}} = \begin{pmatrix} 1.024 \\ 1.006 \\ 0.987 \end{pmatrix}$$
 (b) $\mathbf{x^{(1)}} = \begin{pmatrix} 0.897 \\ 0.950 \\ 1.019 \end{pmatrix}$ (c) $\mathbf{x^{(1)}} = \begin{pmatrix} 1.220 \\ 0.980 \\ 0.895 \end{pmatrix}$ (d) None of these

Question 8: Let $A = \begin{bmatrix} 0 & \alpha \\ 1 & 1 \end{bmatrix}$ and $1 < \alpha < 2$. If the condition number k(A) of the matrix A is 6, then α equals to

(a) 0.8

(b) 0.5

(c) 0.2

(d) None of these

Question 9:			= 5.5. If the best approximation o						
	$f(x) = \frac{1}{x}$ at $x = 3$ u the value of the unk	sing quadratic interpondence from point η in the ϵ	plation formula is $P_2(3) = 0.325$, then error formula is equal to:						
(a) 2.9201	(b) 2.7859	(c) 3.1472 (d) N	None of these						
Question 10:	If $x_0 = 0$, $x_1 = 1$, $x_0 = 0$, $x_1 = 1$, $x_0 = 0$, $x_1 = 1$, $x_0 = 0$, approximation of $x_0 = 0$, $x_1 = 0$,	$\frac{1}{2} = 3$ and for a function $f[x_0, x_1] = 1$, $f[x_1, x_1] = 1$ using quadratic in	tion $f(x)$, the divided differences are $x_2 = \frac{1}{2}$, $f[x_0, x_1, x_2] = -\frac{1}{6}$. Then the terpolation Newton formula is:						
(a) 1.5417	(b) 4.1232	(c) 2.3481 (d) N	None of these						
Question 11: Let $f(x) = x^3$ and $h = 0.1$. The absolute error for the approximation of $f'(0.2)$ using 2-point forward difference formula is:									
(a) 0.0722	(b) 0.0711	(c) 0.0700	(d) None of these						
Question 12:	The absolute error for using simple Trapez	or the approximation oidal's rule is:	of the integral $\int_1^2 \frac{1}{x+1} dx$						
(a) 0.1120	(b) 0.0112	(c) 0.0012	(d) None of these						
Question 13:	The approximation t	o the integral $\int_0^2 e^x dx$	dx using simple Simpson's rule is:						
(a) 8.4207	(b) 7.4207	(c) 6.4207	(d) None of these						
Question 14:	Question 14: For the initial value problem, $(x+1)y'+y^2=0, y(0)=1, n=1$, if the actual solution of the differential equation is $y(x)=\frac{1}{(1+\ln(x+1))}$, then the absolute error by using Euler's method for the approximation of $y(0.05)$ is:								
(a) 0.0350	(b) 0.0035	(c) 0.0042	(d) None of these						

Question 15: Using the Taylor's method of order 2 to find the approximate value of y(0.1) for the initial-value problem, $y' = e^{-2x} - 2y$, y(0) = 0.1, n = 1, is:

(b) 0.1983

(a) 0.1620

(c) 0.1846

(d) None of these

Question 16: Let $f(x) = \frac{3^x}{x}$ and h = 0.1 Compute the approximate value of f''(3) and the absolute error. If $\max |f^{(4)}| = 6.1022$, then find the number of subintervals required to obtain the approximate value of f''(3) within the accuracy 10^{-4} .

Question 17: Determine the number of subintervals required to approximate the integral $\int_0^2 \frac{1}{x+4} dx$, with an error less than 10^{-4} using composite Simpson's rule. Then approximate the given integral and compute the absolute error.

