King Saud University: Second Semester Maximum Marks = 25 Mathematics Department Math-254 1446 H First Midterm Exam. Time: 90 mins.

Questions:

(6+6+6+7) Marks

Question 1:

One of the possible rearrangement of the nonlinear equation $e^x = x + 2$, which has root in [1, 2] is

$$x_{n+1} = g(x_n) = \ln(x_n + 2);$$
 $n = 0, 1, \dots$

Show that g(x) has a unique fixed-point in [1,2]. If $x_0 = 1.5$, then estimate the number of iterations n within accuracy 10^{-5} .

Question 2:

Successive approximations x_n to the desired root are generated by the scheme

$$x_{n+1} = \frac{e^{x_n}(x_n+1) + 2x_n^2}{e^{x_n} + 3x_n}, \qquad n \ge 0.$$

Find the nonlinear equation f(x) = 0 and then show that it has a root in [-1,0]. Use the Newton's method to find the second approximation of the root $\alpha = -0.7035$, starting with $x_0 = -0.5$. Compute the relative error.

Question 3:

Show that the order of convergence of the iterative scheme

$$x_{n+1} = \frac{x_n(x_n^2 + 3)}{3x_n^2 + 1}, \qquad n \ge 0,$$

at the fixed-point $\alpha = 1$ is at least cubically.

Question 4:

Show that the best iterative formula for computing the approximation of the root $\alpha=0$ of the equation $x^3e^{2x}=0$ is

$$x_{n+1} = x_n - \frac{3x_n}{(3+2x_n)}, \quad n \ge 0.$$

Use it to find the absolute error $|\alpha - x_2|$ using $x_0 = 0.1$. Show that the given iterative formula is converges quadratically to a root $\alpha = 0$.