King Saud University: Mathematic Second Semester 1446-47 H Maximum Marks = 40	res Department MAth-254 Final Examination Time: 180 mins.
Name of the Student:————————————————————————————————————	I.D. No
Name of the Teacher:	Section No.

Note: Check the total number of pages are Six (6). $_{(15~Multiple~choice~questions~and~Two~(2)~Full~questions)}$

The Answer Tables for Q.1 to Q.15: Marks: 2 for each one $(2 \times 15 = 30)$

 $\operatorname{Ps.}$: Mark {A, B, C or D} for the correct answer in the following box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A,B,C,D															

Quest. No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

Question 1: The number of bisections required to solve the equation $x^3 - x^2 = 1$ in [1,2] accurate to within 10^{-6} is:											
(A) 20 (B) 11 (C) 15 (d) None of these											
Question 2: When using Newton's method with $x_0 = 1$ for solving the equation $\cos(\pi x - \pi) - x = 0$, the first approximation x_1 is:											
(A) 1.35 (B) 1.55 (C) 1.00 (D) None of These											
Question 3 : Which of the following sequences will converge faster to $\sqrt{5}$:											
(A) $x_{n+1} = \frac{1}{3}[3x_n + 1 - \frac{x_n^2}{5}]$ (B) $x_{n+1} = x_n + 1 - \frac{x_n^2}{5}$ (C) $x_{n+1} = \frac{5}{x_n}$ (D) None of These											
Question 4: The rate of convergence the iterative scheme $x_{n+1} = \frac{1}{2}(x_n^2 + 1) - \ln x_n, n \ge 0$ to $\alpha = 1$ is:											
(A) Order 1 (B) Order 3 (C) Order 2 (D) None of These											
Questions (5 - 7) are concerned with Linear System $A\mathbf{x} = \mathbf{b}$, where											
$A = \begin{bmatrix} 1 & 0.5 \\ -2 & 1 \end{bmatrix}, \qquad A^{-1} = \begin{bmatrix} 0.5 & -0.25 \\ 1 & 0.5 \end{bmatrix}, \text{and} \mathbf{b} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}.$											
Question 5: In the LU factorization with $u_{ii} = 1$, $i = 1, 2$ of the matrix A , the matrix L is given by:											
(A) $\begin{bmatrix} 1 & 0 \\ -2 & 2 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix}$ (D) None of These											
Question 6: For the given linear system, the l_{∞} -norm of the Jacobi iteration matrix T_J is equal to:											
(A) 0.5 (B) 2.0 (C) 1.0 (D) None of these											
Question 7: The relative error $\frac{\ \mathbf{x} - \mathbf{x}^*\ _{\infty}}{\ \mathbf{x}\ _{\infty}}$, where $x^* = [2, 0]^T$ be the approximation of the given linear system, is bounded by:											
(A) 4.75 (B) 5.75 (C) 6.75 (D) None of These											
Question 8: If $f(x) = x^2$ and the second order divided difference $f[\alpha, 2, 2] = 3$. Then the value of α is:											
(A) 2 (B) 3 (C) 1 (D) None of These											
Question 9: Using the Newton's interpolating polynomial of degree 2 for $f(x) = x \ln x + e^{-x}$ on the interval [2, 4] with the points $x_0 = 2.0$, $x_1 = 3.0$, $x_2 = 4.0$, an error bound for the approximation of $f(2.4226)$ is:											
(A) 0.00247 (B) 0.0247 (C) 0.0427 (D) None of These											

Question	<u>10</u> :	When using we have the	g simple trapezoida computed approxin	l rule for approximation:	mating the integral $\int_1^{1.5} \frac{1}{x} dx$,
	(A)	$\frac{5}{12}$ (B)	$\frac{7}{12}$ (C) $\frac{5}{14}$	(D) None of T	hese
Question	11 :	If $f(0) = 3$ then the value	$f(1) = \frac{\alpha}{2}, f(2) =$ ne of α is:	α , and Simpson's	rule for $\int_0^2 f(x) dx$ gives 2,
	(A)	-1.0	(B) 2.0	(C) 1.0	(D) None of These
$\mathbf{Question}$, , ,		(5, 1.4), (0.4, 1.5), (0.5, 1.7), then t difference formula is:
	(A)	0.55	(B) 0.75	(C) 0.50	(D) None of These
${f Question}$			$x \ln x + x$ and $x =$ eximation of $f''(1.9)$		5, 3.2. Then the absolute error
	(A)	0.0930	(B) 0.0093	(C) 0.9300	(D) None of These
${f Question}$		y(x) = 2/(3 - x)			= 1 and its exact solution is proximate value of $y(1.4)$ using
	(A)	0.3775	(B) 0.5377	(C) 0.3577	(D) None of These
${f Question}$			al-value problem e^y aylor's method of o		= 1, the approximate value of is:
	(A)	1.4893	(B) 1.4983	(C) 1.4993	(D) None of These

Question 16: If $f(x) = x^2 + \cos 2x$ (x is in radian) and x-values are $\{-0.5, 0.0, 0.3, 0.5, 0.6, 1.0\}$. Use the quadratic Lagrange interpolating polynomial for equally spaced data points to find the best approximation of $0.16 + \cos 0.8$. Compute an error bound and the absolute error.

Question 17: Find the approximation of $\int_0^{1.25} f(x) dx$ by using the following set of data points using the best integration rule:

									0.8				
f(x)	0	0.1098	0.3099	0.4012	$0.5\overline{494}$	0.7294	0.9246	1.2441	1.3574	1.6176	1.8415	2.1012	2.5115

The function tabulated is $f(x) = x^2 + \sin x$ (x is in radian), compute the absolute error and the number of subintervals approximate the given integral to within accuracy of 10^{-3} ?