Second Semester 1										
Maximum Marks = 40	Time: 180 mins.									
Name of the Student:—	I.D. No									
Name of the Teacher:—	Section No.									
Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)										

The Answer Tables for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$

Ps. : Mark $\{a, b, c \text{ or } d\}$ for the correct answer in the box.

(1), 1), 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															
Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d															

Quest. No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

Question	<u>1:</u>	If $f(x) = x$ is:	e^{-x} and $x_0 = 4$, then the	first app	roximation x	1 by Newton's method
	(a)	3.3333	(b) 5.3333	(c) 4.33	33 (d) None of t	hese
Question	2:		best iterative fo near equation 1				of the multiple root of
	(a)	0.0980	(b) 0.0890	0	(c) 0.00	98	(d) None of these
Question	<u>3:</u>		rminant of the $= 1, xy = 1$ at			-	of nonlinear equations value of α is:
	(a)	2	(b) 3	(c) 1.5	(0	d) None of th	nese
Question	<u>4</u> :	L is a low	rix $A = \begin{pmatrix} 3 & 1 \\ 6 & 1 \end{pmatrix}$ ver triangular m f the system $L\mathbf{y}$	natrix, and	U is an	U using Doo upper trians	lliitle's method, where gular matrix, then the
	(a)	$[-1,6]^t$	(b) $[-1, -2]^t$	(c) [-	$-1, 2]^t$	(d) None	of these
Question	<u>5</u> :		ar system $2x+y$ matrix T_G is equal to T_G		y = 5, th	en the l_{∞} -no	rm of the Gauss-Seidal
	(a)	0.25	(b) 0.5	(c) 0.75	(d)) None of the	ese
Question	<u>6</u> :	If $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ bound for is:	$\begin{pmatrix} 1 \\ 0.5 \end{pmatrix}$ and l_{∞} the relative err	-norm of to	he residu	${f r}$ all vector ${f r}$ is	s 0.005, then the error ystem $A\mathbf{x} = [1, -0.5]^T$
	(a)	0.040	(b) 0.020	(c) 0.025	(d)	None of these
Question	<u>7</u> :		ta points: $(0, f)$ $f(x) = 2\cos x$ at				approximation of the nomial is:
	(a)	$\pi/2$	(b) 0.0	(c) π	/4	(d) None	of these
Question	<u>8</u> :						5 and $L_2(1.5) = 0.375$, grange polynomial is:
	(a)	2.5	(b) 1.5	(c) 3.5	5	(d) None o	of these

Question	9: If	$f(x) = \frac{3}{x}$	and $f[1,$	$[1,1,2] = \alpha$, then	α is equal to):		
	(a) 1	.5 (b)	-1.5	(c) -4.5	5 ((d) None of	these		
Question				-	_	Then absolution of $f'(0)$.		or using the Two	-point
	(a) 0	.12	(b) 0.	07	(c) 0	.19	(d) No	one of these	
$\underline{\text{Question}}$						$f(x) = \alpha, f(0.7)$ or $f''(x)$, the		$f(f, f(1)) = 2$. Then $f(\alpha)$ is:	using
	(a) 1	.8484	(b)	1.9999		(c) 1.4884		(d) None of the	se
$\overline{ ext{Question}}$								= 3 and using the value of α is:	ıe best
	(a) 1	.75	(b) 1.5	(c) 2	2.25	(d) Nor	ne of th	ese	
$\overline{ ext{Question}}$		If $\int_{1}^{2} \frac{1}{x+1}$ in the approximation in the section $\int_{1}^{2} \frac{1}{x+1} dx$	_		ı using	g simple Sim	pson's r	rule, the absolute	e error
	(a) 0	.0112	(b) 0.	0001	(c) 0	.0025	(d) No	one of these	
Question	1	solution of	the diffe	rential equa	ation i	$x^2 = y + 1, y$ s $y(x) = (x + 1)$ the approxima	$-1)^2 - 0$	$0.5, n = 1$, if the $0.5e^x$, then the above $y(0.2)$ is:	actual osolute
	(a) 0	.0293	(b)	0.0392		(c) 0.0329		(d) None of the	se
Question				y(0) = 1 so when $n = 1$		approximate	value o	of $y(0.5)$ using T	aylor's
	(a) 1	.1331	(b)	1.1328		(c) 1.2839		(d) None of the	se

Question 16: Let $f(x) = \ln(x+2)$ and $x_0 = 0, x_1 = 0, x_2 = 1, x_3 = 1$, find the best approximation of $\ln(2.5)$ by using the cubic Newton's polynomial. Compute absolute error and the error bound.

Question 17: The function tabulated below is $f(x) = x \ln x + x$.

x	0.9000	1.3000	1.5000	1.6000	1.9000	2.3000	2.5000	3.1000
f(x)	0.8052	$1.6\overline{411}$	2.1082	$2.3\overline{520}$	3.1195	$4.2\overline{157}$	4.7907	6.6073

Find the approximation of $(\ln 1.9 + 2)$ using three-point formula for f'(x) for smaller value of h. Compute the absolute error and the number of subintervals required to obtain the approximate value of $(\ln 1.9 + 2)$ within the accuracy 10^{-2} .

