
Chapter 5

Object-Oriented (OO) Modeling

Dr. Eng. Shady Aly

١



OO development

• The most commonly used method in system

development object-oriented (OO) modeling

and programming (OO development ).

• The object-oriented approach stresses the

encapsulation (تغليف) of data and procedures

within segments of software code called

objects.

٢



OO development-cont.

• Instead of separating programming code from 

data files used by the code, the two come 

together in one module, the object. 

• Objects are instances (مثال و تجسيد) of classes, 

which are generic templates of the objects.

• The object has the characteristics of the class 

from which it is created.

٣



OO development-cont.

• A specific set of object-oriented design tools that evolved 
from the trend in object thinking is known as Unified 
Modeling Language (UML).

• UML, like the IDEF framework, is a set of tools developed to 
assist analysts in uncovering the important features of a 
design project, finally arriving at a set of models that will be 
used to design, document, and implement the project 
(information system or software) 

• In database design projects, UML is often thought of as a tool 
for object-oriented databases. 

• Even if the target database management system (DBMS) is a 
relational database, the UML design tools can be used.

٤



Difference between structured and OO 

programming

Structured 

programming

OO 

programming٥



Difference between structured and OO 

programming- cont.
Structured programming:

• The sensor that provides a temperature reading to a software 
program running on a computer. 

• The computer program may have a function called 
fetch_reading(), which reads the current value of the sensor.  
The sensor data are always present at the port of the computer 
for reading whenever the function is called. The program 
resident on the computer is a series of functions that collect the 
data and record it or do some computation with it.

• The sensor just converts an environmental condition into a 
voltage that is then converted to a series of bits that a 
computer can read. The term “dumb sensor” is appropriate 
since the sensor has no oversight of its own functionality.

٦



Difference between structured and OO 

programming-cont.
OO programming:

• The sensor is a real-world object that collects sensory data. The object 
“sensor” has its own program logic, functionality and its own way of 
control. (the functionality of the object is encapsulated within the object 
sensor).

• In a physical device, such as a sensor, this usually requires a 
microprocessor that is resident within the object.

• The computer (an object itself) requests a reading of the current value of 
the sensor. The sensor, accepting the request, runs a software 
component (called a method) to read the current value and then calls 
another software component (another method) to send the value to the 
computer. 

• The control is distributed to each object instead of being centralized in 
one main program.

٧



Object-oriented design concepts

• The object-oriented approach creates software in modules (objects). 
Each object is an independent entity of the system in which it resides. 
It has a set of tasks it can perform (the methods) and encapsulated 
data that it can access, maintain, and use. 

• Object-oriented design helps create autonomous structures (the 
objects) that represent real-world entities and have the ability to 
interact with other objects.

• OO design methods lead to economic software development. Software 
can be designed as objects, the objects can be used and reused to 
design systems in a plug-and-play ( سھولة ا�ستخدام= التوصيل و التشغيل ) 
fashion. 

• The programmer no longer has to deal with writing detailed code. 
Rather, the system is designed by making appropriate connections 
between objects that must communicate with each other. This reduces 
development time and enhances system reliability.

٨



Object-oriented design concepts-cont.

• The concept of class is an important feature of object-oriented design. A 
class is a collection of objects with shared structure and behavior.

• The concept of inheritance has a special meaning in OOD. Inheritance is 
used to describe a class and its subclasses. For example, the super-class 
SENSOR has two subclasses, BINARY and ANALOG. BINARY and ANALOG 
are subclasses of SENSOR, and they inherit some methods and 
attributes from the super-class.

٩



Object-oriented design concepts-cont.

• An attribute is a characteristic of an object  and class.

• Classes have attributes, but no values. Objects of a class 
have the attributes of the class and values for those 
attributes.

• Objects operate under their own specific control. 

• An object goes through a series of states, which describe 
the dynamic behavior of the object.

• The states are a representation of the various phases the 
object passes through during its operating cycle.

١٠



Object-oriented design concepts-

Cont.

• An object has a set of software functions that 

it can execute. The functions are often 

associated with a state of the object, but this 

is not necessary. 

• The important thing is that an object can use 

these functions whenever it is appropriate. In 

the OO world, these functions are called 

methods.

١١



Object-oriented design concepts-cont.

• Once a class is defined and programmed in software with its 
attributes and methods, any number of objects can be created 
as instances of that class.

• Each object will have the attributes, methods, and state behavior 
of the class. By assigning values to the attributes (including the 
system assigned OID), the object becomes a unique 
implementation of the class. 

• Therefore, software system design can be performed by creating 
objects and connections among objects that need to 
communicate with each other in the system.

• Unified Modeling Language (UML) represents an OO modeling 
(analysis and design) architecture  for IS and software 
development
١٢



UML design models

• UML has nine diagrams. They can be classified as either 
structural diagrams or behavioral diagrams. 

• The structural diagrams define the static relationships among 
components of the architecture. 

• The behavioral diagrams define the dynamics of components of 
the design.

• The categorization of diagrams is as follows:
– Structural: Class diagrams, object diagrams, component diagrams, 

and deployment diagrams

– Behavioral: Use case diagrams, sequence diagrams, collaboration 
diagrams, state chart diagrams, and activity diagrams

١٣



UML design models-cont.

1. Class diagram. A graphic representation of a collection of model
elements, such as classes, types, and relationships. It includes a
conceptual model of database design elements.

2. Object diagram. Shows objects and their relationships at a point in
time. It is a special case of a class diagram showing instances of classes
and their relationships.

3. Component diagram. A component is a physical piece of
implementation of a system, such as a module of software code.
Components can be connected to other components through
interfaces. A component diagram is a diagram that shows the
organization and dependencies among component types.

4. Deployment diagram. When components are used in a system, they are
deployed as component instances. A deployment diagram shows the
component instances and the objects that are associated with them.
Therefore, a deployment diagram shows instances of a component,
while a component diagram shows the definition of component types.

١٤



UML design models-cont.

5. Use case diagram. Use case is a function that the system can perform when it 

interacts with outside actors. The concept of an “actor” is an abstraction of a 

person or thing outside the system that interacts directly with the system — for 

example, a database user. The use case diagram shows the functional interaction 

between actors and the system when performing a user function.

6. Sequence diagram. A sequence diagram shows the interaction of the actor with 

the objects in the system and the timing of the interactions. It gives a dynamic 

view by time-sequencing the flow of messages among objects.

7. Collaboration diagram. A collaboration is an arrangement of objects and links that 

interact to implement a behavior, such as a use case. The collaboration diagram 

illustrates that interaction.

١٥



UML design models-cont.

8. State chart diagram. A state machine is a sequence of states and

transitions between states that an object goes through in

response to events in its life cycle. A state chart diagram shows

the state machine, including nested component states, in a

simple diagrammatic form. State chart diagrams depict the

dynamics of objects.

9. Activity diagram. An activity is an execution of a process, which

could be within the system or a real-world function that interacts

with the system. An activity diagram shows a graph that models

the activity. Activity diagrams are very useful in modeling

business operations and workflows.

١٦



Architecture design using UML

• In UML, development begins with the requirements 

determination, and proceeds to specification and 

logical modeling (analysis), then to architectural 

modeling (design) and implementation and coding, 

and finally to testing and maintenance.

• In traditional architecture specification, as in the 

case of IDEF, determination of requirements, 

design, and analysis is done from the top down 

based on functional decomposition, combined with 

separate data model design.
١٧



Architecture design using UML-cont.

• UML permits functional analysis and system (database) specification to 
evolve simultaneously with the goal of identifying objects and object 
classes, their relationships, and their methods. 

• Once an object class is identified, it can be worked on (encoded) 
independently of other classes in the system. 

• To identify objects and classes in UML , first  we need to uncover ways 
in which the system is expected to interact with its environment by 
creating use cases. The use cases should suggest objects, their 
attributes, and their methods. 

• Once objects are identified, more specificity can be added using 
sequence diagrams, which model the interaction among objects and the 
timing of that interaction. 

• The execution of code by an object implies the existence of a method.

١٨



Use case diagram

• A use case diagram is a description of how users 

interact with the system. 

• To develop a use case diagram, the analyst must 

identify three issues:

– The system boundary and interfaces

– The actors who use the system

– The use cases (i.e., the functions that the actor calls 

upon the system to perform)

١٩



Example Use case diagram

٢٠



• A use case diagram for an online theater ticket sales 
system. 

• The diagram shows the three components. The use case is 
depicted as an oval with the use case name within the 
oval, in this example “make sale.” 

• The system is shown as a box that makes explicit the 
boundaries between the use case and its environment. 
The system is that which is being designed. The system is 
usually an information system.

• The actors ( a person or another system) are external to 
the system but interact with it.

Example Use case diagram- cont.

٢١



Example Use case diagram-cont.

• Another way to represent an actor, particularly if it is not a 
person, is by using a box with the word <<actor>> in guillemets.

• The use case diagram of previous figures tells a story. One of the 
uses of the system is to make a sale.

• There are two actors (external entities) involved. One is the 
customer and the other is the credit authorization entity. 

• When documenting a use case, it is important to write an 
explanation of the use case that will help convey the message of 
the diagram. This document can be in the form of a text file that 
describes the activities that take place in executing the use case. 
These descriptions are called scenarios.

٢٢



Sequence diagram- cont.

٢٣



Sequence diagram-cont.

• Better understanding of the various possible 
interactions that may occur between the actors
and the system during the execution of a use 
case, is through constructing  scenarios ( مسار
 .(ا
حداث

• A scenario is a description of a sequence of 
actions that illustrates the execution of a use 
case instance. In most use cases, several 
possible scenarios may occur.

٢٤



Sequence diagram- cont.

• One way to document a scenario is to write a text file 
description of what will happen under a given scenario.

• The text description should document all the steps that 
the actors will perform and the associated system 
responses.

• Once a typical scenario is documented, it is 
straightforward to convert it to a sequence diagram.

• A sequence diagram is a two-dimensional chart that 
displays the interaction between actors and the system 
across the horizontal direction and the sequencing, or 
timing, of that interaction in the vertical direction.

٢٥



Sequence diagram: scenario of a use case
Scenario 1: Make Sale Use Case Normal Scenario

1. The customer requests a performance and seating preference from the ticket sale system.

2. The system verifies whether the performance and seating are available.

3. The performance and seating are available. The system offers the ticket to the customer.

4. The customer accepts the ticket.

5. The system temporarily places the seating for that performance “on hold” while it processes

the sale.

6. The system requests credit card information from the customer.

7. The customer supplies credit card information.

8. The system requests authorization to debit the credit card from the MasterCard authorization

service (we will assume that MasterCard is the only acceptable form of payment).

9. The system receives the authorization approval.

10. The system confirms the sale to the customer and requests final acceptance of the transaction

by the customer.

11. The customer accepts the transaction.

12. The system bills the price of the ticket(s) to MasterCard.

13. MasterCard accepts the charge.

14. The system changes the status of the ticket from “on hold” to “sold.”

15. The system sends a final confirmation to the customer, which includes the sale transaction

number that the customer will use to pick up the ticket at the box office prior to the performance

(we don’t mail tickets).
٢٦



Sequence diagram (scenario 1)

٢٧



Sequence diagram

• The objects are arranged across the top of the diagram. In this 
case, they include the customer, system, and MasterCard 
authorization service.

• The vertical dashed lines beneath the objects are called 
lifelines.

• The lifeline shows the duration, or persistence, of the object 
during the scenario. The arcs with arrows indicate the direction 
of flow of the communication between objects. 

• Some system arrows are self-loops because the system is 
communicating with itself. The precedence of the arrows from 
top to bottom shows the order (sequence) in which the 
communication transactions occur.

٢٨



Sequence diagram (scenario 2)

٢٩



Detailed sequence diagram (scenario 1)

٣٠



Detailed sequence diagram

• Embedded in the SYSTEM object are lower-level objects. two 
main object classes of which the “system” is composed. 

• System object is broken down into two components: Ticket 
Agent and Database Server. 

• The Ticket Agent object stores and retrieves information by 
sending SQL queries to the database server. Information on 
performances, seating, ticket prices, and sales is kept in a 
database server, which is the second  object class.

• The self-loops previously were shown are queries (functions) 
and responses between the ticket agent and the database 
server.

٣١



Detailed sequence diagram-cont.

• The vertical rectangle boxes along the lifeline are 
activation boxes. 

• Activation boxes indicate the beginning and end of the 
activation of a procedure. 

• The procedure usually begins with a message between 
objects, shown as an arrow having a solid line. The 
procedure ends with a return arrow to the initiator. 

• Messages may be communications or they may be 
method calls. If a method call returns a value, this is 
shown as an arrow with a dash line.

٣٢



Activity diagram

• An activity diagram is basically a flowchart that 
documents the flow of control between activities of 
the system. 

• An activity is a state of the system in which some 
transaction or data computation takes place. 

• It is represented by a box with rounded corners that 
has the name of the activity within it.

• The activity diagram begins with a solid circle, the 
starting point. It has one or more terminal points, 
which are shown as circles with a solid dot.

٣٣



Activity diagram-cont.

• In modeling the flow of control, activities are usually 
followed by decision points, shown as diamonds. 

• A decision point models branching behavior when the 
flow of control is dependent on the outcome of the 
activity in the state prior to the decision point.

• The directed arcs show the direction of the flow of 
control. All arcs in an activity diagram are directed arcs.

• Activity diagram includes all transactions and operations 
of all scenarios carried out by the system.

٣٤



Activity diagram of ticket sales scenario

٣٥



Activity diagram-cont.

• The activity diagram enters a fork, shown as a bar. A fork
has one input arc and more than one output arc. This leads 
to the activation of more than one activity in parallel. 

• When the simultaneous and independent activities are 
complete, they enter a join. A join has two or more input 
arcs and one output arc.

• The activity diagram includes all possible scenarios. In fact, 
when an activity diagram is used to document a use case, 
the activity diagram should cover all of the scenarios that 
might occur in the execution of a use case.

٣٦



Activity diagram-cont.

• The string of activities of scenario 1 is as follows: 

start → verify seating available → offer seating → 

place ticket on hold → request card information 

→ request MasterCard authorization → confirm 

sale → commit sale and debit credit card → 

normal completion.

• The string of activities of scenario 2 : start → 

verify seating available → inform customer of 

failure → transaction canceled.

٣٧



State chart diagram

• A state chart diagram is a dynamic model that shows 
the various states that an object can be in and how 
the object passes through those states over time as a 
result of events that occur. 

• The state chart can capture behavior at various levels 
of the system, including overall system behavior, class 
behavior, and detailed behavior of specific objects.

• UML state chart diagrams are a variant of a 
traditional model of computer behavior known as a 
finite state machine. A finite state machine is 
composed of three elements: states, transitions, and 
event conditions.
٣٨



State chart diagram of instances of the 

ticket sales system-cont.

٣٩



State chart diagram of instances of the 

ticket sales system-cont.
• A state, represented as a box with rounded corners, 

is a stage of object’s life cycle that has a finite 
duration

• In the previous figure, three states of the ticket sales 
system are modeled:
– In the first state, the ticket sales for a performance ( ا#داء

are being opened and tickets are being created (المسرحي

– The interim state is the period during which the ticket 
sales are taking place. 

– In the last state, the ticket sales for a performance are 
being closed. 

٤٠



State chart diagram of instances of 

the ticket sales system-cont.
• The initial event that begins the execution of the state 

chart is the opening date of the sale. Control first passes to 
that state in which ticket objects are being created and 
sales are opened.

• This activity provides an output event identifying the 
performance to go on sale and setting the count of total 
tickets sold to zero. 

• The self-loop on the state “selling tickets” indicates 
continuing ticket sales. This continues until one or both of 
two events occur: the closing date or tickets are sold out. 
Either of these events will transition the state chart to the 
“close sales” state, and the state chart will terminate. 

٤١



State chart diagram-cont.

• In the state chart diagram, the transitions are the connecting arcs between 
states. A transition is labeled with an event condition that identifies the event 
that triggers  .the transition (يحدث)

• When an object is in a particular state, the output transition of that state is 
armed (مستعد أو جاھز للحدوث) (ready to be fired). If a transition is armed and the 
event condition on an output transition is true, the transition will fire and the 
object’s state changes from the input state of the transition to its output state. 

• The event condition is labeled Event Name.  The event name is the trigger 
(condition) that causes the transition to fire; the optional action statement is an 
action that results from the event. 

• For each state, two label; state name at the top, and below are: “Action 
label/Action expression or activity”.

• Unlike a state, which may be occupied over a period of time, an event and the 
firing of its transition occur at an instant in time. Transitions can also be self-
loops of a state.

٤٢



State chart diagram showing ticket 

object states during sales

٤٣



State chart diagram showing ticket 

object states during sales-cont.
• Here we see that, after creation, a ticket can be in one of three states. 

Immediately after creation, it is in the “available” state

• When a ticket is in the available state and the event “place on hold” occurs, the 
ticket transitions to the “on hold” state. Note that the event “place on hold” is 
generated by the Ticket Agent object during the “make sales” use case.

• Similarly, when a ticket sale is committed, the state of the object transitions from 
“on hold” to “sold.” The state chart shows that during the period of sales, the 
states of the ticket objects are changing from “available” to “sold.” 

• When the closing date for ticket sales for a performance occurs, tickets will be in 
one of two states: available or sold. 

• Note that the events of the result in a cancellation of a reservation after a ticket is 
placed “on hold” but before it is “sold” are captured , the transition labeled 
“transaction canceled.” This transition takes the ticket back to the “available” 
state.

٤٤



Class diagram

• The class diagram is the most important UML 

model as it defines the object types that can be 

created by the system.

• Use case, sequence, activity, and state chart 

diagrams should suggest data elements that are 

required for the data model.

٤٥



Class diagram

• From the behavior (use case, sequence, activity , state  
diagram of the tickets sale system), some concepts have 
been identified: performance, seating, ticket, credit card, 
and sale. structural relationship between these concepts 
as follows:

1. A Ticket represents a claim on a Performance and a 
Seat.

2. Each Performance is associated with many Tickets.

3. Each seat (which we shall call a Location) is associated 
with many Tickets, since the same seat is used for more 
than one Performance.

4. A ticket Sale is made for one or more Tickets.

5. A Credit Card is used in each sale.
٤٦



Class diagram of the ticket sale system

• Both PERFORMANCE and LOCATION have a one-

to-many relationship with TICKET.

• For a given performance, there will be many 

tickets, but each ticket is for one and only one 

performance.

• A location has many tickets since the same 

location is used over and over again for 

different performances.
٤٧



Class diagram of the ticket sale system

٤٨



Components of a Class
• What is referred to as an “entity set” in relational data 

models is analogous to a “class” in OO data models. 

• A class diagram is composed of classes, which are the 
templates for sets of similar objects that have the same 
attributes and behavior.

• In a class diagram, each class is represented by a box with 
three distinct sections.

• The name of the class is given in the top panel, analogous 
to the name of the entity set in relational data models. 

• The center panel contains the attributes of the class and 
their data types.

٤٩



Components of a Class

• Object-oriented models support the usual data
types of string, integer, date, and so forth, as well
as user-defined data types.

• The third panel contains the behavior of the class
in the form of operations that the class can
perform on its data — that is, on the values of its
attributes. These operations, which are functions
that can be called (invoked), are sometimes
referred to as “operations” and sometimes as
“methods.”

٥٠



Components of a Class
• In OO data models, the operations that are

performed on the data are part of the object
definition and reside in the object itself.

• Primary keys are not used to uniquely identify an
object because each object of a class will
automatically be assigned a unique object ID (OID) by
the system when the object is created.

• Methods are shown in the lower panels of the
classes. The method “Commit ( )” in the Ticket class,
when invoked, results in the change of status of the
Ticket object from “on hold” to “sold.” This behavior
was described in the state chart.
٥١



Class Diagram - Associations

• An association in a class diagram is analogous to a
relationship in a traditional E-R

• Associations are shown as lines connecting classes.

• The cardinality of the association is shown at each end of
the line using the notation “<lower limit>..<upper limit>.”

• Cardinalities notations of classes relationships: 

– Exactly one “1..1”

– One or more “1..*”

– Zero or one “0..1”

– Zero or more “0..*”
٥٢



Class Diagram - Associations-cont.

Aggregation (part 

of association)

٥٣



Class Diagram – Associations-cont.

• The association between Performance and Ticket indicates “1..1” on the 
Performance side and “1..*” on the Ticket side. 

• Each performance is associated with one or more tickets, where “*” is 
the generic “more than.” For a cardinality of zero, one, or more, the 
notation would be “0..*”, and for exactly 2, it would be “2..2.”

• If the association is called aggregation (parent-child) relationship, the 
connecting arc has a diamond on the whole side. An example is the 
association between PurchaseOrder and PODetail.

• The diamond can be either hollow or solid. If the association is optional 
to the whole, then the diamond is not filled in (hollow). When the 
association is mandatory to the parent, the diamond is solid.

• For the case of a mandatory association, deletion of the parent object 
cannot occur without prior deletion of the child object.

٥٤



Class diagram - Generalization

٥٥



Class Diagram- Generalization

• Class diagrams also support superclass/subclass relationships, 
which are called supertype and subtype generalizations in UML.

• The subtype classes are connected to the supertype classes 
using arcs with an arrow pointing to the supertype. Each 
occurrence of a subtype has an “is a” association to the 
supertype.

• The coverage of the subtypes is indicated by a label on the arc. 
For example, {disjoint} means that there is no overlapping 
between subtypes and {incomplete} means that there are 
material lots of the supertype that are not represented in the 
subtype, for example, subassemblies. 

• So the actual situation can be described by combinations of 
{overlapping, disjoint} and {incomplete, complete}.

٥٦



Object-Oriented Analysis and 

Design: example Use Cases

٥٧



A use case diagram for a university 

registration system

٥٨



Inventory replenishment system

٥٩



Point of Sales Terminal

٦٠



Point of Sales Terminal

٦١



Object-Oriented Analysis and 

Design: example Activity diagrams

٦٢



Activity diagram for a customer order

process

٦٣



Process Order activity diagram 

٦٤



Object-Oriented Analysis and Design: 

example state chart diagram

٦٥



Bank ATM state chart

٦٦



Inventory system state chart

٦٧



Object-Oriented Analysis and Design: 

example sequence diagram

٦٨



Course registration sequence diagram

٦٩



Object-Oriented Analysis and Design: 

example class diagram

٧٠



Example classes and associations

٧١



Course registration classes

٧٢



Course registration classes

٧٣



Course registration classes

٧٤



Inventory control system class 

diagram

٧٥



UML examples websites/tutorials

•http://www.uml-diagrams.org

٧٦


