
Chapter 2

Database Modeling and Design

I. Relational Database Model

Dr. Eng. Shady Aly

1

Databases

• Three types of databases: Hierarchical , ھرمي

network شبكي, and relational ع
ئقي database

systems

• The Relational model (الع�ئقي النموذج) is the

foundation of modern database management

systems (DBMS) نظام إدارة قواعد البيانات

2

Databases

• A database is a computerized filing cabinet

 that stores data defined and “filed” by ,(خزانة)

users within the organization

• Databases are essential component of any

information system.

3

Databases

• The database system has both hardware and

software components

• Hardware is the physical storage medium for the

data (hard disk, CD, tape, etc.)

• The software is the medium through which the

user accesses the physically stored data. This

software is called the database management

system (DBMS)نظام إدارة قواعد البيانات .
4

The database management system

(DBMS)
• The DBMS allows the user to store, retrieve, and

update data…..

• There are three classes of database systems

with different levels of complexity:

– Enterprise databases

– Workstation databases

– Personal databases

5

DBMS: Enterprise database

قاعدة البيانات المؤسسية

• a large database that runs on one or more

servers and may have several remote client users

• It must be capable of handling a large quantity of

transactions and the execution must be in real-

time في حينه(For example, a transaction involving

an ATM debit recorded in seconds)

• DBMS like Oracle (Oracle Corporation) and DB2

(IBM) are typically used for these applications
6

DBMS: Workstation/workgroup

database

• Runs on one server and distributes information to
several client machines running on the same local
area network (LAN).

• The DBMS must be capable of handling multiple
clients who are independently generating
transactions that change the contents of one or
more databases running concurrently on the DBMS.

• Microsoft’s SQL Server, which supports client-server
architecture, is a popular choice for workgroup
applications.

7

DBMS: personal database

• A personal database runs on a single personal

computer (PC)

• The Access DBMS is a good example of a

personal database.

8

The relational database (RDB)

• The relational database uses the concepts of attribute,
domain, relation, tuple, and primary key

• An attribute is a name, or label, for a set of data.
“employee_last_name”

• A domain is the set of possible value of the attribute in the
database

if the enterprise has three employees

(Joseph Smith, John Doe, and Mary Murphy),

then the three values “Smith,” “Doe,” and “Murphy” are the
domain of the attribute “employee_last_name.”

9

RDB

• A relation refers to a set of related attributes as
defined by a user.

“employee_SS_no,” “employee_last_name,”
and “employee_first_name.”

• A tuple is a set of related data values from
within a relation.

036-27-5192, Smith, Joseph

357-19-9921, Doe, John

142-36-1529, Murphy, Mary

10

RDB

• A primary key is an attribute in which the

domain value is unique (i.e., not repeated in

any tuple of the relation).

employee_SS_no corresponds to a primary key.

11

RDB

• Relational model allows the user to view the data in
a simple intuitive tabular structure, called a table

• A table is a logical view of related data. The table is
defined by the entity set and attributes that it
represents

• An entity is a person, place, event, concept, or thing
about which information is needed

• A related group of entities, the information about
which is maintained in the same table, is called an
entity set

12

RDB

• Each entity set has unique characteristics, called

attributes

• A row represents a single entity, or instance of

the entity set. A row is sometimes referred to as a

record

• A column represents the attributes of the entity

set. Sometimes columns are referred to as fields.

13

Example RDB

14

Example RDB

15

Example RDB

16

Key attributes and linking tables

• The two most important key attributes are the

primary key and the foreign key attributes

• Primary key attribute is used to uniquely (بشكل
identify each row (entity) (منفرد

• For example, in the VENDOR table, the

VENDOR_ID is unique. The primary key for the

PURCHASE_ORDER table is the PO_NUMBER

17

Key attributes and linking tables

• PO_NUMBER and PO_LINE_ITEM in PO_DETAIL

table represents a unique combination called

composite primary key attribute

• The attribute field that relates one or more

entities in one table to the primary key attribute

in another table is called a foreign key. In the

table PO_DETAIL, the attribute PO_NUMBER

serves as a foreign key.

18

Key attributes and linking tables

• The foreign key in one table must be related to a

primary key in another table. This is referred to

as referential integrity مة المرجعية�الس

• When a column is designated as a key attribute

(primary or foreign), any row of the table must

have an entry and not “Null”. Null values may be

allowed in non-key attribute columns, but not

allowed to exist in key attribute columns.

19

Data types

• RDBM systems support a variety of data types.

Typical data types are numeric, character or

text, date, and currency.

• Numeric data types are classified as integer,

floating point, or decimal

• Floating point includes Single precision (4

bytes of data storage) and Double precision (8

bytes of data storage).
20

Data types

• The Decimal data type is a formatted data type

in which the DBMS stores the number, including

fractional parts, as an integer with up to 12

bytes of data storage.

• Character or text data are represented as an

alphanumeric string in the range of 1 to 254

characters.

21

Data types- cont.

• The DATE data type tells the DBMS to

interpret the field as a date

• The CURRENCY data type tells the DBMS that

the numerical value is a monetary value.

22

Structured query language (SQL)

23

SQL

• The relational database community has defined a
standard language for manipulating data in a
database called Structured Query Language (SQL).

• The American National Standards Institute (ANSI)
has standardized SQL

• SQL is a nonprocedural language

• In a nonprocedural language, you are not concerned
with the details of how the work gets done, you only
have to define what you want to have done.

24

SQL

• There are about 30 standard instructions in the

basic SQL command set.

• The standard SQL instructions allow the user to

perform operations for the following purposes:

(1) to create a database and its table structure,

(2) to manage the data in the database tables,

and

(3) to summarize the data into useful

information for decision making.
25

SQL: Creating the database and table structure

• The CREATE command keyword is used for creating
databases and tables

CREATE DATABASE <database name>;

When this command is executed, a database with the
given name is created.

• The Access RDBMS does not support the CREATE
DATABASE command.

• Instead, it provides a Windows menu-driven route to
establishing the database.

26

Creating database in Access

• Create the database in figure 2.1 in the book ,

page 29 (VENDOR, PURCHASE_ORDER,

PO_DETAIL)

27

Writing SQL commands

The following conventions will be used to

describe SQL commands:

• The command will be written in CAPITAL
LETTERS Commands are usually followed by
arguments

• Arguments are placed within angle brackets, <
>. If an argument is optional, it will be
bounded by square brackets, [< >].

28

Writing SQL commands

• The syntax for creating a table within a

database uses the CREATE keyword as follows:

CREATE TABLE <table name>

(<[attribute1 name]> <data type>,

<[attribute2 name]> <data type>,

...

<[attributeN name]> <data type>);

29

30

Writing SQL commands

• By limiting the length of the character strings

for PO_STATUS and VENDOR_ID, computer

memory storage space is saved

• If we did not limit the character length, the

DBMS would have defaulted the field to 50

characters. The largest text field size is 255

characters.

31

Writing SQL commands

• In Access Exercise 2.2, the constraint clause is

used to constrain the primary key to

PO_NUMBER. The attribute PO_NUMBER is

constrained to be Not Null and Unique.

• Within the constraint clause, an index object has

also been defined. it speeds up the processing

times because Access uses the index to process

records in a defined order.

32

Writing SQL commands

• Index allows the DBMS search algorithm to

locate a particular record in a table faster than

would be possible without the index.

• This can be helpful in databases containing

many large tables.

33

Writing SQL commands

CREATE TABLE VENDOR

([VENDOR_ID] CHAR(5),

[V_NAME] CHAR(20),

[V_STREET] CHAR(20),

[V_CITY] CHAR(20),

[V_STATE] CHAR(2),

[V_ZIP] CHAR(5),

CONSTRAINT [INDEX2] PRIMARY KEY
(VENDOR_ID));

34

Writing SQL commands

CREATE TABLE PO_DETAIL

([PO_NUMBER] SMALLINT,

[PO_LINE_ITEM] SMALLINT,

[MATERIAL_ID] CHAR(10),

[UNITS] CHAR(4),

[QUANTITY] SINGLE,

[BALANCE] SINGLE,

[PROMISED_DEL_DATE] DATE,

[UNIT_COST] CURRENCY,

[STATUS] CHAR(6),

CONSTRAINT [INDEX3]

PRIMARY KEY (PO_NUMBER, PO_LINE_ITEM));

35

SQL: Managing the data in the database table

• There are several keyword commands for populating

and manipulating data in the database: the keywords

INSERT, SELECT, UPDATE, and DELETE

1. INSERT Keyword:

• Records can be placed into empty tables using the SQL

INSERT command. The syntax is as follows:

INSERT INTO <table name>

([<attribute1 name>], <[attribute2 name]>,...)

VALUES (<value1>, <value2>,...);

36

Examples insertions

INSERT INTO VENDOR

VALUES (“V110”, “Jersey Vegetables Co.”, “2 Main

St.” , “Patterson”, “NJ”, “07055”);

37

Direct insertion

• In addition to the use of SQL, instead of using

SQL and the INSERT keyword, the user can

open a table and directly insert data into the

rows and columns of the table.

38

SQL: Managing the data in the database table

2. SELECT Keyword

The most common command used in retrieving

and manipulating data in a table is the SELECT

Keyword

SELECT [DISTINCT] <attributes/*>

FROM <table name>

WHERE <condition>

ORDER BY <attribute name> ASC/DESC;

SELECT *

FROM PURCHASE_ORDER;

The wildcard * identifies all attribute fields of the table.
39

2. SELECT Keyword – Cont.

40

2. SELECT Keyword – Cont.

• The record of retrieved data in exercise 2.4 is

called a “recordset.”

• A recordset is a view of the data from one or

more tables, selected and sorted as specified by

the query

• This can be done by using the ORDER BY clause,

followed by the attribute name of the column on

which you wish to impose the order.
41

2. SELECT Keyword – Cont.

• If the column is a numeric, date, or currency data type, the order will
be determined by the magnitude of the number. The default is to use
ascending order

• For descending order, the keyword DESC is used following the attribute
name

• If the column is a text data type, the order is determined by ASCII
equivalent.

• The computer stores text data by its numeric equivalent in ASCII. Thus,
the letter A is equivalent to the decimal value 65 in ASCII, B is 66, C is
67, and so forth. The lower case letter a has a value of 97, b is 98, c is
99, and so forth

• Therefore, in sorting alphabetic strings is ascending order, A precedes B,
and B precedes a, which precedes b, and so on.

42

2. SELECT Keyword – Cont.

43

2. SELECT Keyword – Cont.

• Sometimes it is desirable to have an ordering

within an ordering. For example, it may be

desirable to order purchase orders by

VENDOR_ID and, within each vendor group, to

order the PO_AMT.

44

2. SELECT Keyword – Cont.

45

• The command returns:

2. SELECT Keyword – Cont.

• The DISTINCT keyword in the SELECT clause
allows the user to sort a single column of a table
and to return a list of the unique entries in that
column

• For example, the following command will return
the unique VENDOR_IDs in the
PURCHASE_ORDERS table:

SELECT DISTINCT VENDOR_ID

FROM PURCHASE_ORDER;

46

2. SELECT Keyword – Cont.

• The command returns:

• It is often of interest to select out specific rows
from a table based on a criterion. This is done
using the WHERE clause of the SELECT
command:

SELECT *

FROM PURCHASE_ORDER

WHERE VENDOR_ID=“V110”;
47

2. SELECT Keyword – Cont.

• Note the use of the equal (=) sign to indicate the row
selection criteria. The use of comparison operators is a
common method of indicating the selection criteria.
The comparison operators are as follows:

= equal to

!= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to
48

2. SELECT Keyword – Cont.

49

2. SELECT Keyword – Cont.
• There may be more than one selection criterion for a

retrieval. This can be handled by extending the WHERE
clause using logical operators. The logical operators are
AND, OR, and NOT.

• For example, suppose we wish to look at all open orders
that are above $500. This would require the logical AND,
since we want the orders that are open AND greater than
$500. The WHERE clause is extended using logical
operators as follows:

SELECT *

FROM PURCHASE_ORDER

WHERE PO_STATUS=“OPEN”

AND PO_AMT>500;

50

2. SELECT Keyword – Cont.
• The command returns:

• Access does not support != (not equal to). Instead, the NOT
operator is used to return the complementary set of an
operation. For example:

SELECT *

FROM PURCHASE_ORDER

WHERE NOT PO_STATUS = “OPEN”;

• This will return all purchase orders that are not open as
follows:

51

2. SELECT Keyword – Cont.

52

2. SELECT Keyword – Cont.

• Another useful operator is the BETWEEN

keyword. This allows the user to specify a range

of values over which the data will be retrieved:

SELECT *

FROM PURCHASE_ORDER

WHERE ((PO_AMT BETWEEN 505 AND 4000)

AND (RELEASE_DATE BETWEEN #2/11/06# AND

#2/13/06#));

53

2. SELECT Keyword – Cont.

This query returns the following result:

• Also, the complement of BETWEEN is NOT
BETWEEN, which will return the complement set
from the table. Also note the use of the pound sign
(#) around the DATE data type values.

• In Access SELECT command statements, the # sign
is used to indicate a DATE data type.

54

2. SELECT Keyword – Cont.
• SQL also provides a predicate operator that

allows a search to be done on strings that are a

partial match to the predicate. This is done

using the LIKE keyword:

SELECT *

FROM VENDOR

WHERE V_NAME LIKE “SPICE*”;

This query returns the following:

55

3. UPDATE Keyword

• The UPDATE keyword allows the user to

replace existing values in a table with new

values

• The syntax of the UPDATE command is as

follows:

UPDATE <table name>

SET <attribute name> = <value/expression> [...]

[WHERE <condition>];

56

3. UPDATE Keyword

• So, for example, if the attribute is the price of

a product and the company raises all its prices

by 2%, the SET clause could read as follows:

SET PRICE = PRICE * 1.02

57

4. DELETE Keyword

• The DELETE keyword allows the user to remove
one or more rows from a table (i.e., delete one or
more records).

• The syntax for the DELETE command is as follows:

DELETE FROM <table name>

WHERE <condition>;

DELETE FROM PO_DETAIL

WHERE PO_NUMBER = 2596;

DELETE FROM PURCHASE_ORDER

WHERE PO_NUMBER = 2596;

58

SQL: Converting data into information

• Converting the data into useful information for
decision making involves making computations
(processing) on the fields within the tables

• Some basic arithmetic and logical functions are
built into SQL that enable relatively simple
calculations

• In addition, compiling information for summary
purposes often involves retrieving information
from more than one table at the same time.

59

Aggregate Functions in SQL

• The aggregate functions allow the user to specify a

summary mathematical operation with a keyword

• The basic aggregate functions of the SQL are AVG,

SUM, MIN, MAX, and COUNT

• Syntax of the aggregate functions is as follows:

SELECT AGGREGATE FUNCTION ([DISTINCT] <attribute name>)

FROM <table name>

WHERE <condition>

GROUP BY <attribute name> [HAVING <condition>];
60

Aggregate Functions in SQL – Cont.

• The following examples illustrate the use of the

aggregate functions:

SELECT AVG(PO_AMT)

FROM PURCHASE_ORDER

WHERE PO_STATUS=“OPEN”;

61

Aggregate Functions in SQL – Cont.

• Expr1000 is a default sequential number assigned
by Access to and refers to the expression
AVG(PO_AMT)

• However, a label can be specified by the
programmer using the AS clause. Consider the
use of the AS clause in the following example.
The command

SELECT MIN(PO_AMT) AS MIN_AMT

FROM PURCHASE_ORDER;

62

Aggregate Functions in SQL – Cont.

• The COUNT keyword is used to return a count of
the number of rows in a column having entries
that satisfy the WHERE clause of the command:

SELECT COUNT(PO_STATUS)

FROM PURCHASE_ORDER

WHERE PO_STATUS=“OPEN”;

• This command returns a count of the number of
purchase orders in the database that are still
open

63

Aggregate Functions in SQL – Cont.

64

Aggregate Functions in SQL – Cont.

• It is also possible to embed an arithmetic

operation in an aggregate function SELECT clause

or to use a logical operator for multiple criteria in

the WHERE clause of an aggregate function:

SELECT SUM(PO_AMT)*1.10

FROM PURCHASE_ORDER

WHERE VENDOR_ID=“V250”

AND (PO_NUMBER=2594 OR PO_NUMBER=2595);

65

Grouping Data

• The GROUP BY clause can be used to group data
from an aggregate function by a column attribute

• This allows you to display the results of several
aggregates by some meaningful summary

• For example, suppose you want to summarize
aggregates of data from the PO_DETAIL table by
PO_NUMBER:

SELECT PO_NUMBER, MIN(QUANTITY), MAX(QUANTITY)

FROM PO_DETAIL

GROUP BY PO_NUMBER;
66

Grouping Data – Cont.

• A sub-clause of the GROUP BY clause is the

HAVING clause. This clause allows the

programmer to place a condition or filter on the

group.

67

Grouping Data – Cont.

SELECT PO_NUMBER, MIN(QUANTITY), MAX(QUANTITY)

FROM PO_DETAIL

GROUP BY PO_NUMBER HAVING MAX(QUANTITY)>1000;

68

Sub-queries in SQL – Cont.

• Sub-queries allow the user to condition one query
on the results of another query from a table

• It also allow the user to retrieve information in a
table based on the results of a query in another
table

Query 1: SELECT AVG(PO_AMT)

FROM PURCHASE_ORDER;

Query 2: SELECT PO_NUMBER, PO_AMT

FROM PURCHASE_ORDER

WHERE PO_AMT > (result of query 1);

69

Sub-queries in SQL – Cont.

• A command that uses a sub-query structure

incorporates both queries in one command:

MAIN QUERY SELECT <attribute name(s)>

FROM <TABLE NAME>

WHERE <column name> <criterion> / <IN>

SUBQUERY (SELECT <column name>

FROM <table name>

[WHERE <condition>]);

70

Sub-queries in SQL – Cont.

71

Sub-queries in SQL – Cont.

72

Sub-queries in SQL – Cont.

• The IN operator states that the main query is

conditioned on the PO_NUMBER(s) that are

returned in the sub-query

73

Appending Tables Using Joins

• There are times when it is desirable to display information
from more than one table on the same retrieval:

SELECT <table1 name.attribute name>, <table2

name.attribute name>,...

FROM <table1 name>, <table2 name>,...

WHERE <join condition>

ORDER BY <column name>

• For example, one might want to display the VENDOR_ID
and RELEASE_DATE from the PURCHASE_ORDER table
along with the related details from the PO_DETAIL table.
This is the purpose of a table join.

74

Appending Tables Using Joins – Cont.

75

Appending Tables Using Joins – Cont.

76

Appending Tables Using Joins – Cont.
• Another join Example:

SELECT VENDOR.VENDOR_ID, VENDOR.V_NAME,

PURCHASE_ORDER.PO_NUMBER,

PURCHASE_ORDER.RELEASE_DATE,

PO_DETAIL.PO_LINE_ITEM, PO_DETAIL.MATERIAL_ID,

PO_DETAIL.QUANTITY

FROM VENDOR, PURCHASE_ORDER, PO_DETAIL

WHERE VENDOR.VENDOR_ID = PURCHASE_ORDER.VENDOR_ID

AND PURCHASE_ORDER.PO_NUMBER=PO_DETAIL.PO_NUMBER

AND VENDOR.VENDOR_ID=“V250”;

77

